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Abstract: In deep tissue photoacoustic imaging the spatial resolution is inherently limited by 
the acoustic wavelength. Recently, it was demonstrated that it is possible to surpass the 
acoustic diffraction limit by analyzing fluctuations in a set of photoacoustic images obtained 
under unknown speckle illumination patterns. Here, we purpose an approach to boost 
reconstruction fidelity and resolution, while reducing the number of acquired images by 
utilizing a compressed sensing computational reconstruction framework. The approach takes 
into account prior knowledge of the system response and sparsity of the target structure. We 
provide proof of principle experiments of the approach and demonstrate that improved 
performance is obtained when both speckle fluctuations and object priors are used. We 
numerically study the expected performance as a function of the measurement’s signal to 
noise ratio and sample spatial-sparsity. The presented reconstruction framework can be 
applied to analyze existing photoacoustic experimental data sets containing dynamic 
fluctuations. 
© 2017 Optical Society of America 
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1. Introduction 

Optical microscopy is an invaluable tool in biomedical investigation and clinical diagnostics. 
However, its use is limited to depths of not more than a fraction of a millimeter inside tissue 
due to light scattering. At depths beyond a few hundred microns light scattering in tissue 
prevents the ability to focus light to its diffraction limit. While non-optical imaging 
techniques, employing non-ionizing radiation such as ultrasound, allow deeper investigations, 
they typically possess inferior resolution and generally do not permit microscopic studies of 
cellular structures at depths of more than a millimeter [1]. One of the leading approaches for 
deep tissue optical imaging is photoacoustic imaging/tomography [2, 3]. Photoacoustic 
imaging relies on the generation of ultrasonic waves by absorption of light in a target structure 
under pulsed optical illumination. Ultrasonic waves are produced via thermo-elastic stress 
generation, and propagate to an externally placed ultrasonic detector-array without being 
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scattered. Photoacoustic imaging thus provides images of optical contrast with a spatial 
resolution limited by acoustic diffraction. Ultimately, the ultrasound resolution in soft tissue is 
limited by the attenuation of high frequency ultrasonic waves. As a result, the depth-to-
resolution ratio of deep-tissue photoacoustic imaging is ~100-200 in practice [2, 3]. For 
example, at a depth of 5 mm one can expect a resolution of around 20 μm at best, more than 
an order of magnitude above the optical diffraction limit. 

Recently, it has been demonstrated that the conventional acoustic diffraction-limit can be 
overcome by exploiting temporal fluctuations in photoacoustic signals originating from 
illuminating the sample with dynamically varying optical speckle patterns [4]. This work was 
inspired by the notion of super-resolution optical fluctuation imaging (SOFI) [5], developed 
for fluorescence microscopy. In SOFI, a resolution beyond the diffraction limit is obtained via 
high-order statistical analysis of temporal fluctuations of fluorescence, recorded in a sequence 
of images. To apply SOFI in photoacoustics a set of random, unknown optical speckle 
illumination patterns was used as a source of fluctuations for super-resolution photoacoustic 
imaging [4] [Figs. 1(a) and 1(b)]. Using this approach, an effective resolution enhancement of 
∼1.6 beyond the acoustic diffraction-limit was obtained by analyzing the temporal 
fluctuations' second moment (variance) using a set of 100 photoacoustic images. Obtaining 
higher resolution by analyzing higher statistical moments with such a limited number of 
images results in strong artifacts due to statistical noise, caused by the insufficient number of 
analyzed frames [Fig. 1(b), right inset]. 

Here, we show that by adapting an advanced computational reconstruction algorithm 
based on a compressed-sensing framework it is possible to obtain an enhancement in 
resolution and reconstruction fidelity in photoacoustic imaging beyond that possible with the 
basic statistical fluctuation analysis of SOFI [4], while using the same experimentally 
obtained data set [Fig. 1(c)]. Specifically, we recognize that photoacoustic imaging under 
dynamic unknown speckle illumination [4, 6] is an instance of blind structured illumination 
microscopy (blind-SIM) [7, 8]. Since the photoacoustic signal generation and detection is a 
linear process, reconstructing the target object from the measured set of photoacoustic images 
is formulated as a linear inverse problem [Fig. 1(c)], studied at depth in many other instances 
of imaging in optics and other domains [8–12]. In principle, a reconstruction approach for 
solving such inverse problems should exploit all available information. This includes, in 
addition to the acquired images and detection system response, any prior information on the 
statistics or structure of the unknown illumination patterns, the non-negativity of the 
illumination intensity and the object absorption, and any inherent structural correlations or 
sparsity. 

To this end, we employ a reconstruction approach based on compressed sensing (CS) [13–
15]. CS has been demonstrated to enable super-resolved optical imaging of microscopic 
structures [11, 12, 16], and imaging using sub-Nyquist sampling [14, 17], i.e. imaging using a 
number of measurements that is lower than the number of image pixels. Our use of CS for 
super-resolved photoacoustics combines the high-resolution information contained in the 
temporal fluctuations, with the super-resolution recovery capability of CS, to retrieve the 
maximum amount of information using a minimum number of acquired photoacoustic frames. 
Unlike the use of dynamic speckle illumination for enhanced resolution and optical sectioning 
in optical microscopy [7, 8, 18–22], in photoacoustics the optical speckle grain size is not 
limited by the same diffraction-limit as the imaging point spread function (PSF), which is 
acoustic. In practice, the speckle grain size can be orders of magnitude smaller than the PSF 
dimensions [6]. This suggests that the resolution increase is not limited by the usual factor of 
two as in structured-illumination microscopy [7], even without nonlinearities in the imaging 
process [23]. Given the differences in dimensions, the speckle grains may be thought of as 
playing a similar role to blinking sources of signal ('molecules') with dimensions much 
smaller than that of the imaging system PSF. A situation analogous to the one considered in 
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SOFI [5], PALM [24] and STORM [25] super-resolution microscopy techniques utilizing 
blinking fluorescent molecules. 

 

Fig. 1. Concept and numerical example: (a) Experimental setup. A pulsed laser beam is passed 
through a rotating diffuser producing temporally varying speckle patterns that illuminate the 
target. For each speckle pattern, ultrasound waves that are generated from the absorbing 
portions of the sample via the photoacoustic effect are recorded using a linear transducer array. 
The result is a set of photoacoustic images Y = [y1; y2;…;yL] each with a resolution limited by 
the acoustic diffraction-limit. (b) An increase in resolution can be obtained by analyzing high-
order statistical moments (cumulants) of the temporal fluctuations in the image-set via SOFI 
[4]. However, calculating higher order moments suffers from statistical noise due to the finite 
number of acquired images. (c) In the presented approach a compressed-sensing reconstruction 
algorithm takes advantage of available prior information on the object structure (here, sparsity 
of the absorbing structure, given by the diagonal matrix D), acoustic system response (given by 
the convolution matrix H), and optical speckle properties (the matrix U whose columns are the 
individual speckle illumination patterns) to perform the recovery. The recovery is done over 

the matrix X = DU. The estimation of the object, 
�
D , is then calculated as the row-wise 

standard deviation over X (see text). The result is a reconstruction with improved fidelity and 
resolution. The reconstructions in (b-c) are numerical results obtained using 2000 speckle 
patterns with measurement noise of 5% of signal peak. 

2. Principle 

The principle of our approach is presented in Figs. 1(a) and 1(c). We consider the 
photoacoustic tomography experimental setup given in Fig. 1(a), employing an ultrasound 
transducer-array for detection, and a pulsed laser source with sufficiently large coherence 
length to produce speckles. A rotating diffuser in the illumination path produces random 
unknown optical speckle illumination patterns on the absorbing object that we wish to image. 
For each of the m = 1..L unknown speckle intensity patterns, given by um(x,z), a single 
photoacoustic image, ym(x,z), is measured, where x and z are spatial coordinates (Fig. 1(a)). 
For simplicity of the analysis we consider a linear transducer array that images a small two-
dimensional absorbing structure. The sought-after structure spatial absorption pattern is given 
by o(x,z). We assume the object lies at the center of the transducer-array field of view (FOV), 
effectively having a shift-invariant acoustic PSF [4]. Under these considered assumptions, 
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each acquired photoacoustic image, ym(x,z), is a convolution of the acoustic detection PSF, 
given by h(x,z), with the object structure, o(x,z), multiplied by the unknown speckle 
illumination pattern intensity um(x,z): 

 ( ) ( ) ( ), ,  ,  ( , )m my x z h x z o x z u x z=     (1) 

The impulse response h(x,z) is constructed by back-propagation of the detected acoustic 
signals from a point absorber, in a prior calibration procedure (see Methods). In principle, the 
same analysis can be performed in three dimensions and for shift-varying PSF. 

The imaging challenge is thus to find o(x,z) given the known/measured system PSF h(x,z), 
and the set of photoacoustic images ym(x,z), without knowing the speckle patterns ux(x,z). 
Importantly, the photoacoustic images are of considerably lower resolution (lower spatial 
frequency bandwidth) than both the object and speckle patterns, due to the convolution with 
the acoustic PSF, h(x,z). While in conventional structured illumination and in ghost-imaging 
[17] the speckle illumination patterns are known and the reconstruction is straightforward, 
here, as in blind-SIM, the speckle patterns are unknown. However, many of the speckle 
patterns properties, such as their non-negativity, intensity statistics and correlations, are 
universal [7] and can be used in the reconstruction algorithm. Importantly, since a speckle 
pattern is the result of random interference, the propagation through thick scattering tissue 
will only change the speckle realization but will not change the speckle characteristic 
properties and most importantly contrast, as long as the laser coherence length is sufficiently 
long. This important feature means that a high contrast and high resolution structured 
illumination is attained at depth, which would not be possible with incoherent illumination. 
While using SOFI to analyze the Nth-order statistical cumulant of ym yields, in principle, a √N 
resolution increase without deconvolution [5], it is accompanied by strong artifacts when an 
insufficient number of frames is available [5] [Fig. 1(b), rightmost inset]. Since SOFI's 
statistical analysis does not take into account all available information besides the temporal 
fluctuations, its performance can be surpassed through a model-based approach that considers 
prior knowledge of the object and the system. This is exactly the design goal of CS: to recover 
the maximum amount of information from a minimal number of measurements. In a nutshell, 
a CS algorithm solves a set of underdetermined linear equations, such as those given by Eq. 
(1), by exploiting the inherent sparsity of natural objects in an appropriate transform basis. 
Remarkably, such sparsity is a general property of most natural images, and is at the core of 
modern lossy image compression algorithms, such as JPEG [14]. Here we exploit the sparsity 
of the object O in space. 

To establish a CS framework for our problem, we formulate the problem that is given by 
Eq. (1) in a continuous coordinate space by its representation in an adequately sampled 
discrete space. The intensity pattern exciting photoacoustic signals is then given by a vector 
um where its entries represent the intensity of the mth illumination pattern at all relevant spatial 
positions (x,z). The acoustic spatial emission pattern is then written as vm = Dum, where D = 
diag(O1,…,ON) is a non-negative diagonal matrix representing the object pattern on an N 
pixels grid. In the case where the object pattern is sparse in real space, D has a sparse 
diagonal. Each photoacoustic image ym is a result of a convolution of the photoacoustic 
emission pattern with the acoustic detection system PSF, given by the vector h. We denote by 
H its convolution matrix. With these notations the mth measured photoacoustic image can be 
written as [Fig. 1(c)]: 

 .m my HDu=  (2) 

Stacking the entire series of measurements ym as columns in a matrix Y, and um as columns in 
a matrix U, the entire image set acquisition process may be described by [Fig. 1(c)]: 

 Y HDU=  (3) 
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where Y and H are the measured photoacoustic image-set and system response, 
correspondingly, and are assumed to be known. The matrices D and U are the unknown object 
absorption pattern (on the diagonal of D) and the unknown speckle illumination patterns (as 
columns of U). 

Let X = DU. Since D is diagonal and sparse, the support of X and D will be the same, 
where the support is defined as the nonzero rows of a matrix. Thus, we state our recovery 
problem as: 

 argmin | | , . .  0, is row sparse.ij
X

Y HX s t x X− ≥        (4) 

As the support of X is equal to that of D, and since for fully developed speckles the 
ensemble average of the speckle intensity is the same for all spatial positions (meaning that 
the row-wise average value for U is approximately the same for all of its rows), we calculate 
�
D  as the row-wise standard deviation over X (See detailed explanation in Methods). The 
challenge of recovering a common support from the acquisition of multiple correlated sparse 
signals is referred to in the CS literature as the multiple measurement vector (MMV) problem 
[15, 26]. Several methods have been proposed for estimating the support [15]. Here we use a 
Bayesian approach to perform the recovery [8, 27, 28], referred to as multiple sparse Bayesian 
learning (M-SBL). We chose M-SBL since it led to superior reconstruction fidelity compared 
to other MMV methods we have tested. The M-SBL algorithm implements a maximum a-
posteriori estimate (MAP) to find the optimal X while defining some constraints on X so as to 
encourage solutions which match the prior knowledge. In our setting, we employed a spatial 
sparsity prior (see details in Methods). 

3. Results 

3.1 Experimental results 

To experimentally demonstrate the advantage of the proposed reconstruction strategy over 
conventional photoacoustic reconstruction and statistical based fluctuations analysis, we used 
the above described M-SBL algorithm to analyze a set of experimental photoacoustic images 
of test samples made of absorbing beads of diameters 50μm-100μm, measured under dynamic 
speckle illumination [4]. The experiments were performed using the experimental system 
sketched in Fig. 1(a), and described in detail in [4] (see Methods). 

The experimental results for three different samples are presented in Fig. 2. The leftmost 
column of Fig. 2 presents the optical image of the samples as imaged directly without the 
presence of any scattering. These can be considered as the 'ground truth' of o(x,z). The other 
four columns in Fig. 2 present images reconstructed from the photoacoustic acquired data in 
four different fashions: (1) a conventional photoacoustic image, given by the mean of the 

photoacoustic image set 
1

m
m

y y
M

= conventional  as obtained via back-propagation [29]; (2) a 2nd 

order SOFI fluctuation analysis followed by a Richardson-Lucy deconvolution using the 
squared PSF for deconvolution. These may be considered as the best results of photoacoustic 
fluctuations analysis, as achieved in [4]; (3) an M-SBL reconstruction using as input only the 
mean photoacoustic image, i.e. providing the increase in resolution relying only on sparsity 
without additional information from speckle fluctuations; and (4) an M-SBL reconstruction 
using the entire image data set, providing the main result of this work. One may consider the 
results of SOFI as exploiting only the temporal fluctuations of the signal, the results for M-
SBL on the standard photoacoustic image as optimal recovery using only the sparsity prior, 
and the rightmost column as exploiting simultaneously the sparsity priors, the common 
support and the fluctuations information for all of the speckle realizations. As expected, 
exploiting more information yields a superior reconstruction fidelity, recovering most 
accurately the number and positions of the absorbing beads, and reducing imaging artifacts. 
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Since the PSF used to form the deconvolution matrix, H, was measured using beads of size 
similar to the imaged beads (see Methods), some of the reconstructed beads appear smaller 
than their real dimensions. 

 

Fig. 2. Experimental comparison of reconstruction strategies: (a,f,k) Direct optical imaging of 
the absorbing beads without any scatterer. (b,g,i) conventional photoacoustic back-projection 
calculated by averaging all acquired photoacoustic images, (c,h,m) Reconstruction using 2nd-
order SOFI fluctuation analysis followed by Richardson-Lucy deconvolution with the squared 
PSF, as presented in [4]. (d,i,n) M-SBL algorithm employing sparsity constraint ran using only 
the conventional photoacoustic image of (b,g,i). (e,j,o) M-SBL using all speckle illuminated 
images. Scalebars, 250 μm in (a-e), 400 μm in (f-j), 125 μm in (k-o). For M-SBL 
reconstructions, the variance of the recovered matrix X is shown, for a fair comparison with 
SOFI 2nd order reconstruction. 

3.2 Expected performance as a function of experimental parameters 

The resolution enhancement of the proposed nonlinear recovery approach depends on many 
experimental parameters. While it depends most critically on the size of the acoustic PSF 
(given laterally by the acoustic diffraction limit and axially by the transducer impulse 
response), it is also highly sensitive to the experimental signal to noise ratio (SNR), the 
absorbing sample structure/sparsity, and the speckle grain dimensions compared to the PSF 
dimensions. Qualitatively, the best performance is expected for the narrowest PSF, highest 
measurement SNR and the sparsest object. 

To quantitatively analyze the expected reconstruction fidelity as a function of the above 
parameters we have numerically investigated a large set of imaging scenarios involving 
different PSF size, object sparsity, and SNR. The results of this study are presented in Fig. 3. 
Figures 3(a) and 3(b) display the correlation between the reconstructed images and the object 
for each of the considered scenarios. The vertical axis represents the sample 
sparsity/complexity, taken here as the number of absorbing pixels contained in the area 
enclosed by the PSF, where the pixel size is chosen as the optical diffraction limit (a speckle 
grain dimension). The horizontal axis provides a measure of the PSF size, taken as the ratio 
between the width of the PSF and the optical diffraction limit. All simulations were performed 
with a pixel grid of 70 by 70 pixels, with a pixel size equal to the speckle grain dimensions, 
i.e. no structures with dimensions below the optical diffraction-limit are considered. The PSF 
used in the simulations was generated by simulating the acoustic response of a 50um bead 
being uniformly illuminated by a 1ns laser pulse and recorded by a linear transducer array 
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with 256 elements, upper frequency limit of 8MHz, inter-element pitch of 0.125mm, and 
element width of 0.125mm. 

 

Fig. 3. Numerical study of the M-SBL reconstruction fidelity as a function of SNR, PSF 
dimensions, and sparsity. (a-b) Correlation between the simulated objects and the 
reconstruction. Horizontal axis: width of the acoustic PSF (in pixels, pixel size = speckle grain 
dimensions); vertical axis: sample sparsity, taken here as the number of absorbing pixels 
contained in the area enclosed by the PSF. Note the gradual transition between success (high 

correlation) and failure. (c-g) The different PSFs used for the simulations of (a-b), the PSFσ  is 

measured as the full width at 77% of the max, (h-k) Examples of objects used to obtain four of 
the points in (b), (l-o) M-SBL reconstruction of the corresponding objects and their 
correlations with the object pattern. Reconstructions shown are the standard deviation of X. (p-
s) The conventional photoacoustic images (mean of acquired image set). 
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As expected from the intuitive qualitative description given above, both the PSF 
dimensions and the object sparsity play a crucial role in obtaining a high fidelity 
reconstruction. One can immediately appreciate that all of the results in the top row in the 
plots of Figs. 3(a) and 3(b) display a near perfect reconstruction. This perfect reconstruction 
results from the fact that the top row presents the case of very sparse samples, which contain 
nearly a single absorber inside a resolution cell given by the PSF dimensions. This is close to 
the scenario considered in localization microscopy techniques such as PALM/STORM, where 
a centroid analysis may provide a good estimation of the absorber location under a 
sufficiently low labelling density. It is important to note that while in SOFI, PALM and 
STORM the labelling density may be controlled by the labeling concentration and excitation 
laser power, this is not possible in linear photoacoustic imaging of endogenous contrast. 

To illustrate what recovery errors appear when the reconstructed images fail to perfectly 
recover the object structure, we provide in Figs. 3(l), 3(m), 3(n) and 3(o) several examples for 
reconstructed images side by side with the original objects (h-k), for several cases presented 
in Fig. 3(b). It can be seen that when the concentration of absorbers is too high (i.e. sparsity is 
too low) the algorithm fails to identify their exact individual positions but instead delivers 
some continuous line-like structure connecting them, which can be interpreted as blurring of 
the original image. This gradual 'break-down' of the recovery algorithm is encouraging for 
practical imaging purposes, as even the reconstructions with low calculated correlation to the 
original object carry relevant information on the object. This may be advantageous when 
continuous structures such as blood vessels are considered. While different measures for the 
sample sparsity, SNR, and PSF size relative to the object structure may be chosen, we expect 
the results presented in Figs. 3(a) and 3(b) to serve as a reference to the expected performance 
given a specific experimental imaging scenario. 

4. Discussion 

We proposed an advanced reconstruction algorithm for photoacoustic imaging, which 
efficiently exploits dynamic temporal fluctuations, joint sparse support constraints, and a 
known system response for improved resolution and reconstruction fidelity. Our approach 
provides superior performance compared to the recently proposed SOFI-based photoacoustic 
speckle fluctuation analysis [4]. 

From an estimation theory point-of-view, it is clear that improved performance will be 
obtained for a reconstruction algorithm that takes into account all available information. Here, 
we used CS to take into account some of this information by exploiting the object sparsity and 
the multiple random projections provided by the random speckle illumination. Improved 
algorithms could be developed by incorporating also the non-negativity of the speckle 
intensity patterns and object structure, and the known universal Rayleigh statistics of fully 
developed speckles [30], which we have used only implicitly here to reconstruct the object 
from the reconstructed matrix X (see Methods). 

We have demonstrated our approach using two-dimensional objects and sparsity 
constraints in real space, however one may consider applying the proposed CS recovery 
approach to reconstruct three-dimensional (3D) objects utilizing sparsity in any other 3D-
sparse transform basis representations (or 4D, for dynamic objects), which better matches the 
object structure, e.g. wavelet or minimum total variance (min-TV). 

We formulated here the recovery problem in image space (x,z), although the raw 
measured acoustic signals are time-domain signals, i.e., the convolution matrix H in Eqs. (2-
3) was taken as a combination of acoustic forward mapping and subsequent computational 
back-projection. The recovery problem may as well be formulated in the raw acoustic data 
space, i.e., taking H as the acoustic forward operator and y as the raw acoustic data. This is an 
interesting point, which is currently under investigation. It may have possible advantages over 
the image-space formulation, such as the insensitivity to the specific back-propagation 
algorithm used. 
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In this work we made use of the measured system PSF. However, when the system PSF is 
not measured it may be possible to develop an advanced reconstruction algorithm that 
estimates the PSF and the object simultaneously, as is done in blind deconvolution [31] and 
blind compressed sensing [32]. 

An important practical challenge for applying the approach for deep tissue photoacoustic 
imaging arises from the large difference between the speckle grain dimensions and the 
acoustic PSF dimensions. At large imaging depths the speckle grain dimensions, which are 
given by the optical diffraction limit, would be orders of magnitude smaller than the imaging 
acoustic PSF [6]. In this scenario, the measured value at each pixel in the raw photoacoustic 
frames is the result of a sum over a large number of fluctuating uncorrelated speckle grains 
(the PSF convolution kernel being much larger than the speckle grain). This results in an 
overall small fluctuation to mean value in each image pixel between the different frames [6]. 
Resolving the small fluctuations over a large background may be challenging under low SNR 
conditions. Choosing a long optical wavelength and a high ultrasound frequency would be 
advantageous for this task. 

We formulated the photoacoustic imaging problem in the case of dynamic speckle 
illumination as an instance of blind structured illumination (blind-SIM), and experimentally 
demonstrated it on two-dimensional objects using a transducer array. As such, other 
algorithms solving the blind-SIM problem could be employed and their performance 
compared to the specific algorithm used here. For example, during the final preparations of 
this manuscript a blind-SIM photoacoustic imaging of a one-dimensional object was 
demonstrated [33]. 

5. Methods 

5.1 Experimental setup 

The setup used to perform the experiments is drawn schematically in Fig. 1. The beam of a 
nanosecond pulsed laser (Continuum Surelite II-10, 532 nm wavelength, 5 ns pulse duration, 
10 Hz repetition rate) was focused on a ground glass diffuser (Thorlabs, 220 grit, no 
significant ballistic transmission). The scattered light illuminated a 2-D absorbing sample 
embedded in an agarose gel block. This phantom was located 5 cm away from the diffuser, 
leading to a measured speckle grain size of ~30 µm. The absorbing sample was placed in the 
imaging plane of a linear ultrasound array (Vermon, 4 MHz center frequency, >60% 
bandwidth, 128 elements, 0.33 mm pitch), connected to an ultrasound scanner (Aixplorer, 
Supersonic Imagine, 128-channel simultaneous acquisition at 60 MS/s). A collection of black 
polyethylene microspheres (Cospheric, 50 µm and 100 µm in diameter) was used to fabricate 
phantoms with isotropic emitters. The PSF of the system was measured for each sample by 
concentrating light on one single 50 µm-diameter bead. The diffuser was removed from the 
light path during this step, to ensure a homogenous illumination of the bead. 

For each sample, a set of photoacoustic signals for 100 uncorrelated speckle patterns was 
obtained by rotating the diffuser. Special care was taken to reduce sources of fluctuations 
other than the multiple speckle illumination between photoacoustic acquisitions. The raw 
recorded (RF) acoustic signals were processed by a low-pass filter with a sharp cutoff that 
eliminated all frequencies above 2.4MHz in sample 1, and 2.8MHz and 5.3MHz for samples 2 
and 3 correspondingly. Different cutoff frequencies were used to create more challenging 
recovery scenarios for the different algorithms. The dimensions of the resulting PSF, defined 
as the full width at half maximum (FWHM) after the low-pass filtering were 613/1643um, 
537/1231um and 393/562um in the transverse/axial directions for samples 1, 2 and 3 
correspondingly. 

For each sample, 100 photoacoustic images were reconstructed from the raw acoustic 
signals, for each of the 100 speckle patterns, using a time-domain backprojection algorithm on 
a grid of 814 by 814 pixels with a pixel pitch of 25um. The time domain backprojection 
reconstruction is based on summing the photoacoustic signals taken at appropriate retarded 
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times [29]. The reconstructed photoacoustic images ym were downsampled to half of their 
original size by bilinear interpolation, to reduce the required computational resources and run 
time. The total run time for a single reconstruction on a machine with an Intel i7 3.60GHz 
processor with 4 cores is about 10 minutes. 

5.2 Recovery algorithm 

The MMV recovery algorithm we used in this work is M-SBL [27, 28]. The algorithm source 
code is available for download at [34]. As mentioned above, the M-SBL algorithm 
implements a maximum a posteriori estimator. Through the application of the Bayes law it 
searches for the value of X which maximizes the joint probability of ( ),P X Y , as detailed 

below. The M-SBL algorithm we adapted in this work assumes fluctuations having a 
Gaussian statistical distribution with zero mean [28]. Dynamic speckle illumination having a 
speckle grain size that is considerably smaller than the reconstruction grid indeed provides a 
Gaussian statistical distribution for the temporal fluctuations (as a direct consequence of the 
central limit theorem and the large number of summed speckle grains in each pixel), but with 
a mean that is not zero. Thus, when running M-SBL for the MMV case, the pixel-wise 
calculated temporal mean of the fluctuation images was subtracted pixel-wise. To provide a 
fair comparison with the 2nd order SOFI reconstruction, the M-SBL reconstructions presented 
in Figs. 1 and 2 show the variance over each row of the recovered matrix X which 
corresponds to the temporal variance at each reconstructed image pixel. In Fig. 3 the 
displayed M-SBL results are the standard deviation of each reconstructed image pixel, since 
the standard deviation provides a measure that is linearly related to the mean absorption in 
each spatial position (pixel). In the case where the reconstruction grid pixel size is smaller 
than the speckle grain dimensions, the standard deviation of each pixel provides a quantitative 
estimate of the mean absorption since for the exponential statistics of fully developed speckle 
[30] the temporal standard deviation is equal to the mean. Since the speckles fluctuations are 
uncorrelated, in the case where the grid pixel size is larger than the speckle grain dimensions, 
the standard deviation provides the mean absorption times the square root of the number of 
speckles contained in the absorbing area in the pixel. 

The M-SBL method used in this work is an adaptation of the algorithm of Zhang et al. 
[28]. Briefly, under certain prior assumptions of Gaussian distributions on the signal and 
noise, the posterior density of the j-th column of X becomes [27]: 

 ( ) ( ). . .| ; ,Σ ,j j j jp X Y Nγ μ=  (5) 

where X and Y are the matrix to be reconstructed and the measurement matrix, 

correspondingly, ( ). ,ΣjN μ  is the normal probability distribution with vector mean . jμ  and 

covariance matrix Σ , and . jY  is an unknown variance hyperparameter of the ith row with no 

assumed prior: ( ). ; (0, )i i ip X N Iγ γ= . The mean and covariance of (5) are given by [27]: 

 [ ] { } 1
.1 ., , | ; Γ ΣT

L yE X Y H Yμ μ γ −… = =  (6) 

 1Σ Γ ΓH Σ Γ,T
y H−= −  (7) 

where Γ ( )γ= diag , 2Σ Γ T
y I H Hσ= +  and 2σ  is the noise variance. 

The values of γ  represent the prior distribution underlying the generation of the data Y. 

As stated by Wipf [27] the M-SBL can be seen as maximizing the cost function: 

 . . y
1

( ) Σ | Σ |
L

T
j y j

j

t t Llogγ γ
=

= +  (8) 
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The maximization is performed by equating the derivative with respect to γ  to zero, which 

results in the following update rule for γ  [27]: 
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The final algorithm consists of the following steps [28]: 

1. Initialize iγ  = 1, for all i 

2. Calculate the values of Σ  and μ  according to Eqs. (6) and (7) 

3. Update γ  using Eq. (9). If 11 Σi iiγ −−  = 0 then no update is done for the corresponding 

pixels 

4. Iterate over steps 2) and 3) for a fixed number of times k, in our case we used k = 20 

5. To estimate the original object 
�
D  we used the standard deviation of rows of μ: 
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In case the signal-to-noise ratio is known it can be used to choose σ . In our work we chose 
values of σ  in the range of 0.1 to 0.5 that were found to give good reconstruction on our 
experimental data. 

The source code of the algorithm used in this work is available for download at [34]. 
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