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Abstract

The output of many algorithms in computer-vision is ei-
ther non-binary maps or binary maps (e.g., salient object
detection and object segmentation). Several measures have
been suggested to evaluate the accuracy of these foreground
maps. In this paper, we show that the most commonly-used
measures for evaluating both non-binary maps and binary
maps do not always provide a reliable evaluation. This
includes the Area-Under-the-Curve measure, the Average-
Precision measure, the Fβ-measure, and the evaluation
measure of the PASCAL VOC segmentation challenge. We
start by identifying three causes of inaccurate evaluation.
We then propose a new measure that amends these flaws.
An appealing property of our measure is being an intuitive
generalization of the Fβ-measure. Finally we propose four
meta-measures to compare the adequacy of evaluation mea-
sures. We show via experiments that our novel measure is
preferable.

1. Introduction
The comparison of a foreground map against a binary

ground-truth is common in various computer-vision prob-
lems, e.g., salient object detection [10], object segmenta-
tion [11], and foreground-extraction [6]. These compar-
isons are crucial in assessing the quality of an algorithm.

The foreground maps are either binary or non-binary.
The common measures for evaluating a binary map are
PASCAL’s VOC (Visual Object Classes) segmentation
measure (referred to henceforth as PASCAL) [3, 11, 14] and
Fβ-measure [2, 4, 10, 17, 23]. Many algorithms that output
a non-binary map still compare against a binary ground-
truth [1, 9, 10, 12, 13, 19, 21, 24]. They do this via two
steps. First, multiple thresholds are applied to it, to ob-
tain multiple binary maps. Then, these binary maps are
compared to the ground-truth. Common methods to inte-
grate this into a single measure are Area-Under-the-Curve
(AUC) [7, 12, 15] and Average-Precision (AP) [10, 23].

We expect these measures to provide an indicator as to
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Figure 1. Inaccuracy of current evaluation measures. We com-
pare the ranking of foreground maps that are the output of three
state-of-the-art salient-object detection algorithms [9, 12, 13]. Ac-
cording to the most common measure, AUC, the red map offers
the best result despite its fuzziness, which captures much of the
background. Conversely, our proposed measure correctly ranks
first the cyan map, which most accurately captures the foreground
object, according to the ground-truth. Our ranking is supported by
four meta-measures.

which algorithm offers the best quality of detection. What
happens if this is not the case? Then a better algorithm may
receive a lower score than a lesser one. For instance, in Fig-
ure 1 the cyan map better captures the teddy-bear than the
red map, which offers a fuzzy detection that mostly captures
the red flower. Yet, the commonly-used AUC incorrectly
prefers the red over the cyan.

Our first contribution is identifying three assumptions
in commonly-used measures (AUC, AP, PASCAL and
Fβ-measure), which lead to inaccurate evaluations (Sec-
tion 3). For instance, typically the locations of the errors
in the map are ignored, while they are highly important.

Next, we proceed to amend each of these flaws and to
suggest a novel measure that evaluates foreground maps at
an increased accuracy (Section 4). Two appealing prop-
erties of our measure are: i) being a generalization of the
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Fβ-measure, and, ii) providing a unified evaluation to both
binary and non-binary maps.

Our third contribution is proposing four meta-measures
to analyze the performance of evaluation measures (Sec-
tion 5). Much like a measure is used to evaluate an algo-
rithm, a meta-measure is used to evaluate a measure [22].
For instance, one of our meta-measures verifies that the
ranking of foreground maps by an evaluation measure
agrees with the preferences of applications that use these
foreground maps (e.g. image retrieval, object detection and
segmentation). Using these meta-measures we compare the
evaluation measures, and show that our measure outper-
forms all others.

2. Current Evaluation Measures
We discern between binary maps, which consist of val-

ues of either 0 or 1, and non-binary maps, which consist of
values in the range [0, 1]. These values represent the proba-
bility that a pixel belongs to the foreground [8].

Evaluation of binary maps: All common measures for
evaluating a binary map are based on a subset of the follow-
ing four basic quantities: true-positive (TP ), true-negative
(TN ), false-positive (FP ) and false-negative (FN ). These
quantities are used to assess different qualities of the binary
map. The most common qualities are: Hit-rate & False-
alarm, and Precision & Recall:

Hit-rate = Recall =
TP

TP + FN
(1)

False alarm =
FP

TN + FP
(2)

Precision =
TP

TP + FP
. (3)

These qualities are typically combined into a single
score. One common score is the Fβ-measure:

Fβ-measure = (1 + β2)
Precision · Recall

β2 · Precision + Recall

=
(1 + β2)TP

(1 + β2)TP + β2FN + FP
(4)

where β is a parameter that controls the preference between
complete-detection and over-detection (typically β = 1). A
second common score is the PASCAL measure:

PASCAL =
TP

TP + FN + FP
. (5)

Evaluation of non-binary maps: Non-binary maps are
compared against a binary ground-truth as well. The two
most common evaluation measures are AUC and AP. Both
measures are computed by first thresholding the non-binary
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Figure 2. Interpolation flaw. Foreground map (a), which is identi-
cal to the ground-truth, is better than foreground map (b). (a1-a3),
which are the only possible binary maps thresholded from (a), are
used to generate the green curves. (b1-b5), which are the only
possible binary maps thresholded from (b), are used to generate
the blue curves. The curves of (a) and (b) are identical. Therefore,
both AUC and AP cannot discern between (a) and (b), and rank
them both as perfect.

map into multiple binary maps. In the case of the AUC,
the binary maps are then compared against the ground-truth
map using the Hit-rate & False-alarm measures. Each of the
comparisons is marked on a Hit-rate & False-alarm graph.
A curve is then interpolated between the marked points. The
final AUC score is the area under the curve.

The AP score is computed in a similar fashion. A curve
is interpolated from the Precision and Recall values of the
binary maps. The interpolated precision value at each recall
level, r, is computed as the maximum precision measured
at higher recall levels [11]: p(r) = maxr̃:r̃≥r p(r̃). The
AP score is computed by averaging the precision values at
evenly spaced recall levels.

3. Limitations of Current Measures
While the current evaluation measures often perform

well, they posses several limitations that hinder their perfor-
mance. In what follows, we present three assumptions that
are the cause for these limitations. We begin by discussing
an assumption of AUC & AP (non-binary) and then present
two additional assumptions that apply to all four measures
(non-binary and binary).

Interpolation flaw: Both AUC and AP assume that the
interpolated curve (between binary maps) is a valid tool for
evaluating non-binary maps. Figure 2 demonstrates why
this assumption is inaccurate. (a) and (b) present two fore-
ground maps to be evaluated. (a) is identical to the ground-
truth, so it should be scored as much better than (b). Sur-



FG maps
Figure 3. Interpolation flaw. These AUC curves are generated for
the cyan and the red foreground maps. Since the score relies solely
on the interpolated curve and not on the location of the points used
to create it, it incorrectly ranks the red map as better.

prisingly, both maps obtain a perfect score by both AUC
and AP.

To understand why this happens, note that for Fig-
ure 2(a), there are only three possible unique binary maps
that can be extracted (by setting thresholds) and plotted on
the graph. Differently, for Figure 2(b), there are five pos-
sible unique binary maps that can be extracted and plotted.
In both cases, however, the resulting interpolated curves are
identical. Since both AUC and AP rely solely on the inter-
polated curve, ignoring the distribution of points along the
curves, they deem (b) as perfect as (a).

A more realistic example is presented in Figure 3, which
presents the AUC curves of the cyan and the red maps of
Figure 1. These maps are the results of state-of-the-art
saliency detection algorithms [9, 13]. Intuitively, the cyan
map is better than the red, since it is much less fuzzy. Fur-
thermore, when using these maps as priors in three different
applications (image retrieval, object detection and segmen-
tation – Section 5), the cyan map produced better results.
However, both AUC and AP rank the red map as better. This
is since they ignore the location of the points in the graph.
Both are blind to the fact that many of the binary maps, ob-
tained from the cyan map, have both high Hit-rate and low
False-alarm (the region of good detection; see Figure 3). It
is important to note that the difference in point distribution
along the curves between the cyan and red curves, would
not change regardless of the chosen thresholding intervals.

The interpolation flaw applies solely to the measures of
non-binary maps. We next describe two more flaws that
apply to the evaluation of both binary and non-binary maps.

Dependency flaw: Current measures assume that the pix-
els are independent of each other. Figure 4 demon-
strates why this assumption may be wrong. Both Fig-
ures 4(a) and 4(b) have identical TP, TN,FP and FN val-

Ground-truth (a) FG map (b) FG map
Figure 4. Dependency flaw. (a-b) are two binary maps with the
same TP, TN, FP and FN values. Current measures consider
each pixel as independent. Hence, they ignore the fact that the
false-negatives in (b) are sparsely spread within true-positive de-
tections, thus offering a good sampling of the foreground region.
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Figure 5. Dependency flaw. Based on three applications (“Apps”
– Section 5), the detection offered by the cyan map is superior
to that of the red. However, both Fβ-measure and PASCAL rank
the red map as higher. By incorportaing pixel dependency, our
measure correctly ranks the cyan map as higher.

ues. Hence, they get the exact same score by all current
evaluation measures. However, the false-negatives in Fig-
ure 4(a) are concentrated, thus a whole piece of the fore-
ground is not detected at all. Conversely, in Figure 4(b)
the false-negatives are sparsely scattered among the true-
positives, hence, the entire object is sampled. For most ap-
plications, the maps in Figures 4(a) and 4(b) are not of the
same quality and should not receive the same score.

Figure 5 illustrates another case of the dependency flaw,
this time on a real-world example. The cyan map contains
false-negatives that are mostly in regions of true-positive
detections, thus offering a good sampling of the foreground
region. Conversely, while the red map has more true-
positive detections, it also has numerous false-positive de-
tections. When using these maps as priors in three different
applications (“Apps” – Section 5) the cyan map produced
the best results. Yet, both PASCAL and the Fβ-measure
rank the red map higher than the cyan map.

Equal-importance flaw: The last assumption made by all
the current measures is that all erroneous detections have



Ground-truth (a) FG map (b) FG map
Figure 6. Equal-importance. (a-b) are two binary maps with the
same number of false-positives. Current measures consider all
the false-positives as equally important, deeming the errors in (b),
which are near the foreground boundary, as equally harmful as the
errors in (a). However, (b) is less damaging for many applications.
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Figure 7. Equal-importance flaw. According to three applica-
tions (“Apps” – Section 5), the cyan map is the best, followed by
the red and yellow maps. Due to the equal-importance assumption,
both the Fβ-measure and PASCAL result in different rankings.

equal importance. Figure 6 demonstrates why this may not
be the case. Both foreground maps in Figures 6(a) and 6(b)
have identical TP, TN,FP and FN values, and hence are
scored as equal by all current evaluation measures. How-
ever, the false-positive detections in Figure 6(b) are located
near the foreground boundary and hence are often less dam-
aging for many applications.

This behavior is further presented on a real-world ex-
ample in Figure 7. When using the cyan, red, and yellow
maps as priors in three different applications (“Apps” – Sec-
tion 5), the cyan map was ranked as best, the red map sec-
ond, and the yellow map last. This is since the cyan map is
the most accurate with the least number of false-positives.
The red and the yellow maps have a similar number of false-
positive detections, but the false-positive detections in the
red map are near the foreground. This is ignored by the
Fβ-measure, which scores the yellow map as better than the
red.

The PASCAL measure aims to resolve this by using a 5-
pixel wide don’t care band around the foreground. It thus
correctly ranks the red higher than the yellow. However,

due to the don’t care band it also erroneously ranks the red
higher than the cyan.

4. Our Solution

In this section we present a novel measure to evaluate
both non-binary and binary maps. By amending the three
assumptions presented in Section 3, our measure provides
better evaluation than previous measures (Section 5).

4.1. Resolving the Interpolation Flaw

The source of the interpolation flaw is the threshold-
ing of the non-binary maps. We propose a simple solu-
tion that avoids this stage by evaluating the non-binary map
directly. The key idea is to extend the four basic quanti-
ties: TP, TN,FP and FN , to deal with non-binary values.
These quantities will later be the basis of our measure.

Let G1×N denote the column-stack representation of the
binary ground-truth, where N is the number of pixels in the
image. Let D1×N denote the non-binary map to be evalu-
ated against the ground-truth.

Previously, the four basic quantities were defined solely
for the case of a binary map. Each pixel i of the map D
was classified as either correct (D(i) = G(i)) or incorrect
(D(i) 6= G(i)). To extend these definitions to the case of
non-binary maps, we allow for pixels to be partially correct.
Therefore, instead of summing the number of pixels that are
correct or incorrect, we sum the partial correctness or incor-
rectness. Our four basic quantities are defined as follows:

TP ′ = D ·G
TN ′ = (1−D) · (1−G)

FP ′ = D · (1−G)

FN ′ = (1−D) ·G. (6)

By basing our measure on these quantities, we do not need
to threshold the non-binary map into multiple binary maps,
thus avoiding the interpolation flaw. Note that whenD is bi-
nary, these definitions are identical to the conventional ones.

4.2. Resolving the Dependency Flaw & the
Equal-Importance Flaw

Recall that the remaining assumptions deal with detec-
tion errors. The first deals with the dependency between
false-negatives, and the latter deals with the location of the
false-positives. Our key idea is to attribute different impor-
tance to different errors.

We start by reformulating the basic quantities in terms of
errors. Equation (6) is rewritten as functions of the errors in
detection. Let E1×N denote the absolute error of detection:

E = |G−D|. (7)



Recalling that G is binary, we can rewrite the quantities of
Equation (6) as follows:

TP ′ = (1− E) ·G
TN ′ = (1− E) · (1−G)

FP ′ = E · (1−G)

FN ′ = E ·G. (8)

By writing the quantities in this form, one can see that
indeed all errors are of equal importance, regardless of any
dependency or location constraints.

We suggest applying a weighting function to the errors,
such as to take into consideration both the dependency be-
tween pixels and the location of the errors. Our weight func-
tion consists of two components, a matrix, AN×N , which
captures the dependency between pixels and a vector BN×1,
which represents the varying importance of the pixels. We
incorporate this by weighting the error map:

Ew = min(E,EA) · B, (9)

where min is a per-element minimum function. By multi-
plying the error map, E, by the matrix A and then taking
the minimum between the two, we never increase the error,
only reduce it. B then re-weights the result according to the
pixels’ location. The basic quantities are now redefined as:

TPw = (1− Ew) ·G
TNw = (1− Ew) · (1−G)

FPw = Ew · (1−G)

FNw = Ew ·G, (10)

Note that when independency and equal-importance are as-
sumed (i.e. A = I and B = 1), these definitions are identi-
cal to the conventional ones.

In what follows we elaborate on the dependency matrix
A and the importance vector B that were found to work well.

Incorporating pixel dependency – A. The matrix A
should capture the dependency between foreground pixels.
We wish for the dependency between pixels to be based on
their relative Euclidean distance. The smaller the distance,
the greater the impact should be. We realize this via a Gaus-
sian weight as follows:

A(i, j) =


1√

2πσ2
e−

d(i,j)2

2σ2 ∀i, j G(i) = 1, G(j) = 1

1 ∀i, j G(i) = 0, i = j
0 otherwise

(11)
where d(i, j) is the Euclidean distance between pixel i and
pixel j. σ2 controls the influence of pixels that are farther
away. The larger σ2 is, the greater the influence of distant
pixels. To mostly rely on the close neighborhood of a pixel,
we used σ2 = 5 as the default value for all our results.

Incorporating pixels of varying importance – B. The
vector B should assign importance weights to false detec-
tions according to their distance from the foreground. Thus,
we define B as:

B(i) =

{
1 ∀i, G(i) = 1
2− eα·∆(i) otherwise

(12)

where ∆(i) = min
G(j)=1

d(i, j). The constant α determines the

decay rate. A value of α = ln(0.5)
5 was found to perform

well. This results in a minimal weight of ∼1 given to false-
positives (FP ) that are adjacent to the foreground, and a
weight of ∼1.5 given to FP that are located at a distance
of 5 pixels. Note that the exponent was shifted to generate
values in the range [1,2), for numerical convenience.

4.3. The New Measure – Fwβ -measure

Having dealt with all three flaws, we proceed to con-
struct our evaluation measure. We follow the methodology
of the Fβ-measure, replacing the four quantities with our
weighted quantities of Equation (10). We define weighted
Precision, which is a measure of exactness, and weighted
Recall, which is a measure of completeness:

Precisionw =
TPw

TPw + FPw
Recallw =

TPw

TPw + FNw
.

(13)
Finally, we define the weighted Fwβ -measure as:

Fwβ =
(
1 + β2

) Precisionw · Recallw

β2 · Precisionw + Recallw
. (14)

Here, similarly to the Fβ-measure, β signifies the effective-
ness of detection with respect to a user who attaches β times
as much importance to Recallw as to Precisionw.

5. Experimental Validation
One of the most difficult tasks in devising an evalua-

tion measure, is proving its quality. Inspired by [22], we
adopt the meta-measure (a measure that evaluates mea-
sures) methodology. Each meta-measure is based on an
expected property of an evaluation measure, which it ver-
ifies. We employ four meta-measures, based on the follow-
ing properties:

1. The ranking of an evaluation measure should agree
with the preferences of an application that uses the map
as input.

2. A measure should prefer a good result by an algorithm
that considers the content of the image, over an arbi-
trary map [22].

3. The score of a map should decrease when using a
wrong ground-truth map [22].



Figure 8. Application Ranking: To rank foreground maps ac-
cording to an application, we compare the output achieved when
using the ground-truth, to the output when using the foreground
map. The closer the foreground is to the ground-truth, the closer
its application output should be to the ground-truth output.

Non-binary Binary
Figure 9. Meta-measure 1 – results: The ranking correlation of
an evaluation measure to that given by the image retrieval applica-
tion. The results presented are 1− ρ (ρ denoting Spearman’s Rho
measure). The lower the score, the better an evaluation measure is
at predicting the preference of the application. Our measure offers
improvement over the other measures.

4. The ranking of an evaluation measure should not
be sensitive to inaccuracies in the manually marked
boundaries in the ground-truth maps.

All of our meta-measures were examined on the ASD
dataset [1], which consists of 1000 natural images with bi-
nary ground-truth maps (similar results were found on the
SOD dataset [20]). Binary and non-binary foreground maps
were generated for each image using five state-of-the-art
algorithms for salient object detection [9, 10, 12, 13, 19]
(binary maps are obtained by thresholding the non-binary
maps).

5.1. Meta-Measure 1: Application Ranking

Our first meta-measure examines the ranking correlation
of the evaluation measure to that of an application that uses
foreground maps. We assume that the ground-truth map
is the optimal prior for the application (upper path in Fig-
ure 8). Then, given a foreground map, we compare the
application’s output (lower path in Figure 8) to that of the

ground-truth output. The more similar a foreground map
is to the ground-truth map, the closer its application’s out-
put should be to the ground-truth output. The ranking of
the foreground maps is determined by the similarity of their
output to that obtained when using the ground-truth. Fi-
nally, the first meta-measure compares the ranking by each
evaluation measure: AP, AUC, PASCAL, Fβ-measure and
ours, to the ranking by the application.

We examined three applications: image retrieval, ob-
ject detection and segmentation. Similar results were found
in all three applications. For lack of space, Appendix A
discusses the realization of only one application: context-
based image retrieval. The realization of the other applica-
tion was performed similarly.

We performed this experiment using the results of five
state-of-the-art algorithms [9, 10, 12, 13, 19]. The results on
the 1000 images of the ASD dataset [1] are shown in Fig-
ure 9. 1−Spearman’s Rho measure [5] was used to assess
the ranking accuracy of the measures. A score of 0 is given
to evaluation measures that ranked the detection algorithms
identically to that of the application. A score of 2 is given
to measures that ranked the foreground maps in a complete
reversed order. In the case of non-binary maps, we can see
a great improvement over the previously used AUC and AP
measures. Some improvement is also achieved for binary
maps, when compared to PASCAL and Fβ-measure. Fig-
ures 5 and 7 illustrate several examples of how our measure
better predicts the preference of these applications.

5.2. Meta-Measure 2: State-of-the-art vs. Generic

The property on which we base our second meta-
measure is that an evaluation measure should prefer a re-
sult obtained by a state-of-the-art method over a map cre-
ated without taking into account the content of the image.
We use a centered Gaussian and centered circle as generic
maps that do not consider the content of the image.

Two examples are provided in Figure 10, one non-binary
and the other binary. We expect the evaluation measure to
score the result obtained by the state-of-the-art algorithm
in Figure 10(c) higher than the generic Gaussian or circle
maps in Figure 10(d). Yet, currently used measures prefer
the generic results. Conversely, our measure correctly ranks
the state-of-the-art result higher.

We examined the number of times a generic map scored
higher than the mean score obtained by the five state-of-the-
art algorithms [9, 10, 12, 13, 19]. (The mean score provides
robustness to cases in which a specific algorithm produces
a poor result.) Figure 11 summarizes the results: the lower
the score, the better the measure is. Our measure outper-
forms the current methods of both non-binary and binary
measures. This is thanks to our consideration of the neigh-
borhoods of detections and their location.



(a) Image (b) Ground-truth (c) Algorithm (d) Generic
Figure 10. Meta-measure 2: A measure should prefer the result
of a state-of-the-art algorithm (c), over a result obtained without
taking into account the content of the image (d). Surprisingly, all
of the current measures prefer the generic result. Only our measure
correctly ranked (c) higher than (d).

Non-binary Binary
Figure 11. Meta-measure 2 – results: The percent of times (tested
on 1000 images) that an evaluation measure scored a generic map
(centered gaussian or circle) higher than the results of the state-of-
the-art algorithms. The lower the score, the better. Our measure
outperforms the other measures.

5.3. Meta-Measure 3: Ground-truth Switch

The third meta-measure assumes that a good result
should not get a higher score when switching to a wrong
ground-truth. A foreground map is considered as “good”
when it scores at least 0.5 out of 1 (when compared to the
original ground-truth map).

In Figure 12 we expect that evaluating the foreground
map in (b) against the ground-truth in (c) would produce a
higher score than when switching the ground-truth to (d).
However, both AUC and AP score otherwise.

Quantitative results of the rate of incorrectly increasing
a detection’s score when using a wrong ground-truth map
are reported in Figure 13. For each of the 1000 images,
100 random ground-truth switches were performed. The
lower the score, the better a measure can correctly match
between a good foreground map and its true ground-truth
map. Since our method directly evaluates the non-binary
maps, it outperforms both the AUC and AP measures.

In the case of binary maps, we found that all three meth-
ods performed well with respect to this meta-measure (Fβ-
measure with 0.02%, and Pascal & ours with ∼ 0%).

(a) Image (b) FG map (c) Ground-truth (d) Switched GT
Figure 12. Meta-measure 3: The score of a foreground map
should decrease when using a wrong ground-truth map. Yet, both
AUC and AP gave the map in (b) a higher score when using (d) in-
stead of (c) as the reference ground-truth map. Using our measure,
the score of (b) appropriately decreased when switching to (d).

Non-binary
Figure 13. Meta-measure 3 – results: The percent of times (tested
on 1000 images) that a measure increased a foreground map’s
score when an incorrect ground-truth map was used. The lower
the score, the better. Our measure outperforms both AUC and AP.

5.4. Meta-measure 4: Annotation errors

Our fourth meta-measure is inspired by the PASCAL
VOC Challenge [11], which uses a don’t care band around
the borders of the manually annotated data, to decrease the
effect of slight annotation inaccuracies. We assert that the
rankings of given foreground maps should not change much
with small inaccuracies in the ground-truth maps.

To realize this meta-measure, we generate a slightly
modified ground-truth map by applying morphological op-
erations. Figure 14 illustrates an example. While the two
ground-truth maps in (b) & (c) are almost identical, both
the AUC & AP switched the ranking between the two fore-
ground maps when using (b) or (c). Conversely, our mea-
sure consistently ranked the map in (d) higher than (e).

To offer a quantitative assessment of the change in rank-
ing we used 1−Spearman’s Rho measure to examine the
ranking correlation before and after the annotation errors
were introduced. The lower the score, the more robust an
evaluation measure is to annotation errors. The results are
shown in Figure 15. Our measure outperforms both the AP
and the AUC. It also offers a slight improvement over the
Fβ-measure and PASCAL, which score 0.023 and 0.025 re-
spectively, compared to 0.022 scored by our measure.

6. Conclusion

In this paper, we analyzed the currently-used evalua-
tion measures that compare a foreground map against a bi-
nary ground-truth. We showed that they suffer from three
flawed assumptions: interpolation, dependency and equal-



Image GT GT Foreground Foreground
(a) (b) (c) (d) (e)

Figure 14. Meta-Measure 4: The ranking of an evaluation mea-
sure should not be sensitive to inaccuracies in the manually marked
boundaries in the ground-truth maps. While ground-truth maps (b)
& (c) differ slightly, both AUC and AP switched the ranking order
of the two foreground maps (d) & (e), depending on the ground-
truth used. Our measure consistently ranked (d) higher than (e).
Best viewed on screen.

Non-binary
Figure 15. Meta-measure 4 – results: The ranking consistency of
an evaluation measure under small annotation inaccuracies. The
results presented are 1−ρ of Spearman’s Rho measure. The lower
the score, the better.

importance. We further suggested an evaluation measure
that amends these assumptions. Our measure is based on
two key ideas. The first is extending the basic quantities
(TP, TN,FP and FN ) to non-binary values. The second
is weighting errors according to their location and their
neighborhood. Based on these, our measure can be de-
fined as a weighted Fwβ -measure. An additional benefit of
our measure is offering a unified solution to the evalua-
tion of non-binary and binary maps. The advantages of our
measure were shown via four different meta-measures, both
qualitatively and quantitatively.
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A. Meta-Measure 1: Application Realization
Content-based image retrieval finds for a given query im-

age the most similar images in a dataset [16]. The similarity
is determined by various features such as color-histograms,
histograms of oriented gradients (HOG), and Gabor re-
sponses. We used LIRE [18], a publicly available image
retrieval system with 12 different features, weighted ac-
cording to the foreground maps. For each image we used
LIRE to retrieve an ordered list of the 100 most similar im-
ages. The ground-truth output is the ordered list returned
when using the ground-truth map. The comparison between
the ground-truth output to that of a foreground map is per-
formed using Spearman’s Rho measure.


