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Digital Revolution 

 
Cell phone subscribers: 4 billion (67% of world population) 

Digital cameras: 77% of American households now own at least one 

Internet users: 1.8 billion (26.6% of world population) 

PC users: 1 billion (16.8% of world population) 

 

 

“The change from analog mechanical and electronic technology to digital 
technology that has taken place since c. 1980 and continues to the present day.”  
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Sampling: ‚Analog Girl in a Digital 
World…‛  Judy Gorman 99 

Digital world Analog world 

Reconstruction 
D2A 

Sampling 
A2D 

 Signal processing  
 Image denoising 
 Analysis… 

(Interpolation) 

 Music 
 Radar 
 Image… 

 Very high sampling rates: 
    hardware excessive solutions 

  High DSP rates 
 

 
    
 ADCs, the front end of every digital 

application, remain a major bottleneck 
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Today’s Paradigm 

Analog designers and circuit experts design samplers at Nyquist 
rate or higher 

DSP/machine learning experts process the data  

Typical first step: Throw away (or combine in a “smart” way) much 
of the data … 

Logic: Exploit structure prevalent in most applications to reduce 
DSP processing rates 

 

 

 

 
Can we use the structure to reduce sampling rate + first 
DSP rate (data transfer, bus …) as well? 
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Key Idea 

 

Reduce storage/reduce sampling rates 

Reduce processing rates 

Reduce power consumption 

Increase resolution 

Improve denoising/deblurring capabilities 

Improved classification/source separation 

 

 

 
Exploit structure to improve data processing performance: 

Goal:  

Survey the main principles involved in exploiting “sparse” structure 

Provide a variety of different applications and benefits 
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Motivation 

Classes of structured analog signals 

 Xampling: Compression + sampling 

 Sub-Nyquist solutions 
Multiband communication: Cognitive radio 

Time delay estimation: Ultrasound, radar, multipath 
medium identification 

 Applications to digital processing 
 

Talk Outline 
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Shannon-Nyquist Sampling 

Signal Model Minimal Rate 

Analog+Digital 
Implementation 

ADC 
Digital 
Signal 

Processor 

 
 Interpolation 

DAC 

More information: 
Y. C. Eldar and T. Michaeli,  
“Beyond Bandlimited Sampling,”  
IEEE Signal Proc. Magazine,  
26(3): 48-68, May 2009 

 Previous work extends theory to arbitrary subspaces 
 Many beautiful results, and many contributors 

   (Unser,Aldroubi,Vaidyanathan,Blu,Jerri,Vetterli,Grochenig,DeVore,Daubechies,Christensen,Eldar,Dvorkind …)  

 Recovery from nonlinear samples as well (Dvorkind, Matusiak and Eldar 2008) 
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Structured Analog Models  

 Can be viewed as            bandlimited (subspace) 
 But sampling at rate                  is a waste of resources 
 For wideband applications Nyquist sampling may be infeasible 

Multiband communication: 

Question: 
How do we treat structured (non-subspace) models efficiently? 

Unknown carriers – non-subspace 
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Cognitive Radio 

Cognitive radio mobiles utilize unused spectrum ``holes’’ 
Spectral map is unknown a-priori, leading to a multiband model 
 

Federal Communications Commission (FCC) 
frequency allocation 
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Structured Analog Models 

 Digital match filter or super-resolution ideas (MUSIC etc.) (Brukstein,  
   Kailath, Jouradin, Saarnisaari …) 

 But requires sampling at the Nyquist rate of  
 The pulse shape is known – No need to waste sampling resources ! 

Medium identification: 

Unknown delays – non-subspace 

Channel 

Question (same): 
How do we treat structured (non-subspace) models efficiently? 

Similar problem arises in radar, UWB 
communications, timing recovery problems … 
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Ultrasound 
 
High digital processing rates 

Large power consumption 

 

Tx pulse Ultrasonic probe 

Rx signal Unknowns 

(Collaboration with General Electric 
Israel) 

Echoes result from scattering in the tissue 

The image is formed by identifying the 
scatterers 
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To increase SNR the reflections are viewed by an antenna array 

SNR is improved through beamforming by introducing appropriate 
time shifts to the received signals 

 

 

 

 

 

 

 

Requires high sampling rates and large data processing rates 

One image trace requires 128 samplers @ 20M, beamforming to 150 
points,  a total of 6.3x106 sums/frame 

 

 

Processing Rates 

Scan Plane 

 Xdcr 

Focusing the received 
 beam by applying delays 

Portable  
Systems 

Low-End 
Systems 

High-End 
Systems 

 

Goal: reduce ultrasound machines to a size of a laptop at same resolution 
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Resolution (1): Radar 
 

    Principle: 
  A known pulse is transmitted 
  Reflections from targets are received  
  Target’s ranges and velocities are identified 

   Challenges: 

  Targets can lie on an arbitrary grid 
  Process of digitizing  

     loss of resolution in range-velocity domain 
 Wideband radar requires high rate sampling and processing 

which also results in long processing time 
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Resolution (2): Subwavelength Imaging 

    Diffraction limit:  Even a perfect optical imaging system has a 
resolution limit determined by the wavelength λ 

The smallest observable detail is larger than ~ λ/2 

This results in image smearing  

100 nm 

474 476 478 480 482 484 486

462

464

466

468

470

472

474

476

(Collaboration with the groups of Segev and Cohen) 

Sketch of an optical microscope:  
  the physics of EM waves acts  
     as an ideal low-pass filter 
 

Nano-holes  
as seen in  

electronic microscope 

Blurred image  
seen in  

optical microscope 
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Imaging via ‚Sparse‛ Modeling 

Union method 

150 nm 

 Radar: 

 Subwavelength Coherent Diffractive Imaging: 

Szameit et al., Nature Photonics, ‘12 

Bajwa et al., ‘11 

474 476 478 480 482 484 486

462

464

466

468

470

472

474

476

Recovery of  
sub-wavelength images  
from highly truncated  
Fourier power spectrum 
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Proposed Framework  

Instead of a single subspace modeling use union of subspaces 
framework 

 

Adopt a new design methodology – Xampling  

 

 

 

Results in simple hardware and low computational cost on 
the DSP 

Union + Xampling = Practical Low Rate Sampling  

Compression+Sampling = Xampling 

X prefix for compression, e.g. DivX 
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 Motivation 

Classes of structured analog signals 

 Xampling: Compression + sampling 

 Sub-Nyquist solutions 
Multiband communication: Cognitive radio 

Time delay estimation: Ultrasound, radar, multipath 
medium identification 

 Applications to digital processing 

Talk Outline 
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Union of Subspaces 

 Model: 
 

 Examples: 
 

(Lu and Do 08, Eldar and Mishali 09) 
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Union of Subspaces 

 Model: 
 

 Standard approach: Look at sum of all subspaces  
 

(Lu and Do 08, Eldar and Mishali 09) 

Signal bandlimited to  
                High rate 
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Union of Subspaces 

 Model: 
 

 Examples: 
 

(Lu and Do 08, Eldar and Mishali 09) 
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Union of Subspaces 

 Model: 
 
 
 
 
 
 
 
  Allows to keep low dimension in the problem model 
  Low dimension translates to low sampling rate 

(Lu and Do 08, Eldar and Mishali 09) 
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Talk Outline 

 Motivation 

Classes of structured analog signals 

 Xampling: Compression + sampling 

 Sub-Nyquist solutions 
Multiband communication: Cognitive radio 

Time delay estimation: Ultrasound, radar, multipath 
medium identification 

 Applications to digital processing 
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~ ~ ~ ~ 
Naïve attempt: direct sampling at low rate 
Most samples do not contain information!! 
 
 
 
 
Most bands do not have energy – which band should be sampled? 
 
 
 

Difficulty 
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 Alias all energy to baseband 
 Can sample at low rate 
 Resolve ambiguity in the digital domain 
 
 
 

~ ~ ~ ~ 

 Smear pulse before sampling 
 Each samples contains energy 
 Resolve ambiguity in the digital domain 

 
 
 

Intuitive Solution: Pre-Processing 
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Create several streams of data 

Each stream is sampled at a low rate 

     (overall rate much smaller than the Nyquist rate) 

Each stream contains a combination from different subspaces 

 

 

 

Identify subspaces involved  

Recover using standard sampling results 

Xampling: Main Idea 

Hardware design ideas 

DSP algorithms 
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For linear methods: 

Subspace techniques developed in the context of array 
processing (such as MUSIC, ESPRIT etc.) 

Compressed sensing 

(Deborah and Noam’s talks this afternoon) 

 

For nonlinear sampling: 

Specialized iterative algorithms (Tomer’s talk this afternoon) 

Subspace Identification 
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Compressed Sensing 

(Donoho 2006) 

(Candès, Romberg, Tao 2006) 
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Compressed Sensing 
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Compressed Sensing and Hardware 

Explosion of work on compressed sensing in many digital 
applications 

Many papers describing models for CS of analog signals 

None of these models have made it into hardware 

CS is a digital theory – treats vectors not analog inputs 

 
                                   
Input                     
Sparsity                                     
Measurement                       
Recovery                      
 
                     
 

Standard CS  
vector x 
few nonzero values  
random matrix  
convex optimization 
greedy methods 
                     
 

Analog CS 
analog signal x(t)  
            ?  
real hardware  

need to recover analog input    
                     
 

We use CS only after sampling and only to detect the subspace 
Enables real hardware and low processing rates 
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Xampling Hardware 

            - periodic functions 

                                            sums of exponentials 

 The filter H(f) allows for additional freedom in shaping the tones 

The channels can be collapsed to a single channel 
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Talk Outline 

 Motivation 

 Classes of structured analog signals 

 Xampling: Compression + sampling 

 Sub-Nyquist solutions 
 Multiband communication 

 Time delay estimation: Ultrasound, radar, multipath 
medium identification 

 Applications to digital processing 
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no more than N bands, max width B, bandlimited to  

(Mishali and Eldar,  2007-2009) 

1. Each band has an uncountable 
number of non-zero elements 

2. Band locations lie on the continuum 

3. Band locations are unknown in advance 

Signal Model 

~ ~ ~ ~ 
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Rate Requirement 

Average sampling rate 

Theorem (Single multiband subspace) 

(Landau 1967) 

Theorem (Union of multiband subspaces) 

(Mishali and Eldar 2007) 

1. The minimal rate is doubled. 
2. For                 , the rate requirement is           samples/sec (on average). 
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The Modulated Wideband Converter 

~ ~ ~ ~ 
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Recovery From Xamples 

~ ~ ~ ~ 

Using ideas of compressed sensing 

Modifications to allow for real time computations and noise robustness 

Cleverly combine data across samples to improve support detection 

Details in Deborah’s talk this afternoon 
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A 2.4 GHz Prototype 

2.3 GHz Nyquist-rate, 120 MHz occupancy 
280 MHz sampling rate 
Wideband receiver mode: 

49 dB dynamic range 
SNDR > 30 dB over all input range 

ADC mode: 
1.2 volt peak-to-peak full-scale 
42 dB SNDR = 6.7 ENOB 

Off-the-shelf devices, ~5k$, standard PCB production 

(Mishali, Eldar, Dounaevsky, and Shoshan, 2010) 
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Sub-Nyquist Demonstration 

FM @ 631.2 MHz AM @ 807.8 MHz 

1.
5 

M
H

z 

10 kHz 100 kHz 

Overlayed sub-Nyquist  
aliasing around 6.171 MHz 

+ + 

FM @ 631.2 MHz AM @ 807.8 MHz Sine @ 981.9 MHz MWC prototype 

Carrier frequencies are chosen to create overlayed aliasing at baeband 

Reconstruction 
(CTF) 

Mishali et al., 10 
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Online Demonstrations 

  GUI package of the MWC 
 
 
 
 
 
 
 
Video recording of sub-Nyquist sampling + carrier recovery in lab 
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SiPS 2010 
2010 IEEE Workshop on 

Signal Processing Systems  

Demos – Supported By NI 

Demo this afternoon by Rolf and Idan 
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Talk Outline 

 Brief overview of standard sampling 

 Classes of structured analog signals 

 Xampling: Compression + sampling 

 Sub-Nyquist solutions 
 Multiband communication 

 Time delay estimation:  

     Ultrasound, radar, multipath medium identification 

 Applications to digital processing 
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Streams of Pulses 

            is replaced by an integrator 

 Can equivalently be implemented as a single channel with  

 

 

Application to radar, ultrasound and general localization problems such as GPS 

  

 

 

(Gedalyahu, Tur, Eldar 10, Tur, Freidman, Eldar 10) 
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Unknown Pulses 

Output corresponds to aliased version of Gabor coefficients 
Recovery by solving 2-step CS problem  
 

 

Row-sparse Gabor Coeff. 

(Matusiak and Eldar, 11) 
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Noise Robustness 
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proposed method

integrators
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proposed method

integrators

L=2 pulses, 5 samples L=10 pulses, 21 samples 

MSE of the delays estimation, versus integrators approach  (Kusuma & Goyal ) 

The proposed scheme is stable even for high rates of innovation! 
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Application:  
Multipath Medium Identification 

 
LTV channel  

         propagation paths 

Medium identification (collaboration with National Instruments): 
Recovery of the time delays 
Recovery of time-variant gain coefficients 

    pulses per period  

The proposed method can recover the channel parameters from  
sub-Nyquist samples 

(Gedalyahu and Eldar 09-10) 
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Application:  
Wireless Communications 

New paradigm for wireless communications: Joint effort with Prof. 
Andrea Goldsmith from Stanford (Transformative Science Grant) 

Main bottleneck today in wireless are ADCs 
Multiuser detection, which enables many users to share joint 
resources,  is not implemented because of high rates – channels are 
interference limited 
SDR and Cognitive radio are limited by ADCs 
Capacity tools are limited to Nyquist-rate channels 

New multiuser receiver that substantially reduces hardware 
requirements 
Capacity expressions for sampling-rate limited channels 
Applications to LTE standards (with Prof. Murmann and Ericsson) 
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Each target is defined by: 
Range – delay 
Velocity – doppler 
 

Application: Radar 

(Bajwa, Gedalyahu and Eldar, 10) 

Targets can be identified with infinite 
resolution as long as the time-bandwidth 
product  satisfies 
Previous results required infinite time-
bandwidth product 
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A scheme which enables reconstruction of a two dimensional 
image, from samples obtained at a rate 10-15 times below Nyquist   

The resulting image depicts strong perturbations in the tissue 

Obtained by beamforming in the compressed domain 

More details in Noam’s talk  

 

Xampling in Ultrasound Imaging 

Wagner, Eldar, and Friedman, ’11 

Standard Imaging      Xampled beamforming  

 
1662 real-valued samples, per sensor  

per image line 

 
200 real-valued samples, per sensor per 

image line (assume L=25 reflectors per line) 
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Union of subspaces structure can be exploited in many digital models 

Subspace models lead to block sparse recovery 

Block sparsity: algorithms and recovery guarantees in noisy environments 
(Eldar and Mishali 09, Eldar et. al. 10, Ben-Haim and Eldar 10) 

Hierarchical models with structure on the subspace level and within the 
subspaces  (Sprechmann, Ramirez, Sapiro and Eldar, 10) 

 

 

Structure in Digital Problems 

Noisy merged Missing pixels Separated 
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Source Separation Cont. 

Texture Separation: 
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Subspace Learning 

 

Prior work has focused primarily on learning a single subspace        
(Vidal et. al., Ma et. al., Elhamifar …) 

We developed methods for multiple subspace learning from training 
data (Rosenblum, Zelnik-Manor and Eldar, 10) 

Subspace learning from reduced-dimensional measured data: Blind 
compressed sensing (Gleichman and Eldar 10) 

Current work: Extending these ideas to more practical scenarios (Carin, Silva, 
Chen, Sapiro) 
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50% Missing Pixels 

Interpolation by learning the basis 
from the corrupted image 
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Compressed sampling and processing of many signals 

Wideband sub-Nyquist samplers in hardware 

Union of subspaces: broad and flexible model 

Practical and efficient hardware 

Many applications and many research opportunities: extensions to 
other analog and digital problems, robustness, hardware … 

Exploiting structure can lead to a new sampling 
paradigm which combines analog + digital 

Conclusions 

More details in:  
M. Duarte and Y. C. Eldar,  “Structured Compressed Sensing: From Theory to Applications,” Review for TSP. 
M. Mishali and Y. C. Eldar, "Xampling: Compressed Sensing for Analog Signals", book chapter available at 
http://webee.technion.ac.il/Sites/People/YoninaEldar/books.html 
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Xampling Website 

webee.technion.ac.il/people/YoninaEldar/xampling_top.html 

Y. C. Eldar and G. Kutyniok, "Compressed Sensing: Theory and Applications", 
Cambridge University Press, to appear in 2012 

http://webee.technion.ac.il/people/YoninaEldar/xampling_top.html
http://webee.technion.ac.il/people/YoninaEldar/xampling_top.html
http://webee.technion.ac.il/people/YoninaEldar/xampling_top.html
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Thank you 


