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Sparsity-based single-shot subwavelength
coherent diffractive imaging
A. Szameit1,2†, Y. Shechtman1†, E. Osherovich3†, E. Bullkich1, P. Sidorenko1, H. Dana4, S. Steiner2,
E. B. Kley2, S. Gazit1, T. Cohen-Hyams5, S. Shoham4, M. Zibulevsky3, I. Yavneh3, Y. C. Eldar6,
O. Cohen1 and M. Segev1*

Coherent Diffractive Imaging (CDI) is an algorithmic imaging technique where intricate features are reconstructed from
measurements of the freely diffracting intensity pattern. An important goal of such lensless imaging methods is to study
the structure of molecules that cannot be crystallized. Ideally, one would want to perform CDI at the highest achievable
spatial resolution and in a single-shot measurement such that it could be applied to imaging of ultrafast events. However,
the resolution of current CDI techniques is limited by the diffraction limit, hence they cannot resolve features smaller than
one half the wavelength of the illuminating light. Here, we present sparsity-based single-shot subwavelength resolution CDI:
algorithmic reconstruction of subwavelength features from far-field intensity patterns, at a resolution several times better than
the diffraction limit. This work paves the way for subwavelength CDI at ultrafast rates, and it can considerably improve the CDI
resolution with X-ray free-electron lasers and high harmonics.

Improving the resolution in imaging and microscopy has
been a driving force in the natural sciences for centuries.
Fundamentally, the propagation of an electromagnetic field in a

linear medium can be fully described through the propagation of
its eigenmodes (a complete and orthogonal set of functions that
do not exchange power during propagation). In homogeneous,
linear and isotropic media, the most convenient set of eigenmodes
are simply plane waves, each characterized by its spatial frequency
and associated propagation constant. However, when light of
wavelength λ propagates in media with refractive index n, only
spatial frequencies below n/λ can propagate, whereas all frequencies
above n/λ are rendered evanescent and decay exponentially with
propagation distance. Hence, for propagation distances larger than
λ, diffraction in a homogeneous medium acts as a low-pass filter.
Consequently, optical features of subwavelength resolution are
highly blurred in a microscope, owing to the loss of information
carried by their higher spatial frequencies1,2. Over the years,
numerous ‘hardware’ methods for subwavelength imaging have
been demonstrated3–10; however, all of them rely on multiple
exposures, either through mechanical scanning (for example,
scanning near-field microscope3,4, scanning a subwavelength
‘hot spot’5–7), or by using scanning or ensemble-averaging
over multiple experiments with fluorescent particles8–10. Apart
from hardware solutions, several algorithmic approaches for
subwavelength imaging have been suggested (see, for example
refs 11–13). Basically, algorithmic subwavelength imaging aims to
reconstruct the extended spatial frequency range (amplitudes and
phases) of the information (‘signal’) frommeasurements which are
fundamentally limited to the range [−n/λ,n/λ] in the plane-wave
spectrum. However, as summarized in Goodman’s 2005 book14,
‘‘all methods for extrapolating bandwidth beyond the diffraction
limit are known to be extremely sensitive to both noise in the
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measured data and the accuracy of the assumed a priori knowledge’’
such that ‘‘it is generally agreed that the Rayleigh diffraction limit
represents a practical frontier that cannot be overcome with a
conventional imaging system’’.

Despite this commonly held opinion that algorithmic methods
for subwavelength imaging are impractical14, we have recently pro-
posed amethod for reconstructing subwavelength features from the
far-field (and/or blurred images) of sparse optical information15.
The concept of sparsity-based subwavelength imaging is related
to compressed sensing (CS), which is a relatively new area in
information processing16–20.We have shown that our sparsity-based
method works for both coherent15,21 and incoherent22,23 light, and
presented an experimental proof of concept15,22: the recovery of fine
features that were cut off by a spatial low-pass filter. Subsequently,
we took these concepts into the true subwavelength domain and
experimentally demonstrated resolutions several times better than
the diffraction limit: the recovery of 100 nm features illuminated
by 532 nm wavelength light21. These ideas were followed by several
groups, most notably the recent demonstration of sparsity-based
super-resolution of biological specimens24.

Here, we take the sparsity-based concepts into a new domain,
and present the first experimental demonstration of subwavelength
CDI: single-shot recovery of subwavelength images from far-field
intensity measurements. Recalling that CDI is an algorithmic
imaging technique to reconstruct features from measurements of
the freely diffracting intensity pattern25–32, what we demonstrate
here is sparsity-based subwavelength imaging combined with phase
retrieval at the subwavelength level. We recover the subwavelength
features without measuring (or assuming) any phase information
whatsoever; the only measured data at our disposal is the
intensity of the diffraction pattern (Fourier power spectrum)
and the support structure of the blurred image. Our processing
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scheme combines bandwidth extrapolation and phase retrieval,
considerably departing from classical CS. We therefore devise a
new sparsity-based algorithmic technique that facilitates robust
subwavelength CDI under typical experimental conditions.

Sparsity-based super-resolution
In mathematical terms, the bandwidth extrapolation problem
underlying subwavelength imaging corresponds to a non-invertible
system of equations which has an infinite number of solutions, all
producing the same (blurred) image carried by the propagating
spatial frequencies. That is, after measuring the far-field, one can
add any information in the evanescent part of the spectrum while
still being consistent with the measured image. Of course, only one
choice corresponds to the correct subwavelength information that
was cut off by the diffraction limit. The crucial task is therefore
to extract the one correct solution out of the infinite number
of possibilities for bandwidth extension. This is where sparsity
comes into play. Sparsity presents us with prior information that
can be exploited to resolve the ambiguity resulting from partial
measurements and identify the correct bandwidth extrapolation
that will yield the correct recovery of the subwavelength image.

Information is said to be sparse when most of its projections
onto a complete set of base functions are zero (or negligibly
small). For example, an optical image is sparse in the near-field
when the number of non-zero pixels is small compared with
the entire field of view. However, sparsity need not necessarily
be in a near-field basis; rather, it can be in any mathematical
basis. Many images are indeed sparse in an appropriate basis. In
fact, this is the logic behind many popular image compression
techniques, such as JPEG. In the fields of signal processing and
coding theory, it has been known for some time that a sparse signal
can be precisely reconstructed from a subset of measurements in
the Fourier domain, even if the sampling is carried out entirely
in the low-frequency range33. This basic result was extended16 to
the case of random sampling in the Fourier plane and initiated
the area of CS. An essential result of CS is that, in the absence
of noise, if the ’signal’ (information to be recovered) is sparse
in a basis that is sufficiently uncorrelated with the measurement
basis, then searching for the sparsest solution (that conforms to the
measurements) yields the correct solution. In the presence of noise
(that is not too severe), the error is bounded, and many existing
CS algorithms can recover the signal in a robust fashion under
the same assumptions.

The concept underlying sparsity-based super-resolution
imaging15,21–23 and sparsity-based CDI relies on the advance
knowledge that the optical object is sparse in a known basis. The
concept yields a method for bandwidth extrapolation. Namely,
sparsity makes it possible to identify the continuation of the
truncated spatial spectrum that yields the correct image. As we
have shown in ref. 15, sparsity-based super-resolution imaging
departs from standard CS, because the measurements are forced
to be strictly in the low-pass regime, and therefore cannot be
taken in a more stable fashion, as generally required by CS.
Therefore, we developed a specialized algorithm, non-local hard
thresholding (NLHT), to reconstruct both amplitude and phase
from low-frequency measurements15. However, NLHT, as well as
other CS techniques necessitate the measurement of the phase
in the spectral domain. In contrast, the current problem of
subwavelength CDI combines phase retrieval with subwavelength
imaging, where we aim to extrapolate the bandwidth from
amplitude measurements alone. Mathematically, this problem can
be viewed in principle as a special case of quadratic CS, introduced
in ref. 23. However, the algorithm suggested in ref. 23 is designed
for a more general problem, resulting in high computational
complexity. Here we devise a specific algorithm that directly treats
the problem at hand.

Sparsity-based subwavelength CDI
For the current case of subwavelength CDI, the phase information
in the spectral domain is not available. Hence, fundamentally,
subwavelength CDI involves both bandwidth extrapolation and
phase retrieval. However, despite the missing phase, which carries
extremely important information, we show that sparsity-based
ideas can still make it possible to identify the correct extrapolation.
Namely, if we know that our signal is sufficiently sparse in an
appropriate basis, then—from all the possible solutions which
could create the truncated spectrum—the correct extrapolation
is often the one yielding the maximally sparse signal. Moreover,
even under real experimental conditions, that is, in the presence
of noise, searching for the sparsest solution that is consistent
with the measured data often yields a reconstruction that is very
close to the ideal one.

Our algorithm iteratively reveals the support of the sought image
by sequentially rejecting less likely areas (circles, in the experiments
shown below). Thus, the sparsity of the reconstructed image in-
creases with each iteration loop. This process continues as long as
the reconstructed image yields a power spectrum that remains in
good agreement with the measurements. The process stops when
the reconstructed power spectrum deviates from the measurements
by some threshold value. However, it is important to emphasize that
the exact threshold value and the degree of sparseness of the sought
image need not be known a priori, as ourmethod provides a natural
termination criterion. Namely, the correct reconstruction is identi-
fied automatically. The algorithms work rather fast: our straightfor-
ward implementation in MATLAB requires 25–60 s (depending on
the image) on an Intel i7-2600 CPU. These times can be reduced to
sub-secondswith some effort put into software optimization.

A detailed description of the reconstruction method, as well as a
comparison with other methods (that do not exploit sparsity), are
provided in the Supplementary Information.

Finding a suitable basis
As explained above, sparsity-based CDI relies on the advance
knowledge that the object is sparse in a known basis. In some cases,
the ‘optimal’ basis—the basis in which the object is represented
both well and sparsely—is known from physical arguments. For
example, the features in very large scale integration (VLSI) chips are
best described by pixels on a grid, because they obey certain design
rules. In this case a suitable basis would be comprised of rectangular
segments typical of VLSI chips. In some cases, however, the prior
knowledge about the optimal basis is more loose; namely, it may be
known that the object is well and sparsely described in a basis that
belongs to a certain family of bases. For example, one may know in
advance that the object is sparse in the near-field using a rectangular
grid, yet the optimal grid spacing is not known a priori. We address
this issue in Supplementary Section S4,wherewe describe a sparsity-
based method that uses the experimental data to algorithmically
find the optimal grid size (optimal basis) for our subwavelength
CDI technique. That section also shows that the choice of basis
functions is not particularly significant in our procedure: we obtain
very reasonable reconstruction with almost any choice of basis
functions, as long as they conform to the optimal grid. Finally, we
note that recent work has shown that it is often possible to find
the basis from a set of low-resolution images, using ‘blind CS’34.
Likewise, in situations where a sufficient number of images of a
similar type are available at high resolution, one can construct a
near-optimal basis through dictionary learning algorithms35.

Experiments
We demonstrate the subwavelength CDI technique experimentally
on two-dimensional (2D) structures. The optical information
is generated in our optical microscope, where a laser beam at
λ=532 nmilluminates our subwavelength sample, using aNA=0.8
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Figure 1 | Reconstruction of two-dimensional subwavelength information.
a, SEM image of the sample. b, The blurred image, as seen in the
microscope. The individual holes cannot be resolved. c, The measured
spatial power spectrum of the field. The colour map is identical to that in
the other panels: only the background has been removed for clarity. d, The
reconstructed 2D information, algorithmically recovered from the
measured power spectrum (c) and the blurred image (b). e, The
algorithmically recovered phase in the spatial spectrum domain. White
represents zero-phase, whereas black denotes π-phase. f, The phase in the
spectral domain calculated from the Fourier transform of a. The red circle
in e, and f marks the cut-off frequency imposed by the diffraction limit. The
phase structure recovered algorithmically by sparsity-based CDI
reconstruction, shown in e, coincides with the phase structure shown in f,
which was calculated from the SEM image of a, both within the red circle
(where the power spectrum is measured) and outside it (where it
corresponds to evanescent waves, which are lost owing to the diffraction
limit, never reaching the camera). Clearly, our sparsity-based CDI
technique correctly recovers both the evanescent waves (amplitude and
phase) and the phase of the propagating waves.

(×40)water immersionmicroscope objective. The transmitted light
is collected using a NA= 1.0 (×60) water immersion microscope
objective, and projected on a camera using a single optical lens.
The blurred image and the truncated spatial power spectrum
(absolute value squared of the Fourier transform) are measured by
positioning the camera in the image plane and the Fourier plane
of the imaging system, respectively. The experimental set-up is
sketched in the Supplementary Information, along with a detailed
description of the apparatus.

The samples, which consist of arrangements of nano-holes
of diameter 100 nm each, is made of a 100-nm-thick layer
of chromium on glass; this thickness is larger than the skin
depth at optical frequencies, such that the samples are opaque
except for the holes.

We begin with an ordered structure: a Star of David, consisting
of 30 nano-holes. Figure 1a shows a scanning electron microscope
(SEM) image of this sample. Figure 1b shows the image seen

in the microscope. As expected, the image is small and severely
blurred. The measured truncated spatial power spectrum, as
shown in Fig. 1c, covers a large area on the camera detector,
therefore facilitating a much higher number of meaningful
measurements (each pixel corresponds to one measurement).
We emphasize that only intensity measurements are used, in
both the (blurred) image plane and in the (truncated) Fourier
plane (Fig. 1b,c, respectively), without measuring (or assuming)
the phase anywhere. The recovered image, using our sparsity-
based algorithm, is shown in Fig. 1d. Clearly, we recover the
correct number of circles, their positions, their amplitudes, and
the entire spectrum (amplitude and phase), including the large
evanescent part of the spectrum. This demonstrates subwavelength
CDI: image reconstruction combined with phase retrieval at the
subwavelength scale. Moreover, as explained in the Supplementary
Information, the intensity of the blurred image (Fig. 1b) is used
only for rough estimation of the image support. Our reconstruction
method yields better results than other phase-retrieval algorithms
(see comparisons in the Supplementary Information), because it
exploits the sparsity of the signal (the image to be recovered)
as prior information. As mentioned earlier, the underlying logic
is to minimize the number of degrees of freedom, while always
conforming to the measured data, which in this case is the
truncated power spectrum (intensity in Fourier space). In the
example presented in Fig. 1, we take the data from Fig. 1b,c,
search for the sparsest solution in the basis of circles of 100 nm
diameter on a grid, and reconstruct a perfect Star of David, as
shown in Fig. 1d. The grid is rectangular with 100 nm spacing
(Supplementary Section S4 describes how this parameter is
found automatically), where the exact position of the grid with
respect to the reconstructed information is unimportant (see
Supplementary Information).

We emphasize that our reconstruction algorithm is able to
reconstruct the phase in the spatial spectrum domain (the Fourier
transform) from the intensity measurement in Fourier space and
some rough estimation of the image support. In addition, we use
the knowledge that the holes are illuminated by a plane wave,
implying that the image is real and non-negative in real space.
However, we do not use any prior knowledge about the relative
amplitudes of the light passing the holes. In this Star of David
example, our algorithm reconstructs the phase in the spectral plane,
as presented in Fig. 1e. For comparison, Fig. 1f shows the phase
distribution in Fourier space, as obtained numerically from the
ideal model of the subwavelength optical information (calculated
from the SEM image of Fig. 1a). The red circle in Fig. 1e,f
marks the cut-off frequency imposed by the diffraction limit. The
phase structure recovered by our sparsity-based CDI algorithm,
shown in Fig. 1e, coincides with the phase structure shown in
Fig. 1f, both within the red circle (where the power spectrum is
measured) and outside it (where it corresponds to the evanescent
waves, which never reach the camera). Clearly, our sparsity-
based CDI technique recovers correctly both the evanescent
waves (amplitude and phase) and the phase of the propagating
waves. The reconstruction in Fig. 1 therefore constitutes the first
demonstration of subwavelength CDI.

Interestingly, when comparing the Fourier transform of the
sample with the measured spatial power spectrum, one finds
that more than 90% of the power spectrum is truncated by the
diffraction limit, acting as a low-pass filter (Fig. 2). That is, we use
the remaining 10% of the power spectrum and the blurred image
to successfully reconstruct the subwavelength features with high
accuracy. In other words, the prior knowledge of sparsity and the
basis is overcoming the loss of information in 90% of the power
spectrum. As demonstrated in the Supplementary Information, it
is the sparsity prior that makes it happen: without assuming the
sparsity prior the reconstruction suffers from large errors.
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Figure 2 | Truncation of the information by the transfer function. Spatial
power spectra of the fields forming the Star of David (upper row) and the
irregular arrangement of holes (bottom row). The spectra are truncated by
the diffraction limit (the white circle, corresponding to the zoom-in on the
right), beyond which all spectral components are evanescent. The lost part
contains about 92% of the total power in the case of the Star of David, and
74% in the case of the second (irregular) image.

The Star of David exhibits certain symmetries, which could
in principle assist the phase retrieval had these symmetries been
known. However, symmetry was not used for the reconstruction of
the subwavelength features of Fig. 1. Nevertheless, it is illustrative
to present another example with no spatial symmetry at all: an
irregular arrangement of subwavelength holes on the assumed grid.
Figure 3a shows the blurred image of an unknown number of sub-
wavelength circles, distributed in a randommanner. The respective
Fourier power spectrum, as observed in the microscope, is shown
in Fig. 3b. This sample is clearly not symmetric in real space, hence
it does not exhibit a real Fourier transform. Still, we are able to
reconstruct the subwavelength information, as shown in Fig. 3c,
where all features of the original sample are retrieved, despite the
inevitable noise in the experimental system. Figure 3d shows the
SEM image of the sample, exhibiting the random arrangement
of 100 nm holes. The electromagnetic field passing through these
nano-holes has roughly the same amplitude for all the holes. The
reconstructed amplitudes at the hole sites are represented by the
colours in Fig. 3c, highlighting the fact that the reconstructed field
has similar amplitude at all the holes. The reconstructed phase in the
spectral plane is presented in Fig. 3e, where the white circle marks
the cutoff imposed by the diffraction limit. As shown there, our
algorithm recovers the phase throughout the entire Fourier plane,
including the region of evanescent waves far away from the cutoff
frequency. For comparison, Fig. 3f shows the phase distribution
in Fourier space, as obtained numerically from the ideal model of
the subwavelength optical information (calculated from the SEM
image of Fig. 3d). Clearly, the correspondence between the original
spectral phase and the reconstructed one is excellent, including in
the deep evanescent regions. Interestingly, Fig. 3e also shows the

+π

0

¬π

1.0

0.5

0

a b

c d

e f

Figure 3 | Reconstruction of an irregular arrangement of two-dimensional
subwavelength holes. a, The blurred image as seen in the microscope.
b, The measured spatial power spectrum of the field. c, The algorithmically
reconstructed 2D information, showing 12 holes in an irregular
arrangement. d, SEM image of the sample depicting the irregular
arrangement of nano-holes. e, The algorithmically recovered phase in the
spatial spectrum domain. f, The phase in the spatial spectrum domain
calculated from the Fourier transform of d.

correct reconstruction of the phase around the faint high-frequency
circle (of radius ∼4 times the diffraction limit) where the phase
jumps by π . Physically, this ‘phase-jump circle’ is located at the first
zero of the Fourier transformof a circular aperture, which in Fourier
space multiplies the phase distribution generated by the irregular
positions of the holes. The excellent agreement between Fig. 3e and
f highlights the strength of the sparsity-based algorithmic technique.

Outlook
In this work, we presented a technique facilitating reconstruction
of subwavelength features, along with phase retrieval at the
subwavelength scale, at an unprecedented resolution for single-shot
experiments. That is, we have taken coherent lensless imaging
into the subwavelength scale, and demonstrated subwavelength
CDI from intensity measurements alone. Because our method is
based on single-shot experiments, it establishes the possibility of
subwavelength CDI, and makes it suitable to work for ultrafast
measurements, such as those carried out with X-ray free-electron
lasers30,32 and high-harmonic generation29.

Ourmethod relies on prior knowledge—that the sample is sparse
in a known basis (circles on a grid, in the examples in Figs 1–3).
We emphasize that sparsity is what makes our phase retrieval
work: the other assumptions used in the algorithm (non-negativity,
bounded support and the known basis) alone are not sufficient.
It is important to note that most natural and artificial objects are
sparse, in some basis. The information does not necessarily have to
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be sparse in real space: it can be sparse in any mathematical basis
whose relation to the measurement basis is known, for example,
the wavelet basis or the gradient of the field intensity, given that
this basis is sufficiently uncorrelated with the measurements. In all
these cases our technique can provide a major improvement by
‘looking beyond the resolution limit’ in a single-shot experiment.
As our approach is purely algorithmic, it can be applied to every
optical microscope and imaging system as a simple computerized
image processing tool, with practically no extra hardware. The
fact that our technique works in a single-shot holds the promise
for ultrafast subwavelength imaging: one could capture a series of
ultrafast blurred images, and then off-line processing will reveal
their subwavelength features, which could vary from one frame
to the next. Finally, we note that our technique is general, and
can be extended also to other, non-optical, microscopes, such
as atomic force microscopes, scanning tunnelling microscopes,
magnetic microscopes, and other imaging systems. We believe that
the microscopy technique presented here holds the promise to
revolutionize the world of microscopy with just minor adjustments
to current technology: sparse subwavelength images could be
recovered by making efficient use of their available degrees of
freedom. Last, but not least, we emphasize that our approach is
more general than the particular subject of optical subwavelength
imaging. It is in fact a universal scheme for recovering information
beyond the cut-off of the response function of a general system,
relying only on a priori knowledge that the information is sparse in
a known basis. As an exciting example, we have recently investigated
the ability to use this method for recovering the actual shape of very
short optical pulses measured by a slow detector36. Our preliminary
theoretical and experimental results indicate, unequivocally, that
our method offers an improvement by orders of magnitude over
the most sophisticated deconvolution methods. In a similar vein,
we believe that our method can be applied for spectral analysis,
offering ameans to recover the fine details of atomic lines, as long as
they are sparse (that is, do not form bands). In principle, the ideas
described here can be generalized to any sensing/detection/data
acquisition schemes, provided only that the information is sparse
in a known basis, and that the measurements are taken in a basis
sufficiently uncorrelated to it.
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