
144 lEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 38, NO. 2, FEBRUARY 1990

Synchronizing Asynchronous Bounded Delay Networks
CHING-TSUN CHOU, ISRAEL CIDON, INDER S. GOPAL, AND SHMUEL ZAKS

Abstract-An efficient way to synchronize an asynchronous network
with a bounded delay message delivery is presented. Two types of syn-
chronlzaiioo algorithms are presented. Both types require an initializing
phase that costs IEl messages (where IEl is the number of links). The
first requires an additional hit in every message and increases the time
complexily by a factor of 2. The second does not require any additional
hits but increases the time complexity by a factor of 3. We also explain
how to overcome differences in nodal timer raies.

I. INTRODUCTION
Several models for distributed communication networks have been

described in the literature. Two of them have bccn extensively used
for the development of distributed algorithms-the synchronous and
the asynchronous models.

The synchronous model assumes a common clocking system for
all nodes and a bounded message delivcry delay. Essentially, time
can be thought of as being partitioned into slots. Message transmis-
sions always occur at a fixed position in a slot. If a node transmits
a message during slot i it is guaranteed that the message will be
received (and processed) by all neighbors by the start of slot i + I .
Distributed algorithms that operate in phases or cycles fit naturally
into this model. The synchronous nature of the message transmissions
ensures that all the information of the previous cycle is available to
a nodc before sending the messages of the next cycles.

The asynchronous model assumes no common clocking facility
and typically assumes a finite but unbounded delay for message de-
livery. Consequently, many distributed algorithms designed for asyn-
chronous networks are considerably less efficient in terms of time and
message complexity than those designed for synchronous networks.

An interesting approach is given in [l] where the author imple-
ments a synchronizer in an asynchronous network in order to simu-
late the synchronous model and to execute a synchronous distributed
algorithm in an asynchronous network. The synchronizer itself is a
distributed algorithm which enables the nodes to define time slots
and to detect when such slots start and end. The slots are guaranteed
to have the same property as in the synchronous network, i.e., mes-
sages transmitted by a node during its slot i will be received (and
processed) by all neighbors before the start of their slot i + 1. Notc
that the slots in different nodes do not necessarily occur at the same
instants in time. Whilc synchronous algorithms can now operate in
this network, an overhead must be paid for the operation of the syn-
chronizer itself, resulting in increased complexity for the operation
of the given synchronous algorithms.

In many practical communication systems the asynchronous model
can be strengthened. While it is still true that most systems lack
a common clocking mechanism, they do often guarantee message
delivery within a fixed (and small) time bound. This is particularly
true of the new generation of computer networks (for example, [2]),
which are comprised of high speed fiber optic lines and in which the

munications Society. Manuscript received Februar). 16, 1987; revised July
Paper approved by the Edltor for Network Protocols of the IEEE Com-

5 , 1988. This paper was presented at the Second International Workshop on
Distributcd Algorithms, Amsterdam, The Netherlands, July 1987.

California, Los Angeles, CA 90024.
C:T. Chou is with the Department of Computer Scicnce, University of

Yorktown Heights, NY 10598.
I. Cidon and I. S . Copal are with IBM Thomas J . Watson Research Center.

Institute of Technology, Halfa 32000. Israel.
S. Zaks is with the Department of Computer Science, Technion-lsrael

IEEE Log Number 8933276.

messages are routed through specialized high speed hardware rather
than in general purpose processors. In addition, the nodes in these
systems have highly accurate timers which are not synchronized with
each othcr but operate at equal rates.

In this paper we show that in such a model-asynchronous with
bounded delay (ABD)-the implementation of a synchronizer is con-
siderably simpler than in the truly asynchronous model. Conse-
quently, the complexity added to the operation of synchronous algo-
rithms in an ABD network is considerably lower than in a truly asyn-
chronous network. Two synchronization algorithms are presented in
this paper. In both algorithms there is an initialization phase that
costs IEl messages (where JEl is the number of links). The first al-
gorithm requires an additional bit in cvery message and increases the
time complexity by a factor of 2. The second does not require any
additional bits but increases the time complexity by a factor of 3.

Thus, either synchronizer preserves the order of complexity of
thc synchronous algorithm while only increasing the constant factor.
Consequently, for many problems such as breadth first search (BFS)
[2] and finding maximum flow, an ABD network can be substantially
better than a truly asynchronous network.

While the timers in the nodes are usually accurate, it is useful to
have a synchronizer that is robust enough to work with some timer
inaccuracies. We show that the synchronizers presented in the paper
have this property at the cost of some overhead in time complexity.

u. PRELIMINARIES

A communication network is represented by a graph (V , E) where
Vis the set of processing nodes and E c V x V the set of commu-
nication links. All links are bidirectional and a message transmitted
hy a node over a link arrives at the othcr end with an arbitrary delay
less than one unit of time. Each node has a timer which can be reset
to zero at any arbitrary time. For now, we assume that all timers
are accurate and there is no mutual drift between timers in different
nodes. In the description of the algorithms we shall often refer to
a global time. While all timers proceed at the same rate as global
time, the actual value of this time is not available to the individual
nodes and is introduced only for descriptive clarity.

tributed implementation of breadth first search (DBFS). The objec-
In order to motivate the need for synchronization consider a dis-

tive of a DBFS algorithm is to compute the minimum distances (mea-
s u r d in number of hops) from a distinguished node s to all other
nodes in the network. Upon termination of the DBFS algorithm ev-
ery node has to know its minimum distance from s and the link on
the corresponding shortest path to s. The synchronous implementa-
tion of DBFS is to broadcast from 5 a message carrying a distance
counter, whose value determines the distance from s. Node s first
sends its neighbors the message with distance counter set to zero.
Each node, when it receives the first copy of the message, will set
its distance to be one larger than the value of the counter, increment
the counter, and send the message to all of its neighbors. Subsequent
copics of the message are discarded. The algorithm takes O(lElj
messages and O(D) time where E is the set of links in the network
and D is the maximal distance from any node to s. The algorithm
works because the synchronous nature of the transmission ensures
that the first message is always received over the shortest path from

Now consider an implementation of DBFS on an ABD network.
Assume thc algorithm starts at global time 0. Assume further that
every node in the network receives a signal (say, from an obliging
"genie") informing it of the start of the algorithm. The nodes now

S.

0090-6778190/0200-0144$01 .oO 0 1990 IEEE

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 38, NO. 2 , FEBRUARY 1 9 9 0 145

can impose their own slots using their individual timers and thereby
simulate a synchronous system. In particular, the nodes will set their
timers to zero at the start of the algorithm and define the rnth slot,
m 2 0, to begin at time m and to end at time m + 1. The DBFS
algorithm will proceed in exactly the same way as before except that
a processor receiving a message with distance counter d waits until
the end of the dth slot whereupon it sets its distance to d + 1, incre-
ments the counter and forwards the message. Thus, s will transmit
its message with distance counter 0 at global time 0, processors one
hop away will receive the message before global time 1 and at that
time will set their distance to 1, increment the distance counter and
forward the message, and so on. Actually, no counter is needed,
since the operation of the algorithm guarantees that every message
received within the dth slot will have distance counter d. This solu-
tion clearly uses O(lE1) messages and O(D) time.

Let us now do away with the start signal. First, we attempt to get
rid of the signal by using the distance message itself to inform the
nodes of the start of the algorithm. Upon receipt of the distance mes-
sage, a nodc will set its timer to zero and, as in thc prcvious case,
forward a message with counter d after the end of the dth slot. Re-
call that we are not lower bounding message delays so a node cannot
start its timer at a value greater than 0 without risking the possibility
that it will forward the message too early. The algorithm operates
correctly (the proof is left to the reader). However, it is easily seen
that the time complexity increases to O(D2), even though the mes-

time complexity is because the distance message is delayed by each
sage complexity will remain O((E() . We ohserve that the increase in

node by d slots, d = 1, 2 , . . . , D. Thus, we will attempt to simulate
the start signal by introducing an initialization phase, which consists
of node s flooding the nctwork with an initialization message before
commencing the DBFS algorithm. The receipt of the initialization
message causes the nodes to set their timers to zero, If the initial-
ization message took zero time to propagate through the network,
we have succeeded in rcplicating the start signal. Unfortunately, we
can only bound the message delay, thereby ensuring that the start-
ing points of two neighboring nodes differ by less than 1. However.
this small difference in initial synchronization causes the algorithm
to operate incorrectly. In particular, a processor receiving a message
carrying a counter d , cannot just wait until the end of the dth time
slot and then forward the (incremented) counter, since a message
with a lower counter can rcach it later. In order to ensure correct
operation, the algorithm must be modified to send morc messages
upon receipt of a new message with the lower counter. This increases
the messagc complexity even though the time will remain O(D).

Thus, we see that obvious ways of simulating the start signal do not
lead to DBFS algorithms that are efficient in both time and messages.
A consequence of our synchronization algorithm to be presented in
the next section is a DBFS algorithm that achieves both O(IE 1) mes-
sage complexity and O(D) time complcxity.

111. SYNCHRONIZATION ALGORITHMS

A . The General Structure

The synchronization algorithms presented in this section have the
following structure. As in the algorithm presented at the end of the
previous section, they begin with an initialization phase which con-
sists of a flooding of initialization messages. The initiating node,
node s sends an initialization message (INIT) to all its neighbors.
Each node upon receiving the first INlT message forwards this lNlT
message to all neighboring nodes except the one from which the
INIT message was received. As before, each node resets its timer
to zero and starts counting the time. The difference is that the slots
will span CY units of time (the value of a is to he determined) rather
than a single unit of time as before. Thus, the mth slot will begin at
time m a and end at time (m + 1) ~ . We shall refer to a message sent
by a node during slot m as a message of the mth cycle.

the send on start (SOS) and the send after delay (SAD). They
In this paper we present two types of synchronization protocols,

differ by the specific point of time in the slot where the nodes sends
their messages of the current cycle, the duration of the time slot (a

is 2 in the SOS and 3 in the SAD), and the fact that an additional

SAD).
bit must he appended to in each message in the SOS (but not in the

B. The Initialization Phase
Both the SOS and the SAD synchronizer use the same initialization

phase. We give a description of this phase below.

On receiving START from the outside world or INIT from X do
If FLAG = 0 then do

FLAG + 1;
start timer from 0;
send INIT to all neighbors except X

end;
end;

Note, that FLAG can be reset after the reception of INIT from all
neighbors.

Let t i be the global time at which node i rcsets its timer. The
initialization phase has the property that for any two neighboring
nodes j and k , the following inequality holds:

t k - 1 i t , < t k + 1 . (1)

This follows from the fact that the message delay is bounded by
1.

C. The Send on Start Synchronizer
In the send on start (SOS) synchronizer, each node sends its mes-

sages at the beginning of a time slot, i.e., messages of cycle m 2 0

that k reccives j ' s mcssage of cycle m at global time T(m)k. The
are sent at local time mol. Assume that j and k are neighbors and

property of the synchronizer requires that node k receive all mes-
sages of cycle m before the start of its m + lth slot. This implies
the following condition:

T(m)k i f k + (m + 1) ~ . (2)

However, we know from (1) and the hound on the delay that

7(m)@ <t j+mol+l < t ~ + m a + 2 = t k + (m + I) a + (2 - a) .

(3)

If a 2 2 , inequality (2) results from inequality (3), and we are guar-
anteed that the synchronizer performs correctly. From (1) we find that
the message arrival time also satisfies the following lower bound:

T(mh 2 t ; + m a > f k + m a - 1 = tk + (m - I)U + (U - I) . (4)

For a 2 2, this implies that messages for cycle m will be received
by all neighbors after the start of slot m - 1 as well before the
start of slot m + 1. This implies that during slot m a node may
receive messages from cycles m and m + 1 but not from other cycles.
Therefore, a nodc must distinguish only between two consecutive
cycles. Stamping the messages with the parity bit of the cycle number
suffices for this purpose. Thus, we arrive at the following algorithm.

The SOS Algorithm

On TIMER = mu do

end;
On receiving a message stamped with STAMP do

send messages of cycle m with STAMP = (m) mod 2 ;

If ma T I M E R < (rn + l)u then do
If (m)mod2 = S T A M P then consider the received message

for cycle r n ;

end;
Else consider the received message for cyclc m + 1;

end;

D . The Send After Delay Synchronizer

The send after delay (SAD) synchronizer removes the need for
the binary stamping of the messages by ensuring that all messages

of cycle rn arrive only in slot rn. This is achieved at the cost of
increasing the value of a by one. In addition, Instead 01- sending the
messages of cycle rn immediately at the start of slot m, the nodes
wait for y units of time.

We require that all messages sent by node j in cycle m will arrive
at its neighbor k in cycle m. This is equivalcnt to the following
condition:

tk + fnff < 7(m)k < tk + (m + 1)U. (5)

We know from the delay bound and (1) that the following two in-
equalities hold:

~ (m) k < t , + m a + l + y < t k + r n a + 2 + y

=tk+(m+IkY+(2-01)+'y (6)

r (m) k L t , + m u + y > t k + m ~ ~ l $ y

= t k + (m - 1) ~ + (a - 1). (7)

By choosing y 2 1 and a L y + 2 it is clear that (6) and (7) imply
(5) . This means that the minimum values for y and a arc 1 and 3,
respectively.

The SAD Algorithm

On TIMER = ma + y do

end;
On receiving a message do

send messages of cycle m

If ma 5 TIMER < (m + l)a then
consider the received message for cycle m;

end;

We end this section with the following remarks.
1) For the BFS example there is an equivalence between the cycle

number in which the distance message is sent and the node distance
from the source.

2) If the synchronous algorithm performed does not require FIFO
ordering of message reception then neither docs our synchronizer.
In a non-FIFO environment some messages may arrive before the
initialization phase is started. In such a case one of the following
options may be taken: 1) consider all thosc messages received for
cycle zero, or 2) consider the first message as a START for the
initialization phase and treat this message as if it were received at
local time 0.

IV. HANDLING I ~ A C C U K A E TIMERS
As mentioned before, the timers are assumed to be highly accurate

and drift between them is typically very small. However, it is useful
to have an algorithm that is robust enough lo cope with minor rate
differences between the various timers in the network. Assume that
the fastest timer will count one unit of time after at least 1 - E units,
while the slowest one will do it after at most I + E . This difference in
the timer rates may cause, after some time, a mismatch bctwccn the
cycles at neighboring nodes. We will compute the smallest possible
cycle number when this mismatch may occur and then describe how
the nodes resynchronize the timers again.

We assume that the SAD synchronization algorithm is executed;
similar results can he derived for the SOS. If we follow the inequal-
ities in (5) , (6) , and (7) and assume a fast clock in one node and
a slow clock in the other, we find that the network will not suffer
from any mismatch as long as for cvcry two neighbors j and k the
following inequalities hold:

I, + ma(l + e) + 1 + -y(l + E) < t k + (rn + 1)a(I - E) (8)

t j + rna(1 e) + y(1 ~ e) > lk + rna(1 + E) . (9)

Using (l), for (8) and (9) to be satisfied, it suffices to have the
following conditions:

2mae 5 a(1 - e) - 2 - y(l + E) (10)

In order to maximize m while satisfying both (IO) and (11). it is
easy to show that y should be chosen to be

Which results that there is no mismatch problem as long as

a (l - t)2 - 3 + F m<--- - .
4aE

The choice of (Y determines the value of the bound. To get a
fccling of the actual values involved let M be the maximal integer
which satisfies (13). If the timers are accurate to within 1/10 of a
second in a day this gives a value of F = I /X64 OOO. In order for
M to be reasonably large, it is ncccssary to increase a beyond the
value of 3 obtained without timer drift. For example, a value of M
close to 140000 can be obtained by setting 01 to be 8.

When the cycle number exceeds M , there will be a mismatch
problem and the timers need to be resynchronized. We now describe
the resynchronization procedure. Assume that t is a globally known
number (given by the specifications of the timers). The goal of the
resynchronization is to bring the network back to the point where the
time difference between the reference time at each neighbor pair is
less than one unit of time. The resynchronization is identical to the
initialization phase, in which a flood of INIT messages brings all
timers to a new reference time. The question is when and where this
phase may start.

A node will proceed as normal until cycle M. It then will wait till
the resynchronization process has completed before proceeding any
further. The first cycle after the resynchronization has been com-
pleted will be considered to be cyclc M + 1 . The resynchronization
may be started asynchronously by each node that reaches cycle M
after it is sure that all other nodes have reached cycle M as well.
As mentioned, the resynchronization takes the form of a node broad-
casting an INIT message exactly as in the initialization phase. We
must be sure that all nodes in the network (not just adjacent nodes)
have completed cycle M , otherwise the resynchronization process
may prevent some nodes from completing a lower numbered cycle.
In order to determine when all other nodes have completed cycle M
two approaches are possible. One is to use a distributed algorithm to
get explicit notification from every node that it has completed cycle
M . For example, we can use a network wide search such as a prop-
agation of information with feedback (PIF) 141. A node that reaches
cycle M will start a PIF and each other node will send thc fccdback
only when it has also complctcd cyclc M .

Another approach is to use the bounded message delay property
of our model. We know that at cycle M (which is still without any
mismatch) time slots of the same cycle at adjacent nodcs still overlap.
Therefore, a node can be sure that all other nodes have completed
cycleMafter an additional delay of IVlu(1 +6)/(1 - 6) [theadditional
factor is because a node does not know whether its timer is fast or
slow]. Thus, a node completes cycle M , waits this additional delay
and initiates a new initialization phase. The time of receiving or
sending the first INIT message is defined as the beginning of cycle
M + 1 and the messages of this cyclc will be sent y units of time after
that. No messages are sent for detecting the termination of cycle M
in the network. If knowledge of the network topology exists, then
IYI may he replaced by D which is the maximal distance between
this node and all other nodcs in thc nctwork.

V. DISCUSSION

The algorithms prcsentcd in this papcr represent simple and easy to
implement synchronizers for asynchronous bounded delay networks.
Both algorithms preserve the order of complexity of synchronous
algorithms while only increasing the constant factor. The advent of
high speed networks with specialized switching hardware makes the

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 38, NO. 2, FEBRUARY 1990 147

bounded delay assumption quite realistic and increases the possibility ~ 2 1 1, C,don and 1, s, G ~ N , ~ ~ P A ~ s : approach to integrated high.
that such synchronizers will be implemented in real networks. speed private networks,” Int. J . Digital Analog Cablad Syst., vol.

1, no. 2, pp. 77-86, April-Junc 1988.

REFERENCES [3] S. Even,-Gruph Algorithms. Potomac, MD: Computer Science,

[I] B. Awerbuch. “Complexity of network synchronization,“ J . ACM, [4] A. Segall “Distributed network protocols,” IEEE Trans. Inform.
1979, pp. 12-18.

vol. 32, no. 4, pp. 804-823, Oct. 1985. Theory, vol. IT-29, pp. 23-35, Jan. 1983.

