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This paper describes two superresolution coherent imaging techniques, which both use a diffraction grating
to direct high spatial frequency information that would otherwise be lost through the imaging system pupil.
The techniques employ digital holography to measure the optical field in the image plane and rely on capturing
multiple holograms with the illumination condition altered between exposures. In one case, we used linear signal
processing to separate aliased spectral regions, while in the second case we directly measured spectral regions
without aliasing. In both cases, we stitched together higher-bandwidth synthetic aperture spectra and used them
to reconstruct superresolution images. Our experimental results validated the approaches, demonstrating a res-
olution gain factor of approximately 2.5. © 2016 Optical Society of America

OCIS codes: (100.6640) Superresolution; (110.1758) Computational imaging; (110.3010) Image reconstruction techniques.
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1. INTRODUCTION

A variety of approaches have been previously investigated to
provide improved resolution of optical imaging systems beyond
the classical diffraction limit as determined by the numerical
aperture (NA) and wavelength (λ), although such approaches
are typically constrained by a resolution limit of λ∕2n, where
n is the refractive index in image space [1,2]. This excludes
near-field imaging, super-resolved fluorescence microscopy
(Ref. [2], Section 18.2), and imaging of sparse objects using
compressed sensing techniques [3]. Resolution enhancement
allows one to use a low-NA objective lens having a long working
distance and large field of view, while simultaneously obtaining
resolution comparable to a higher NA system. Schemes to
accomplish this task fall under the general classification of
superresolution imaging.

The potential of superresolution was recognized early on by
Adolf Lohmann and his co-workers. In 1964, for example,
Lohmann and Paris described an approach to double the res-
olution of an imaging system using two orthogonal polarization
states to illuminate a non-birefringent object from two different
angles [4]. Indeed Lohmann and his colleagues continued to
make pioneering advancements in this field over many decades,
including the development of the idea that superresolution can
be viewed in the Wigner domain as a manipulation of an
optical system’s degrees of freedom [5,6]. A common example

includes trading temporal bandwidth for improved spatial res-
olution, which is the approach adopted in this paper.

Additional early work on superresolution, first reported by
Lukosz in 1966 and subsequently extended by other research-
ers, involved the use of two static gratings, one near the object
and the other near the image plane. However, this approach
leads to ghost image formation that restricts the field of view
[7,8] or dynamic range [9]. Alternatively, the two gratings can
be synchronously moved and the detected image temporally
averaged to eliminate spurious ghost images [10,11], but this
configuration is more complicated to implement and has only
been demonstrated with unity magnification. Additional tech-
niques include structured illumination of fluorescent objects
[12], as well as oblique illumination schemes over a restricted
range of illumination angles [13,14]. It is also possible to con-
struct a coherent imaging system with an oblique illumination
beam that does not pass through the imaging pupil, but instead
is either re-injected on the low-NA side of the objective lens at
the proper location and with the correct phase in the Fourier
plane [15] or is mixed with a second, lower-angle illumination
beam that is allowed through the pupil [16].

Various coherent detection techniques based on digital
holography have also been investigated to achieve superresolu-
tion. Off-axis digital holography has been combined with syn-
thetic aperture formation to increase the resolution of a lensless
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Fourier holography setup, but this approach required translat-
ing the detecting camera in two dimensions over several milli-
meters [17]. Liu et al. have reported a related approach in which
the camera remained stationary and a grating was placed after
the object to direct higher spatial frequency content to the
hologram [18]. In this case, numerical reconstruction provided
an image with improved resolution, although the effective NA
was still quite low. Liu’s grating-based technique has been ex-
tended using a two-dimensional (2D) dynamic phase grating
that offers electro-optic control of the diffraction efficiency
[19]. Hillman et al. proposed a different approach that involved
a single oblique illumination angle combined with rotation of
the sample and capture of several digital holograms [20].

In this paper, we present two approaches to implement
coherent superresolution imaging [21–23]. They both use a
grating element to direct high-frequency content from the
object through the imaging aperture. To accomplish the desired
extension of resolution, it is necessary to measure the complex
amplitude of the field in the image plane. This measurement
can be done via digital holography by bringing in a tilted refer-
ence wave, coherent with respect to the field in the image plane,
to interfere with this field and thus create a hologram. Digitally
filtering the hologram to eliminate all but one sideband, and
then translating that sideband to be centered on zero frequency
can recover the complex field in the image plane. The tech-
niques reported here, which fall under the general heading
of “synthetic aperture holography” (Ref. [2], Section 18.1.2),
are fundamentally based on spatially coherent imaging and
are therefore not applicable to fluorescent objects.

2. METHODS

The first approach, referred to as grating-based pupil multiplex-
ing, uses a single grating that is either imaged onto the object or
placed in near contact with the object to alias high-frequency
content through the pupil. When in near contact, the grating is
ideally placed in front of the object so that the diffracted orders
provide a set of illumination waves, as shown in Fig. 1. If the
grating follows the object, then only the non-evanescent por-
tion of the object spectrum for normal incidence is considered.
The grating produces copies of the object’s angular spectrum
that are shifted from one another by multiples of the grating
frequency. The pupil low-pass filters this set of spectra. Within
the pupil, the various shifted portions of the object spectrum
combine linearly with coefficients nominally given by the
Fourier series coefficients of the grating. Digital holography
provides coherent detection of the optical field in the image
plane. Data acquisition involves the capture of multiple
holograms with the grating shifted by a fraction of its period
between exposures. Linear signal processing is then used to

de-alias the spectral regions and numerically reconstruct a
complex-valued image with superresolution in one dimension.

This approach is analogous to an electronic modulated-
wideband converter (MWC) designed to reduce the sampling
rate in analog-to-digital conversion [24–26]. The MWC allows
recovery of a high-bandwidth signal from the output of several
low-passed versions of the signal, where the different branches
correspond to modulations of the input by a periodic function.
The pupil multiplexing scheme described here can be viewed
as an optical version of the MWC in which a low-NA lens
replaces the low-pass filter, a movable grating replaces the mod-
ulations, and digital signal processing is used to construct the
final high-bandwidth output signal.

The second approach is based on oblique illumination by a
number of individual collimated beams directed sequentially
to the object over a set of off-axis incidence angles. It is possible
to generate the various illumination angles by translating a
normally incident collimated beam across a grating element,
as shown in Fig. 2. In general, a specially constructed 2D tiled
grating can be envisioned, each tile element producing a first-
order diffracted beam directed at the object with a unique
2D angle. The collimated beam has a diameter that is slightly
less than the linear dimension of a tile segment. In this case, the
tiled grating structure is placed in front of the object, but not in
near contact. Therefore, the illumination path is constructed
with a specified working distance that separates the grating
element from the object. A simpler 1D version of this method
uses a uniform grating with multiple diffraction orders; the
normally incident collimated beam is then translated to specific
locations across the grating to direct individual diffraction
orders to the object. As with the 1D pupil multiplexing scheme,
the grating can be rotated and the process repeated to obtain
2D superresolution.

A notable feature of the two approaches is that they are
straightforward to implement, with both being based on a
single grating element to generate a wide synthetic aperture.
By using diffraction gratings, these techniques can readily yield
large plane-wave illumination angles without high-NA lenses
in the illumination path. As with any coherent digital holo-
graphic imaging system, the resulting images yield quantitative
phase information and offer the ability to implement numerical
focusing.

Fig. 1. Grating-based pupil multiplexing. Fig. 2. Grating-based oblique illumination method.
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3. THEORETICAL DESCRIPTION

A. Grating-Based Pupil Multiplexing
In this section, we limit the analysis to a 1D formulation, but
the extension to two dimensions is straightforward. Consider a
coherent imaging system and suppose that a high-frequency
grating is placed in close proximity to the object being imaged,
either just before the object or just after it. The grating ampli-
tude transmittance is a periodic function with fundamental
frequency fg, which we represent by P�x�. This function can be
expanded in a complex Fourier series,

P�x� �
X∞
n�−∞

pn exp�−j2πnfgx�: (1)

Furthermore, we assume that the grating has been fabricated
such that it possesses a finite set of lower-order Fourier coeffi-
cients pn that are approximately equal in magnitude, meaning
that all the plane wave components illuminating the object
are of approximately equal magnitude, while the remaining
higher-order pn are close to zero. For example, a Dammann
phase grating provides such a response.

If t0�x� represents the complex amplitude transmittance of
the object, which is the quantity we wish to recover, then the
field leaving the sandwiched object and grating is given by

to�x�P�x� � to�x�
X∞
n�−∞

pn exp�−j2πnfgx�: (2)

The spectrum of to�x�P�x�, which is incident on the pupil
plane, is then given by

U �νx� � T o�νx� �
X∞
n�−∞

pnδ�νx − nfg�; (3)

where T o�νx� is the object spectrum and � signifies convolu-
tion. We explicitly assume that the grating is located before the
object. If the grating follows the object, then only the propa-
gating portion of the object spectrum for normal incidence
should be considered.

In the absence of the grating, the pupil of the imaging system
restricts the light that passes through the aperture stop to a finite
region of the spectrum. Consequently, important information
about the object detail is lost. The effect of the grating is tomulti-
plex different parts of the object spectrum into the pupil. Each
diffraction order directs a specific spectral region, which we also
refer to as a “spectral island,” through the aperture stop. Assume
that N diffraction orders are present. The resulting image will
not resemble the object, but a high-resolution image can be re-
covered by acquiring a series of K ≥ N holograms, each taken
with an appropriate change in the grating Fourier coefficients pn.
We show that it is then possible to separate the overlapping re-
gions of the spectrum and stitch them back together in proper
order, yielding a broader spectrum of the object (by a factor<N )
than would otherwise pass the pupil.

We now briefly consider the digital processing performed on
a set of 2K � 1 measured fields in the pupil (we use 2K � 1
measurements and 2N � 1 grating orders rather than K mea-
surements and N orders for mathematical convenience).
Continuing with a one-dimensional analysis, the kth detected
image amplitude can be written as

Ak�νx� �
XN
n�−N

pk;nT o�νx − nfg�rect�νx∕2fp�;

k � −K ;…K ; (4)

where the grating coefficients pk;n change for each of the
2K � 1 image captures, the rectangle function represents the
finite pupil having a half-width frequency of fp, and we assume
that the grating frequency is chosen such that fg � σfp, where
σ is a factor between 0 and 1. In this way, the �1 diffraction
components reside within the pupil, and the grating therefore
produces aliasing with overlapping spectral regions. In practice,
σ is taken to be between 0.75–0.90. For a circular pupil, the
spectral overlap is necessary to avoid gaps in the enhanced spec-
trum and, when the grating coefficients pn are not completely
known, we can also use the overlap regions in signal processing
as discussed in the next section.

Equation (4) can be rewritten in matrix-vector form as

~A�νx� � P ~T �νx�; (5)

where

~A�νx� �

2
664
A−K �νx�

..

.

AK �νx�

3
775; (6)

and

~T �νx� �

2
664
T o�νx � Nfg�rect�νx∕2fp�

..

.

T o�νx − Nfg�rect�νx∕2fp�

3
775; (7)

and P is a �2K � 1� × �2N � 1� matrix

P �

2
64
p−K ;−N � � � p−K ;N

..

. ..
. ..

.

pK ;−N � � � pK ;N

3
75: (8)

Consider first the case in which K � N so that P is square.
If the grating constants are chosen such that the matrix P is
non-singular and well conditioned, then P−1 exists and the
spectral islands can be separated through

~T �νx� � P−1 ~A�νx�: (9)

A convenient choice for the grating coefficients pk;n corre-
sponds to grating translation by Δx � 1∕	fg�2K � 1�

between image captures (i.e., to equal-increment steps span-
ning one period). Each such step changes the phase of the nth
grating Fourier coefficient by Δϕn � 2πn∕�2K � 1�.

Once the individual spectral islands are known, they can be
translated to their proper frequency positions and combined to
synthesize a broader spectrum. Specifically, the image spectrum
half-width increases from fp to �σN � 1�fp, where �σN � 1� is
the resolution gain factor. More detail associated with the stitch-
ing together of spectral regions is provided in Section 4.
However, as mentioned previously, it generally requires some
degree of overlap between adjacent regions, particularly when
P is not entirely known, which can be the case in the presence
of various experimental perturbations.
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More than 2N � 1 measurements can be made to improve
the signal-to-noise ratio, with the result that the P matrix is no
longer square but can still be readily (left-) inverted with a psue-
doinverse operation. Because the imaging system is coherent,
no OTF compensation is required, unlike the case of incoher-
ent superresolution imaging with structured illumination [27].

B. Sequential Oblique Illumination
For the sequential oblique illumination method, the number of
measurements equals the number of illumination angles.
Aliasing is avoided, which improves the accuracy of the tech-
nique. The spectral islands are therefore individually measured
and numerically stitched together to form the higher frequency
composite spectrum.

4. DATA ANALYSIS

A primary benefit of grating illumination relates to the fact
that the diffraction orders are separated uniformly in spatial
frequency with high intrinsic angular precision, which in turn
facilitates shifting of the spectral sections to their correct loca-
tions when reconstructing the enhanced image spectrum. In
both the pupil-multiplexing and sequential synthetic aperture
schemes, the zero-order and first-order beams are allowed to
pass through the pupil, and their positions in frequency space
are directly measured. If the imaging system is aplanatic (which
is not particularly difficult to achieve, especially at low NA),
then a linear relationship exists between the locations of the
diffraction orders in frequency space. In other words, even
though the higher-order beams are blocked at the pupil, the
proper positions for the higher-order spectral islands can be
very easily determined with high accuracy from knowledge
of the zero- and first-order positions. Other non-grating-based
methods to generate a set of illumination angles may not
provide a similar intrinsic benefit and could therefore add addi-
tional complexity to the optical setup and/or the data analysis.
In the remainder of this section, we focus on the signal process-
ing details associated with constructing a P matrix applicable
to an experimental setup with grating illumination in which
a number of factors must be considered.

First consider pupil multiplexing based on equal-increment
grating steps, with the number of steps equal to the number of
diffraction orders. The ideal P is square and takes on a simple
form with matrix elements given by

pk;n � exp	−j2πkn∕�2N � 1�
; k; n � −N;…N : (10)

This matrix is unitary with an inverse equal to its conjugate
transpose. In practice, however, there can be errors in the gra-
ting position during stepping, as well as an uncertainty of the
grating’s initial location. There may also be a small phase drift
of the interferometer in between exposures, and the optical
system might, for various reasons, impart different phase shifts
to otherwise symmetric diffraction orders. In the next section,
for example, we show an experimental setup that uses a spatial
filter to equalize the powers of the diffraction orders, but this
filter also imparts unequal relative phase shifts to the various
orders. All of these effects conspire to perturb the ideal Pmatrix
to a version denoted by eP as

epk;n � An

A0

exp

�
−j
�

2πkn
2K � 1

� θk � δk;n � ϕn

��
;

k � −K ;…K ; n � −N ;…N : (11)

Here An is the real-valued amplitude of the nth-order beam, θk
is the interferometer phase drift between exposures, δk;n is the
phase error of the nth diffraction order (relative to the zero-
order) due to a grating position error in the kth step, and ϕn
accounts for phase shifts of the non-zero orders (again relative
to the zero-order) associated with an arbitrary starting position
for the grating as well as any order-dependent phase error as-
sociated with propagation through the optical system. We note
that ϕ0 � 0 and δk;0 � 0 because the zero-order phase, relative
to the reference beam, is already fully captured by inclusion of
the θk term. In addition, from the basic properties of a grating,
we know that δk;n � nδk;1, where δk;1 is the phase of the �1
order relative to the zero-order.

Fortunately, the following approach can accommodate the
extra terms in Eq. (11). First, the imaging system is constructed
so that the ±1 order beams are allowed to pass through the edge
of the pupil, with these orders typically located at 75%–90% of
cutoff. We then assume that the object spectrum near the edge
of the pupil is weak compared to the magnitude of the �1
diffracted orders, so the complex amplitudes of the zero- and
first-order beams can be approximated by the corresponding
directly measured spectral peaks. A similar approach has been
used in structured illumination to estimate the phase of the
sinusoidal illumination pattern ([28], Eq. 16). In our case,
the imaging system is coherent, so the�1 peaks are not attenu-
ated by the transfer function as occurs for incoherent imaging.
Thus, for each of the k grating steps, the measured complex
amplitudes of the three spectral peaks are simply extracted
from the corresponding measured hologram spectrum and
set equal to the values of epk;n (for n � −1, 0, and �1). The
magnitudes of the first-order components (A−1 and A�1) are
normalized by A0.

The next task is to determine the remaining higher-order
components of the eP matrix. In this regard we note that the
measured matrix elements comprising the central three col-
umns of eP can be used to obtain some of the individual phase
terms in Eq. (11). Most obvious are the interferometer phase
drift terms θk, which are taken directly from the centermost
n � 0 column. Any phase drift of the 0-order beam relative
to the reference beam that occurs between grating steps will
appear as a change in the complex amplitude of the central
spectral peak (n � 0). The same phase drift θk will apply to
all diffraction orders for the kth step. By subtracting θk from
the measured phases of the n � −1 and n � �1 columns, we
are left with the three remaining phase terms in Eq. (11). At
this point, to visualize the impact of the three separate terms, it
is helpful to plot the measured phase for the n � �1 matrix
elements (minus interferometer drift) as a function of k.
For purposes of illustration, Fig. 3 shows such a plot with
K � 5 for both the ideal case described by Eq. (10), as well
as a more realistic simulated case that includes random grating
position errors δk;n and order-dependent phase offsets ϕn. The
line for the n � −1 terms has a slope equal in magnitude but
opposite in sign to that for the n � �1 terms. Grating position
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noise causes the data points to deviate slightly from a perfect
line. In Fig. 3, the noise is exaggerated to demonstrate the point
by assuming a Gaussian distribution with a standard deviation
of 0.25 radians. With modern nano-positioning hardware this
error should be quite small. Going forward, we assume that the
δk;n terms are negligible.

Figure 3 shows that the values for ϕ−1 and ϕ�1 can be found
by noting how far the two solid lines are shifted vertically rel-
ative to the ideal situation. If ϕ−1 � −ϕ�1, then the phase offset
can be attributed solely to a grating position offset; otherwise,
some other aspect of the optical system is contributing to a
phase imbalance between the two first-order beams. In the for-
mer case, the impact of the grating position offset can be easily
extrapolated to find the higher-order ϕn terms. However, in the
latter instance, which is the more general situation, it may be
impossible to know how the higher-order beams are affected by
the optical path, so the first-order data are not adequate to
estimate the higher-order matrix elements of eP (i.e., elements
having jnj ≥ 2).

To deal with the general case, we used the fact that in fre-
quency space the spectral islands overlap with one another, and
employed an optimization scheme to find values for the higher-
order matrix elements that yielded the best self-consistency in
the overlap regions. For example, take the case of N � K � 2,
which corresponds to a 5 × 5 eP matrix. The central three col-
umns of eP were directly measured. The interferometer phase
drift terms θk were extracted from the n � 0 middle column.
We generated the initial values for the two outermost columns
(n � �2) by taking the ideal matrix elements and adding the
measured interferometer phase drifts. We assumed the grating
position error phase terms δk;n to be negligible (although in
general their values for n � �1 could be extracted from the
measurements, as illustrated in Fig. 3, and then used to deter-
mine the higher-order values). The phase offset terms ϕ−2 and

ϕ�2 were taken as free parameters and scanned in discrete steps
over 2π. This yielded a sequence of trial eP matrices, and our
goal was to determine which member of the sequence yielded
the best result in terms of spectral self-consistency. For each step
in the sequence, we computed eP−1 and then found the corre-
sponding spectral islands and shifted them to their proper
center locations. Throughout the overlap regions of the �1
and�2 spectral islands, we compared the values of the spectra,
which are 2D arrays of complex numbers, on a pixel-by-pixel
basis using an objective function equal to the sum of the
squared magnitude of the pixel differences. The best match,
and hence the best self-consistency, occurred when ϕ−2 and
ϕ�2 took on values that minimized the objective function.
(The ϕ�2 terms can actually be found independently of one
another by optimizing the local spectral overlap associated with
each term by itself, meaning these two phase terms can be
found by two 1D optimizations as opposed to one 2D optimi-
zation.) A similar technique can be used to find the optimum
magnitudes A−2 and A�2 by modifying the objective function
to become the sum of the pixel intensity differences. We have
now constructed the full 5 × 5 eP matrix that accounts for sys-
tem perturbations and phase offsets, and is applicable to the
measured data. This approach can likely be extended to deal
with even higher orders (e.g., n � �3;�4), although we have
not investigated this possibility in detail.

For sequential oblique illumination, we directly measured
the individual spectral islands without aliasing. In this case,
one can simply ignore weak higher‐order illumination compo-
nents (by simply not using them); however, in contrast, with
pupil multiplexing it is important to include all diffraction or-
ders with non-negligible power in the eP matrix. Construction
of the composite superresolution spectrum can be accom-
plished in a similar manner as described above for pupil multi-
plexing; namely the process begins with the central three
islands, and the composite spectrum is stitched together by
progressively working outward to higher spatial frequencies, in-
crementally attaching spectral islands that have each been
multiplied by a complex scale factor to make them consistent
with their lower frequency neighbors.

5. EXPERIMENTAL RESULTS

A. Grating-Based Pupil Multiplexing
We constructed an experimental pupil multiplexing test system
with 1D resolution enhancement, illustrated in Fig. 4, to dem-
onstrate the technique. A He–Ne laser served as a coherent
source, and we split the beam to form a Mach–Zehnder inter-
ferometer, with the imaging system placed in one arm. The
imaging path comprised a 20-mm focal length objective lens
(Thorlabs AC080-20) combined with a 200-mm focal length
tube lens (Thorlabs LA1708), yielding 10X magnification. We
used a CMOS camera (Thorlabs DCC1545M, 1280 × 1024
pixels, 5.2 um × 5.2 um pixel size) for off-axis digital holo-
graphic detection.

For simplicity, we used a Ronchi ruling (Edmund Optics
56-602, 2500 lp/inch) as the grating in this initial work.
Because such a grating has multiple diffraction orders with
varying strengths, we implemented front-end illumination op-
tics to limit the number of transmitted orders and to balance

Fig. 3. Plots of the n � �1 matrix-element phases for the ideal
pupil multiplexing case of Eq. (10), along with a more realistic simu-
lated case based on Eq. (11) after subtracting out the interferometer
phase drift terms θk. Values for ϕ−1 and ϕ�1 are identified as vertical
shifts from the ideal case.
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their powers via spatial filtering. The underlying technique,
though, will ultimately not rely on such illumination optics.
A piezo-electric actuator (Physik Instrumente P-713 XY stage
with E-662 controller) moved the grating in a sequence of
equal-increment steps across one period. A digital hologram
was captured at each step. The sequence of holograms
was post-processed as described in Sections 3 and 4 to yield
a much broader image spectrum. Using a Ronchi grating of
98.4 lp/mm (2500 lp/inch) with an illumination system mag-
nification of 1.25 yielded an effective grating illumination fre-
quency of 78.7 lp/mm. We used a variable aperture iris to
control the imaging pupil size. A spatial filter mask in the illu-
mination path restricted the highest orders to �2 and also
approximately equalized the powers of the diffracted beams.

Figure 5(a) shows the object, which was a standard USAF
test target acquired with the pupil wide open (NA ∼ 0.18). For
subsequent experimental testing, we reduced the pupil diam-
eter to yield a coherent imaging passband cutoff frequency of
approximately 100 lp/mm (NA0 � 0.063). In this way, the
�1 orders were able to pass through the imaging system
�σ � 0.79�, but higher orders were cut off. Five image holo-
gram exposures were then recorded while stepping the grating

in five equal-increment steps (2.03 μm/step). We zero-padded
each digital hologram to become a 2048 × 2048 array and
applied a 2D FFT. Figure 5(b) shows an example of one such
hologram spectrum. We readily identified the complex field
within the imaging system pupil and extracted it for subsequent
analysis. Linear signal processing as described in the previous
section yielded five de-aliased spectral islands.

Figure 6 shows our experimental results. The left column
shows the magnitude of image spectra plotted on a log scale
(spanning six orders of magnitude) with progressively increas-
ing horizontal resolution, and the right column displays the
associated intensity images. These images correspond to a small
region of the test target as indicated by the inset box in
Fig. 5(a), which contains the smallest set of features available
on the target (Group 7, Elements 3-6). We found the images,
which are plotted on a linear scale, by inverse Fourier trans-
forming the spectra after zero padding to restore spatial sam-
pling equivalent to the camera pixel dimensions. The first pair
of results in the upper row of Figs. 6(a) and 6(b) are for the
baseline imaging system with no resolution enhancement
(NA0 � 0.063). The results show that no bar patterns were
resolved. The second row shows the case when the center three
spectral islands (0 and �1 orders) were combined, so that two
of the vertical bar patterns, Elements 3 and 4, were resolved.
The resolution gain factor was 1.8 (i.e.,NA1 � 0.114), and the
observed new cutoff frequency of 181 lp/mm (Group 7,
Element 4) agreed very well with the expected theoretical value
of NA1∕λ � 180 lp∕mm. Finally, the bottom row shows the
results using all five spectral islands. For this case, the resolution
gain factor was 2.6 (NA2 � 0.164) and all four vertical bar
patterns were clearly resolved in the reconstructed image,
consistent with the enhanced horizontal cutoff frequency of
259 lp/mm. Upon careful inspection of Fig. 6(f ), we discovered
the horizontal bar patterns appeared to become somewhat ver-
tical, albeit rather blurry. This effect is an artifact of coherent
imaging with a passband that has been elongated in one dimen-
sion, namely the horizontal axis, as shown in Fig. 6(e). Edge
ringing consequently occurs with a higher frequency in the

Fig. 4. Pupil multiplexing experimental demonstration setup.

Fig. 5. (a) High-resolution coherent image of the USAF test target object used in the pupil multiplexing setup, obtained by opening the pupil in
Fig. 4 to an NA of 0.18. The region-of-interest for subsequent testing (with the pupil stopped down to an NA of 0.063) is shown by the inset box
(Group 7, Elements 3-6), corresponding to the smallest set of features available on the target. (b) Spectral magnitude of a typical pupil-multiplexed
image hologram plotted on a log scale spanning four orders of magnitude.
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horizontal direction than in the vertical direction, thereby
creating a vertical banding artifact.

B. Sequential Oblique Illumination
To test the sequential oblique illumination method, we used a
demonstration system that implemented a version of the ap-
proach shown in Fig. 2. Instead of fabricating a custom tiled
grating, we used a simple inexpensive holographic diffraction
grating having a frequency of 500 lines/mm (Edmund Optics
54-510). We expanded the He–Ne laser beam to a diameter
of approximately 30 mm, which illuminated a 2-mm diameter
circular aperture mounted on an xy translation stage. We placed
the grating 15.0 mm in front of the object. Figure 7 shows the
illumination portion of the layout. The objective lens was a
molded asphere with a focal length of 8.0 mm (Thorlabs
A240), and the tube lens was the same 200-mm focal length
plano-convex lens used in the pupil multiplexing system
(Thorlabs LA1708), yielding an imaging path with a 25X mag-
nification. The working distance from the object plane to the
objective lens was 5.8 mm. The nominal imaging system had
NA0 � 0.42, as determined by a circular aperture stop of
3.4 mm diameter placed in the back focal plane of the objective.

We changed the object illumination angle by translating
the 2-mm aperture in front of the grating, thereby shifting the
various diffraction orders across the object. When the 2-mm
aperture is centered on the optical axis, the illumination is
normally incident (0-order beam); the �1 and �2 diffraction

Fig. 6. Experimental results for the pupil multiplexing setup shown in Fig. 4 that demonstrate resolution enhancement in the horizontal direction.
The images displayed in the right-hand column correspond to the inset box area of the test target as shown above in Fig. 5(a). (a) Image spectrum for the
conventional system (no enhancement) with NA0 � 0.063, and (b) the corresponding conventional image with none of the bar patterns being
resolved. (c) Enhanced image spectrum found using three diffracted beams (0 and �1 orders) yielding NA1 � 0.114, and (d) the corresponding
image with the two upper sets of vertical bars now resolved. (e) Enhanced image spectrum found using five diffracted beams (0,�1 and�2 orders)
yieldingNA2 � 0.164, and (f ) the corresponding image with all four sets of vertical bars now resolved. The spectra are displayed on a log-magnitude
scale spanning six orders of magnitude. The images, plotted on a linear scale, are found by inverse Fourier transforming the spectra after zero padding.

Fig. 7. Sequential oblique illumination experimental demonstration
setup.
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orders completely miss the objective lens aperture. This scheme
is rather lossy, but is straightforward to implement.

We initially oriented the grating vector along the x-axis, so
that shifting the aperture by 5.0 mm in the x-direction allowed
the −1 diffraction order to illuminate the object at an angle of
18.5 degrees (NA � 0.32), as illustrated in Fig. 8. This beam
appeared as a peak in the pupil at about 76% of cutoff. Shifting

the aperture to x � 12.25 mm positioned the −2 diffraction
order on the object with an illumination angle of 39.3 degrees
(NA � 0.63, which falls outside the pupil). We also used
similar shifts in the negative x-direction. We then rotated the
grating by 90 degrees to align with the y-axis, and repeated the
process. We recorded an image hologram for each illumination
angle, yielding nine separate exposures.

The object was a test target comprising a pattern of concen-
tric squares having a spatial frequency of 1,000 lines/mm, as
shown in Fig. 9(a). Figure 9(b) shows the conventional inten-
sity image of this test target. The horizontal and vertical line
patterns, which are beyond the nominal coherent imaging
system cutoff frequency of 664 cycles/mm (NA0 � 0.42 at
λ � 633 nm), are clearly not resolved. To direct the missing
test pattern spectral content through the pupil, off-axis illumi-
nation in both the x- and y-directions, provided by grating
diffraction as described above, is needed. When this is done,
and the various spectral islands are combined using the ap-
proach outlined in Section 4, the resulting synthetic aperture
spectrum can be reconstructed from the nine illumination
angles, as shown in the log-magnitude plot of Fig. 9(c). As a
consequence, the square test pattern becomes visible in the
super-resolved image shown in Fig. 9(d). In this demonstration,
the cutoff frequency along the x and y axes is extended to

Fig. 8. Off-axis illumination using the −1 diffraction order of the
grating. Shifting the aperture allows the other diffraction orders to
provide illumination.

Fig. 9. (a) Test target object having a 1000 lp/mm square pattern, used to assess coherent superresolution imaging via the sequential oblique
illumination method. (b) Experimental image of the target formed by conventional coherent imaging with NA0 � 0.42, corresponding to a cutoff
frequency of 664 cycles/mm (at 633 nm). The test pattern is clearly not resolved. (c) Experimentally reconstructed image spectrum magnitude (log
scale) using nine exposures corresponding to the 0-order beam combined with the �1 and �2 orders along the x- and y-axis. The grating was first
oriented along the x-axis, then rotated by ninety degrees to align with the y-axis. (d) Experimental superresolution image of the target formed by an
inverse Fourier transform of the spectrum shown in (c) after zero padding to obtain spatial sampling equivalent to the camera pixel dimensions. The
new cutoff frequency (along the x and y directions) is approximately 1640 cycles/mm, and the test pattern with a frequency of 1000 lp/mm is now
resolved.
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approximately 1,640 cycles/mm, providing a resolution gain
factor of 2.5.

6. CONCLUSION

We have presented two methods to extend the resolution of a
coherent optical imaging system. Both methods incorporate a
diffraction grating to route high-frequency information that
would otherwise be lost through the imaging system pupil.
Digital holographic detection provides the optical field ampli-
tude in the image plane. In one case, we placed the grating in
near contact with the object (or it could be imaged onto the
object) and it was moved over one grating period in equal-
increment steps. Spectral aliasing was present, but linear signal
processing, similar to that used in incoherent structured illumi-
nation, allowed us to recover the spectral islands. In the second
case, we placed the grating some distance in front of the object,
and a collimated input beam was translated sequentially across
the grating to specific locations, thereby illuminating the object
with a set of off-axis diffracted beams. For demonstration
purposes we used a small aperture that was translated across
a large diameter collimated beam; however, more efficient beam
translating schemes are possible [21]. The various spectral
islands were then directly measured without aliasing. We have
discussed the details associated with stitching the spectral
islands together to form a larger synthetic aperture.

Our experiments compared two techniques: pupil multi-
plexing and sequential oblique illumination. For pupil multi-
plexing, the grating must be moved in increments that are
less than or equal to the enhanced image resolution. This re-
quirement is not a significant limitation since modern piezo
stages offer nanometer resolution. Perhaps of more concern
is the impact of the camera’s dynamic range. With sequential
oblique illumination, the camera gain can be adjusted when
recording the weaker dark-field image holograms associated
with higher-order illumination. For pupil multiplexing, how-
ever, the camera gain must be set to accommodate the full
range of image intensity, so the SNR associated with the weaker
spectral components of the image could suffer more degrada-
tion. Finally, we note that when applying the pupil multiplex-
ing approach to a well-behaved optical path, the phases of the
higher-order ePmatrix elements can likely be estimated from the
directly measured n � 0;�1 elements, which avoids the use of
the more computationally intensive spectral overlap technique.
In contrast, the higher-order beams in the sequential illumina-
tion scheme may not have a known phase relationship to the
n � 0;�1 beams, so the spectral overlap technique becomes
essential. Both schemes are most useful when the NA of the
objective lens is small, and the goal is to increase the effective
NA to something closer to unity while preserving the wider
field of view associated with a lower NA.

Regarding possible modifications, digital phase-shifting
holography could be used rather than an offset reference
wave. This approach would allow more efficient use of camera
pixels for a wider measured field of view (e.g., by using a lower
magnification with the same camera sensor), but would also
require more exposures by at least a factor of three. In addition,
the methods described can in principle use phase retrieval
algorithms for each detected image intensity to eliminate the

need for holographic detection. Such an approach, known
as Fourier ptychography, replaces holographic detection with
simpler detection of the low-resolution image intensity distri-
butions obtained for each of a sequence of illumination angles,
and uses iterative computational techniques to obtain a high-
resolution image [29].

In summary, grating-based techniques are useful to generate
a set of off-axis illumination beams over a wide range of inci-
dent angles. These beams are linearly separated in spatial fre-
quency with a high degree of precision, which makes them well
suited for implementation of coherent superresolution imaging.
Other approaches that involve high-NA lenses in the illumina-
tion path are certainly possible, but it may be more prudent
to simply use such lenses in the imaging path without adding
the complexity of superresolution. However, if the goal is to
construct an entire system using low-cost, low-NA lenses along
with other simple optical elements, then the methods described
here offer good options. More specifically, it is possible to image
non-fluorescent objects with a large working distance and wide
field of view, while employing grating-based superresolution to
better observe the fine structure in the images.
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