
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Appl. Comput. Harmon. Anal. 33 (2012) 309–314

Contents lists available at SciVerse ScienceDirect

Applied and Computational Harmonic Analysis

www.elsevier.com/locate/acha

Letter to the Editor

Uniqueness conditions for low-rank matrix recovery

Y.C. Eldar a, D. Needell b,∗, Y. Plan c

a Department of Electrical Engineering, Technion – Israel Institute of Technology, Haifa, Israel
b Department of Mathematics and Computer Science, Claremont McKenna College, 850 Columbia Ave, Claremont, CA, United States
c Department of Mathematics, 530 Church Street, Ann Arbor, MI, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 July 2011
Accepted 12 April 2012
Available online 17 April 2012
Communicated by Charles K. Chui

Keywords:
Rank minimization
Nuclear-norm minimization
Low-rank matrix recovery
Random matrices
Compressed sensing

Low-rank matrix recovery addresses the problem of recovering an unknown low-rank
matrix from few linear measurements. There has been a large influx of literature deriving
conditions under which certain tractable methods will succeed in recovery, demonstrating
that m � Cnr Gaussian measurements are often sufficient to recover any rank-r n × n
matrix. In this paper we address the theoretical question of how many measurements
are needed via any method whatsoever — tractable or not. We show that for a family
of random measurement ensembles, m � 4nr − 4r2 and m � 2nr − r2 + 1 measurements
are sufficient to guarantee strong recovery and weak recovery, respectively, by rank
minimization. These results give a benchmark to which we may compare the efficacy of
tractable methods such as nuclear-norm minimization.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Low-rank matrix recovery is a burgeoning topic with various applications including collaborative filtering, machine learn-
ing, control theory, quantum state tomography, and triangulation from incomplete distance measurements. Many recovery
programs have been proposed, notably nuclear-norm minimization, with impressive performance in theory and practice
(see e.g. [1,3,4,6,11,8,10,17,7,2]). For sufficiently random measurements (e.g., Gaussian), a generic result states that Cnr lin-
ear measurements are sufficient to recover any rank-r matrix; this holds for a few different methods of recovery (see e.g.,
[8,2]).

However, in order to precisely ascertain the strength of these different methods, it is important to compare them to a
fundamental benchmark. In this paper, we provide this benchmark by analyzing the conditions under which the original
low-rank matrix has the lowest rank over all matrices that fit the data.

1.1. Problem setup

We would like to recover a low-rank matrix M from few of its linear measurements, A(M) ∈ Rm . The measurement
operator is of the form A : Rn×n → Rm and acts on a matrix M by (A(M))i = 〈Ai, M〉 where Ai are n × n matrices and 〈·,·〉
denotes the usual matrix inner product:

〈A, B〉 def= trace
(

A∗B
)
.
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We take our estimate of X to be the matrix which has minimum rank and satisfies the data constraints,

X̂ = arg min
X

rank(X) such that A(X) =A(M). (1.1)

This is simply a uniqueness problem; when is M the unique low-rank matrix having these measurements? However, the
problem (1.1) is intractable in general.

For reference, we also describe the standard tractable relaxation of this approach, called nuclear-norm minimization. We
thus consider the minimization problem

X̂ = arg min
X

‖X‖∗ such that A(X) =A(M), (1.2)

where ‖ · ‖∗ denotes the nuclear norm which is defined by

‖X‖∗ = trace
(√

X∗ X
) =

n∑
i=1

σi .

The program (1.2) can be cast as a semidefinite program (SDP) and is therefore numerically feasible.
A question that does not appear to have been previously addressed is, how many measurements suffice to recover rank-r

matrices via the method (1.1)? This question has remained unresolved when allowing the matrix entries to have unbounded
real or complex entries. (In the setting of finite fields, the question has been well addressed, see [18].) Answering this
question would not only fill a gap in the literature but also give theoretical bounds on the number of measurements
required for low-rank matrix recovery against which those for problem (1.2) may be compared.

2. Uniqueness results

Next we summarize our main results.
Since M − M ′ is at most rank-2r when M and M ′ are each rank-r, to guarantee that (1.1) reconstructs all rank-r matrices,

a necessary and sufficient condition is that there are no rank-2r (or less) matrices in the null space of A. Thus we examine
the following subset of Rn×n:

R′ = {
X ∈ Rn×n: rank(X) = 2r

}
. (2.1)

It is well known that R′ is a manifold with 4nr − 4r2 dimensions. Is m � 4nr − 4r2 sufficient to guarantee uniform
recovery? We will show that the answer is yes! This is summarized by the following theorem.

Below, we call A a Gaussian operator if each Ai is independent with i.i.d. Gaussian entries.

Theorem 2.1 (Strong recovery). Let r � n/2. When A : Rn×n → Rm is a Gaussian operator with m � 4nr − 4r2 , problem (1.1) recovers
all rank-r matrices with probability 1.

Remarks. 1. We prove this theorem via a more general result in Theorem 3.1 which holds for any continuously differentiable
manifold over the set of real matrices. Theorem 2.1 will follow as a consequence.

2. We consider real-valued matrices but our method can easily be extended to complex-valued matrices as well.
3. To be clear, strong recovery (or universal recovery) requires that one randomly picked measurement ensemble can be

successfully used to recover every matrix with rank less than or equal to r.

Our proof technique also allows us to provide a bound on the number of measurements required for weak recovery.
Recall that in this framework we are interested in recovering one fixed matrix M with high probability. Since M is fixed, we
require only that for all rank-r matrices X 
= M that X − M is not in the null space of A. The set of all rank-r matrices
is a manifold of dimension 2nr − r2. The following result shows that for weak recovery of low-rank matrices we require a
number of measurements at least one more than the dimension of the manifold of all rank-r matrices.

Theorem 2.2 (Weak recovery). Fix a rank-r n ×n real matrix M. When A : Rn×n → Rm is a Gaussian operator with m � 2nr − r2 + 1,
problem (1.1) recovers the matrix M with probability 1.

As we will see in Section 4, this theorem allows the comparison of rank minimization to the theoretical and empirical
results of nuclear-norm minimization in the Gaussian setting.

We prove these results in the next section. In Section 4 we discuss the tightness of these bounds and compare them
with results for nuclear-norm minimization.
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3. General results and proofs

To prove our main results, Theorems 2.1 and 2.2, we utilize a more general result about arbitrary manifolds of real
matrices. For convenience we will restrict ourselves to the Banach space of real matrices. Below, a continuously dif-
ferentiable manifold is a manifold that may be equipped with a class of atlases having transition maps which are all
C1-diffeomorphisms.

Theorem 3.1. Let R be a d-dimensional continuously differentiable manifold over the set of n × n real matrices. Suppose we take
m � d + 1 measurements of the form 〈Ai, X〉 for X ∈ R, and define the operator A : R → Rm which takes these measurements,
A : X �→ y with yi = 〈Ai, X〉. Assume that there exists a constant C = C(n) such that P(|〈Ai, X〉| < ε) < Cε for every X with
‖X‖F = 1. Further assume that for each X 
= 0 that the random variables {〈Ai, X〉} are independent. Then with probability 1,

Null(A) ∩R\{0} = ∅.

Remarks. 1. The requirement that P(|〈Ai, X〉| < ε) < Cε says that the densities of 〈Ai, X〉 do not spike at the origin. A suffi-
cient condition for this to hold for every X with ‖X‖F = 1 is that each Ai has i.i.d. entries with continuous density.

2. The requirement m � d + 1 is tight in the sense that the result does not generally hold for m � d. For example, take R
to be the intersection of any (d + 1)-dimensional linear subspace of Rn×n with the unit sphere. Then it is not hard to show
that Null(A) ∩R\{0} 
= ∅ for any linear operator A : Rn×n → Rm as long as m � d.

Theorem 3.1 can be proved using tools from differential geometry. However, the proof we provide here uses more ele-
mentary tools from probability, and we believe it will be more accessible to a wider audience. The strategy of the proof is to
cover R\{0} by a collection of small neighborhoods, each of which is ‘approximately linear’ since R\{0} is a differentiable
manifold. Then we show that Null(A) does not intersect any of these neighborhoods. The notion of approximate linearity
is made concrete by specifying a bound on the number of points sufficient to cover each of these neighborhoods to high
precision.

The first tool we will use in the proof is a well-known fact about covering numbers. For a set B , norm ‖ · ‖ and value ε,
we denote by N(B,‖ · ‖, ε) the smallest number of balls (with respect to the norm ‖ · ‖) of radius ε whose union contains B .
This number is called a covering number, and the set of balls covering the space (or more precisely the center of these balls)
is called an ε-net. A bound on the covering number for the unit ball under the Euclidean norm ‖ · ‖2 is well known (see e.g.
Chapter 13 of [9]):

Lemma 3.2. For any 1 > ε > 0, we have

N
(

Bd
2,‖ · ‖2, ε

)
�

(
3

ε

)d

.

We are now prepared to prove Theorem 3.1.

Proof of Theorem 3.1. It suffices to prove the claim for m = d + 1. Since R (and thus R\{0}) is a continuously differentiable
manifold, there are a countable number of closed1 sets Vi ⊂R\{0} such that

• ⋃Vi =R\{0}.
• For each Vi , there exists a C1-diffeomorphism φi : Vi → Bd

2, where Bd
2 denotes the unit Euclidean ball in Rd . In words,

φi is a homeomorphism from Vi to the unit ball such that φi and φ−1
i are continuously differentiable.

Our goal will be to show that 0 /∈ A(Vi) with probability 1 for each i. Since there are only countably many i, this will
show that 0 /∈R\{0} via a union bound.

Fix i, and for convenience set φ = φi and V = Vi . Since φ−1 is continuously differentiable, it is Lipschitz on the closed
set Bd

2. Thus there is an L > 0 such that

∥∥φ−1(x) − φ−1(y)
∥∥

F � L‖x − y‖2. (3.1)

By Lemma 3.2, there is an (ε/L)-net for Bd
2 with cardinality at most ( 3L

ε )d . Denote this net by Bd
2. Then the net V defined

by V = φ−1(Bd
2) is an ε-net for V . Indeed, for any X ∈ V , we have φ(X) ∈ Bd

2 and so there is a b ∈ Bd
2 such that

1 Note that in general these sets are open, but by writing each (open) Vi as a countable union of closed sets (for example Vi = ⋃
j=1...∞ φ−1({x: ‖x‖2 �

1 − 1/ j})) we observe that we can choose them to be closed.
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∥∥b − φ(X)
∥∥

2 � ε

L
.

By (3.1) we then have
∥∥φ−1(b) − X

∥∥
F � L · ∥∥b − φ(X)

∥∥
2 � L · ε

L
= ε.

Since φ−1(b) ∈ φ−1(Bd
2), this shows that V is an ε-net for V .

Therefore, for any X ∈ V , there is an X ∈ V such that ‖X − X‖F � ε. This then implies∥∥A(X)
∥∥∞ �

∥∥A(X)
∥∥∞ − ∥∥A(X − X)

∥∥∞
�

∥∥A(X)
∥∥∞ − ‖A‖F→∞‖X − X‖F

�
∥∥A(X)

∥∥∞ − ε · ‖A‖F→∞,

where ‖ · ‖F→∞ denotes the operator norm from the Frobenius norm to the supremum norm, ‖ · ‖∞ . Optimizing over all
X ∈ V and X ∈ V yields

inf
X∈V

∥∥A(X)
∥∥∞ � min

X∈V
∥∥A(X)

∥∥∞ − ε · ‖A‖F→∞.

We can then bound the probability (over the random choice of A) by:

P
(

inf
X∈V

∥∥A(X)
∥∥∞ = 0

)
� P

(
inf

X∈V
∥∥A(X)

∥∥∞ � ε log(1/ε)
)

� P
(

min
X∈V

∥∥A(X)
∥∥∞ − ε · ‖A‖F→∞ � ε log(1/ε)

)
.

Conditioning on whether ‖A‖F→∞ > log(1/ε) and using the law of total probability yields

P
(

min
X∈V

∥∥A(X)
∥∥∞ − ε · ‖A‖F→∞ � ε log(1/ε)

)

� P
(

min
X∈V

∥∥A(X)
∥∥∞ � 2ε log(1/ε)

)
+ P

(‖A‖F→∞ > log(1/ε)
)
. (3.2)

Clearly, for ε small, the second term in the last line of (3.2) is negligible. Thus it remains to bound the first term. Letting
z1, . . . , zm be the coordinates of A(X) for a given X ∈ V , we have:

P
(

min
X∈V

∥∥A(X)
∥∥∞ � 2ε log(1/ε)

)
� |V| · P

(∥∥A(X)
∥∥∞ � 2ε log(1/ε)

)

= |V| · P
(
max

{|z1|, . . . , |zm|} � 2ε log(1/ε)
)

�
(

3L

ε

)d

·
m∏

i=1

(
P
(|zi | � 2ε log(1/ε)

))
,

where in the last line we have utilized the independence of all zi = 〈Ai, X〉 and the size of the net V .
Now,

P
(|zi | � 2ε log(1/ε)

) = P
(∣∣〈Ai, X〉∣∣ � 2ε log(1/ε)

)

= P
(∣∣∣∣

〈
Ai,

X

‖X‖F

〉∣∣∣∣ � 2ε log(1/ε)

‖X‖F

)
.

Since V is closed and does not contain zero, the Frobenius norm of any X ∈ V is bounded uniformly away from zero.
This combined with the assumption that P(|〈Ai, X〉| < ε) < Cε for every X with ‖X‖F = 1 yields

(
3L

ε

)d

·
m∏

i=1

(
P
(|zi| � 2ε log(1/ε)

))
�

(
3L

ε

)d

· (4C ′ε log(1/ε)
)m

= C ′′εm−d · (log(1/ε)
)m

= C ′′ε · (log(1/ε)
)m

,

where C , C ′ and C ′′ are constants which do not depend on ε. The last equality follows since m = d + 1. Taking ε to zero
once again makes this last term vanish. Thus the probability that the null space of A intersects V is zero. Since there are
only countably many Vi , the probability that the null space of A intersects any of these sets is also zero. �

Next we show that Theorems 2.1 and 2.2 follow as corollaries to Theorem 3.1 via the following lemma.
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Lemma 3.3. The space of rank-r matrices with fixed Frobenius norm,

R= {
X ∈ Rn×n: rank(X) = 2r,‖X‖F = 1

}
,

is a smooth manifold with dimension 4nr − 4r2 − 1.

The proof of Lemma 3.3 is a standard exercise in differential geometry so we now turn to the proof of Theorem 2.1 and
Theorem 2.2 via the general result, Theorem 3.1.

Proof of Theorem 2.1. By Lemma 3.3, R is a smooth manifold of dimension d = 4nr − 4r2 − 1 and note that clearly
R=R\{0}. Let A be the operator taking m � 4nr −4r2 Gaussian measurements 〈Ai, X〉 for X ∈R and Ai (for i = 1,2, . . .m)
having i.i.d. Gaussian entries. Then all 〈Ai, X〉 are independent and have (the same) continuous density. Therefore by Theo-
rem 3.1, Null(A) ∩R= ∅. Applying Theorem 3.1 for all ranks between 1 and 2r, we see that there is no matrix of rank 2r
or less in the null space of A. Thus when M has rank r (or less) there can be no other matrix X with A(X) =A(M) having
the same or lower rank. This proves that (1.1) must recover the matrix M and completes the proof. �
Proof of Theorem 2.2. Let W = {X − M: rank(X) = r}. Note the proof of Lemma 3.3 explicitly shows that the space of all
matrices of a fixed rank r is a smooth manifold of dimension 2nr − r2. Since W is a shift of this space, it is also a smooth
manifold of the same dimension. Then by Theorem 3.1, we have that with probability one

W\{0} ∩ Null(A) = ∅.

Repeating this for ranks 1 through r, we get that with probability one

W ′\{0} ∩ Null(A) = ∅ (3.3)

where W ′ = {X − M: rank(X) � r}. Now let X be the solution of the rank minimization problem (1.1). Since M has rank r
and is a feasible matrix, rank(X) � r as well. Thus X − M ∈W ′ . But since A(X) =A(M), X − M ∈ Null(A). Thus by (3.3) it
must be that X − M = 0 which shows X = M is the recovered matrix. �
4. Discussion

In this paper we discuss the number of measurements required to recover rank-r matrices via rank minimization. This
is useful both from a purely theoretical point of a view and also provides a benchmark with which to compare tractable
methods such as nuclear-norm minimization. Cnr measurements suffice to (provably) recover n × n rank-r matrices using
nuclear-norm minimization [12,17,13,2]. In [13] explicit formulas and graphs are given from which bounds on the constant
C can be derived. Even more recent results in [14] prove that 6nr measurements suffice for weak recovery and 16nr mea-
surements suffice for strong recovery. New work in [15,16] also shows weak recovery when m � 6nr − 3r2. In addition,
numerical results indicate that weak recovery requires about 4nr − 2r2 Gaussian measurements [13, Fig. 1]. Thus accord-
ing to these results, rank minimization does succeed with somewhat fewer measurements. We emphasize that this should
not be a surprise — nuclear-norm minimization is a tractable method whereas rank minimization is an intractable method
whose guarantees give us theoretical bounds with which to compare. In fact, the price to pay for a tractable method in
low-rank matrix recovery seems to be a very reasonable one.

As discussed above, our general manifold result, Theorem 3.1, is tight. However, this does not imply that its consequences,
Theorems 2.1 and 2.2, are tight since the set of matrices of fixed rank is not a linear subspace. A simple lower bound on the
required number of measurements has been obtained [2] by observing that the set of rank-2r matrices have (many) linear
subsets of dimension 2nr (e.g., consider the set of matrices whose last n − 2r rows contain zeros); thus 2nr measurements
are necessary. However, this is a considerable restriction on the underlying manifold, suggesting that it leads to a loose
lower bound. We conjecture that the strong recovery requirement, m � 4nr − 4r2 from Theorem 2.1, is tight because the
number of measurements required matches the dimension of the underlying manifold. In the case of the weak recovery
requirement m � 2nr − r2 + 1 given by Theorem 2.2, we require m to be one greater than the dimension of the underlying
manifold. However, we once again conjecture this to be tight at least within an additive factor of one for the same reason.
Furthermore, this requirement matches that lower bound derived in [18] for matrices whose elements are contained in
finite fields.

Finally, we point to the analogous theory in compressed sensing — the problem of recovering a sparse vector from linear
measurements. Here, an s-sparse vector x ∈ Rd is one with at most s non-zero entries. In this setting, one needs 2s and
s + 1 measurements for strong and weak recovery, respectively, and this recovery is via an intractable method (see e.g. [5,
Theorem 1.1]). The bounds on the number of measurements given by Theorems 2.1 and 2.2 of 4nr − 4r2 and 2nr − r2 + 1
are analogous to the bounds of 2s and s + 1 in compressed sensing. In the compressed sensing setting, the question about
theoretical requirements was easy to answer because the set of s-sparse vectors is the union of a finite number of linear
subspaces. In the matrix recovery problem, however, this question had remained unresolved.
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Our results in conjunction with work on nuclear-norm minimization show how close nuclear-norm minimization guar-
antees are to those of the intractable problem of rank minimization. While rank minimization requires fewer measurements,
it is not at all an unreasonable amount to pay in order to solve the problem via a computationally feasible method.
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