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ABSTRACT: The scanning electron microscope (SEM) is an
electron microscope that produces an image of a sample by
scanning it with a focused beam of electrons. The electrons
interact with the atoms in the sample, which emit secondary
electrons that contain information about the surface top-
ography and composition. The sample is scanned by the
electron beam point by point, until an image of the surface is
formed. Since its invention in 1942, the capabilities of SEMs
have become paramount in the discovery and understanding of
the nanometer world, and today it is extensively used for both
research and in industry. In principle, SEMs can achieve resolution better than one nanometer. However, for many applications,
working at subnanometer resolution implies an exceedingly large number of scanning points. For exactly this reason, the SEM
diagnostics of microelectronic chips is performed either at high resolution (HR) over a small area or at low resolution (LR) while
capturing a larger portion of the chip. Here, we employ sparse coding and dictionary learning to algorithmically enhance low-
resolution SEM images of microelectronic chipsup to the level of the HR images acquired by slow SEM scans, while
considerably reducing the noise. Our methodology consists of two steps: an offline stage of learning a joint dictionary from a
sequence of LR and HR images of the same region in the chip, followed by a fast-online super-resolution step where the
resolution of a new LR image is enhanced. We provide several examples with typical chips used in the microelectronics industry,
as well as a statistical study on arbitrary images with characteristic structural features. Conceptually, our method works well when
the images have similar characteristics, as microelectronics chips do. This work demonstrates that employing sparsity concepts
can greatly improve the performance of SEM, thereby considerably increasing the scanning throughput without compromising
on analysis quality and resolution.
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The scanning electron microscope (SEM) is one of the
most versatile examination and analysis tools for solid

objects at high (subnanometer) resolutions.1 The SEM works
by launching electrons at a specimen by a focused electron
beam, and then examining the emission of secondary electrons
from the sample. The secondary electrons contain topographic
and compositional information about the surface. Their flux is
recorded by scanning the sample point by point. A full image is
then formed by stitching together the scanning results. Since
the first prototypes of SEM microscopes,2,3 and the first
commercial SEM scanner,4 many improvements have been
introduced to modern SEMs. Scanners today have faster
acquisition and larger magnification, and they can store images
digitally, opening a new path for real-time digital processing. In
addition, modern SEMs allow to image the surface of
specimens from several perspectives simultaneously (where
each perspective translates into a different viewing angle of the
sample). This ability of the SEM to generate surface images at
subnanometer resolutions has been one of the key factors in the
rapid development of nanotechnology. In particular, it had a
tremendous impact on the microchip industry, where it aided
improving the production process at an exponential rate in
accordance with Moore’s law. Nowadays, microchip production

lines heavily rely on SEM scanners to monitor and analyze the
manufacturing process, that is, the wafer is scanned in between
various processing steps, detecting defects, and therefore,
increasing yield.
Two main parameters control SEM imaging: scanning

velocity and resolution. Naturally, fast scanning leads to
reduced quality and added noise, while resolution determines
the physical size of a pixel. Both parameters impact acquisition
time. As microchip dimensions are reduced in accordance with
Moore’s law, the complexity of the fabrication process
increases. This results in a need to scan with ever smaller
pixel sizes and over a larger number of locations on the chip, in
order to detect and classify defects and monitor the process.
Two common modes of SEM operation are scanning a large
field of view, employing a fast acquisition time yet low
resolution (LR), or slowly scanning a small field of view,
achieving a higher resolution (HR) and better image quality. An
example of both scanning modes for three different
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perspectives can be seen in Figure 1. HR scans are considered
costly since their acquisition time is lengthy and their field of
view is small. Scanning the same area in HR mode takes about
2 orders of magnitude longer. On the other hand, high
resolution is often a necessity in the semiconductor
manufacturing industry, as the ever-increasing demand for
faster and more energy efficient microchips is shifting the
industry toward smaller structures and more complex
manufacturing processes, pushing current SEM technology to

its limit. Consequently, there is great interest in scanning large
areas quickly, while maintaining high resolution.
These goals, which are clearly conflicting in current SEM

technology, inspired our approach of finding a solution that
breaks the immediate link between the inherent physical
scanning resolution of the SEM and the resolution of the
output image. Here, we present an algorithmic method
operating on a low-resolution SEM image obtained in a fast
scan, to enhance its resolution and image quality up to the level
of the HR image obtained in a slow scan using the same system.

Figure 1. SEM microchip images in low, high, and super resolution. Top row: scanned low resolution (LR) images (20 μm × 20 μm), taken from
left (a), right (b), and top (c) perspectives. The yellow square shows the region of interest for enhancement with reduced field-of-view (5 μm × 5
μm). The second row (d−f) shows the corresponding regions of interest from the LR images, enlarged. The third row (g−i) shows the images
acquired using the SEM high resolution (HR) mode, scanning the same areas chosen by the yellow squares above. The bottom row (j−l) depicts the
enhanced super-resolution (SR) images recovered from their LR counterparts (second row). The yellow lines displayed in (e), (h), and (k) are used
for the line cuts analyzed in Figure 3.
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Our approach consists of two steps: an offline stage of learning
a joint dictionary from a sequence of LR and HR images of the
same region in the chip, followed by a fast-online super-
resolution (SR) step where the resolution of a new LR image is
enhanced. The SR process can be simply described as changing
the mathematical representation over which the LR image is
spanned from a LR basis to a suitable HR one. Both steps are
based on concepts of sparsity: the fact that SEM images have a
characteristic structure, and hence they can be represented
compactly in some mathematical basis that is learned in the first
(dictionary learning) step.
The concept of sparsity lies at the heart of our approach and

has been used extensively in signal processing, statistics,
computer vision, and more. According to sparse approximation
theory,5,6 signals can often be faithfully represented as a linear
combination of just a few elements from a given basis, that is, a
dictionary. This observation is true for many classes of natural
images, and in principle for microchip SEM images, as we
demonstrate here. Sparse models underlie many audio and
image compression (MP3, JPEG, JPEG2000) methods, as well
as many state-of-the-art image processing techniques. In
general, assuming a sparse representation allows isolating the
important information out of a high-dimensional signal, while
removing uninformative noise. In the past decade, the field of
compressed sensing (CS)7−10 has emerged. CS enables the
recovery of signals from partial and noisy measurements, by
exploiting sparsity. The mathematical framework provided by
CS assures that a sparse signal can be exactly recovered from
just a small set of linear measurements,7 given a known
dictionary and a known measurement (sensing) system.
Relying on these principles, the concepts of sparsity and CS
have been used for a variety of applications, ranging from sub-
Nyquist sampling11,12 with applications in radar13,14 and
ultrasound,15−17 to super-resolution imaging,18,19 phase retriev-
al,20−22 ankylography,23 mapping the coherence function of
light,24 holography,25 single pixel camera,26 ghost imaging,27

and even quantum state tomography.28−31 These sparsity-based
ideas inspired our current work.
The task of building a dictionary over which a family of

signals, sharing the same structural features, is sparsely
represented was extensively studied in recent years and is
referred to in the literature as dictionary learning32 (DL). The
first step of any DL method is obtaining a large enough training
set of measurements from the same family of signals, in our
case LR and HR patches of SEM microchip images. Choosing a
complete and representative training set allows DL algorithms
to construct a compact dictionary which contains only the most
basic building blocks that compose the signal family. A correctly
designed dictionary can then approximate the structure of
signals from within the family well.
The DL step is the most important and complex step in our

methodology. One of the reasons for the success of our
approach, is that we construct dictionaries that contain paired
elements of both high and low resolution (the elements are
called “atoms” in the context of DL). This specification allows
each dictionary atom to naturally map a LR patch to its HR
counterpart. In addition, we leverage different perspectives
acquired simultaneously by the SEM, as will be explained
below.
In our model, each dictionary atom is composed of a LR

patch concatenated with a HR twin patch. Choosing a patch
size that is too small would result in dictionary atoms that
cannot contain the unique inherent structure of the microchip,

while specifying a large patch size increases the computational
burden. Hence, the patch size should be chosen according to
the data at hand (see more details in the Supporting
Information). For our data, we use a patch size of 23 × 23
pixels. The next design consideration is to determine the size of
the dictionary, namely, the number of atoms in it. In our
specific implementation, the number of dictionary elements is
defined as 3−5 times the number of coefficients in each atom
(which in our case is the patch size 232 = 529). Thus, there is a
built-in redundancy in the dictionary, since it has more
elements than the intrinsic degrees of freedom. This is needed
to ensure the successful description of each microchip patch as
a sparse combination of the dictionary atoms.
Once the desired dimensions of the dictionary are set, the

next step is to obtain and organize the training data for DL. In
our tests, we find that a relatively small set comprising of just
several duos of scanned images of both low and high resolution
(5 in our case), acquired from the exact same area in the
microchip, suffices. From these pairs of LR and HR images we
can extract a multitude of patches of appropriate sizes. The
patches are simultaneously extracted and stored as part of the
training set. The extraction process is randomly performed
from the available LR and HR training images, followed by a
test for each of the extracted patch duos that ensures it contains
a significant part of an actual microchip pattern. The testing
prevents us from including patches that contain mostly
background noise into the dictionary training set. Further
details on the patch selection and pairing process are provided
in the Supporting Information. The training set should be
much larger than the number of atoms in the dictionary,
roughly a hundred times bigger. In our case the dictionary is
composed of 2048 atoms, while the training set consists of
250,000 samples. This ensures a thorough learning stage, which
yields a robust dictionary, able to faithfully describe many
possible microchip features.
The collected training data is the input to the DL algorithm.

In what follows, we use a modified version of the K-SVD32,33

method, yet we emphasize that any DL technique could be
adapted to this task. Our algorithm uses an iterative approach
to find an approximate solution to the following nonconvex
minimization problem:32
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Here, ∈ ×T n NT is a constant matrix containing a training
sample in each of its columns, with n pixels in each sample and
an overall NT number of samples. The matrix ′ ∈ ×D n ND

represents the dictionary where each of its ND columns is an
atom, and ′ ∈ ×X N ND T is a variable sparse matrix, containing
the representation coefficients that span T over the dictionary.
The zero-norm function ∥·∥0 counts the number of nonzero
elements in its argument. The constraint ∥xj∥0 < k0 enforces
that every single training sample from T is described by no
more than k0 atoms from the dictionary (further details on the
selection of k0 are provided in the Supporting Information).
Solving eq 1 with the K-SVD algorithm yields two output
arguments. The first is the dictionary D, containing the atoms
that sparsely represent the training set T. Once the dictionary is
obtained, the algorithm computes the sparse representation X,
such that T ≈ DX.
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We adapt eq 1 to our goals, by expanding the training set and
dictionaries into concatenated matching pairs of low and high
resolution, namely, solving
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From here on, the subindex h denotes an HR term, and the
subindex refers to a LR term. The training set

= ∈ ×⎜ ⎟
⎛
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⎞
⎠ T T

T
h n N2 T , used as input for the DL process in

eq 2, consists of concatenated and paired LR and HR elements,

thus ensuring that the trained dictionaries ∈ ×D n ND and

∈ ×Dh
n ND are fully synchronized and paired as well. An

example for the pairing established between the atoms within
each dictionary and an image duo used in the creation of the
training set are shown in Figure 2 and will be further explained
below. The accurate mapping between the dictionaries is an
essential requirement that paves the way towards the next step,
the actual SR reconstruction.

Figure 2. Dictionary atoms mapping. The top and second rows (a−f) show the LR and HR SEM images in the three perspectives, used to assemble
the dictionary training set. The two bottom rows display subsets of nine ordered and paired atoms from each trained dictionary. The atoms in the LR
trained dictionaries (g−i) are clearly mapped to the HR atoms in (j−l). This mapping connects every LR feature to a HR one and acts as a key
enabler for the super resolution methodology.
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After a dictionary is learned, it is used to perform SR. This
stage consists of taking a new LR image acquired by the SEM
(but was not part of the training set used to construct the
dictionary) and enhancing its resolution by relying on the
feature mapping established between low and high-resolution
samples in the DL stage.
The SR reconstruction process requires no prior information,

apart from the dictionary, constructed in the learning stage.
This process begins by taking the LR image and interpolating it
to the HR grid as seen in Figure 1, using standard interpolation
techniques (see details in the Supporting Information).
Although the interpolated LR image resides on the same grid
as the HR image, its spectral content has an inherent cutoff
frequency, determined by the ratio between low and high
resolutions. Next, the interpolated LR image is divided into an
ordered set of patches. Each LR patch is stored in a matrix

∈ ×Y n N , where n is the number of pixels in each patch, and
N is the overall number of patches that compose the full LR
image. After decomposing the image, we solve the following
minimization problem for obtaining the sparse representation
X* over the dictionary D :

* = || − ||

|| || < ∀
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The information encompassed in X* is now used to span the
microchip at a higher resolution by using it in the overcomplete
basis expansion of the HR dictionary via

̂ = *Y D Xh h (4)

This step has low computational complexity, since both the
dictionary size is small and only a few of the coefficients in each
column of X* are different from zero. After calculating the
matrix Ŷh, the patches contained in it are stitched together to
form the final SR image.
Example sets of LR, HR, and SR images are displayed in

Figure 1. As shown there, the SR images are sharper and much
cleaner, as a result of completing the missing spectral
information and removal of the unwanted noise. Enhancing
the resolution of SEM images is essentially extrapolating the
unknown high-frequencies missing from the LR images, while
removing much of the noise introduced during the acquisition.
That is, what we demonstrate here is sparsity-based bandwidth
extrapolation, based on dictionary learning.
In our experiments, we solve eq 3 using a fast greedy

algorithm, specifically a fast variation of orthogonal matching
pursuit (OMP),34,35 although any other sparse recovery
technique can be used as well. The OMP algorithm detects,
for each patch from the LR image, the most correlated
dictionary atoms from within the LR dictionary D . It then finds
the best representation for the patch using just those few
selected atoms. Here, usually only 3−5 atoms are needed to
faithfully describe the information contained in each patch. The
OMP algorithm is fast by nature since it is a greedy algorithm:
in each step OMP adds a single element to every column of X,
which is the single best atom to sparsely describe a given patch.
If the difference between the sparse combination of the already
found atoms and the original patch does not meet a
predetermined tolerance (dependent on the noise level of the
LR image), another atom is added to minimize the difference.
Consequently, the number of nonzero elements in each column
of X is incrementally growing, one by one in each iteration of

the OMP, until either the tolerance is achieved, or the limit of
k0 nonzero terms is reached. For computational efficiency, we
solve eq 3 by using the BatchOMP33 extension, which solves
for all the columns of X in parallel. The sparse representation
stored in the matrix X* now contains all of the intrinsic
information on the scanned sample and allows spanning it at
higher resolution, while removing much of the noise.
The formulation in eqs 3 and 4 considers just a single

perspective, acquired by the SEM in the LR mode, to recover
the SR image. We can further improve performance by
exploiting the fact that all different perspectives are acquired
simultaneously from the exact same area of the scanned
specimen. For generalizing the step of DL to multiple
perspectives, we would like to train dictionaries for both low
and high resolution for every available perspective (three
perspectives in our case), for a total of six paired dictionaries.
To produce these dictionaries, paired training samples are
simultaneously extracted for all the perspectives and

resolutions, generating the training sets =
⎛
⎝⎜

⎞
⎠⎟T T

T
i

i

h
i , for each

ith perspective (i = 1, 2, 3). It is imperative that the training
samples are extracted from the same respective areas for all of
the perspectives, so that all of the sets are matched, leading to
paired dictionaries. The DL process is performed again using
the K-SVD method, but now solving a bigger concatenated DL
problem that takes into account all of the available information
simultaneously:
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i are the high and low-resolution dictionaries

for the ith persepective. Equation 5 guarantees that the
dictionaries for all perspectives and resolutions are paired, as
seen in Figure 2.
The sparse pursuit and reconstruction steps are also

generalized to account for the information shared between
the different perspectives. By modifying eq 3 the sparse
representation that spans all perspectives is obtained at once:
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where now * ∈ ×X N N3 3D . The reconstruction relies on the
combined sparse representation X*, via
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The three different perspectives are taken at the exact same
time and location, so that the resulting measurements have the
same sparse representation X* over different dictionaries, as
implied by eq 6. Joint processing improves the signal-to-noise
ratio by increasing the number of equations. In addition, since
noise from different perspectives is uncorrelated, errors
resulting from outliers in a single perspective are mitigated, as
will be further discussed below, and illustrated in Figure 3.
Our experimental data is produced by an Applied Materials

SEMVision G6 Semiconductor Defect Review (DR) tool. The
resolution of the SEMVision G6 is 1.4 nm, the best resolution
of any DR tool available in the industry to date. The images are
of various semiconductor microchip samples whose features
range between sizes of 28 and 10 nm. Respectively, the field of
view of all LR images is between 20 and 2 μm, while that of the
HR images is 5 to 0.5 μm. HR scanning takes significantly
longer than LR scanning, because the scan is performed over a
significantly finer grid, involving more measurements for
imaging the same area. In addition, for producing a high-
quality HR scan, each grid point is scanned multiple times, and
the result is averaged to increase SNR. Furthermore, in the
SEM setup we use, the scanning beam width and noise statistics
are considered the same for LR and HR scans.
Typical results of recovering HR SEM images from their LR

versions are displayed in Figure 1. The top row depicts the
entire field of view (20 μm × 20 μm) of low-resolution scans

acquired simultaneously from three perspectives of the same
microchip. The second, third, and fourth rows depict a
magnified region (×2.5) of a narrower field of view (5 μm ×
5 μm), marked by the yellow square in the top row. The goal is
to enhance the resolution of these LR images to the level of
their respective HR images, while removing the noise.
We next test our methodology on real SEM data. The first

stage is to construct six dictionaries, one for each perspective
and resolution, using the sparsity-based methodology described
by eq 5. The dictionaries are constructed from a training set of
just five images, acquired from the same SEM at three
perspectives. Examples for images used in the DL stage are
depicted in the top rows of Figure 2. Importantly, the images
used for the training stage are different than those we use later
for enhancing resolution, although they are acquired in the
same SEM and from the same perspectives as the data whose
resolution we enhance. A small subset of ordered atoms from
each dictionary is displayed in the two bottom rows of Figure 2,
where the pairing (LR and HR) between the atoms of different
dictionaries is clearly visible, emphasizing the established
mapping between the elements of the three pairs of
dictionaries.
After completing the training stage, we apply our method to

LR images newly acquired by the SEM and enhance their
resolution by first applying eq 6 and then eq 7. Figure 1 shows
an example of one LR image at the three perspectives (second

Figure 3. Performance analysis. The top row shows the values of the yellow line cuts from Figure 1, for the three images (LR, SR, and HR). The SR
line cut is an almost perfect reconstruction of the HR line, except for considerable reduction of noise. The LR cut contains severe errors (e.g., the
peaks at pixels 25 and 125) that are removed by our method, since the algorithm uses the shared information from the different perspectives
simultaneously to counter gross errors inflicted by high noise. The middle row displays the 1D discrete Fourier transform of the line cuts, with the
maximal spatial frequency of the LR image marked by a vertical bold line, emphasizing that 60% of the spectral content of the HR image is
extrapolated. The bottom row shows the histograms of the whole respective images from which the line cuts are taken, highlighting that the statistical
nature of the SR image is well approximated. The horizontal axis depicts the gray intensity values, from black to white, of the pixels in the image,
while the vertical axis displays the number of pixels in each intensity bin (divided into 512 gray level bins).
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row) and their HR counterparts (third row). The respective SR
images, obtained by our technique, are shown in the bottom
row. When comparing the enhanced SR images (bottom row)
to the LR images (second row), it is clear that the overall
sharpness of the contours and features is considerably
improved, while the noise is greatly reduced. Comparing the
SR (bottom row) to the HR images (third row) reveals that the
details and edges are accurately reconstructed for all three
perspectives.
It is important to examine the performance of our technique

in a quantitative manner. To this end, we examine cross
sections (line cuts) of the LR, HR, and SR images, taken along
the yellow lines shown in the middle column of Figure 1. The
line cuts are shown in Figure 3. The top panel displays the
values of the pixels along the cross-section line for each image.
Clearly, the SR cross section (red) is very similar to the HR
one, preserving all its features, while removing small variances
that occur due to noise in the HR images. That is, apart from
accurately reconstructing the HR images, the SR line
demonstrates lower noise variance even when compared to
the HR images. This fact is not surprising, since the sparsity
constraint we enforce during the SR enhancement fundamen-
tally removes noise in a highly efficient manner. Notably, even
large differences, between the LR line and HR one, are
mitigated almost entirely from the SR cross section. For
example, the large peak near pixel 125 in the LR cross-section is
absent in the SR recovery, and indeed that peak is absent in the
HR image, exemplifying the effectiveness of our technique. In
other words, our reconstruction can remove false information
that appears in the LR images, even when this information
contains peaks of values twice as large as the true (HR) values.
This feature has critical impact on the SR reconstruction:
without itthe SR image would often contain errors. This is a
result of the fact that the recovery process considers the mutual
information from all perspectives at once. Therefore, a
systematic error present in a single perspective of the LR
image is removed by taking into account valid information from
the other perspectives.
The spectral contents of the cross-section lines are presented

in the middle row of Figure 3, showing that the high spatial
frequencies present in the HR image are extrapolated in the SR
image, well beyond the cutoff frequency present in the LR
spectrum (marked by a solid vertical line). This shows that the
algorithm extrapolates 60 percent of the spectral content of the
HR image, effectively expanding the spatial spectrum of the LR
image by a factor of two and a half. The bottom row of Figure 3
shows the histograms of LR and HR images taken from the
same area and compares them to the histogram of the SR
image, reconstructed from the LR image. Clearly, the
histograms of the LR and HR images have very different
statistical nature; nonetheless, the histogram of the SR image is
very similar to the HR image.
To further assess the performance of our algorithm, we

compare the SR enhanced images to the HR ones, noting that
the SR images used for the fidelity test are reconstructed from
new LR images. We use a data set of 30 images for the fidelity
test, containing various patterns and structures. Unfortunately,
the specific test images cannot be displayed here, due to
confidentiality commitments to their respective owners, as
these are electronic chips used by commercial companies.
What we show here (Figure 4) is the outcome of the fidelity

tests, which is meant to assess the success of our methodology.
To that end, we note that both the LR images and their HR

counterparts were not included in the training set used to
construct the dictionary. Rather, the paired images are new,
obtained in the same machine under conditions similar to those
used to obtain the training set. For evaluating our methodology,
we consider the HR images as the “ground truth”, although
they do contain some inherent measurement noise, which
naturally impedes our comparison. The evaluation is performed
using the PSNR metric, calculated as

= −
|| ̂ − ||̂

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟Y Y

Y Y

nN
PSNR( , ) 10 logh h

h h F
10

2

(8)

The performance scores of the SR enhanced set of images and
their reference HR versions are displayed in Figure 4, as blue
bars. For comparison, the PSNR values are calculated between
the LR and HR images, and their average is shown for each
perspective by a red bar. An improvement of 10−15 dB is
consistently gained across all images and perspectives tested.
The values achieved of approximately 30 dB, indicate very good
reconstruction quality, especially since the reference HR images
suffer from considerable measurement noise as well.
Before closing, we comment briefly on other SR approaches.

Classical resolution enhancement methods36−38 relied on the
prior acquisition of several LR images, each with subpixel shifts
from one another, to generate one SR image. Modern methods,
as well as our methodology, construct an SR image from just a
single LR sample. While our solution is inspired by
techniques39−42 that combine learned dictionaries with sparse
representations, nowadays, there are many alternative methods
for single-image SR. Among these are approaches that
incorporate deep neural networks,43 internal patch recur-
rence,44,45 super-resolution forests,46,47 and more, that were
shown to produce successful results for natural images. Here,
our work demonstrates that tailoring a modern signal
processing technique to the SEM setup can improve perform-
ance to a great extent. It is plausible that combining concepts

Figure 4. Algorithm fidelity testing. The SR algorithm is tested on 30
images that were not part of the training set used for constructing the
dictionary. All the LR and HR data is taken from real SEM
experiments (not simulated data). The performance is calculated using
the peak signal-to-noise ratio (PSNR), using eq 8, and the standard
deviation of the PSNR is marked by the error bar. Both the LR and SR
images are compared with the HR images acting as reference. A
notable improvement of 10−15 dB is achieved when comparing the
SR images to their LR counterparts. Furthermore, the results show
that performance is consistent across all perspectives throughout the
image set, indicating the robustness of our methodology.
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from other modern SR methods, as those mentioned above,
may further improve the results for SEM imaging.
In summary, this work is part of an ongoing attempt to

incorporate cutting-edge technologies from the domain of
signal processing into the realm of applied physics and optics in
particular. We proposed a simple and fast method that
produces an enhanced HR image from a single noisy LR
SEM scan. Our method achieves unprecedented results in
terms of reconstruction quality of SEM images while operating
under high noise levels and achieving up to ×4 resolution
enhancement in our tests (see Supporting Information for an
example). The fast-online reconstruction step accurately
recovers spectral information well beyond the cutoff frequency
of the image. Our approach relies on two main foundations.
First, the exploitation of the unique structural properties of the
scanned samples, specifically finding the sparse representation
of the samples over a redundant mathematical basis, learned
offline from available training data. We stress that the trained
dictionaries assume no prior knowledge on the samples. Second,
information from several acquired perspectives is exploited to
achieve good reconstruction results, even when gross errors in
the measured data are present. We show that previously lost
high frequency spectral components of the LR images are
extrapolated and reconstructed and that consistent results are
achieved throughout our testing set, demonstrating robustness
of our method.
At the core of our methodology we rely on a single

assumption and one necessary condition. The assumption is
that the images are sparse over some mathematical
representation. This assumption holds in a variety of image
modalities, including natural images observed at any scale, as
well as manmade fabricated samples. The necessary condition is
having an appropriate and representative training set, to train
the dictionaries. The solution proposed can easily be adopted
to other modalities with only minor adjustments. We believe
that our method can impact electron microscopy imaging,
aiding both researchers and industry alike to faithfully produce
high-resolution images from low-resolution scans.
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