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ABSTRACT

We consider the problem of sampling signals which are com-
prised of pulse streams, a model which belongs to the recently
introduced framework of signals with finite rate of innovation
(FRI). Although sampling of pulse streams was treated in vari-
ous works, either the rate of innovation (ROI) was not achieved,
or the pulse shape was limited to diracs. In this work we
present two sampling architectures for pulse streams with ar-
bitrary shape. Our first scheme is a single channel method, op-
erates at rate of only 2.5 times the ROI. The second technique,
which is based on multichannel sampling, achieves the ROI ex-
actly. Both configurations are flexible, and exhibit better noise
robustness than previous approaches.

Keywords— Finite rate of innovation, sub-Nyquist sam-
pling, time delay estimation.

1. INTRODUCTION

Signals comprised of a stream of short pulses appear in many
applications including bio-imaging, radar, and ultrawideband
communication. A recently proposed framework has suggested
to address such signals as parametric signals, with a finite num-
ber degrees of freedom per unit time, referred to as the rate
of innovation (ROI). The ROI provides a lower bound on the
sampling rate, required in order to perfectly recover such pulses
from its samples. This rate can be significantly lower than the
traditional Nyquist rate.

Current approaches in the literature do not provide a com-
plete solution to the problem, allowing sampling of pulse
streams at the ROI. The work in [10] proposed an efficient
scheme, based on ideal low-pass filter, operating at the rate of
innovation. However, this scheme supports only periodic pulse
streams. An alternative approach [1] based on polynomial or
exponentials reproducing kernels, allows sampling of finite and
infinite streams of pulses. This method is limited by the fact that
its sampling rate is significantly higher than the ROI for infinite
streams. Other multichannel based schemes [3, 6, 7], achieve
the ROI for the infinite setting, but support only diracs as pulse
shapes. Moreover, as we demonstrate in this work, several of
the existing techniques [1, 3, 6] suffer from poor noise robust-
ness, especially for high model orders.

In this paper we propose two schemes for low rate sampling
of pulse streams. The first method is based on a new class of
compactly supported filters, referred to as Sum of Sincs (SoS)
kernels [8]. This single channel configuration, operates at a rate
close to the ROI and supports pulses with arbitrary shape. Our
second system is based on multichannel sampling and can op-
erate exactly at the ROI, while also supporting general pulse
shapes [2]. This approach is based on modulating of the input
signal with a set of properly chosen waveforms, followed by
integration. These ideas are motivated by the recent Xampling
framework for low rate sampling of multiband signals [4, 5].
We demonstrate the superior noise robustness of the proposed
schemes, over the previous approaches using simulations. In
addition, we apply our results to ultrasound imaging data, and
show that our techniques result in substantial rate reduction with
respect to traditional ultrasound sampling schemes.

The remainder of this paper is organized as follows. In Sec-
tion 2 we present a single channel method for pulse streams
sampling. In Section 3 we derive a multichannel scheme for
the problem. Finally, in Section 4, we demonstrate our method
on real ultrasound data, and explore the performance of our ap-
proach in the presence of noise.

2. SINGLE-CHANNEL SAMPLING SCHEME

We denote matrices and vectors by bold font, with lowercase
letters corresponding to vectors and uppercase letters to matri-
ces. The nth element of a vector a is written as an, and Aij

denotes the ijth element of a matrix A. Superscripts (·)∗, (·)T

and (·)H represent complex conjugation, transposition and con-
jugate transposition, respectively. The Moore-Penrose pseudo-
inverse of a matrix A is written as A†. The continuous-time
Fourier transform (CTFT) of a continuous-time signal x (t) ∈
L2 is defined by X (ω) =

∫∞
−∞ x (t) e−jωtdt.

2.1. Efficient Sampling of FRI Signals

Consider a T -periodic stream of pulses, defined as

x(t) =
∑
m∈Z

L∑
l=1

alh(t− tl −mT ), (1)



where h(t) and T are the known pulse shape and period, re-
spectively, and {tl, al}Ll=1, tl ∈ [0, T ), al ∈ C, l = 1 . . . L are
the unknown delays and amplitudes. Our goal is to sample and
reconstruct x(t) efficiently.

Expanding x(t) to its Fourier series we have

x(t) =
∑
k∈Z

X[k]ej2πkt/T , (2)

where we denoted

X[k] =
1

T
H

(
2πk

T

) L∑
l=1

ale
−j2πktl/T , (3)

and H(·) denotes the CTFT of h(t). The right hand side of
(3) is a sum of exponentials with frequencies {tl}, which can
be found using standard spectral analysis methods as long as
we have a set of Fourier coefficients {X[k]}, with cardinality
greater than 2L [10].

2.2. Sampling Schemes and SoS Filters

In order to obtain a set {X[k]}, we propose uniformly sampling
x(t) with a any sampling kernel satisfying:

S(ω) =

 0 ω = 2πk/T, k /∈ K
nonzero ω = 2πk/T, k ∈ K
arbitrary otherwise,

(4)

For which it can be shown that the resulting samples are

c[n] =
∑
k∈K

X[k]ej2πknTs/TS∗(2πk/T ), (5)

where K is an index set of the Fourier coefficients for which
H

(
2πk
T

)
̸= 0, ∀k ∈ K, and Ts is the sampling period. The set

of equations in (5) can be solved for {X[k]} as long as N , the
number of samples, is larger than |K|.

Following the general condition presented in (4), we propose
a compactly supported filter which consists of a sum of sincs in
the frequency domain:

G(ω) =
T√
2π

∑
k∈K

bk sinc

(
ω

2π/T
− k

)
, (6)

where bk ̸= 0, k ∈ K, are parameters of the filter. Switching to
the time domain the compact support is made evident

g(t) = rect

(
t

T

)∑
k∈K

bke
j2πkt/T . (7)

The compact support of the SoS filter class enables extension of
our noise robust solution to the infinite setting, discussed in the
next section.

2.3. Infinite Pulse Streams

We now consider the case of an infinite stream of pulses

z(t) =
∑
l∈Z

alh(t− tl), tl, al ∈ R. (8)

We assume that the infinite signal has a bursty character, i.e., the
signal has two distinct phases: a) bursts of maximal duration T
containing at most L pulses, and b) quiet phases between bursts.
For the sake of clarity we begin with the case h(t) = δ(t).

Consider uniformly sampling z(t) with a filter comprising
three periods of g(t) as follows

g3p(t)
△
= g(t− T ) + g(t) + g(t+ T ). (9)

If the minimal spacing between any two consecutive bursts is
3T/2, then we are guaranteed that each sample taken during the
burst is influenced by one burst only, as depicted in Fig. 1. Here
we exploited the compact support of the SoS filter.

τ

1st burst 2nd burst

g3p(t) filter support = 3τ

t

−0.5τ 1.5τ 2.5τ 3.5τ

Fig. 1. Bursty signal z(t). Spacing of 3T/2 between bursts
ensures that the influence of the current burst ends before taking
the samples of the next burst. This is due to the finite support,
3T of the sampling kernel g∗3p(−t).

Once we reduced the infinite problem to a sequence of fi-
nite pulse streams, it can be shown that the samples obtained by
the sampling kernel (9) form a set of equations which allows to
obtain the set {X[k]} exactly as in the periodic case, for each
burst independently. Therefore the unknown delays and ampli-
tudes can be determined throughout the infinite signal z(t). We
summarize our results in the following theorem.

Theorem 1 Consider a signal z(t) which is a stream of bursts
consisting of delayed and weighted diracs. The maximal burst
duration is T , and the maximal number of pulses within each
burst is L. Then, the samples given by

c[n] = ⟨g3p(t− nTs), z(t)⟩, n ∈ Z

where g3p(t) is defined by (9), are a sufficient characterization
of z(t) as long as the spacing between two adjacent bursts is
greater than 3T/2, and the burst locations are known.

The scheme presented here achieves a rate which is close to the
ROI of the input signals. The ROI of pulse streams addressed
by Theorem 1 is equal to 2L/2.5T . Our method operates at a
rate of 1/T , which is only 2.5 times larger than this minimal
rate.



The extension to arbitrary h(t) is possible as long as the pulse
h(t) has finite support R, which is a rather weak condition, since
our primary interest is in very short pulses which have wide, or
even infinite, frequency support. In this case we filter z(t) with
a filter

gr(t) =
r∑

m=−r

g(t+mT ), (10)

where r is defined by

r =

⌈
R/T + 3

2

⌉
− 1. (11)

3. MULTICHANNEL SAMPLING SCHEME

In the previous section we derived a new sampling method for
pulse streams based on the SoS filter. We have shown that this
technique can reduce the sampling rate down to 2.5 of the ROI.
In this section we present a multichannel configuration which
can operate exactly at the ROI.

3.1. Signal Model

We consider an infinite stream of pulses defined by

x(t) =
∑
l∈Z

alh(t− tl), tl ∈ R, al ∈ C. (12)

We assume that there are no more than L pulses in any interval
Im ⊂ [(m− 1)T,mT ] , m ∈ Z and that within each interval
the delays satisfy the following condition:

h(t− tl) = 0, ∀t /∈ Im l = 1 . . . L, (13)

i.e., the pulses in each period are confined to the time-window
Im. Since in each interval of length T the signal is defined by
2L parameters, the ROI of a signal of the form (12) equal to
2L/T .

3.2. Proposed Scheme

Our aim now is to design a sampling and reconstruction method
which perfectly reconstructs the signal (12) when operating at
the ROI. We note that (13) suggests that each interval Im of
the signal is independent of adjacent periods. We therefore ad-
dress the infinite stream as a concatenation of finite streams of L
pulses. In each period, the signal is processed and reconstructed
separately.

In a similar way to the single-channel architecture of Sec-
tion 2, we present a scheme which obtains the signal’s Fourier
coefficients X[k]. In the system depicted in Fig. 2, in each
channel the signal is modulated using a waveform si(t) =∑

k∈K sike
−j 2π

T kt followed by integration over the interval Im.
Various signals can be used as modulation waveforms. Exam-
ples include cosine and sine functions (tones), filtered rectangu-
lar pulses modulated by ±1 [4] and more.

It can be easily shown that the proposed scheme produce
at its outputs a mixture of the signal’s Fourier coefficient. By

x(t)

1

T

∫
Im

(·)dt c1[m]
t = mT

cp[m]
t = mT

s1(t) =
∑
k∈K

s1ke
−j 2π

T
kt

sp(t) =
∑
k∈K

spke
−j 2π

T
kt

1

T

∫
Im

(·)dt

Fig. 2. Multichannel scheme for pulse streams.
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Fig. 3. Stream of L = 4 pulses. (a) Recovery using p = 9
samples. (b) Recovery using p = 64 samples.

proper selection of sik a unique recovery of the Fourier coef-
ficients from the samples can be ensured, where p ≥ K is a
necessary condition.

We summarize our results in the following theorem.

Theorem 2 Consider an infinite stream of pulses given by (12).
Assume that there are no more than L pulses within any interval
Im , [(m− 1)T,mT ] , m ∈ Z, and that condition (13) holds
for all intervals. Consider the multichannel sampling scheme
depicted in Fig. 2. Then, the signal x(t) can be perfectly re-
constructed from the samples {ci[m]}pi=1, m ∈ Z as long as
p ≥ 2L, and the matrix S in constructed from the coefficients
sik is left invertible.

Theorem 2 presents the first sampling scheme for general pulse
shapes, operating at the ROI.

4. SIMULATIONS

We demonstrate the performance of our approach in the pres-
ence of noise in comparison to various FRI methods, for a sig-
nal which consists of L = 4 Diracs. Figure 3(a) compares our
multichannel scheme to the integrators [3] and exponential fil-
ters [6] methods, when working at the ROI. The figure shows
that our configuration outperforms these two techniques. In
Figure 3(b) we compare our schemes to the B-splines and E-
splines [9] sampling kernels of [1], when working at a rate of
64/T . Here again both our methods exhibit better noise robust-
ness than the ones of [1].
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Fig. 4. Applying our single-channel method on real ultrasound
imaging data. Results are shown vs. original demodulated sig-
nal. Reconstructed signal N = 17 samples only as opposed to
4160 samples used in current ultrasound systems.

An interesting application of our scheme is ultrasound imag-
ing, in which the signal received from the tissue under test com-
prises a stream of short Gaussian pulses. Applying our scheme
on data recorded with GE Healthcare’s Vivid-i system, we re-
constructed the original signal as depicted in Figure 4. The re-
construction is based on N = 17 only, whereas current ultra-
sonic imaging systems use for the same scenario 4000 samples,
emphasizing the potential of our scheme in reducing sampling
rate in such systems.

5. CONCLUSION

In this work we proposed new sampling schemes for pulse
streams, allowing the system designer to trade-off between sam-
pling rate and hardware complexity. Our multichannel architec-
ture operates at the ROI, while our single channel scheme works
at a rate 2.5 higher, but requires less sampling channels. As we
demonstrate by simulations, our methods exhibits better noise
robustness than the ones presented in [1, 3, 6]. We also demon-
strate our method on real ultrasound imaging data.
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