
Relief Analysis and Extraction

Rony Zatzarinni∗

Technion
Ayellet Tal†

Technion
Ariel Shamir‡

The Interdisciplinary Center

(a) Input model (b) Estimated height function (c) Relief extraction

Figure 1: A model of a seal from the early Iron Age, 11th century BCE is composed of a base shape and reliefs (a). However, its decoupling
into a base and a details is unknown. Our algorithm estimates the height function relative to the base (b), and uses it to extract the reliefs (c).

Abstract

We present an approach for extracting reliefs and details from re-
lief surfaces. We consider a relief surface as a surface composed
of two components: a base surface and a height function which is
defined over this base. However, since the base surface is unknown,
the decoupling of these components is a challenge. We show how
to estimate a robust height function over the base, without explic-
itly extracting the base surface. This height function is utilized to
separate the relief from the base. Several applications benefiting
from this extraction are demonstrated, including relief segmenta-
tion, detail exaggeration and dampening, copying of details from
one object to another, and curve drawing on meshes.

1 Introduction

Many man-made objects are composed of a basic shape or structure
and added details. For instance, a vase can be thought of as being
composed of a basic tubular shape and surface reliefs; a pillar can
be composed of a basic cylinder shape, groves and a decorated capi-
tal. However, the representation of 3D objects is usually a boundary
surface mesh describing both the basic shape and the details with
no distinction. This is true when scanning physical 3D objects or
when designing them using modeling software. This means that
important semantic information is missing from this type of rep-
resentation. This, in turn, can result in distortion of details when
applying geometric modeling operations and the destruction of the
object’s design. In this paper we describe a method to extract such
details from a given 3D object, in effect segmenting it into its base
and its details (Figure 1).
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Object segmentation is an active research area and has numerous
applications such as texture atlas generation, shape analysis, recog-
nition, matching, shape simplification, shape modeling and shape
retrieval [Attene et al. 2006; Chen et al. 2009; Shamir 2008]. The
definition of a good 3D segmentation highly depends on the appli-
cation itself, but two general approaches are common. Part-type
segmentation divides the object into meaningful parts, such as the
head and legs of a horse, while patch-type segmentation partitions
the boundary of an object into surface patches.

To the best of our knowledge relief and detail segmentation has
received little attention. Methods that focus on specific families of
reliefs have been shown to generate good results. These families
include isolated reliefs lying on a smooth background [Liu et al.
2006], reliefs lying on a textured background [Liu et al. 2007b]
and periodic reliefs [Liu et al. 2007c]. The current paper aims at
automatically segmenting multiple arbitrary reliefs lying on general
surfaces.

A relief on a surface is a part which is above some base (or below
in case of an embossed relief, see Figure 1). This means we can
identify reliefs by measuring heights on a surface. However, con-
trary to a height function defined on a 2D planar-base domain (e.g.
images), the boundary of 3D objects are curved surfaces and there
is no clear base for measuring the relative height of points (hence,
methods such as watershed [Mangan and Whitaker 1999] will not
succeed). Towards this end, we consider the boundary surface of a
3D reliefed object as a composition of two components: a base sur-
face and a height, which is a scalar function defined over the base
in the normal direction to the base surface. Our only assumption is
that the mean curvature of the base surface is smaller or equal to the
curvature of the actual surface. If we could find an appropriate base
surface, we would be able to measure the height of each surface
point and use a threshold to define reliefs. However, given a bound-
ary representation of an object, the decoupling of these components
is unknown.

Our key observation is that there is no need to extract the real base
surface to estimate details. The height function itself contains all
the needed information to separate the relief from the base. Hence,
we only need a good estimation of the height and not the base sur-
face itself. Interestingly, this turns out to be easier. We show that
to measure height we only need an estimation of the normals of the
base surface, and not the surface itself. Based on the base normals,
we can define relative height differences between all the points on
the model. By solving a global optimization problem we eventu-
ally reach a height definition for all points. The reliefs are extracted



(a) S = B+h ·nB (b) Height threshold (c) Height difference

Figure 2: (a) Defining a surface as a composition of a smooth base surface and a height function in the direction of the normal to the base.
(b) A threshold on the height function is used to define the reliefs. (c) The difference in height between two points (p and q) can be found
by projecting the vector connecting them on the normal to the base nB (which is different than the normal to the surface nS). Note that this
would not be correct if the distance between the points is too large (e.g., p and r).

by thresholding the height function, and the threshold can be com-
puted automatically using a Gaussian mixture model (GMM) for
the distribution of the height values.

The major contribution of this paper is a new algorithm for extract-
ing reliefs. The algorithm consists of four steps: base normal esti-
mation, height function calculation, threshold segmentation, and fil-
tering. We present effective results on both artificial examples and
challenging noisy real-life examples. We also demonstrate several
applications. In particular, we show how our technique serves relief
segmentation, detail exaggeration and dampening, detail copying
and transfer, and curve drawing on meshes.

2 Related work

[Liu et al. 2006] define a relief as an extra material added locally
to some underlying surface. The added material forms a surface
with sculpted features, clearly different from the underlying sur-
face. [Sorkine et al. 2004] refer to a relief as “coating” or high-
frequency details and define it as the difference between the orig-
inal surface and a low-frequency band of that surface. [Anderson
and Levoy 2002; Liu et al. 2007a; Kolomenkin et al. 2009] pro-
posed to view a relief surface as a composition of a smooth base
surface and a height function defined over that base. Our paper
follows the latter definition.

Relatively little work has been done in the context of relief seg-
mentation of triangulated meshes. In [Anderson and Levoy 2002]
the model of a cuneiform tablet is decomposed into a coarse B-
spline, which captures the basic tablet shape, and a displacement
map, which encodes the inscribed detail. Then, the B-spline sur-
face is discarded, retaining only the displacement map.

In [Liu et al. 2006] a relief extraction problem is addressed, in
which an isolated relief lies on a smooth and slowly varying back-
ground. The user needs to draw a rough closed contour on the mesh
around one relief to indicate the relief that needs to be extracted.
Then, a snake that starts from the user-drawn contour, evolves until
it matches the boundary of the relief.

In [Liu et al. 2007a] it is shown how to use the initial segmenta-
tion of [Liu et al. 2006] to estimate the background surface lying
under the relief. A B-spline surface is first fitted to the background
data surrounding the relief, while ensuring this background surface
smoothly continues underneath the relief. After making an initial
estimate of relief offset height, a support vector machine is used to
refine the segmentation.

[Liu et al. 2007b] consider the segmentation of reliefs lying on
a textured background. The method is based on two approaches:
classification and smoothing. In both approaches, a snake is used

to move from an initial user-given contour to the desired boundary.
For classification, a non-linear supervised learning method (SVM)
is applied. In the smoothing approach, a simple Laplacian surface
smoothing method is adopted. The snake first moves to approxi-
mately the correct location using the smoothed model; further op-
timization is used on the original un-smoothed model to make the
snake accurately lie at the final position.

[Liu et al. 2007c] propose a method for extracting periodic reliefs.
If the underlying surface and relief path vary slowly, successive
repeat units approximately match each other after applying some
rigid transformation. Thus, a surface registration method is used
to match adjacent repeating units. The repeating units can then be
identified by cutting across the relief pattern at corresponding points
between adjacent repeats.

This paper attempts to extract multiple general reliefs, lying on gen-
eral surfaces. These include, for instance, challenging archaeolog-
ical reliefs, where both the relief and the background surfaces are
very noisy and have undergone weathering processes. Moreover,
our goal was to develop an automatic method, which does not rely
on user input.

3 Overview

Although our primary goal is relief segmentation of 3D objects,
our formulation is effective for any surface S ⊂ R3. Similar
to [Kolomenkin et al. 2009], we assume S is composed of a smooth
base surface B ⊂ R3 and a height function h : S→ R. The height
function represents the signed distance between the base surface B
to the surface S in the direction of the base’s unit normal ~nB : B→
R3. Hence, any point p ∈ S can be described as the sum of two
components, a point on the base b ∈ B and a height in the normal
direction at b, as follows (Figure 2(a)):

p = b+h(p) ·~nB(b).

It is also assumed that the curvature of the base surface B is smaller
than the curvature of S.

In practice, we usually have an orientable polygonal mesh M =
{VM ,EM}, where VM is the set of vertices and EM is the set of edges,
and our goal is to extract the relief parts of M. We assume that M
is composed of a base mesh B with the same connectivity as M,
and a height function h : M → R, which can also be described as
h : B→ R since there is a bijection between B and M.

Instead of trying to reconstruct the base B we extract the height
function h for each mesh vertex. If we know the height of one
specific point, the height of any other point can be defined relative
to this point by finding their difference in height. However, the



difference in height is not easily defined globally without a base
surface. Since the base surface is assumed to be smooth, one can
assume that it can be approximated in a small neighborhood by a
plane defined by the base-surface normal at a point. Over a plane
we can measure differences in height as the projection of the vector
connecting the points onto the plane’s normal (Figure 2(c)). To find
the differences in height between any two points, we can integrate
the local differences in height over a path on the surface between the
points. Consequently, to measure height we only need an estimation
of the normals of the base surface, and not the surface itself.

By filtering the normals of the original surface S (or mesh M) with
an adaptive filter we estimate the normals of the base surface B.
Using these estimated normals we define the height function itself
by solving a global optimization problem for the relative heights of
all the points. The reliefs are defined based on thresholding of the
height (Figure 2(b)). We use a Gaussian mixture model (GMM) on
the distribution of the height values to find this threshold automati-
cally.

Our basic algorithm consists of four parts. We elaborate on each of
the parts in the following sections.

1. Base normal estimation – The normals ~nB of the base mesh
B are estimated using an adaptive Gaussian filtering on M.

2. Height function calculation – The estimated normals are
used in a global minimization problem to find the height h
of every vertex.

3. Threshold segmentation – Using thresholding of the height
function, the mesh is segmented into two parts: a background
part G and a relief part R, where G∪R = M.

4. Filtering – Sharp edges are detected and discounted in the
solution. Small segments are removed from the relief part R
based on geometric consideration such as size and shape.

4 Base normal estimation

Figure 3: Adaptive normal smoothing: blue - surface normals,
cyan – estimated base normals.

A naı̈ve approach for finding the base B would be to apply a low
pass filter on the surface of the mesh M. This approach will usually
fail because smoothing deforms the base mesh as well as removes
surface details. Instead, we use an estimate for the normals of the
base mesh B, which turns out to be an easier task than finding the
base surface itself. The base normals are found by filtering the nor-
mals of M with a Gaussian filter.

To find the best base normal estimation we need to smooth the nor-
mals over the whole mesh. However, the mesh can have different
feature sizes in different areas. The challenge is to find the correct
degree of smoothing for every normal, i.e. the standard deviation σ

of the Gaussian filter. If the smoothing is too strong, the normals
of the base will be deformed. If the smoothing is too weak, the
normals will fit the original surface and not the base. Therefore, σ

should be adapted locally to the surface. We perform the estimation
in a manner similar to [Ohtake et al. 2002; Kolomenkin et al. 2009],

where σ is found by the following rule:

σbest = argmin
σ

c
σ2 + ε

2(σ).

In our implementation, c = 4.0× 10−3l2, l is the arithmetic mean
of the edge length of the mesh, and ε(σ) is the local variance of the
normal after smoothing it with a σ Gaussian. To find σbest , we used
ten uniformly-spaced values of σ between 0.6l to 6l. This scheme
is adaptive to the local features on the mesh: smaller values of σ are
found in flat regions and larger values on curved regions. Figure 3
demonstrates our results on a one dimensional curve. It can be seen
that our resulting normals coincide with the surface’s normals when
it is close to the base, but differ on the relief part.

5 Height function calculation

Figure 4: Left: on the path from p0 to p1, when the base normal
and surface normal agree (point q0), the arc length projection on
the base normal will be zero, meaning no height is gained or lost
along the path. When the base normal differs from the surface nor-
mal (point q1), the component of the arc length perpendicular to the
base defines the height differences (positive or negative). Right: the
discrete version of the height difference dh is the projection of the
edge length between two consecutive vertices onto the base normal
which is the average of the normals at these vertices.

Let ~nB : B→ R3 be the estimated base normals after the adaptive
Gaussian filtering. Given these normals, our goal is to find ĥ : M→
R, an estimation of h.

Given a reference point p0 ∈ S with some known height (w.l.g.
h(p0) = 0), the height of every other point p1 on the surface can
be calculated as the integral of height differences along a path on
the surface between p0 and p1. Over a flat base domain, the height
difference is just the projection of the vector between the points
onto the normal of the base. In general, the base surface is not flat.
However, for a smooth enough surface we can assume that locally
it is flat, and use the estimated normal of the base to find the height
difference between two close enough points (see Figure 2(c)).

For points which are far away from each other, we need to integrate
the height differences dh(t) over the geodesic path between the two
points. This is similar to the dot product of the (local) length with
the (local) base normal (Figure 4, left). Therefore, given a path
γ(t)⊂ S, 0≤ t ≤ 1 between p0 = γ(0) and p1 = γ(1), the expression
for calculating the estimation of the height of p1 is:

ĥ(p1) = h(p0)+
1∫

0

dh(t)dt = h(p0)+
1∫

0

(γ ′(t) ·~nB(t))dt. (1)

In the discrete mesh setting, we look at mesh edges and define the
height difference dh between two adjacent vertices (vi,v j) = ei, j ∈
EM as the projection of the vector connecting them onto the aver-
age direction of the base normals at vi and v j, denoted as nB(ei j)
(Figure 4, right):

dh(ei j) = (vi− v j) ·nB(ei, j) (2)



To find the height of any vertex vn given the height of some fixed
vertex v0, we can follow a path of vertices {vi}, 0 ≤ i ≤ n from v0
to vn and use a discrete form of Equation (1):

ĥ(vn) = h(v0)+
n

∑
i=1

((vi− vi−1) ·nB(ei,i−1)) (3)

This scheme suffers from two drawbacks. First, we have only an es-
timation of the normals of the base, calculated by smoothing. Sec-
ond, we have only discrete samples of the normals at the vertices.
Therefore, in practice the value of ĥ, as calculated in Equation (3),
will depend on the path between vertices the v0 and vn, which is
undesirable.

To solve these problems, we propose to use a global solution to
define the height function on all vertices at once, as follows. First,
we calculate nB(ei j) for all ei j ∈ EM . Now, we can write a system
of |EM | equations for the height function estimation h, one equation
for each edge ei j:

h(vi)−h(v j) = dh(ei j).

We look for ĥ that minimizes the following functional:

∑
ei j∈EM

h(vi)−h(v j)−dh(ei, j). (4)

We have |EM | equations of |VM | variables (|EM | > |VM |), which
is an overly constrained system. Therefore, it is solved using the
least-squares method. Furthermore, since all the equations contain
only differences between the height values, adding a constant to
the height h̃ = h + const will yield a valid solution. Hence, in or-
der to obtain a unique solution an additional equation needs to be
added. Without loss of generality we choose an arbitrary vertex as
a reference point and add the equation h(v0) = 0 to the equation
system (4). Once the height of the base is determined (Section 6),
the height values can be shifted so as the height of the base is con-
sidered to be zero.

Now, the full equation system can be rewritten as follows:

ĥ = argmin
h
‖S1h−S2h−dh‖, (5)

where S1 and S2 are sparse selection matrices, i.e., S1(k, i) = 1
and S2(k, j) = 1 if the k-th edge is (i, j) ∈ EM and S1(k,1) = 1 if
k = |EM |+1 for the soft constraint.

In order to find h, we start by manipulating Equation (5) as follows:

S1h−S2h = dh.

Let S = S1−S2, then

h = (ST S)−1ST dh

and thus
(ST S)h = ST dh.

This equation is solved by the Conjugate Gradient
method [Hestenes and Stiefel 1952], which is an iterative
method that can be applied to sparse linear systems that are too
large to be handled by direct methods. This solution is optimal in
the mean squared error (MSE) sense.

After estimating the values of the height function on the vertices of
the mesh, we use interpolation to find values between the vertices.
Figure 5 illustrates the result of this step, with an additional filtering
of sharp edges which will be described below in Section 7.

(a) Input (b) Height function

(c) Height contours

Figure 5: Iso contours of the height function on a piece of a Hel-
lenistic vase.

6 Threshold segmentation

Once the height of every vertex is determined, we aim to segment
the mesh into two disjoint components: background G⊂M and re-
lief R⊂M where G∪R = M. This is performed using a threshold
on the height function. We define the relief R as the union of all
the vertices that are higher than a threshold θ above the base mesh:
R = {vi ∈VM |h(vi) > θ} (or below for embossed reliefs). Analo-
gously, we can write G = {vi ∈VM |h(vi)≤ θ} or G = M \R.

The threshold θ separating G and R could be found manually as
an iso-contour on the mesh (Figure 5). However, we use the fol-
lowing heuristic for automatically determining θ . We examine the
histogram of the height values and approximate it with a Gaussian
mixture model (GMM) with two Gaussians f = ∑

2
i=1 αiG(µi,σi),

where µi and σi are the mean and standard deviation of the i-th com-
ponent in the Gaussian mixture, αi is its weight, and α1 + α2 = 1.
The parameters are estimated using the Expectation Minimization
(EM) method [Dempster et al. 1977].

We choose the threshold θ as the intersection of the two distribu-
tions: θ = {h|G1(h) = G2(h)}. The relief part is chosen according
to its type. It is the Gaussian with the larger mean value µi for ex-
truded reliefs or the smaller mean value for embossed reliefs. In
some examples, the histogram of values cannot be separated into
two clearly distinct Gaussians, as the reliefs and base are mixed.
Even in such cases, the intersection of the two distributions gives a
good candidate for extracting the reliefs (Figure 6).

To increase the accuracy of the segmentation and achieve smoother
boundaries between the relief and the background, the boundary
curves cut through the mesh triangles. A mesh edge ei j contains a
curve boundary point if h(vi) < θ and h(v j) > θ . The location of
the curve point is obtained by linear interpolation of the vertices’
height values on the edge. Consecutive neighboring curve points
are connected on the faces of the mesh to create the curve itself.



(a) Extruded relief (b) Embossed relief

(c) Mixed reliefs

Figure 6: Approximating the histogram of the height values using
GMM to choose the relief threshold (in magenta). The relief extrac-
tion of these objects can be seen in Figures 1, 8, 11.

7 Handling noise and sharp features

Scanned models may contain small bumps and scratches and also
acquisition noise. All these may be classified as reliefs because
their height deviates from the height of the base. Such phenomena
is undesired in some applications. We solve this using a simple
filtering scheme based on the segment’s size and shape.

We decompose the obtained relief into k maximal connected com-
ponents {ci|i = 1..k}. For every segment ci we calculate the follow-
ing score:

Score(ci) =
Ne−total(ci)−Ne−boundary(ci)

Ne−total(ci)
,

where Ne−total(ci) is the total number of edges in ci and
Ne−boundary(ci) is the number of its boundary edges. Small and
skinny segments, containing many boundary edges, will receive
lower scores and will be moved from the relief R to the background
G. In our experiments we found that setting score threshold to 0.95
works for most models but the user may change the value depend-
ing on her preference.

Another possible misclassification that requires special attention
occurs at sharp edges or corners of the model. First, sharp fea-
tures receive high values in the height function due to our assump-
tion that the base has a smaller curvature than the original surface.
Hence, sharp edges need to be classified as such and removed from
the relief R. Second, sharp edges may also cause problems in calcu-
lating the height of other vertices in the mesh, in the global solution
of Equation (5). This is because vertices near the sharp edges are
pulled towards higher values even if they are on a plane. To alle-
viate these problems, all vertices classified as situated on a sharp
edges are removed from Equation (5) in effect creating a piecewise
solution which is more robust.

To classify sharp edges we aim to find a coarse estimation of the
base surface. The general idea is to apply a low pass filter to the
mesh. While this estimation will not suffice for finding the reliefs,
it is suitable for finding sharp edges on the model. This is because
reliefs are located more on dome-like surfaces and tend to be more
sensitive to filtering than edges of the model. After low pass filter-
ing, areas with high mean curvature are classified as sharp features
of the model. The algorithm consists of four steps, as illustrated in
Figure 7.

1. Mesh simplification – We reduce the number of vertices in the
model to a given threshold by applying simplification [Heck-
bert and Garland 1999]. This step also yields a more uniform
density of the mesh. This contribute to making the filtering in
the next step faster and more uniform.

2. Low pass filtering – We apply a strong low-pass filter on the
mesh. The spatial frequencies of the relief are higher than the
spatial frequencies of the edges. Therefore, reliefs are more
sensitive to smoothing than edges. For the filtering we used
50 iterations of the improved Laplacian smoothing [Vollmer
et al. 1999]. The results, however, are not very sensitive to the
number of iterations.

3. Finding sharp features – After smoothing the mesh, we cal-
culate the curvature of every vertex k(vi). Let BB be the di-
agonal of the model’s bounding box and Tk be a threshold.
Vertices with k(vi) ·BB > Tk are classified as sharp features of
the model. A threshold of Tk = 10 works for all the models
we experimented with.

4. Edge removal – vertices that were classified as sharp features
in the previous step are removed from Equation (5). Note
that this may cause a mesh to be separated into several uncon-
nected components. However, since our technique works also
for surfaces with boundary, this does not cause a problem, and
we find the height function for each part separately. To syn-
chronize the heights in the different components we constrain
the height on the boundaries to be the same.

8 Applications

Our approach can be utilized not only for relief extraction, but also
for other applications, including detail exaggeration and dampen-
ing, relief cut & paste, and curve drawing. This section presents
some results.

8.1 Relief segmentation

Decorative reliefs are, and have been for thousands of years, added
to real objects and CAD models to make the design more interest-
ing. Reverse engineering of reliefs occurs in the porcelain industry,
where decorative reliefs need to be extracted from old objects, in
order to create new items that match the old design. Reverse en-
gineering of reliefs is also performed in archaeology, where the re-
liefs serve as a “finger-print”, used for comparing artifacts found in
different archaeological sites. In both cases, a skilled artist needs
to hand-draw the relief – a time-consuming, expensive, and biased
process. Figures 8–11 illustrate some results, obtained by using our
method in the different domains.

Figures 1, 7 and 8 illustrate challenging cases where our algorithm
manages to extract the reliefs from noisy and weathered archaeo-
logical objects. In such examples both the base and the relief are
noisy and details are lost due to aging. More examples of this type
appear later.

Figures 9–10 demonstrate reverse engineering of CAD artificial



(a) Smoothed model (b) Found sharp edges (c) Height with filtering (d) Height with filtering (e) Reliefs extracted

Figure 7: Filtering sharp features (a-b) creates a better height approximation for reliefs (c-e).

Figure 8: More examples of archaeological artifacts relief segmen-
tation.

Figure 9: Starknot – the stars are extracted from the knot and clas-
sified according to their size.

objects, originally created by adding decorations to meshes. As
can be seen, once these decorations are accurately extracted by our
method, they can be classified (e.g. according to size), compared,
and also removed from the original mesh.

Figure 11 shows the extraction of reliefs used in the porcelain in-
dustry. Our results are compared to those of [Liu et al. 2007a; Liu
et al. 2007b] and demonstrated to be competitive. We, however, do
not require the user to mark the initial position of snakes in order
to extract the reliefs. Note that our method is capable of isolating
non-relief portions of the surface, which are enclosed within the re-
lief, while the method of [Liu et al. 2007b] fails to do so, due to the
limitations of the snakes. This is visible, for instance in the surface
between the bird’s legs and the branch in Figure 11, right.

Figure 10: Octopus – The reliefs (suction cups and eyes) are ex-
tracted and can then be removed from the Octopus’s body (filling in
the holes in the mesh).

8.2 Detail exaggeration and dampening

Mesh editing has always been a fundamental problem in computer
graphics [Sorkine et al. 2004; Yu et al. 2004]. Our method can be
utilized to perform a specific task of shape editing – detail exagger-
ation and dampening, where the base remains unchanged. The key
idea is simple. Once the height function is computed, one can con-
trol the details on the surface by manipulating their height through
this function. Specifically, we modify the mesh by changing the
coordinates of a vertex v using a parameter α as follows:

v(α) = bv +α ·h(v)~nB(bv).

As a result, a relief vertex is exaggerated by alpha, whereas a back-
ground vertex, having a near-zero height, is hardly exaggerated.

The advantage of this method, apart from simplicity, is that the
mesh topology remains unchanged. Only the geometry (the co-
ordinates of the vertices) are modified. Since this is very quick to
perform once the height function is computed, it provides a way to
experiment with a variety of heights. Global mesh manipulations
can be created if we choose the same α for all vertices. Note that
if the we choose α = 0, the height is zero, and the details disap-
pear all together. Some examples are demonstrated in Figures 12–
14. Specifically, Figure 12 shows a synthetic example, while fig-
ures 13–14 show archaeological artifacts, where exaggeration or
dampening help emphasize either the relief or the base surface, re-
spectively. Some previous work such as [Rusinkiewicz et al. 2006]
propose a local lighting model that can exaggerate details, but our
method actually changes the geometry to accentuate the reliefs.



(a) Input

(b) [Liu et al. 2007a] [Liu et al. 2007b]

(c) Our result

Figure 11: Left: A porcelain relief on a smooth background. Right:
A porcelain relief on a textured background. Note how the relief is
clearly separated from the background texture.

Figure 12: A bumpy sphere whose details are dampened (middle)
or exaggerated (right).

Figure 13: A Hellenistic lamp (left) having its relief exaggerated
(right) to accentuate the details.

Figure 14: A Hellenistic vase piece (left) having its relief dampened
(right).

8.3 Relief cut & paste

Copying and pasting sub-parts of models is an intriguing problem,
which results in powerful and useful modeling tools [Funkhouser
et al. 2004]. Our approach allows us to “cut & paste” reliefs and
details, without the need to actually cut the surface and then seam-
lessly stitch sub-surfaces together – two highly challenging opera-
tions.

The key idea is to utilize the fact that reliefs can be expressed in
terms of a height function. Thus, we can “glue” reliefs to other ob-
jects simply by transferring the height function of the relief, without
having to modify the connectivity of the mesh. Instead, the vertices
move according to the transferred height function, in the direction
of the base’s normals, very similar to bump mapping. This makes
the process very quick and simple to compute.

Specifically, after computing the height function, we find a planar
parameterization of both the source relief area and the target area
of the object on to which we want to copy the relief. This is done
using [Graphite 2009]. We merge the two parameterized domains to
create a mesh compatible with both domains. Next, we interpolate
the height values of the source relief to vertices of the target patch.
Lastly, we move the corresponding target mesh vertices according
to this newly calculated height function.

We can use this procedure to decorate models, to embed a logo
onto an object, to copy details from one archaeological artifact to
another, and more. For instance, in the porcelain industry, decora-
tive reliefs can be extracted from old vases in order to create new
items that match the old design. Figures 15–16 show some exam-
ples. Notice the robustness of our scheme – both the base and the
relief are noisy, yet the results are pleasing.

8.4 Curve drawing

Curves drawn on objects convey prominent and meaningful infor-
mation about the shape [DeCarlo et al. 2003; Yoshizawa et al. 2005;
DeCarlo and Rusinkiewicz 2007; Judd et al. 2007; Kolomenkin
et al. 2009]. They have been shown to be useful in a wide spec-
trum of applications. We propose a new type of curve, which in-
corporates real semantic meaning when the input is known to be a
relief surface. In particular, in archaeological drawing, the reliefs
are drawn by hand and printed on reports of excavators. The main
purpose of these drawings is to aid the archaeologists to visualize
the artifacts and compare them without actually holding them in
their hands. In [Kolomenkin et al. 2008] it is proposed to replace
the manual drawing with an automatic one. However, it is often the
case that the curves generated appear broken.

Our approach can be utilized to draw prominent curves. They are
defined as iso-contours of the height function {p ∈ M|h(p) = θ},
whose value is the threshold used for extracting the reliefs (Sec-



Figure 15: Decorating a vase with the relief of the broken vase
(Figure 5) and the stars knot (Figure 9). Note how the pasted reliefs
contain the texture of the target surface naturally.

Figure 16: Decorating the surface of the bunny with details from
the stars knot model.

tion 5). These curves present two benefits. First, noisy surfaces are
handled well. Second, as iso-contours, the curves are guaranteed
to be closed. Although these curves are not as appealing as some
of the well-known NPR curves, certain applications, in particular
shape analysis ones, may benefit from using such curves. Figure 17
illustrates that our curves nicely bound the features (such as the let-
ters on the coin) and generates more informative drawings than the
alternatives – relief edges using the method of [Kolomenkin et al.
2009] or ridges & valleys [Yoshizawa et al. 2005].

9 Discussion

Running times: Our algorithm is implemented in Matlab and
C and our experiments were executed on a 1.6Ghz Pentium 2-
processor machine with 2Gb of memory. For a model of 60K ver-
tices, it takes about 16 seconds to extract the reliefs, out of which
14 seconds are devoted for the normal estimation. Hence, if inter-
active refinement is needed, most of the computation can be done
in a preprocessing stage and stored.

Limitations: There are some types of reliefs that cannot be ex-
pressed as a base and a height function and hence might not be
extracted by our method. Though this does not happen often for
reliefs in archaeology, such models can be generated by CAD soft-
ware. In addition, if the texturing of the background is too deep
compared to the height of the relief, the algorithm might classify
high areas of the textured background as relief. Other types of re-
liefs that are not handled by our algorithm are hierarchical reliefs,
i.e., reliefs that can themselves contain reliefs of smaller scales. In
this case the algorithm can be adapted by running it recursively on
the relief part.

Another limitation of our method is that if the relief is adjacent to
a sharp edge, we may classify part of the relief as a sharp edge and

remove it. This can be seen in Figure 7, where near the broken edge
of the piece, some parts of the dancers are classified as sharp edges.
Conversely, if the reliefs is mixed with sharp features, these fea-
tures might be classified erroneously. Finally, although automatic
selection of thresholds worked in most cases, it is still a heuristic
and further investigation in this area is needed.

10 Conclusions

This paper presented a method for extracting reliefs and details
from relief surfaces. The method is based on defining the relief as
a height function over a base surface. Though the decoupling into a
base and a relief is unknown, we have showen that this function can
nevertheless be computed by using normal estimation of the base
surface. We also demonstrated how the method can benefit several
applications, including relief segmentation, detail exaggeration and
dampening, detail copy & paste, and curve drawing on meshes.

In the future we would like to examine more the automatic selec-
tion of threshold values for various cases. It could also be possi-
ble to build a GMM with more than two Gaussians and have sev-
eral levels of reliefs. Other possible applications that could benefit
from relief extraction are model editing where first the reliefs are
removed, then the object undergoes some modification, after which
the reliefs are returned. More generally, the separation of details
from a background surface is semantically correct and can assist
reverse engineering and complex editing operations.
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