

Smart Sampling (Xampling) Workshop

Department of Electrical Engineering

$y_1[n]$ $y_1[n]$ $y_m(t)$ m sequences $p_m(t)$ $T_p - \text{periodic } p_i(t) \text{ gives the desired aliasing effect}$ $T_p - \text{periodic } p_i(t) \text{ gives the desired aliasing effect}$ $T_p - \text{periodic } p_i(t) \text{ gives the desired aliasing effect}$ $T_p - \text{periodic } p_i(t) \text{ gives the desired aliasing effect}$ $T_p - \text{periodic } p_i(t) \text{ gives the desired aliasing effect}$ $T_p - \text{periodic } p_i(t) \text{ gives the desired aliasing effect}$ $T_p - \text{periodic } p_i(t) \text{ gives the desired aliasing effect}$ $T_p - \text{periodic } p_i(t) \text{ gives the desired aliasing effect}$ $T_p - \text{periodic } p_i(t) \text{ gives the desired aliasing effect}$ $T_p - \text{periodic } p_i(t) \text{ gives the desired aliasing effect}$ $T_p - \text{periodic } p_i(t) \text{ gives the desired aliasing effect}$

Technion

Xampling Lab

Research Group:

M.Sc.

Reuven Berkun

Omer Bar-Ilan

Deborah Cohen

Tanya Chernyakova Wagner

Noam

Ph.D.

Tomer Michaeli

Yoav Shechtman

Post Docs

Malisha Marijan

Winston Ho

Xampling Lab

Former students who worked on Xampling:

Zvika Ben-Haim

Tsvika

Kfir Dvorkind Gedalyahu

Sivan Gleichman

Ronen Tur

Ewa Matusiak

Moshe Mishali

Algorithm and application development

The Signal and Image Processing Lab

THE VISION AND IMAGE SCIENCES LABORATORY

The Vision and Image Sciences Lab

HSDSL Staff & Xampling lab

Mony Orbach Lab Engineer

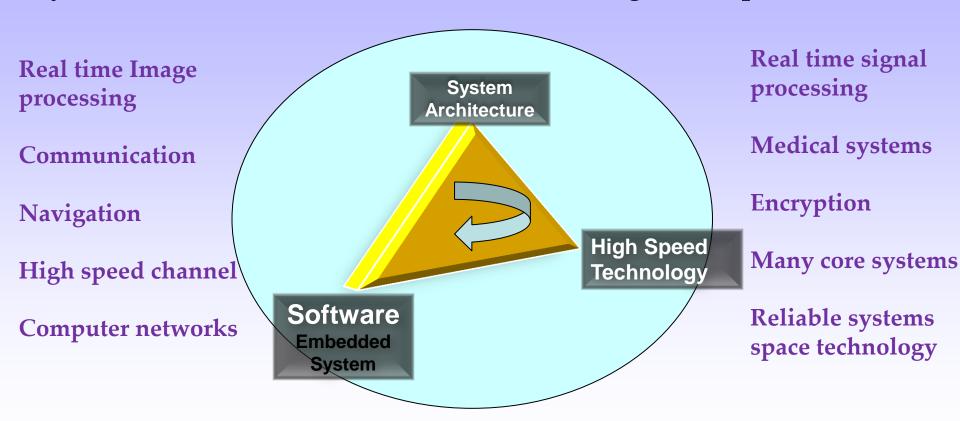
Idan Shmuel System Engineer

Eli Shoshan System architecture Cluster coordinator

Rolf Hilgendorf Research Engineer

Ina Rivkin Application Engineer

Academic supervisor Professor Tsahi Birk



Beruria Zohar Lab Technician

High Speed Digital System Laboratory HSDSL

Research and Educational Activities
System architectures in varied areas - design & implementation

HSDSL Scope

Departmental center of expertise for:

- Hardware design
- PCB design
- High speed design
- High performance hardware-centric systems architecture

Complex systems projects that really work!

- Design
- Implementation
- Integration
- Testing

Running five lab experiments (500 students yearly) Total of 50 projects yearly (100 students)

An important pillar of the EE and CE tracks

Collaborators

- Prof. Moti Segev and Prof. Oren Cohen from the Physics department Dr. Eli Osherovich, Prof. Alexander Szameit, Yoav Shechtman, Pavel Sidorenko, Snir Gazit, Maor Mutzafi
- Prof. Andrea Goldsmith from Stanford
- Prof. Danijela Cabric from UCLA
- Prof. Boris Murmann from Stanford
- Prof. Calderbank from Duke
- Prof. Anna Scaglione from UC Davis
- Prof. Guillermo Sapiro from University of Minnesota
- Prof. Mike Davies from University of Edinburgh
- Prof. Emmanuel Candes from Stanford
- Prof. Ted Rappaport from Polytechnic Institute of NYU
- Prof. Joe Goodman and Jeff Wilde from Stanford
- Many industrial partners, some of which you will hear later today

Agenda

11.00-11.20	Sub-Nyquist Sampling of Wideband Signals
13:15-13:25 The EE Department and I	ndustry - Collaboration Mechanisms
9:00-Brot Yitzhak (Tsahi) Birk	EE Department, Technion
11:20-1 FE Department, Technion	Compressed Beamforming in Ultrasound Imaging
13:25-13:45 <u>Test and Measurement for</u>	or SubeNyquist Samplingnent, Technion
9:10-James Kimery	EE Desartment, Technish ab @ HSDSL
11:40-12:00 Of Marketing RF	Communications / ISDR Nonlinear Sampling with Application to Imaging
National Instruments	Tomer Michaell
13:45-1 4 :050-1 <u>Wide</u> band Front End: An	Automotive: Mobile: Wireless Device Belispective onversion
12:00-12:3 Kobi Scheim	Live Demonstration: Real-Time Sub-Nyquist Wideband Sensing
General Motors	Rolf Higendorf
14:05-140255-Simulation Platform for S	Signal Brosessing and Analysis of UWB Radamand Multi Fading Channels
Haim Spiegel	Prof. Moti Segev
12:30-13:15 Technologies	Light Lunch Department and Solid State Institute, Technion
10:45-11:00	Coffee Break

Xampling: Low-Rate Sampling

Sample only the info that is needed Xampling = Compression+Sampling

- Speed faster systems
- Scale smaller systems
- Cost reduce system cost
- DSP reduce DSP processing as well
- Break technology limit

Beyond sampling rate ...

- Resolution: trade off rate for resolution
- Dynamic range: trade off rate for bits
- Noise robustness: trade off rate for robustness
- New hardware paradigms even for high rate sampling

Motivation for Applied Research Center

- State of the art A/D converters are based on Shannon theory
- In the past there has been a lot of research into alternative sampling structures such as systems based on wavelets, Gabor windows etc.
- Very little impact on industrial A/D designs
- Today we will consider new theories for sub-Nyquist sampling
- We would like these ideas to impact technology

Key to Impact: Continue to develop new theory combined with hardware design and industry involvement

Our Vision

- Establish a center of information in smart ADCs
- Including mathematical aspects, digital algorithms, and hardware designs
- Learn about the practical limitations and needs and integrate them into theory
- Apply ideas to various applications: Communications, defense, medical imaging, optics
- High impact in industry by involving industry partners in development and by licensing IP

Paradigm Shift That Can be Game Changing in Industry

Thanks

- Research students and HSDSL staff
- Yoram Shabtai
- Yankee Yavor
- Yoram Or-Chen
- Yaffa Levi
- Sasha Azimov

Special Thanks: Suzie Eid, Ina Rivkin, Eli Shoshan