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Abstract Steady-state evoked potentials (SSEP) are the
electrical activity recorded from the scalp in response to
high-rate sensory stimulation. SSEP consist of a constituent
frequency component matching the stimulation rate, whose
amplitude and phase remain constant with time and are sen-
sitive to functional changes in the stimulated sensory system.
Monitoring SSEP during neurosurgical procedures allows
identification of an emerging impairment early enough
before the damage becomes permanent. In routine prac-
tice, SSEP are extracted by averaging of the EEG record-
ings, allowing detection of neurological changes within
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approximately a minute. As an alternative to the relatively
slow-responding empirical averaging, we present an algo-
rithm that detects changes in the SSEP within seconds.
Our system alerts when changes in the SSEP are detected
by applying a two-step Generalized Likelihood Ratio Test
(GLRT) on the unaveraged EEG recordings. This approach
outperforms conventional detection and provides the moni-
tor with a statistical measure of the likelihood that a change
occurred, thus enhancing its sensitivity and reliability. The
system’s performance is analyzed using Monte Carlo simu-
lations and tested on real EEG data recorded under coma.

Keywords Evoked potentials · Neuro-monitoring ·
Change detection · GLRT

1 Introduction

Evoked potentials (EP) are the electrical potential generated
by the activity of neurons in the brain, and recorded from
a human or animal following presentation of a stimulus. EP
amplitudes are typically in the order of a microvolt, compared
to tens or hundreds of microvolts for spontaneous EEG. EP
consist of three major types according to the sensory system
activated: auditory, visual and somatosensory EP. Steady-
state evoked potential (SSEP) are recorded in response to
a stimulus repetition rate that is sufficiently high and the
response is recorded with a sweep duration of several times
the inter-stimulus interval. The amplitude and phase of con-
stituent frequency components matching the rate of stimula-
tion in the response, remain constant with time, and a train
of repetitive sinusoidal waves is seen in the EP recordings
as shown in Fig. 1 (Chiappa 1997). Each peak of the SSEP
appears at some latency from the stimulus that evoked it.
The latency difference is expressed as a phase lag between
the stimulus and the peaks in the SSEP. SSEP are used in a
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Fig. 1 Steady-state visual evoked potential waveforms recorded from
electrodes Oz-A1 in response to a 20-Hz stimulus (Chiappa 1997). The
waveform was obtained by averaging potentials in response to 512 stim-
uli.

variety of clinical applications, including assessing auditory
and visual acuity in infants and adults unable to provide reli-
able verbal responses, detection of cortical blindness, and
Brain–Computer Interface (see Heckenlively and Arden
1991; Middendorf et al. 2000; Friman et al. 2007).

Nowadays, EP monitoring is routine in surgical proce-
dures placing sensory pathways at risk (Nuwer et al. 1995;
Burke et al. 1999). Monitoring is typically performed by a
neurophysiologist attending the surgery and provides means
of identification of emerging neurologic impairment early
enough before the damage becomes permanent, allowing
corrective measures during the limited time window during
which damage is reversible. Intra-operative monitoring aids
the surgeon in identifying neural tissue around and in a tumor,
by manipulating it and observing whether the EP is altered.
Such monitoring provides reassurance to the surgeon when
indicating that complications are unlikely to have occurred.
As during most neurosurgical procedures the patient is anes-
thetized, EP provides the surgeon with relevant real-time
information about the patients’ sensory functions (Nuwer
et al. 1993).

It has been shown that the amplitude and phase of the SSEP
can monitor the patient’s functional state during a surgical
brain procedure (see Zaaroor et al. 1993; Wiedemayer et al.
2004; Bergholz et al. 2008). The measurements are sensitive
to changes in the relevant sensory system, respond to such
changes within seconds, and do not produce false alarms in
surgical procedures that do not affect the sensory pathway or
the brain in general. As an alternative to the widely used and
relatively slow-responding (in the order of a minute, at best)
averaging in the acquisition of SSEP, we present a system
for real-time monitoring of SSEP, whose high-level structure
is described in Fig. 2. During surgery, the patient’s sensory
system is stimulated using light flashes from goggle-mounted
LEDs (Pratt et al. 1994) or auditory clicks from earphones,
and the raw EEG data are recorded using scalp electrodes.
The core of the system is an algorithm that detects real-time
changes in the amplitude and phase of the SSEP, and alarms
the surgeon when a change has likely occurred.

The rest of this article is organized as follows. We formu-
late the problem and review previous monitoring approaches
in Sect. 2. We present our algorithm in Sect. 3 and demon-
strate its performance in comparison to other methods using

Fig. 2 SSEP monitoring system. During stimulation with the LED-
goggles the raw EEG response is recorded. The recorded data serves as
the input of the change detector that detects changes of the SSEP in real
time

Monte Carlo simulations in Sect. 4. Experimental results of
real human EEG data are presented in Sect. 5, followed by
computational complexity analysis in Sect. 6. The study is
concluded in Sect. 7, which includes a discussion and future
research directions.

2 Problem definition and related work

Our signal model is based on a single EEG channel, as placing
more electrodes on the skull may be inconvenient during
brain-surgery.

SSEP is a digital signal of the form

s[n] = A[n]cos (ωsn + ϕ[n]), (1)

where n = 1, 2, . . . , M is the sample index and M denotes
the number of data samples. A[n] and ϕ[n] are the SSEP
amplitude and phase, respectively, and ωs is the known stim-
ulus frequency. Using complex exponents, the SSEP can be
written as

s[n] = C[n]e jωsn + C̄[n]e− jωsn, (2)

where |C[n]| = 1
2 A[n] and � C[n] = ϕ[n]. In order to keep

track of changes in the amplitude and phase of the SSEP, we
are interested in monitoring the variations of C[n] over time.

The recorded EEG raw data are a digital signal, sampled
at a frequency f , and modeled as

y[n] = s[n] + w[n], (3)

where y[n] is the EEG raw data, s[n] is the SSEP and w[n]
is spontaneous EEG background. We assume that y[n] was
sampled from a band-limited analog EEG signal, such that the
sampling rate f is sufficiently high for perfect reconstruction
according to Nyquist–Shannon sampling theorem. In order
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to allow real-time processing, we require that f ≤ fproc,
where fproc is the real-time processing rate, constrained by
hardware limitations.

The first stimulus occurs at n = 1 and the sampling rate
f is chosen to allow an integer number of samples per intra-
stimulus period, given by NT

NT = 2π f

ωs
. (4)

An SSEP change in sample N is defined as
{

C[n] = C0 ∀n ≤ N
C[n] = C1 ∀n > N ,

(5)

where C0 is a known complex scalar, C1 �= C0 is an unknown
complex scalar, and each time instant only one change has
to be considered.

For convenience in the sequel, we define k as an integer
constant, and the vector v as the k NT -length vector of a har-
monic signal at the stimulus frequency, whose lth element is
given by

v[l] = e jωsl , 1 ≤ l < k NT . (6)

As we discuss SSEP monitoring methods, we note that all
previous approaches base detection of changes on subjective
manual interpretation of an estimated signal, regardless of
statistical test of the probability that a change has occurred.
Furthermore, all methods presume that the SSEP is constant
over a time window which is sufficient for reliable estimation;
in practice, however, the signal may change during this time
window. Thus, monitoring suffers from unnecessary delays
in high SNR conditions (when the estimation time window is
set to be longer than needed), and on the other hand, estima-
tion’s accuracy may be insufficient for manual interpretation
in low SNR scenarios. In order to allow reliable comparison
between the different monitoring methods, we denote the
duration of the above mentioned time window as T seconds.
T is fully determined before the surgical procedure, accord-
ing to the values of each method’s parameters. Finally, none
of the methods utilizes prior statistical knowledge that can
be assumed about human EEG data recorded during anes-
thesia. The performance of all methods in comparison to our
algorithm is discussed in Sect. 4.3.

2.1 Moving Empirical Average

Let yp be the k NT -length vector representing the recorded
EEG following the pth stimulus

yp[l] = y[pNT + l], 1 ≤ l < k NT . (7)

Based on (3), yp is modeled as

yp[l] = sp[l] + wp[l], (8)

where sp is the SSEP and wp is additive noise due to sponta-
neous EEG. The method assumes that the noise component
is uncorrelated, zero-mean and uncorrelated with the signal
(assumptions which are not entirely valid at all times, see
McGillem et al. 1985). Based on an additional permise, that
the SSEP has remained constant in the past NA trials (which
correspond to a time window of T = k NT

f NA seconds), sp is
estimated by the empirical average s̄p (Gevins 1984)

s̄p = 1

NA

NA−1∑
q=0

yp−qk NT
. (9)

During surgical procedures, s̄p waveform is updated after
each stimulus, and the SSEP amplitude and phase are esti-
mated by

|Ĉ[p]| = 1

2
max s̄p (10)

� Ĉ[p] = 2π

NT
arg max

l
s̄p[l] mod NT . (11)

The variations of C[p] are then interpreted by a neurophys-
iologist, manually detecting changes of the SSEP from its
baseline before surgery (Wiedemayer et al. 2004).

2.2 Moving Subspace Average

Increasing the SNR obtained by empirical average can be
achieved by computing its orthogonal projection onto the
signal subspace.

ŝp = [v(vT v)−1vT + v̄(v̄T v̄)−1v̄T ]s̄p, (12)

where v is the vector defined by (6). Davila and Srebro (2000)
used subspace averaging for estimating visual SSEP derived
via counter-phase modulated contrast gratings. The method
has never been used for intra-operative monitoring of SSEP;
if it were used, the procedure would require manual interpre-
tation of C[p] measurements, that can be calculated using
(10) and (11). Subspace averaging is expected to reduce the
estimation period, and thus the system’s delay of the empir-
ical average, due to its improved SNR.

2.3 Real-Time Fourier Analysis

The mth frequency coefficient of the Discrete Fourier Trans-
form (DFT) is defined as

Ym = 1

NW

n∑
l=n−NW+1

y[l]e− 2π j
NW

ml
, (13)

where both n and the transform window size, NW, must be
integer multiples of NT . The SSEP is monitored using the
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coefficient ms = NWωs
2π f , which corresponds to the stimulus

frequency, by

Ĉ[n] = Yms [n] (14)

C[n] variations are interpreted manually for detecting
changes (see Bach 1999; Bergholz et al. 2008). DFT moni-
toring requires the assumption that the SSEP has remained
constant over the last T = NW

f seconds.

2.4 Lock-in amplifier

When a sinusoidal function of frequency ω1 is multiplied by
another sinusoidal function of frequency ω2 and integrated
over a time much longer than the period of the two functions,
the result is zero. In the case where ω1 = ω2 and the two func-
tions are in phase, the average value equals half the product
of the amplitudes (Scofield 1994). The lock-in operation is
(Schacham and Pratt 1995)

X [n] = 2

NL

n∑
l=n−NL+1

y[l] · cos(ωsl), (15)

Y [n] = 2

NL

n∑
l=n−NL+1

y[l] · sin(ωsl), (16)

where X [n] is the in-phase and Y [n] is the out-of-phase SSEP
components, and NL is the averaging window. The method
assumes that the SSEP has remained constant during the past
T = NL

f seconds; its amplitude and phase are estimated by

|Ĉ[n]| = 1

2

√
X [n]2 + Y [n]2, (17)

� Ĉ[n] = arctan
Y [n]
X [n] . (18)

Zaaroor et al. (1993) used analog lock-in amplifiers during
neuro-surgical operations by manually interpreting the con-
stantly updated SSEP amplitude and phase estimates.

In the following section, we present a method for detecting
changes in the SSEP during surgery, based on the GLRT. Our
approach overcomes the disadvantages of estimation meth-
ods, by utilizing statistical knowledge about human EEG dur-
ing anesthesia for a post-processing change detection step,
which is based on a flexible time window of measurements.

3 Change detection algorithm

Our approach addresses the problem definition in Sect. 2 and
consists of four main stages, as described in Fig. 3. Before
surgery, we estimate the SSEP baseline C0. In order to follow
the time variation of the signal during surgery, we split the
recorded EEG raw data into short duration segments, in each
of which we assume that the signal remained constant. Then,
we calculate the Maximum Likelihood (ML) estimator of the

SSEP in each segment, exploiting prior statistical knowledge
on human EEG during anesthesia. Finally, we base change
detection on a two-step GLRT applied on a flexible number of
ML estimators, reducing delays in high SNR conditions and
allowing to base detection on sufficient number of segments
in low SNR conditions.

We assume that the parameter C is known and constant
before surgery, as evident in clinical literature (Zaaroor et al.
1993). Its initial value, C0, is estimated using the Subspace
Averaging Method (see Sect. 2.2).

We split the raw EEG data into segments in which the
parameter C is assumed to remain constant; the i th segment,
yi , is a k NT -length vector whose lth element is given by

yi [l] = y[ik NT + l], 1 ≤ l < k NT . (19)

Based on (3), yi can be modeled as

yi [l] = si [l] + wi [l], (20)

such that wi is the background EEG, and the SSEP equals to

si = ci v + c̄i v̄, (21)

where ci is constant for each value of i .
Human EEG segments during anesthesia as short as 10 s

can be modeled as zero mean stationary Gaussian random
process (Bender et al. 1992). Furthermore, this model is not
affected by adding a low level harmonic signal (Davilla et al.
1997). Hence, wi can be modeled as

wi ∼ N (0,�i ). (22)

The covariance matrix �i is unknown. Yet, it can be esti-
mated by �̂i , based on the raw data of the last 10 s of EEG
recordings, using the auto-correlation estimation method
(Orfanidis 1996). We use the stationarity of the EEG to esti-
mate the covariance matrix as a Toepliz matrix, whose [q, t]
element equals to

�̂i [q, t] = 1

N� − |q − t |
N�−|q−t |−1∑

n=0

yn yn+|q−t |, (23)

where N� = 10 f is the number of EEG samples in 10 s.
As short EEG segments can be approximated by an auto-
regressive (AR) processes (Bender et al. 1992), these values
are decaying exponentially and can be set to zero for large
values of |q − t |, that are greater than twice the AR model
order, denoted by p.

The ML estimator of ci in each segment, ĉi , is

ĉi = (vT �i
−1v)−1vT �i

−1yi (24)

ĉi are random Gaussian variables, with

E(ĉi ) = ci (25)

Var(ĉi ) = 1

vT �i
−1v

= σ 2
i . (26)
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Fig. 3 A high-level block
diagram of the SSEP real-time
change detection algorithm

We use prior knowledge about the SSEP amplitude and
regard ML estimators whose amplitudes are greater than the
variance of the EEG signal before surgery as unreliable, by
setting their variance, σ 2

i to infinity.
Considering l as the index of the current EEG segment, we

base real-time change detection on a flexible time window
containing the last j segments, by testing the hypothesis{

H0 : ci = C0 l − j < i ≤ l (no change)
H1 : ci = C1 l − j < i ≤ l (change)

, (27)

where j ∈ [Jmin Jmax]. The optimal solution to the hypothe-
ses testing problem, according to the Neyman–Pearson
Criterion (Lehmann 1991), is the likelihood-ratio test. How-
ever, for the case at hand, it cannot be implemented due to
ignorance of the time of change, the value of C1 and the
noise covariance matrices, �i . Instead, we use a two-step
GLRT-based detection scheme (Robey et al. 1992). First, we
assume that �i is known, and derive the GLRT, in which
the unknown parameters are replaced by their ML estimates
(Lorden 1971). Then, the sample covariance matrices, �̂i , are
inserted in place of the true covariance matrices into the test.

Premising that the noise covariance matrices are known,
it can be shown by Neyman–Fisher factorization criterion
(Fisher 1925) that the ML estimators (ĉl− j+1, . . . , ĉl) are
sufficient statistics with respect to the parameter C and the
raw data segments (yl− j+1, . . . , yl). Hence, we define the
Generalized Likelihood Ratio as a function of j

�̂l( j) = supC1
p(ĉl− j+1, . . . , ĉl |C1)

p(ĉl− j+1, . . . , ĉl |C0)
. (28)

Assuming that the EEG segments are statistically indepen-
dent (an assumption which is not entirely valid, but is a good
approximation), the Generalized Log Likelihood Ratio is

rl
j
= sup

C1

l∑
i=l− j+1

ln
p(ĉi |C1)

p(ĉi |C0)
. (29)

As the time of change is unknown, we base detection on G[l],
an optimization of rl

j
over all the possible values of j

G[l] = max
j

r l
j

s.t. Jmax < j ≤ Jmin.
(30)

According to (25), (26) and (29), we get

G[l] = max
j

sup
C1

l∑
i=l− j+1

−∣∣ĉi − C1
∣∣2 + ∣∣ĉi − C0

∣∣2

σ 2
i

. (31)

Finding C̃1( j), the supremum of C1 for each possible value
of j , is a convex optimization problem that can be solved by

simple derivation. The solution is

C̃1( j) =
∑l

i=l− j+1
ĉi
σ 2

i∑l
i=l− j+1

1
σ 2

i

. (32)

After calculating C̃1( j), the unknown variance values σi
2 are

replaced by their estimators, σ̂ 2
i , based on (26).

G[l] is calculated as the solution of the optimization prob-
lem:

G[l] = max
j

l∑
i=l− j+1

−
∣∣∣ĉi −C̃1( j)

∣∣∣2+|ĉi −C0|2

σ̂ 2
i

s.t. Jmax < j ≤ Jmin.

(33)

As j is a discrete parameter with finite number of possible
values, the latter maximization is calculated by comparison of
all possible values. The system decides that a change has been
detected when G[l] is greater than a pre-defined threshold, λ

d[l] =
{

0 if G[l] < λ (H0 is chosen)

1 if G[l] ≥ λ (H1 is chosen)
, (34)

where λ is chosen to satisfy a robustness criteria, based on
our system’s performance analysis, which is discussed in the
next section (e.g. reducing the probability of false alarms to
<0.1 per minute).

4 Simulations and performance analysis

4.1 Simulation details

We analyzed the algorithm’s performance using Monte Carlo
simulations in which the SSEP were generated as cosine
functions. Background EEG activity was simulated as a real-
ization of an AR random process of the form

w[n] =
p∑

j=1

α jw[n − j] + u[n], (35)

where u[n] is white Gaussian noise (Zetterberg 1969, Gersch
1970). The values of the parameters [α0, α1, . . . , αp] were
extracted from real EEG data recorded during anesthesia by
Burg method (Kay 1988) for AR model order (P) of 12 (Ben-
der et al. 1992). Samples of our computer-generated EEG and
real EEG recorded during steady-state stimulation are plotted
in Fig. 4.

Five thousand simulations of 400 s were conducted for
each scenario, at a sampling rate of 300 Hz and SSEP fre-
quency of 15 Hz, a typical visual SSEP frequency (Zaaroor
et al. 1993). The value before surgery, C0, was set to 0.15
(SSEP is a cosine function with zero phase and amplitude
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Fig. 4 a Real EEG recorded during steady-state stimulation of a comatose patient. b Computer-generated EEG (using harmonic signal model and
additive autoregressive process of order 12). Sampling rate is 300 Hz, segments duration is 3 s. Signal energy is normalized to 1, SNR is −23 dB

of 0.3). Phase jumps of π
4 and π

2 radians, corresponding
to changes of 1

8 and 1
4 inter-stimulus intervals in the SSEP

latency, as well as amplitude changes of −0.1 and +0.2 were
simulated after 100 s. The background EEG variance was
normalized to 1, producing an SNR of −13 dB, segmenta-
tion step was set to a second (k NT = 300) and Jmax was set
to 90 s. After consulting neuro-physiologists experienced in
intra-operative monitoring, the parameter Jmin (the minimal
number of observations required for detection) was set to
30. This configuration increases the system’s robustness and
prevents alarms that are based on <30 s of EEG, even when
it seems likely that a change has occurred, due to the high
cost of distracting the attention of the doctor during brain
surgery. A second set of runs was simulated with C0 = 0.05,
leading to an SNR of −23 dB. Exemplary simulation outputs
are plotted in Fig. 5.

4.2 Performance evaluation

A change detector is a device delivering an alarm signal in
time ta about a change that took place at time k̂, with t0 denot-
ing the starting time for the algorithm (Basseville and Niki-
forov 1993). Performance measures are Mean Time between
False Alarms (MTFA) and Mean Time for Detection (MTD)

MTFA = E(ta − t0|no change), (36)

MTD = E(ta − k̂|change). (37)

For each threshold, MTFA, MTD and the probability of get-
ting a false alarm in a 60 s simulation (PFA) for all simulated
cases are recapitulated in Table 1. Note that some of the
values were not calculated due to the rare occurrences of the
events. The configuration λ = 13 was chosen for the purpose
of performance analysis, as the lowest threshold for which
PFA was below 0.1. Setting the threshold to λ = 13 provides

delay for detection of <21 s for a phase jump as low as π
4

degrees in −13 dB SNR. For −23 dB SNR, the magnitude of
change |C1 − C0| is significantly lower due to the smaller
SSEP amplitude. In this case, all changes are detectable as
well. In the amplitude jump scenario, in which the change
magnitude is the same for both SNR cases, MTD reduces
with the relative magnitude of change. As a result, MTD
values are lower for SNR of −23 dB.

4.3 Comparison with previous methods

All methods discussed in Sect. 2 were simulated, where
the manual neuro-physiological change detection was imi-
tated by a post-processing step, of comparing the difference
between the estimated signal and the baseline before surgery
to a threshold

d[l] =
{

0 i f |Ĉ[l] − C0| < Δ (no change)
1 i f |Ĉ[l] − C0| ≥ Δ (change)

, (38)

where Ĉ[l] is the estimated parameter value in the lth time
instance. As our algorithm is capable of detecting phase
changes of π

4 in the low SNR scenario without generating
false alarms, we chose the threshold as

Δ = |0.05e
π
4 i − 0.05| ≈ 0.04, (39)

and calculated MTFA for the −23 dB scenario, based on
5,000 simulations for each of four optional estimation time
windows (T ). The results are summarized in Table 2.

Using the lowest possible values of T in which false alarms
are rare (<0.1 in 60 s) in each method, we conducted 5,000
simulations of a π

2 phase change, for both SNR cases. The
threshold was set to

Δ = |C0e
π
4 i − C0|, (40)
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Fig. 5 Computer simulation of SSEP change detection, SNR is
−13 dB. a A π

2 radians phase change from the baseline occurs after
200 s, leading to a dramatic increase in the value of the decision para-
meter G[l] within seconds. b Plotted values of parameter C1, 200 s

before (blue) and after (red) the change. The black circle is centered at
the origin with a radius of 0.15. It is evident from the estimated values
that a phase jump of approximately π

2 radians have occurred. (Color
figure online)

Table 1 PFA (in 60 s), MTFA and MTD of π
4 / π

2 radians phase jumps and −0.1/+0.2 amplitude changes for threshold, achieved using our GLRT
solution (in seconds)

−13 dB −23 dB

λ PFA MTFA π/4 π/2 −0.1 +0.2 PFA MTFA π/4 π/2 −0.1 +0.2

5 0.62 56.7 8.4 4.8 15.4 11.8 0.43 42.8 36.5 15.6 9.5 18.2
10 0.23 254.6 17.1 9.4 39.1 37.9 0.16 218.7 52.3 23.6 39 18.2
13 0.1 – 20.7 11.3 55.7 52.0 0.07 – 82.9 29.9 33.4 23.8
20 0.02 – 29.3 15.8 106.6 – 0.03 – 187.1 49.5 49.5 32.3
50 0.01 – 69.0 24.6 – – 0.01 – – 243.5 93.3 97.9
100 0 – – 40.6 – – 0 – – – – –

Table 2 MTFA (in seconds) for estimation time window in all SSEP
estimation methods

T (s) 45 60 90 180

Empirical 8.5 17.7 53.4 266.7
Subspace 250.6 – – –
Fourier 150.0 244.7 – –
Lock-in 284.2 – – –

a magnitude of a π
4 phase change. MTD values for each

method are recapitulated in Table 3, where MTD for the
GLRT method uses λ = 13.

The low SNR simulations demonstrate that all methods are
superior to the empirical averaging currently used in routine
practice. While our algorithm outperforms all other meth-
ods, the subspace averaging method is marginally inferior
to the GLRT when the estimation time window is well cho-
sen, and the difference may be referred to the fact that our

Table 3 MTD for a π
2 phase change in all SSEP estimation methods

T (s) −13 dB −23 dB

Empirical 180 90.8 72.3
Subspace 60 31.4 32.6
Fourier 90 63.6 63.7
Lock-in 60 42.1 40.6
GLRT 30–90 11.3 29.9

algorithm utilizes prior knowledge about the background
EEG statistics. The high SNR simulations, in which our algo-
rithm significantly outperforms all other methods, demon-
strates the role of our post-processing step, which bases
detection on a flexible time window whose size is not pre-
determined. This approach maintains the system’s reliability
in terms of false alarms while reducing delays for detection
when possible.
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5 Real steady-state evoked potential experiments

Real SSEP data were recorded at the Neurosurgery
department in Rambam hospital, Haifa, Israel, using Axon
Systems Inc. Epoch XP 2000/Lite Eclipse Neurological
Workstation. Procedures were approved by the Human Sub-
jects Institutional Review board according to the Helsinki
convention. EEG was recorded during visual steady-state
stimulation at a frequency of 14.925 Hz and band pass filtered
at 1–80 Hz using a digital Butterworth, LFF 6 dB/octave, HFF
24 dB/octave with a notch at 50 Hz. The raw data were scaled
to have a variance of 1, and re-sampled to 597 Hz, to allow
segments with an integer number of inter-stimulus periods.

5.1 Normal awake patients

Apart from testing the algorithm, the purpose of the first
experiment was verifying that our system records physio-
logical SSEP rather than an artifact generated by the stim-
ulus. Nine minutes (540 s) of potential difference between
electrodes Cz-O1 were recorded from normal awake patient
(eyes closed). The first 300 s contained visual steady-state
stimulus, followed by 2-min break and 3 min in which the
stimulating goggles were flipped over, such that the LEDS
were facing outside, rather than the eyes. The SSEP baseline
before the flip was estimated using subspace averaging, pro-
ducing SNR of −26 dB, which is lower than the low SNR
scenario in our simulations. The values of the change detec-
tor G[l] are plotted in Fig. 6a. The value was kept below
15 until the break after 300 s, that resulted an increase of
the parameter up to 30. It is evident that the high value was
kept during the flipped-goggle simulation, verifying that our
recorded signal is not an artifact. Setting an optimal threshold
would detect the change within approximately 80 s, without
generating false alarm. The experiment was repeated suc-
cessfully with a different subject in a 360 s SSEP recording,
in which the stimulus was turned off after 180 s and was
renewed with a flipped goggle after 300 s. The SSEP base-
line produced SNR of −10 dB, and optimal threshold would
allow detection within 15 s as evident in Fig. 6b. Note that the
change detector’s value is significantly greater in the second
experiment, due to the increased SNR.

5.2 Recording during coma

Two hundred seconds of EEG were recorded during steady-
state stimulation from a 30 y/o male subject in coma suffering
from diffuse axonal injury. Potential difference was recorded
between electrodes A1-Oz. The SSEP baseline was estimated
using subspace averaging waveforms, in which the presence
of harmonic signal with a stable phase was evident. A relative
instability of the SSEP amplitude, that varied between 0.25
and 0.3 was observed, in accordance with previous clinical

Fig. 6 Change detection of SSEP recorded from awake patients. a SNR
is −26 dB. After 300 s, the stimulus is turned off and the value of G[l]
is increasing due to vanishing of the SSEP. After 420 s the stimulus is
turned on with a flipped goggle, with no response. b SNR is −10 dB.
After 180 s, the stimulus is turned off, followed by an increase of G[l].
After 300 s, it is turned on with a flipped goggle, with no response. Note
that detection is faster and the parameter G[l]’s value is higher in the
second experiment due to increased SNR

studies (Zaaroor et al. 1993). The amplitude baseline was set
to 0.28, producing SNR of −11 dB. Baseline latency was 18
samples, which are approximately 0.03 s corresponding to a
phase leg of 162 ◦.

5.2.1 Phase changes

We initially ran the algorithm on the raw EEG data as is.
Phase jitters were created by removing 20, 10 and 5 EEG
samples after 100 s, corresponding to jumps of π, π

2 and π
4 in
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Fig. 7 Change detection of SSEP recorded under coma. a Phase jump
detection of different values. The maximum value of G[l] observed
when no change has occurred is 25. When a phase jump occurs after
100 s, the value of G[l] increases accordingly. It is evident that even a
change as low as 45◦ is detectable. b Detection of amplitude changes
of different magnitudes. It is evident that for all magnitudes of change,
setting a threshold in which no false alarms occur and change is detected
within 10–30 s is possible. Note that the amplitude baseline was rela-
tively unstable during the recording, and as a result detection is less
reliable

the SSEP phase. The values of G[l] in all cases are plotted in
Fig. 7a. The value was kept below 25 when no samples were
removed. A phase jump of π resulted in a dramatic increment
of up to a hundred within 17 s that kept increasing for 90 s,
exceeding 1,200. A π

4 jump has lead to a more moderate, yet
clearly observable increment of G[l] up to a hundred after
30 s, stopping at nearly 200. It is evident that a threshold
in which all experimented phase jumps are clearly detected

within 10–20 s (depending on the magnitude of change) can
be set without generating any false alarms. The maximum
value when no change occurs is not as low as expected in our
computer simulations, due to the amplitude instability of the
real SSEP.

5.2.2 Amplitude changes

Computer-generated cosine functions with the same phase as
the SSEP were added to or subtracted from the EEG record-
ing after 100 s, resulting in a change of the SSEP amplitude
baseline. The magnitudes of change were ±0.1 and ±0.2,
which are approximately 35 and 70 % of the original baseline
amplitude. G[l]’s values are plotted in Fig. 7b. All changes
were detected by the algorithm, when the larger change of 0.2
(in both directions) resulted a larger increase of G[l]. G[l]’s
behavior was less predictable in relation to phase changes,
due to the instability of the SSEP amplitude of the real data.
Yet, setting a threshold that does not generate false alarms
and detects all changes within 10–30 s is feasible.

5.2.3 Comparison with previous methods

We tested the performance of the empirical and sub-space
averaging methods on the data recorded under coma, using
the detector from Eq. (38) and the thresholds from Eqs. (39)
and (40). When trying the empirical average on the raw data
as is, we could not attain satisfactory PFA for any of the T
values we had tried; as our recording lasted 200 s, the maxi-
mum averaging window that we tested was 120 s, for which
PFA was 0.4. For the sub-space method, setting T to 45 s was
enough to prevent false alarms. Using the aforementioned
values of T , we tested both methods in the π

2 and π
4 phase

change scenarios, the results are summarized in Table 4. For
comparison, we used the performance of the GLRT with a
threshold of λ = 50, twice the maximal value of the detector
in the “no change” scenario. Arguably, the empirical average
is not sufficiently sensitive for automated detection due to its
high PFA for the case at hand. The sub-space method is ade-
quate for reliable monitoring, although the GLRT performs
faster as far as time for detection is concerned.

Table 4 Real data performance: PFA and time for detection (TD, in
seconds) for a π

2 and π
4 phase change, using different SSEP estimation

methods

T (s) PFA TD π
2 TD π

4

Empirical 120 0.4 81 95
Subspace 45 0 26 76
GLRT 30–90 0 14 19
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Table 5 Computational complexity of the change detection algorithm’s
different stages

Covariance matrix estimation O(k Nt
2)

ML Estimation O(k Nt
3)

Calculating G[l] O( jmax
3)

6 Real-time performance and computational complexity

For a real-time algorithm, computational complexity is an
issue. The complexities of each of the algorithm’s stages
are recapitulated in Table 5. For each segment of k Nt sam-
ples (which correspond to 1 s EEG data in our case), we
estimate the covariance matrix, a Topeliz matrix with 2p
different values. The calculation can be performed with com-
plexity of O(k Nt

2) by recursively updating the covariance
matrix of the previous segment. In addition, we calculate the
SSEP ML estimator using matrix inversion and multiplica-
tion, with complexity O(k Nt

3). The data volume is signif-
icantly reduced after the ML estimator is computed, as we
use its statistical sufficiency to base detection on the ML
estimators, instead of the EEG raw data. Finally, the dou-
ble optimization over parameter C1 and the time of change
is computed with complexity O( jmax

3), and its efficiency
may be enhanced using iterative updating methods. Overall,
the computational complexity of the GLRT is polynomially
dependent on the segmentation size and the time of change
optimization length; both are bounded values (k Nt = 300
and jmax = 90) in our Monte Carlo simulations. A 5-min
EEG simulation requires <20 s on a personal computer with
a 2-GHz CPU. Performance can be accelerated even further
using a real-time digital signal processor (DSP).

7 Conclusion and discussion

We presented a novel algorithm for monitoring the real-
time variations of SSEP during neurosurgical procedures.
Our approach is based on detecting changes in the SSEP
from its baseline before surgery, using a two-step GLRT.
The algorithm exploits the harmonic signal model and prior
statistical knowledge about spontaneous EEG activity during
anesthesia, for conducting an hypothesis test that base detec-
tion on a flexible time window. The algorithm is capable of
detecting changes in the SSEP within seconds in low SNR
conditions, outperforming conventional neurosurgical mon-
itoring methods. In contrast to signal estimation approaches,
the algorithm makes decisions based on statistical analysis of
the likelihood that a change has occurred rather than manual
interpretation, thus enhancing the system’s sensitivity and
reliability.

The computational complexity of the GLRT is polyno-
mial, making it applicable for real-time implementation.

Furthermore, the algorithm was applied successfully to a sin-
gle EEG channel recording, making it appealing for neuro-
surgical operations in which placing electrodes on the scalp
might be inconvenient or impracticable. As our algorithm is
based on a statistical test, expanding the solution to multi-
channel EEG recordings can be applied by treating each
channel as an independent information source, and making
a decision based on a majority rule.

Our ability to test the algorithm in real scenarios was
limited by ethical considerations, as it requires anesthetized
subjects as well as initiating functional changes in the sub-
ject’s brain. Testing the algorithm on EEG recorded during
neuro-surgical procedures in which the times of neurological
changes are documented shall be the next step of our clinical
trials. Other issues that still require further clinical investiga-
tion are the effects of differences in depth of anaesthesia on
the SSEP, and the reliability of the signal’s amplitude mea-
surements. The amplitude’s instability has been documented
in previous clinical studies, and yielded performance differ-
ences between our real data experiments and the idealized
Monte Carlo simulations of our algorithm.
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