
This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted
PDF and full text (HTML) versions will be made available soon.

Fluxomers: A new approach for 13C metabolic flux analysis

BMC Systems Biology 2011, 5:129 doi:10.1186/1752-0509-5-129

Orr Srour (srouro@tx.technion.ac.il)
Jamey D Young (j.d.young@vanderbilt.edu)
Yonina C Eldar (yonina@ee.technion.ac.il)

ISSN 1752-0509

Article type Methodology article

Submission date 10 August 2010

Acceptance date 16 August 2011

Publication date 16 August 2011

Article URL http://www.biomedcentral.com/1752-0509/5/129

Like all articles in BMC journals, this peer-reviewed article was published immediately upon
acceptance. It can be downloaded, printed and distributed freely for any purposes (see copyright

notice below).

Articles in BMC journals are listed in PubMed and archived at PubMed Central.

For information about publishing your research in BMC journals or any BioMed Central journal, go to

http://www.biomedcentral.com/info/authors/

BMC Systems Biology

© 2011 Srour et al. ; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

mailto:srouro@tx.technion.ac.il
mailto:j.d.young@vanderbilt.edu
mailto:yonina@ee.technion.ac.il
http://www.biomedcentral.com/1752-0509/5/129
http://www.biomedcentral.com/info/authors/
http://creativecommons.org/licenses/by/2.0


Fluxomers: A new approach for 13C metabolic flux analysis

Orr Srour1, Jamey D. Young2,∗ and Yonina C. Eldar1,∗

1Dept. of Electrical Engineering, Technion–Israel Institute of Technology, 32000 Haifa, Israel.
2Department of Chemical and Biomolecular Engineering, Vanderbilt University, TN, USA.

Email: Jamey D. Young - j.d.young@vanderbilt.edu; Yonina C. Eldar - yonina@ee.technion.ac.il;

∗Corresponding author

Abstract

Background: The ability to perform quantitative studies using isotope tracers and metabolic flux analysis (MFA)
is critical for detecting pathway bottlenecks and elucidating network regulation in biological systems, especially
those that have been engineered to alter their native metabolic capacities. Mathematically, MFA models are
traditionally formulated using separate state variables for reaction fluxes and isotopomer abundances. Analysis of
isotope labeling experiments using this set of variables results in a non-convex optimization problem that suffers
from both implementation complexity and convergence problems.

Results: This article addresses the mathematical and computational formulation of 13C MFA models using a
new set of variables referred to as fluxomers. These composite variables combine both fluxes and isotopomer
abundances, which results in a simply-posed formulation and an improved error model that is insensitive to
isotopomer measurement normalization. A powerful fluxomer iterative algorithm (FIA) is developed and applied
to solve the MFA optimization problem. For moderate-sized networks, the algorithm is shown to outperform the
commonly used 13CFLUX cumomer-based algorithm and the more recently introduced OpenFLUX software that
relies upon an elementary metabolite unit (EMU) network decomposition, both in terms of convergence time and
output variability.

Conclusions: Substantial improvements in convergence time and statistical quality of results can be achieved by
applying fluxomer variables and the FIA algorithm to compute best-fit solutions to MFA models. We expect that
the fluxomer formulation will provide a more suitable basis for future algorithms that analyze very large scale
networks and design optimal isotope labeling experiments.

Background

Metabolic Pathway Analysis

Metabolism is the complete set of chemical reac-
tions taking place in living cells. These chemical

processes form the basis of all life, allowing cells to
grow, reproduce, maintain their structure and re-
spond to environmental changes. Metabolic reac-
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tions are divided into groups called metabolic path-
ways, which are typically constructed heuristically
according to their connectivity and presumed func-
tion [1]. Each metabolic pathway is characterized
by a set of chemical reactions that transform sub-
strates into end products while generating interme-
diate byproducts. Due to its importance in medicine
and biotechnology, metabolic pathway research has
become a highly active field of investigation [2].

Initially, the structure of metabolic pathways
was examined by identifying their intermediate com-
pounds. Subsequently, the various biochemical re-
actions connecting these compounds were mapped.
Due to the success of this research, the topological
structure of many metabolic pathways is nowadays
fully documented [3]. The next step in the progres-
sion of metabolic pathway research involves quan-
tification of the rates of these various chemical reac-
tions, also known as “fluxes”. The values of these
rates are affected by various environmental condi-
tions and can change rapidly in response to pertur-
bations. Nevertheless, if the environmental parame-
ters are held fixed and stable, the network can attain
a steady state in which the concentrations of all net-
work metabolites are assumed constant over time.
This, of course, implies that the rates of their in-
put and output reactions must balance. The latter
imposes a set of linear constraints on the metabolic
fluxes, known as “stoichiometric balance equations”
[4]. Unfortunately, since the number of unknown
fluxes typically exceeds the number of independent
stoichiometric balances, these constraints are insuf-
ficient to completely identify the metabolic network.
In order to overcome this lack of information, addi-
tional constraints must be provided to the stoichio-
metric mathematical model to estimate the values of
the network fluxes [5].

13C Isotope Labeling Experiments

Various experimental techniques have been de-
veloped to enable measurement of intracellular
metabolic fluxes, either directly or indirectly. One
of these approaches makes use of isotope labeling
experiments. In this method, the metabolic system
is administered a known amount of an isotopically
labeled substrate (such as glucose labeled with 13C
at specific atom positions). By measuring the re-

sulting labeling patterns of intracellular metabolites
after steady state has been achieved, additional flux
information is obtained.

One major drawback of this experimental ap-
proach is the high complexity and computational in-
tensity of the metabolic flux analysis (MFA) required
to interpret these labeling measurements. In their
series of articles, Wiechert et al. [6–9] constructed
a systematic approach for performing this analy-
sis. They show that measurements of the relative
abundance of various isotope isomers, also known as
“isotopomers”, contain enough information to fully
identify the metabolic fluxes of the network. Formu-
lating the problem using isotopomer variables (or
a transformed set of isotopomer variables referred
to as “cumomers”), Wiechert et al. posed the flux
estimation problem as a non-convex least-squares
minimization, assuming random error is added to
their isotopomer measurements. The resulting high-
dimensional non-convex problem suffers from vari-
ous drawbacks, such as slow convergence and notable
probability of attaining local minima. Several opti-
mization algorithms have been developed in order
to address these drawbacks. Early approaches used
iterative parameter-fitting algorithms [8], evolution-
ary algorithms [10] and simulated annealing [11].
Furthermore, several investigations have been con-
ducted in order to assess the accuracy of these results
[9, 12, 13]. Recently, a novel method to decompose
the metabolic network into Elementary Metabolite
Units (EMUs) was introduced [14] and implemented
into the OpenFLUX software package [15]. This de-
composition effectively reduces the size of the op-
timization problem by efficiently simulating only
those isotopomers that contribute to the measure-
ment residuals. Nevertheless, all of these algorithms
suffer from several major drawbacks due to the stan-
dard isotopomer-flux variables used in formulating
the optimization problem:

• Presence of unstable local minima: due to the
non-convex nature of the objective function.

• Complex mathematical representation and
computational implementation. This results in
the need for ad-hoc algorithms and mathemat-
ical analysis, and long running times are re-
quired for reliable convergence.
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The OpenFLUX implementation, for example, may
require several dozens of convergence iterations with
various initial values in order to achieve acceptable
probability of obtaining the optimal set of fluxes in
any one of its attempts. In addition, due to the cho-
sen objective function, it is also commonly required
to estimate scaling factors for each isotopomer mea-
surement, because of the fact that the available ex-
perimental techniques are only capable of measuring
isotopomer fractions up to a proportional scaling fac-
tor (see Mollney et al. [9] for further details).

Our Contribution

This article introduces a new set of variables for sim-
ulating 13C isotope labeling experiments. The main
idea underlying this reformulation is that, instead of
treating fluxes and isotopomer variables separately,
we identify a set of “isotopically labeled fluxes” as
our state variables of interest. We refer to these
variables as fluxomers. Fluxomers combine flux vari-
ables with isotopomer variables and consequently re-
duce the complexity and nonlinearity of the original
isotopomer balance equations. In this article, we
show that by reformulating the flux estimation prob-
lem in terms of fluxomer variables, it is possible to
construct an algorithm that has the following key
benefits:

• Provides efficient computation of all iso-
topomers in a metabolic pathway

• Is robust to measurement noise (i.e., sup-
presses the effects of measurement errors) and
initial conditions

• Eliminates the need for measurement scaling
factor estimation

• Poses the problem using simple mathematical
expressions, allowing the use of generic opti-
mization algorithms

The rest of the article is constructed as follows.
The Results and Discussion section illustrates the
advantage of our approach via simulation results
comparing fluxomer variables to the commonly used
cumomer approach and the more recently introduced
EMU approach. The Methods section presents the

detailed formulation of the fluxomers optimization
problem and the fluxomers iterative algorithm (FIA)
that provides a reliable and efficient method for solv-
ing it. All source code and executables for our al-
gorithms are freely available at the author’s web-
site [16].

Results and Discussion

We compared our FIA algorithm to the widely used
MFA software 13CFLUX [17], which relies on the
cumomer approach, and to the more recent Open-
FLUX [15] software, which is based on the EMU [14]
approach. In order to compare the methods, we
conducted flux estimations for various well-studied
metabolic pathways. Our first example is based
upon the tutorial which Wiechert et al. provide with
their 13CFLUX software: the Embden-Meyerhof
and Pentose Phosphate metabolic pathways of Es-
cherichia coli [17]. This example compares the run-
ning time and robustness of both algorithms in re-
sponse to input noise. Our second example compares
the results and performance of FIA to both an ad-
hoc method and the OpenFLUX algorithm for the
analysis of lysine production by C. glutamicum, as
described by Becker et al. [18] and Quek et al. [15].

FIA vs. 13CFLUX Comparison: Embden-
Meyerhof and Pentose Phosphate Pathways

In this section we examine a network representing
the Embden-Meyerhof and Pentose Phosphate path-
ways of E. coli, which is based upon the tutorial sup-
plied by Wiechert et al. as part of their 13CFLUX
software package. Since our FIA implementation na-
tively supports 13CFLUX input files (i.e. “FTBL”
files), the same input files can be used for both al-
gorithms. (Note, however, that FIA does not re-
quire definition of free fluxes nor initial values, and
thus these are simply ignored when imported). Fig-
ure 1 shows the simple network used along with the
nomenclature used in previous publications. In ad-
dition to the network structure, the models are pro-
vided with flux and isotopic measurements as shown
in Table 1.
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First, we examined the output of the two algo-
rithms for the traditional “noiseless” input file. In
order to run the analysis, 13CFLUX requires the
user to define a set of “free fluxes” along with their
associated initial values [7]. Note that a bad choice
of free fluxes or their associated values can result in
poor algorithmic performance (both in computation
time and accuracy). In fact, under various initial
guesses the algorithm did not converge at all. As
for FIA, none of the above is required. Since the
network along with the given measurements are well
defined, in the noiseless case the two algorithms re-
turned similar values for unidirectional fluxes, as can
be seen in Table 2. Some slight disagreements were
observed for the bi-directional fluxes, which are more
poorly identified.

We next compared the algorithms’ sensitivities to
noise. In a series of 10 experiments, white Gaussian
noise was added to all of the measured isotopomer
values, and the outputs and computation times for
both algorithms were recorded. As can be seen in
Figure 2, unidirectional fluxes remain quite constant
and hardly suffer from the added experimental error
(for both algorithms). However, the bi-directional
fluxes are affected by the added noise. 13CFLUX
suffers from a higher variance spread of the esti-
mated values than FIA (thus is more sensitive to
the added measurement noise). Note that the differ-
ence arises not only due to the mathematical model
used, but also due to the stability properties of the
optimization method chosen.

We next examined the computational perfor-
mance of the two methods. Table 3 shows the al-
gorithm running time for convergence (in seconds).
The average running time for 13CFLUX was 133 sec-
onds, while for FIA this time was 7 seconds. The
running time ratio (13CFLUX/FIA) for individual
experiments varied between ×9 to ×75.

FIA vs. OpenFLUX Comparison: Lysine Produc-
tion by C. glutamicum

In this section we examine the analysis of the cen-
tral metabolism of two lysine-overproducing strains
of Corynebacterium glutamicum: ATCC 13032
(lysCfbr) and its PEFTUfbp mutant. Both express
feedback-resistant isoforms of the aspartokinase en-

zyme lysC, while the latter is additionally engineered
to overexpress the glycolytic enzyme fructose-1,6-
bisphosphatase. The example is based upon the
measurements provided by Becker et al. [18], who
implemented an ad-hoc program to estimate the val-
ues of various metabolic fluxes. In their more recent
article introducing the OpenFLUX software pack-
age [15], Quek et al. chose to compare their results
to those of Becker et al. Therefore, we will expand
upon their comparison using our FIA implementa-
tion. The input file for FIA was constructed us-
ing the measurements and pathway structure given
in [18] and [15]. As described in [15], the published
mass isotopomer fractions were modified for mass in-
terference from non-carbon backbone isotopes using
the molecular formula of the amino acid fragments.
FIA supports automatic generation of the naturally
occurring isotopes correction matrix when the mea-
sured molecular formulas are supplied. This adjusts
the measured fluxomers vector appearing in the ob-
jective function during the process of optimization.
If necessary, it is possible not to use this feature but
instead to directly supply the algorithm with the
corrected measurement values.

When comparing the running times of FIA with
OpenFLUX, the different algorithmic approaches of
the two must be kept in mind. While OpenFLUX
requires the user to supply it with sets of free fluxes,
FIA requires no free fluxes nor initial values. Open-
FLUX rapidly evaluates dozens of different optimiza-
tion cycles with random initial values and seeks the
best fitting result among them, while FIA uses only
one single (longer) run. As such, the convergence
probability of OpenFLUX depends on the number of
attempts and random values generated during its op-
eration, while the FIA results do not depend on any
random value. Furthermore, in its analysis, EMU
based algorithms evaluate only the fluxes necessary
for measurement comparison, and thus their run-
ning time depends both on the metabolic network
structure and the amount and location of the given
measurements. FIA, on the other hand, can supply
the entire set of metabolic fluxes at any given time,
with no additional computation requirement (which
depends mainly on the network structure).
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Measured fluxes as constants

First, we ran the exact same simulation as Quek et
al. performed in their article. They supply very
accurate (mean error in the order of 0.15 mol%) val-
ues for the label measurements, and used the given
measured fluxes as if they were noiseless measure-
ments (thus as constants). We start by comparing
the simulation time for this simple case. Accord-
ing to [15] and as validated by us using our com-
puter, OpenFLUX required 50 iterations of about
16 seconds each in order to find a decent minimal
point, hence about 800 seconds in total. While so,
the FIA analysis took 60 seconds for initial analysis
and matrices creation, and 300 further seconds for
convergence, thus 360 seconds as a whole. Regard-
ing the simulation results, as one can see in Table 4
and Table 5, the fluxes are very close to those calcu-
lated before, and the estimated fluxes FIA returned
had the lowest residual value compared to the other
methods.

Measured fluxes as measurements

We can also run the same optimization, but weight
the given flux measurements by their variances.
When running this optimization using OpenFLUX
(again using 50 iterations), the amount of time was
greatly increased, and ended in around 48 minutes.
For FIA, on the other hand, the running time was
the same as before, thus about 6 minutes. Compar-
ing the results of the algorithms, OpenFLUX suf-
fered from severe convergence problems. Most of
its iterations ended without converging at all, while
those that did converge yielded useless results, far
from the measurements. FIA, on the other hand,
succeeded in converging for all scenarios. For the
wildtype lysine producing pathway, the results were
very close to the ones before (since the fluxes and
measurements were quite accurate). For the mutant
example, which was less accurate, a reduction of the
residual value was achieved by small changes to the
measured fluxes. Fluxes and residual values can be
examined in Table 4 and Table 5.

Using non-normalized MS measurements

We now show that FIA can easily use incomplete or
non-normalzied measurements by examining its per-
formance in the example above. The supplied MS
measurements were normalized to the n+1 backbone
carbon atoms of the measured metabolites. Instead
of using the supplied normalized data, we multiply
each set of metabolite measurements by a random
constant number. By doing so, we simulate the case
in which only the first 3 (2 for GLY) MS peaks were
measured, and had not been normalized. The orig-
inal and supplied non-normalized measurement val-
ues can be found in Table 4. Note that the values
were corrected by the molecular formulas of the mea-
sured fragments (again, can be automatically per-
formed by FIA). In the absence of normalized data,
FIA gave estimated fluxes very close to the previous
cases, with very low residual values, as can be seen
in Table 5. The running time of the algorithm was
not affected by the change.

Conclusions

The main contribution of this article is the introduc-
tion of fluxomers—a new set of state variables used
to simulate 13C metabolic tracer experiments. The
fluxomers approach allows the central optimization
problem of MFA to be reformulated as a sequence
of quadratic programs, which form the basis of the
fluxomers iterative algorithm (FIA). Both fluxomers
and FIA result in several important benefits com-
pared to flux-isotopomer variables. Among these
advantages are (i) a reduction in algorithm running
time required for simulation of isotopomer distribu-
tions and metabolic flux estimation, (ii) reduced sen-
sitivity to measurement noise and initial flux values
and (iii) availability of complete isotopomer infor-
mation for a given network (as opposed to the EMU
approach, which only supplies partial information)
without the need for user specification of free fluxes
or initial flux values. Additionally, the error model
used by the FIA algorithm has the advantage that it
depends solely upon isotopomer ratios rather than
complete isotopomer fractions, and therefore it elim-
inates the need to estimate a normalization factor for
each measured isotopomer distribution. Our current
results show significant improvements even with re-
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gards to simplistic tracer experiments (the running
times have been improved by an order of ×3 to ×20
compared to the 13CFLUX algorithm, and about ×2
to×8 compared to the OpenFLUX implementation).
It is important to note that the total time required
to obtain an MFA solution is controlled both by (i)
the time of each iteration and (ii) the number of
optimization iterations that are required to achieve
a reliable solution. While a single OpenFLUX it-
eration is certainly faster than a single iteration of
FIA, the FIA algorithm was expressly constructed
to provide high reliability in achieving the optimal
solution. Therefore, FIA was able to consistently
find a better optimal solution in less total time in
comparison to the other algorithms examined. Fur-
thermore, extending the fluxomers formulation to
other global optimization techniques is straightfor-
ward. We expect that reformulating more sophis-
ticated MFA problems—for example, involving op-
timal experimental design or large-scale metabolic
networks—in terms of fluxomer variables will lead
to dramatic enhancements of algorithmic efficiency
and robustness.

Methods

In the following, we show how to construct and
solve MFA problems using fluxomer variables. First
we define and explain the basic properties of flux-
omers. Then we show how to express MFA balance
equations and measurements in terms of fluxomers.
Finally, we formulate the MFA optimization prob-
lem and present the FIA algorithm for solving it.
Throughout this section we use boldface uppercase
letters A to denote matrices, lowercase boldface let-
ters x to denote vectors, and lowercase letters u for
scalars. We use the < ◦ > product z = x◦y to repre-
sent the element-wise product vector, i.e. zi = xiyi.
The model formulation will be illustrated using the
simple metabolic network shown in Figure 3.

Fluxomers overview

Traditional MFA approaches construct distinct vari-
ables for each flux and for each possible labeling state
(isotopomer) associated with all metabolites in the

network. Fluxomers, on the other hand, are a com-
posite of these two and therefore allow the network
state to be described using only one variable type.

Definition 1 (Fluxomer) A fluxomer is the rate
that a metabolic reaction transfers labeling from one
or more specific substrate isotopomers into product
isotopomers.

Taking each fluxomer to be a transformation from
one set of labeled atoms into others, we can write its
labeling state as an array of binary elements repre-
senting the state of each atom it consumes (0 repre-
senting an unlabeled atom and 1 representing a la-
beled atom). Thus, fi(1001) is a fluxomer of reaction
i consuming 4 atoms, with its first and last atoms
labeled and two middle atoms unlabeled. When us-
ing x as an index for one (or more) of the atoms, we
denote a sum of fluxomers where the indicated atom
can be either labeled or unlabeled (e.g., fi(1x01) is
the sum of fi(1001) and fi(1101)). See Figure 3b for
a detailed example.

Traditional metabolic fluxes and isotopomer vari-
ables can be easily expressed using fluxomers. We
start with metabolic fluxes, which are just a sum of
their associated fluxomers. For the simple network
in Figure 3b we have:

fupt = f1 =
∑

f1(ijkl) = f1(xxxx)

f2 =
∑

f2(ij) = f2(xx)

f3 =
∑

f3(ij) = f3(xx) (1)

fout = f4 =
∑

f4(ijkl) = f4(xxxx)

f5 =
∑

f5(ijkl) = f5(xxxx)

f5r =
∑

f5r(ijkl) = f5r(xxxx).

We can also express isotopomer abundances in terms
of fluxomer variables for the same example. Because
of the assumption that enzymes do not differentiate
between the various isotopomers of a given metabo-
lite, the isotopomers within each metabolite pool are
distributed uniformly across the outgoing fluxes em-
anating from that pool. Therefore, the fractional
abundance of a given isotopomer within a metabo-
lite pool will determine the fractional contribution
of its corresponding fluxomers to the fluxes leaving
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that pool:

Aijkl = f1(ijkl)/f1

Bij = f2(ij)/f2 = f5(ij)/f5

Cij = f4(xxij)/f4 = f5r(ij)/f5r (2)
Dij = f4(ijxx)/f4 = f3(ij)/f3

Eijkl = fout(ijkl)/fout.

Fluxomer balance equations

We now examine the fluxomer balance equations
that describe how fluxomers are propagated through
the metabolic network. These balance equations
represent the main mathematical device for calcu-
lating steady-state fluxomer values for a given net-
work. For ease of notation, let us define the vector
of metabolic fluxes in our system by u ∈ Rn and the
vector of fluxomers as x ∈ Rm. As shown above, the
metabolic fluxes are calculated from a linear trans-
formation of the fluxomers. Denoting this linear
transformation matrix as U, we can write u = Ux.
We now assume that we are given a certain u vector
and wish to calculate the fluxomers in our system.
We start by considering balances on “simple flux-
omers”, i.e. those that originate exclusively from a
single metabolite pool. (An example of a simple flux-
omer is f5(01) in Figure 3, which derives solely from
pool B.) Under conditions of metabolic and isotopic
steady state, the rate of 01-labeled molecules enter-
ing pool B must balance the rate that 01-labeled
molecules leave that pool. Therefore, we can con-
struct a balance on fluxomers around pool B as

f5(01) + f2(01) = f1(01xx) + f3(01) + f5r(01).
(3)

However, according to eq. 2 the left-hand side of
this equation can be re-expressed as B01(f5 + f2) =
f5(01)

f5
(f5 + f2). Substituting this latter result into

the flux balance equation and solving for the flux-
omer f5(01) yields

f5(01) =
f5

f5 + f2
(f1(01xx) + f3(01) + f5r(01))

= g(u)(hTx), (4)

where g(u) is a function of u alone, and h is a con-
stant vector. Thus, for this simple case we can solve
for the outgoing fluxomer f5(01) directly in terms of

the fluxomers entering pool B and the total fluxes
f2 and f5 leaving pool B.

We now turn to the more complex situation in
which the output fluxomer originates from more
than one metabolic pool. For example, consider flux-
omer f4(0001) coming from pools C and D. Here,
the fraction of 0001-labeling carried by flux f4 is pro-
portional to the abundance of 01-labeling in C and
00-labeling in D:

f4(0001) = f4C01D00

= f4

(
f1(xx01) + f5(01)

f4

)(
f2(00)
f3 + f4

)

= g(u)(hT
1 x)(hT

2 x). (5)

As before, the outgoing fluxomer f4(0001) can be
expressed solely in terms of g—a pure function of u
(always a rational function of outgoing fluxes)—and
a product of linear projections of x.

Without loss of generality, we restrict ourselves
to fluxes coming from at most 2 metabolic pools
(referred to subsequently as the “left” and “right”
pools). When the system reaches steady state, we
have

x = g(u) ◦ (H1x) ◦ (H2x), (6)

where g is a function Rn → Rm, and (H1,H2) are
two m × m matrices. This equation allows for the
output fluxomers emanating from a specific metabo-
lite pool to be expressed in terms of the total flux
vector u and the fluxomers entering the pool. This
enables each outgoing fluxomer to be solved “lo-
cally” for the incoming fluxomers. Note that this
local calculation does not involve any matrix inver-
sions or other expensive computational procedures.
If there are no recycle loops in the network so that
all possible paths through the network are non-self-
intersecting, this equation can be used to solve se-
quentially for all “downstream” fluxomers in terms
of previously calculated “upstream” fluxomers. In
the presence of recycle loops an iterative approach
can be constructed to solve for the fluxomers while
still avoiding repeated matrix inversions.
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Constructing the system matrices

The matrices H1,H2 ∈ Rmxm are defined by

(H1)ij = 1, if xj enters the left (for H2, right)

source metabolic pool in a reaction
for which xi is a product

(H1)ij = 0, otherwise. (7)

The function g : Rm →Rn is defined as

gi(u) =
gT
1iu

(gT
2iu)(gT

3iu)
, (8)

with g1i, g2i, g3i ∈ Rn given by

(g1i)j = 1, if the fluxomer xi is part of the flux fj ,

(g1i)j = 0, otherwise

(g2i)j = 1, if flux fj exits the left source pool

in a reaction for which xi is a product,
(g2i)j = 0, otherwise

(g3i)j = 1, if flux fj exits the right source pool

in a reaction for which xi is a product,
(g3i)j = 0, otherwise. (9)

In matrix form,

g(u) =
G1u

(G2u) ◦ (G3u)
. (10)

Isotopomer measurement formulation

In the following, we develop a systematic method
for expressing measured isotopomer variables using
fluxomer notation. The final result of the analysis
shows that isotopomer measurements can be writ-
ten simply as the norm of a linear transformation of
fluxomers, thus Err ∼ ‖Ax‖2. First, we briefly sum-
marize the available isotopomer measurements pro-
vided by Nuclear Magnetic Resonance (NMR) and
Mass Spectrometry (MS) methods. We then discuss
the mathematical modeling of these measurements
using fluxomer variables.

Available isotopomer measurements

MFA experiments are typically carried out by (i) in-
troducing a labeled substrate into a cell culture at
metabolic steady state, (ii) allowing the system to
reach an isotopic steady state, and (iii) measuring
isotopomer abundances of metabolic intermediates
and byproducts using either MS or NMR analysis.
These two measurement techniques provide qualita-
tively different information about isotopic labeling.

• 1H NMR: Measures the fractional 13C enrich-
ment of each proton-bound carbon atom, irre-
spective of the labeling of its neighboring car-
bon atoms. Both 12C and 13C atoms are dis-
tinguishable in the same spectrum, and there-
fore the peak areas corresponding to different
carbon isotopes can be normalized directly.

• 13C NMR: Quantifies isotopomers based on
the presence of multiplet peaks (e.g., doublets,
triplets, doublet doublets, etc.) in the spec-
trum caused by two or more neighboring 13C
atoms. Because 12C atoms are undetectable by
13C NMR, it is impossible to quantify the over-
all fraction of each isotopomer unless 1H NMR
spectra are simultaneously obtained. Instead,
only the relative ratio of different isotopomers
can be assessed by 13C NMR.

• MS: This technique is usually preceded by
some form of chromatographic separation (GC
or LC) to resolve mixtures into their individ-
ual components. These components are then
ionized and fragmented in the MS ion source.
The ionized particles are separated according
to their masses by an electromagnetic filter,
and a detector measures the relative abun-
dance of each mass isotopomer. These abun-
dances can be normalized to a fractional scale
if all MS peaks corresponding to a particular
ion are simultaneously measured.

Previous studies based on flux-isotopomer vari-
ables have modeled the measurement error as Gaus-
sian noise added to the fractional isotopomer enrich-
ments. Therefore, if ŷ is the vector of measured iso-
topomer fractions, this model states that ŷ = y + e,
where e is the Gaussian error term. However, a
more accurate error model would add the measure-
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ment noise directly to the physically measured val-
ues. The motivation for the traditionally chosen er-
ror model is its relative simplicity when expressed
using flux-isotopomer variables. Furthermore, since
some isotopomers of a specific metabolite may be
unmeasurable, the isotopomer fractions cannot be
experimentally determined in many cases. This im-
plies the need for an alternative error model that
avoids these shortcomings.

Measurement Error Model

We denote the measured isotopomer abundances by
a vector m̂. For NMR analysis, the elements of
m̂ are proportional to the areas under the different
spectral peaks. For MS, they are proportional to
the integrated ion counts associated with each mass
isotopomer. Since m̂ is the measured quantity, the
correct error model is an addition of Gaussian noise
so that m̂ = m + e, where m is the “true” measure-
ment value. The measured isotopomer fractions ŷ
are then expressed as

ŷj =
m̂j∑
i m̂i

=
mj + ej∑
i(mi + ei)

. (11)

Let εj represent the residual between the model-
predicted and experimentally measured abundance
of a single isotopomer. After multiplying eq. 11 by∑

i(mi+ei) and rearranging, the residual expression
becomes

εj = mj − ŷj(
∑

i

mi) = ej − ŷj

∑

i

ei, (12)

where εj is a sum of Gaussian variables. Noting that
each measurement mj is simply proportional to a lin-
ear combination of fluxomers, the residual expression
eq. 12 takes the form

ε = [diag(ŷ)T−V]x, (13)

where T and V are transformation matrices needed
to convert fluxomers to isotopomer measurements
and the diag operator converts its vector argument
into a diagonal matrix. The resulting expression is
both a simple sum of Gaussian vectors and affine in
x.

The advantage of this objective function is that
it only depends upon the relative isotopomer inten-
sities in the vector ŷ but does not depend upon how

these intensities have been normalized (as long as
the transformation matrix T is constructed accord-
ingly). This eliminates the need to estimate optimal
normalization factors that are required by previous
algorithms in order to convert experimental mea-
surements into isotopomer fractions. This is true
for both MS and NMR measurements, either when
conducted alone or used together in the same exper-
iment.

The MFA optimization problem using fluxomers

Now that we have defined both the isotopomer mea-
surements and the feasible solution set, we can for-
mulate the least-squares MFA optimization problem
in terms of fluxomer variables. Our objective is to
find the flux vector u that minimizes the measure-
ment error. In addition to the fluxomer balances,
usually upper bounds uub are provided for all fluxes.
As has been proven by Wiechert et al. [6–9], once
the inputs to the system and u are set, the solution
(x,u) is unique. In other words, the steady-state
fluxomer balance equation, eq. 6, is actually an im-
plicit definition of x(u). With this in mind, the MFA
optimization problem can be simply defined as

min
u∈Q

‖Ax(u)− b‖2 (14)

with

Q =
{
u :

Su = 0
0 ≤ u ≤ uub

}
,

where A selects the measured elements of the flux-
omers vector x(u), b contains their associated val-
ues, and S is the stoichiometric matrix of the reac-
tion network. Note that b may contain non-zero
elements only when associated with measurements of
absolute flux values. For isotopomer measurements,
the associated elements of b are zero.

Eq. 14 can be solved using various non-convex
global optimizing techniques. These optimizers typi-
cally require the user to provide subroutines for com-
puting the value of the objective function and its
first derivatives at various points along their conver-
gence path. Furthermore, evaluation of the function
x(u) and its derivatives are the main (practically
only) time-consuming procedures when solving the
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optimization problem in eq. 14. The mathemati-
cal formulation of eq. 14 is similar to the optimiza-
tion problem resulting when using the labels and
fluxes variables, with one exception - the implicit
formula for x(u). As shown above, using fluxomers
we are able to formulate the propagation equation
(and thus solving x(u)) as a multiplication of homo-
geneous functions of fluxes, and second order func-
tions of fluxomers. Using labels and fluxes, formu-
lating the same equation results in a sum of func-
tions of the same structure, and the homogeneous
separation property vanishes. The following sections
exploit this unique property of the fluxomers prop-
agation equation in order to achieve great reduction
in the system computational complexity, leading to
the FIA algorithm.

Fluxomers Iterative Algorithm (FIA)

This section deals with the evaluation of x(u) along
with its gradient using the fluxomer formulation.
First, we show that x(u) can be calculated iter-
atively while avoiding repeated matrix inversions.
Then, we demonstrate how the number of iterations
can be reduced using a Newton-type gradient-based
algorithm. Finally, we explain how it is possible to
greatly increase the sparsity of the system using a
simple linear transformation of variables, which fur-
ther reduces the number of iterations needed for con-
vergence.

Solving the fluxomer balance equations

A simple approach for computing x given u is to
imitate nature. Once a metabolic network reaches
steady state (namely, when u is constant), changing
its input labeling does not affect its flux values u,
but only influences the labeling of its intermediate
metabolite pools. The metabolite labeling patterns
become gradually mixed and propagated through-
out the network until isotopic equilibrium is reached.
Accordingly, a simple approach for solving eq. 6 is
by using its iterative representation (which is similar
to the process taking place in nature):

xt+1 = g(u) ◦ (H1xt) ◦ (H2xt),

where xt is the fluxomer vector at iteration t and
xt+1 is the fluxomer vector at iteration t + 1. In
order to simulate the steady-state labeling, we ini-
tialize the system with the vector x0 in which only
the input fluxomers are labeled and all others are
unlabeled. By recursively substituting x back into
the equation, steady state is eventually reached and
the final value of x is obtained. (This equation rep-
resents a non-linear time-invariant Markov chain.)
For the Embden-Meyerhof and Pentose Phosphate
Pathway example in the Results and Discussion sec-
tion, it takes a few hundred iterations to achieve
complete stability of the solution (maximal fluxomer
value change on the order of 1e-17). Algorithm con-
vergence for a given input vector is retrieved exactly
as in the real biological system, and thus a unique
solution always exists (for realistic metabolic net-
works).

We now show it is possible to reach pathway con-
vergence in much fewer iterations. First, we write
eq. 6 as

F(x,u) = g(u) ◦ (H1x) ◦ (H2x)− x. (15)

Now, in order to find the values of (x,u) one needs
to solve F(x,u) = 0 while holding u constant.
We choose to use one of the classic and power-
ful algorithms for finding roots of an equation, the
well known Newton-Raphson [19] [20] [21] method.
Roughly speaking, the change of the x vector at each
iteration is calculated by

xt+1 = xt − (F′x(x,u))−1F(x,u),

with F′x(x,u) = ∂F(x,u)
∂x . The main con-

cern now is the evaluation of the expression
(F′x(x,u))−1F(x,u). Here, it turns out that due to
the decomposable nature of F(x,u), the derivative
F′x at a point (x,u) is the simple matrix

F′x(x,u) = (g(u) ◦ (H1x))H2

+ (g(u) ◦ (H2x))H1 − I. (16)

Therefore, finding r = (F′x(x,u))−1F(x,u) is equiv-
alent to solving the linear system of equations

(F′x(x,u))r = F(x,u). (17)

In order to determine the root of the propagation
equation, FIA starts with an iteration or two us-
ing Newton’s correction and then continues with the
simple “natural” approach. Applying this method to
the Embden-Meyerhof and Pentose Phosphate Path-
way example in the Results and Discussion section,
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only a few dozen iterations are now needed. In the
next section we show how to reduce both the number
of variables and the number of iterations required for
convergence by another order of magnitude, without
affecting system convergence stability.

Reducing system complexity

The following section introduces a mathematical ap-
proach for reducing the number of nonzero elements
in our system. Variable reduction techniques such as
the recently developed Elementary Metabolite Unit
(EMU) network decomposition [14] were developed
for application to systems that are modeled using
flux-isotopomer variables. Fluxomers and the FIA
algorithm, as opposed to prior approaches, allow us
to effectively reduce the number of system variables
using a simple linear transformation on x. Our main
goal here is to find a transformation for the fluxomer
vector x, y = Kx that:

• Reduces the number of its nonzero elements.

• Reduces the computational complexity of solv-
ing eq. 16.

• Eases the evaluation of eq. 15.

From eq. 16 we see that the greatest expense is
due to inversion of a sum of two linear transforma-
tions (H1 and H2) of x. From the iterative propa-
gation equation, eq. 15, we see that x is iteratively
calculated by computing the product of the same
two matrices. Had it been possible to find a sparse,
close-to-diagonal representation for both H1 and H2

by simply multiplying them by the matrix from the
right, both problems would be solved.

In order to acomplish the above, we examine the
properties of the concatenation of these two matri-
ces which we denote by H. Next we find the LU
factorization of H,

(
H1

H2

)
= H = LHUH =

(
LH1

LH2

)
UH, (18)

with LH lower triangular and UH upper triangular
matrices. The matrix LH1 contains the first m rows
of LH and LH2 contains the last m rows of LH. Our

new set of variables now becomes y = UHx, and the
new propagation equation is

UH [g(u) ◦ (LH1y) ◦ (LH2y)]− y = 0. (19)

When expressed in terms of the variable y, our sys-
tem becomes much more sparse. This is illustrated
in Figure 4 which shows H1,H2,LH1,LH2 and UH

for the Embden-Meyerhof and Pentose Phosphate
Pathway example. The transformation has two es-
sential benefits:

1. Reduced computational complexity — note
that the derivative F′x depends upon the ma-
trices H1 and H2 which have already been
factored, and thus solving Newton’s step is
straightforward.

2. Fewer iterations needed for convergence.

As a matter of fact, this transformation reduced the
number of iterations needed for convergence of the
simple E. coli example to a total of 5.

Finding ∂x
∂u

As discussed above, our optimization problem seeks
the minimum of ‖Ax(u)− b‖2. In order to con-
verge rapidly, the gradient of the objective function
must be computed at each iteration of the algorithm.
The key step for computing it is the evaluation of ∂x

∂u
(the derivative of the fluxomers as a function of the
metabolic fluxes). Since we have an implicit function
F(x,u) along with a valid solution for F(x,u) = 0,
the implicit function theorem [22,23] can be used to
compute ∂x

∂u . Because F(x,u) is continuously differ-
entiable around its root, we can write

∂x
∂u

= −
(

∂F(x,u)
∂x

)−1
∂F(x,u)

∂u
. (20)

In the previous section we showed that ∂F(x,u)
∂x can

be directly expressed in terms of the system matrices
and the vectors x and u. The same procedure can
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be carried out in order to determine ∂F(x,u)
∂u

∂F(x,u)
∂u

= diag((H1x) ◦ (H2x))
[

G1

(G2u) ◦ (G3u)

+
((G1u) ◦ (G2u))G3 + ((G1u) ◦ (G3u))G2

((G2u) ◦ (G3u))2

]
.

(21)

Keeping in mind that Fx(x,u) is in its reduced
form due to our variable transformation, solving the
equation

(
∂F(x,u)

∂x

) (
∂x
∂u

)
= −∂F(x,u)

∂u can be accom-
plished efficiently.

The initial point

The generation of the initial point for the FIA algo-
rithm is very similar to the standard method used
by many iterior point algorithms for finding a valid
initial point over a convex linear set. We added a
fluxes-measurement regularization factor λ in order
to generate an initial point closer to the final esti-
mation (and thus speed up the convergence process).
The initial point is generated by solving the follow-
ing simple convex optimization problem:

min
u,s∈E

(−s + λ‖Au− û‖2),

with

E =
{
u :

Su = 0
[I,−I]u + [I, I] [0,ub]T ≥ s

}

with A a matrix that selects the measurable el-
ements of u, û the meaured elements of u (if they
exist), 0 a vector of zeros, and ub a vector of the flux
upper bounds. The regularization factor λ starts
with some large value, and if necessary is reduced
until the optimal value of s is greater than 0. Note
that when λ → 0 the problem reduces to finding a
feasibile solution of u, and thus always has a solution
(for well-structured networks).

The algorithm

Summarizing the above discussion leads to the fol-
lowing algorithm for efficient solution of the MFA
optimization problem using fluxomers:

i. Matrix preparation (run once per net-
work):

0. Calculate
(

H1

H2

)
=

(
LH1

LH2

)
UH using LU

(PQ) factorization.

ii. Call the optimizer in order to solve

min
u∈Q

‖Ax(u)− b‖2, Q =
{
u : Su = 0

0 ≤ u ≤ uub

}

When requested by the optimizer, return x(u)
and its first derivative:

1. Set y0 = yinit.

2. Set i = 1.

3. Calculate
yi = UH [g(u) ◦ (LH1yi−1) ◦ (LH2yi−1)].

4. If ‖yi − yi−1‖2 > εN

(a) Solve (F′x(x,u))r = F(x,u).
(b) Set yi = yi − r according to Newton’s

method.

5. If ‖yi − yi−1‖2 > εe go to 3.

6. Calculate x = [g(u) ◦ (LH1yi) ◦ (LH2yi)].

7. Solve
(

∂F(x,u)
∂x

) (
∂x
∂u

)
= −∂F(x,u)

∂u .

The supplied software uses a variant of the “sequen-
tial least-squares” algorithm [24, 25] for solving the
non-convex optimization problem in eq. 14. This es-
sentially breaks the problem into a sequence of con-
vex optimization problems for which the solution can
be readily computed. Note that other algorithms can
be easily used with the same procedures described
above.
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Figures

Figure 1 - E.Coli EMP and PPP Metabolic Pathways

The Embden-Meyerhof and Pentose Phosphate metabolic pathways of Escherichia coli.

Figure 2 - Measured fluxes values

Bidirectional fluxes calculated using FIA and 13CFLUX for noisy measurement set.

Figure 3 - Simple metabolic network

(a) Standard network representation. Carbon atoms are drawn explicitly with arrows to indicate atom
transitions. Unidirectional arrows represent unidirectional fluxes while bidirectional fluxes (such as flux 5)
are represented by bidirectional arrows. (b) Fluxomers representation. Each arrow is a group of fluxomers.
X’s appear on the appropriate atom positions to indicate summation of divergent fluxomers.

Figure 4 - System matrices complexity reduction

H1,H2,LH1,LH2 and UH for the simple E. coli example. A substantial reduction in nonzero elements
between the H and L matrices can clearly be seen.

1 Tables

Table 1 - EMP & PPP simulation data

Values are taken from the example input file included in the 13CFLUX demo. Substrate enrichment values
are considered as constants.
Label input data
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Flux name Cumomer Index Value STD
GLC #000000 0.445 -

#100000 0.500 -
#000001 0.011 -
#000010 0.011 -
#000100 0.011 -
#001000 0.011 -
#010000 0.011 -

Rul5P #1xxxx 0.1979 0.002
#x1xxx 0.0153 0.002
#xx1xx 0.0284 0.002
#xxx1x 0.0122 0.002
#xxxx1 0.0976 0.002

Ery4P #1xxx 0.0568 0.002
#x1xx 0.0229 0.002
#xx1x 0.0118 0.002
#xxx1 0.0704 0.002

GA3P #1xx 0.0330 0.002
#x1x 0.0126 0.002
#xx1 0.1207 0.002

PEP #1xx 0.0330 0.002
#x1x 0.0126 0.002
#xx1 0.1207 0.002

Table 2 - Comparison of FIA with 13CFLUX for the simple E. coli metabolic network

Comparison of estimated fluxes and mean-square estimation error using “noiseless” data.
Flux name FIA 13CFLUX

Est. flux MSE Est. flux MSE
emp1 0.5100 0.0020 0.5099 0.0023
emp2 0.8500 0.0008 0.8500 0.0007
emp3 0.8500 0.0008 0.8500 0.0007
emp4 1.8700 0.0011 1.8700 0.0006
emp5 1.8700 0.0011 1.8700 0.0006
emp6 1.8700 0.0011 1.8700 0.0006
ppp1 0.5100 0.0019 0.5101 0.0023
ppp2 4.4234 0.5483 4.3281 0.9652
ppp2r 4.0834 0.5485 3.9880 0.9657
ppp3 4.4689 1.0365 2.7370 1.1057
ppp3r 4.2989 1.0368 2.5670 1.1057
ppp4r 4.0768 0.3643 4.1740 1.1608
ppp4 4.2468 0.3640 4.3440 1.1604
ppp5r 0.2538 0.1535 0.2680 0.0654
ppp5 0.4238 0.1531 0.4381 0.0655
ppp6r 0.2550 0.0175 0.2560 0.0194
ppp6 0.4250 0.0171 0.4260 0.0188
upt 1.0200 0.0004 1.0200 0.0001
coOut 0.5100 0.0019 0.5101 0.0023

Table 3 - Algorithm running time comparison for FIA vs. 13CFLUX

Running time is shown in seconds.
FIA 6.63 7.56 5.17 6.85 8.83 5.92 9.53 6.47 6.97 6.77

13CFLUX 59.14 56.93 76 121 65.7 451 81.7 173 177 69.65

Table 4 - Relative mass isotopomer fractions comparison for wild-type and mutant C. glutamicum

Experimental and calculated isotopomer MS fractions. The experimental data and ad-hoc simulation results
are taken from Becker et al. [18]. The OpenFLUX results are taken from [15]. The simulated “non-
normalized” data is generated by multiplying the given values after natural isotope correction by random
factors. Several FIA estimations are provided: using the given fluxes as constants (under “const.”), as
measurements (under “meas.”), and when using the simulated non-normalized data (under “ratios”). As
can be seen, FIA agrees with previous results (even when the data is used without normalization). For the
mutant case, better fits are achieved when allowing the supplied fluxes to change as well.
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Wildtype Mutant

Fragment Non- Exp. Ad-hoc OpenFLUX FIA Exp. Ad-hoc OpenFLUX FIA
normalized const. meas. ratios const. meas.

ALA 260 M0 206.3562 0.5085 0.509 0.509 0.5099 0.5099 0.5097 0.5230 0.525 0.525 0.5247 0.5247
M1 102.8634 0.3529 0.354 0.354 0.3534 0.3534 0.3537 0.3410 0.342 0.342 0.3425 0.3425
M2 4.8452 0.1058 0.106 0.106 0.1063 0.1063 0.1062 0.1030 0.104 0.104 0.1037 0.1037

VAL 288 M0 41.4005 0.3455 0.348 0.348 0.3459 0.3458 0.3457 0.3640 0.366 0.366 0.3661 0.3663
M1 39.6134 0.3983 0.398 0.398 0.3986 0.3986 0.3987 0.3920 0.392 0.392 0.3921 0.3922
M2 10.7340 0.1845 0.184 0.184 0.1846 0.1846 0.1847 0.1750 0.175 0.175 0.1750 0.1749

THR 404 M0 194.9082 0.3330 0.334 0.334 0.3343 0.3343 0.3340 0.3440 0.344 0.344 0.3439 0.3439
M1 159.2226 0.3764 0.376 0.376 0.3757 0.3757 0.3759 0.3730 0.371 0.371 0.3715 0.3721
M2 35.2094 0.1957 0.196 0.196 0.1956 0.1956 0.1957 0.1910 0.192 0.192 0.1920 0.1918

ASP 418 M0 159.9111 0.3343 0.333 0.333 0.3337 0.3337 0.3334 0.3450 0.343 0.343 0.3432 0.3433
M1 128.3755 0.3732 0.375 0.375 0.3750 0.3750 0.3752 0.3700 0.370 0.371 0.3708 0.3714
M2 28.7782 0.1955 0.196 0.196 0.1960 0.1959 0.1960 0.1920 0.193 0.192 0.1924 0.1922

GLU 432 M0 3.8009 0.2469 0.25 0.249 0.2474 0.2473 0.2469 0.2570 0.264 0.264 0.2634 0.2624
M1 4.4232 0.3648 0.366 0.366 0.3661 0.3661 0.3660 0.3650 0.365 0.365 0.3656 0.3658
M2 1.7429 0.2412 0.239 0.240 0.2406 0.2406 0.2409 0.2360 0.232 0.232 0.2322 0.2327

SER 390 M0 224.9043 0.4497 0.449 0.448 0.4487 0.4488 0.4490 0.4620 0.463 0.463 0.4635 0.4628
M1 108.4056 0.3576 0.358 0.358 0.3578 0.3578 0.3580 0.3490 0.349 0.349 0.3491 0.3492
M2 3.5199 0.1428 0.143 0.144 0.1437 0.1437 0.1434 0.1400 0.140 0.140 0.1399 0.1403

PHE 336 M0 250.7079 0.2712 0.274 0.274 0.2764 0.2764 0.2769 0.2870 0.289 0.289 0.2881 0.2874
M1 303.6304 0.3816 0.381 0.381 0.3817 0.3817 0.3822 0.3800 0.381 0.381 0.3809 0.3806
M2 129.5861 0.2282 0.228 0.228 0.2263 0.2264 0.2261 0.2200 0.220 0.220 0.2206 0.2210

GLY 246 M0 738.7580 0.7407 0.742 0.742 0.7417 0.7417 0.7421 0.7410 0.743 0.743 0.7426 0.7426
M1 39.7395 0.1845 0.185 0.185 0.1852 0.1852 0.1849 0.1830 0.184 0.184 0.1844 0.1844

TYR 466 M0 36.7321 0.2344 0.236 0.236 0.2380 0.2380 0.2384 0.2460 0.249 0.249 0.2481 0.2475
M1 43.7966 0.3530 0.356 0.356 0.3567 0.3567 0.3572 0.3510 0.358 0.357 0.3572 0.3569
M2 18.6839 0.2423 0.245 0.245 0.2433 0.2433 0.2431 0.2340 0.238 0.238 0.2387 0.2390

TRE 361 M0 34.1048 0.0613 0.062 0.062 0.0612 0.0612 0.0608 0.0880 0.088 0.088 0.0884 0.0884
M1 327.3441 0.6040 0.607 0.606 0.6051 0.6051 0.6057 0.5730 0.577 0.574 0.5743 0.5742
M2 27.0318 0.2070 0.207 0.207 0.2084 0.2084 0.2084 0.2130 0.213 0.213 0.2128 0.2126

Sum of weighted residuals 761 684 654 650 718 1735 1461 1451 1308

Table 5 - Metabolic fluxes comparison for wild-type and mutant C. glutamicum

Estimated metabolic fluxes values for the different approaches - the ad-hoc simulation results from Becker
et al. [18], the OpenFLUX results [15], and the FIA results for its various simulated scenarios (measured
fluxes used as constants, as measurements, and when using ratios of non-normalized data.)

Wildtype Mutant

Becker OpenFLUX FIA Becker OpenFLUX FIA
const. meas. ratios const. meas.

Glucose 6-phosphate isomerase 49.8 51.2 51.9 52.0 51.5 41.6 40.4 42.1 42.5
Glucose 6-phosphate dehydrogenase 46.8 45.0 44.7 44.7 45.1 56.2 57.5 55.7 55.1
Transaldolase 14 13.4 13.3 13.3 13.4 17.5 17.7 17.3 17.0
Transketolase 1 14 13.4 13.3 13.3 13.4 17.5 17.7 17.3 17.0
Transketolase 2 11.9 11.3 11.2 11.2 11.3 15.8 16.4 15.6 15.4
Glyceraldehyde 3-phosphate dehydrogenase 157.5 158.0 158.2 158.6 158.0 160.8 161.0 161.0 160.5
Pyruvate kinase 147.3 148.0 147.8 148.2 147.6 152.6 152.0 152.5 152.0
Pyruvate dehydrogenase 77.5 75.8 74.8 74.9 74.9 87.5 85.2 85.1 79.7
Pyruvate carboxylase - carboxykinase 34.4 35.8 35.9 36.1 35.8 31.5 32.4 32.5 34.9
Citrate synthase 52.5 50.8 49.6 49.7 49.9 67.7 65.4 65.3 58.9
Isocitrate dehydrogenase 52.5 50.8 49.6 49.7 49.9 67.7 65.4 65.3 58.9
Oxoglutarate dehydrogenase 41.2 39.4 38.2 38.3 38.5 59.9 57.6 57.5 50.7
Aspartokinase 11.2 11.2 11.2 11.4 11.2 14.2 14.2 14.2 15.9
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