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Abstract—We address the problem of recovering signals from
samples taken at their rate of innovation. Our only assumption
is that the sampling system is such that the parameters defining
the signal can be stably determined from the samples, a condition
that lies at the heart of every sampling theorem. Consequently,
our analysis subsumes previously studied nonlinear acquisi-
tion devices and nonlinear signal classes. In particular, we do
not restrict attention to memoryless nonlinear distortions or
to union-of-subspace models. This allows treatment of various
finite-rate-of-innovation (FRI) signals that were not previously
studied, including, for example, continuous phase modulation
transmissions. Our strategy relies on minimizing the error be-
tween the measured samples and those corresponding to our signal
estimate. This least-squares (LS) objective is generally nonconvex
and might possess many local minima. Nevertheless, we prove that
under the stability hypothesis, any optimization method designed
to trap a stationary point of the LS criterion necessarily converges
to the true solution. We demonstrate our approach in the context
of recovering pulse streams in settings that were not previously
treated. Furthermore, in situations for which other algorithms are
applicable, we show that our method is often preferable in terms
of noise robustness.

Index Terms—Finite rate of innovation, generalized sampling,
iterative recovery, nonlinear distortion, Xampling.

I. INTRODUCTION

S AMPLING theory is concerned with recovery of contin-
uous-time signals from their samples. Being an under de-

termined problem, sampling theorems often rely on the assump-
tion that the signal to be recovered belongs to some predefined
class of functions. The “richness” of this class dictates aminimal
sampling rate required for perfect reconstruction. For example,
the well known Shannon sampling theorem [1] states that any
signal that is -bandlimited can be perfectly recovered
from its pointwise uniformly-spaced samples if the sampling in-
terval does not exceed . Similarly, if is known to belong
to the class of spline functions with knots at ,
then it can be recovered from pointwise uniform samples with
interval [2].
Until recently, much of the sampling literature treated linear

acquisition devices and linear signal priors, that is, families of
signals that form subspaces of [3]. These include shift-in-
variant spaces [4], of which the bandlimited and spline priors are
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special cases, and their generalizations [5]. Reconstruction in SI
spaces from nonuniform pointwise samples was treated in [6].
Recovery from linear measurements in arbitrary subspaces was
studied from an abstract Hilbert space viewpoint in [7]–[9]. The
appeal of subspace models and linear sampling stems from the
fact that they result in linear recovery algorithms that are often
easy to implement. However, many real-world signal classes do
not conform to the subspace model and practical samplers often
introduce nonlinear distortions [10].
One notable line of work deviating from these settings treats

nonlinear sampling of linear models. The first contributions
in this direction can be attributed to [11] and [12], which
studied reconstruction of bandlimited signals from companding
(namely, applying a memoryless nonlinear distortion) and
subsequent bandlimiting. These results were later extended to
stochastic processes [13] and to more general spaces [14]. In
[10], the authors generalized these developments to the setting
in which the linear part of the acquisition device does not nec-
essarily match the signal prior. A simpler iterative algorithm,
consisting of linear time-invariant (LTI) filtering operations,
was recently developed in [15] for the same setting.
Another, rather parallel, deviation from the widely studied

linear setting treats linear sampling of nonlinear models. No-
table in this respect is the study initiated in [16] of sampling fi-
nite rate of innovation (FRI) signals. Theses signal classes cor-
respond to families of functions defined by a finite number
of parameters per time unit, a quantity referred to as their rate
of innovation. Much of the recent attention attracted by this
field emerges from the observation that several commonly-en-
countered FRI signals can be perfectly recovered from sam-
ples taken at their rate of innovation. Specifically, in [16], it
was demonstrated how periodic and finite-duration streams of
Diracs, nonuniform splines and piecewise polynomials can be
recovered from uniformly-spaced samples taken at the rate of
innovation with either a sinc or a Gaussian kernel. Extensions to
certain infinite-duration signals as well as more general classes
of sampling kernels appeared in [17], though at the cost of an
increase in the sampling rate beyond the rate of innovation. A
family of finite-duration sampling kernels was presented in [18]
and demonstrated to substantially improve recovery stability.
A robust multichannel sampling scheme was recently proposed
in [19]. Finally, the authors of [20] studied sampling of a class
of semi-periodic functions at the minimal possible rate, using a
filter-bank of properly chosen filters.
All the works mentioned above for linear sampling of non-

linear models focused on signals that can be represented as
weighted combinations of shifted pulses. These signal classes
correspond to unions of subspaces [21]. Another important
family within the union-of-subspace category is the set of
multiband signals. As shown in [22], when using point-wise
samples, the minimal sampling rate required for perfect re-
covery of these signals is twice their Landau rate, defined as
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twice the length of the support in the frequency domain. A
low-rate multi-coset sampling method for multi-band signals
was proposed in [22]. A more practical multichannel sampling
system was later developed [23] and implemented on a board
[24]. An important feature of these systems is that the low-rate
samples can be used directly to perform digital processing op-
erations, without requiring reconstruction of the analog signal
or its high-rate samples as an initial step. This is the key in the
recently introduced Xampling paradigm for sampling signals
that lie in a union of subspaces [25], [26].
Both lines of work treating nonlinear sampling of linear

models and linear sampling of nonlinear models lack the full
generality required for deployment in a wide range of practical
systems. In particular, common to all nonlinear sampling works
is the assumption that the nonlinearity is memoryless, such as
in the Wiener–Hammerstein model treated in [10]. However,
this is not the case in many real-world applications. An excep-
tion is [27], which treats Volterra systems, but only focuses
on bandlimited signals and point-wise samples. Similarly, all
nonlinear models treated in the literature correspond to unions
of subspaces, with the vast majority focusing on pulse streams.
These do not include, for example, FRI signals such as con-
tinuous-phase modulation (CPM) transmissions. Furthermore,
even within the restricted category of pulse streams, solutions
are only available for a few special cases of signal structures and
sampling devices. These solutions are very unstable in certain
situations [28]. An iterative algorithm for reconstructing signals
lying in unions of subspaces from linear samples was proposed
in [29]. The disadvantage of this technique, though, is that it
requires, in each iteration, computing the orthogonal projection
of the current signal estimate onto the set of all feasible signals.
For most interesting signal models, this necessitates solving
a nonconvex optimization problem, which does not admit a
closed form solution and for which there is no guarantee that
standard optimization techniques will find its solution.
In this paper, we address the problem of reconstructing ar-

bitrary FRI signals from possibly nonlinear measurements ob-
tained at the rate of innovation. The only assumption we make
on the sampling mechanism and signal prior is that the param-
eters defining the signal can be stably recovered from the sam-
ples. This assumption must be made by any practical sampling
theorem that attempts to recover the signal parameters, whether
explicitly or implicitly. Our approach is based on minimization
of the error norm between the given set of samples and those of
our signal estimate. Our main result is that under the stability
assumption, this least-squares (LS) criterion possesses a unique
stationary point. Consequently, any optimization algorithm de-
signed to trap a stationary point, will necessarily converge to the
true parameters. In particular, we show that the steepest-descent
and quasi-Newton methods can be used to recover the signal pa-
rameters.
Our approach holds several important advantages. First, it is

suited to a family of problems, which supersedes those treated
by existing techniques. In particular, we do not assume that the
sampling mechanism is linear or that the class of feasible sig-
nals forms a union of subspaces. Second, it provides a unified
framework for recovering signals from samples taken at their
rate of innovation. Thus, rather than tailoring a different algo-
rithm for every possible combination of sampling method and

signal prior, we can apply the same optimization technique to
recover the signal parameters. Lastly, our method directly ex-
tracts the parameters defining the signal, which are the quanti-
ties of interest in most applications, thus conveniently allowing
for further digital processing. For example, the parameters can
correspond to transmitted symbols in a communication setting,
reflector locations in ultrasound imaging [18], and more. These
properties all align with the Xampling methodology [26] and
even broaden it to beyond the standard linear sampling and
union-of-subspace settings.
It is important to note that our approach requires that all

feasible signals can be stably recovered from the samples. Thus,
even if a specific signal can theoretically be stably recovered,
our method is not guaranteed to succeed when there exist
other feasible signals which cannot be stably reconstructed. We
demonstrate this limitation in the context of a concrete example
in Section VI-C.
The paper is organized as follows. In Section II, we describe

the problem setting and assumptions. In Section III, we derive a
lower bound on the minimal sampling rate required for perfect
recovery with a given sampling system. Next, in Section IV, we
describe and prove the validity of a general strategy for recov-
ering signals from samples taken at the minimal rate. Two prac-
tical iterative methods are then studied in detail in Section V.
Finally, we demonstrate our approach in the context of finite-du-
ration and periodic pulse-stream recovery in Section VI and in
the context of CPM receivers in Section VII. We show that our
method can cope with sampling systems beyond those previ-
ously studied. Furthermore, we demonstrate that in time-delay
settings for which other algorithms are applicable, our method
is often more robust to noise.

II. PROBLEM SETTING

We denote scalars by lowercase letters, vectors by bold lower-
case letters and matrices by bold uppercase letters (e.g.,

and ). The adjoint of a linear operator
is denoted and its null space and range space are written

as and respectively. If is a function from some
Hilbert space to another Hilbert space , then its Fréchet
derivative at is a continuous linear operator

such that

(1)

where the limit is with respect to the norm defined on .

A. Signal Model

The signal classes we treat are those that are determined by
a finite number of parameters per time unit. The -local rate of
innovation of a signal , denoted , is the minimal number
of parameters defining any length- segment of , divided by
. An FRI signal is one for which is finite, at least for large
enough .
Perhaps the simplest class of FRI signals corresponds to func-

tions that can be expressed as

(2)
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Fig. 1. Streams of shifted versions of a pulse , supported on .
Bold pulses are those that affect the observation segment . (a) Fixed
pulse positions (2), spaced seconds apart. Here, the segment is
affected by 7 pulses so that . (b) Unknown pulse positions (4)
with minimal separation . Here, the rate of innovation is

. Note that the specific segment is affected only by 3 pulses
so that there are parameters per time unit at that location.

with some arbitrary sequence , where is a given
pulse in and is a given scalar. This set of signals
is a linear subspace of , which is often termed a shift-in-
variant (SI) space [4]. The subspace of -bandlimited sig-
nals is a special case of (2), with . Simi-
larly, (2) can represent the space of spline functions (by letting

be a B-spline function) and communication signals such as
pulse-amplitude modulation (PAM) and quadrature amplitude
modulation (QAM). If the support of is contained in ,
then any interval of the form , where , is affected
by nomore than coefficients from the sequence

. This is demonstrated in Fig. 1(a). Thus, the -local rate
of innovation of signals of the form (2) is

(3)

The asymptotic rate of innovation in this case, which can be
found by taking to infinity, is . We note that, according to
our definition, if is not compactly supported then the rate
of innovation is infinite. Thus, for example, bandlimited signals
(which correspond to ) are not considered FRI
in this paper.
A more complicated model results when the location of

the pulses are unknown a priori, as often happens in channel
sounding scenarios. In these cases,

(4)

where both and are unknown parameters. This class
of signals is not a linear subspace, and is therefore much harder
to handle. If we fix the time-delays and vary only the am-
plitudes then we get a subspace. But different choices of
time-delays result in different subspaces so that overall (4) cor-
responds to a union of subspaces. Assuming that the minimal
separation between any two time delays is , this model is de-
termined by (at most) twice the number of parameters defining
(2) per time unit, as demonstrated in Fig. 1(b). Therefore, the
associated -local rate of innovation is twice of (3) and the
asymptotic rate is .

The model (4) and several of its variants have received the
largest amount of attention in the FRI literature.1 However, other
interesting FRI signal classes exist. As an example, suppose that
transmissions of the form (2) are modulated, each with a dif-

ferent carrier frequency, to yield

(5)

Here, is the data transmitted by the th user on
the carrier frequency . This model generalizes the family of
multiband signals treated in [22] and [23], which corresponds
to the case in which . It is readily seen that
if then any segment of is af-
fected by at most of the coefficients .
With the addition of the unknown frequencies, we find that the
-local rate of innovation of signals of the form (5) is

(6)

Note that the asymptotic rate of innovation, which is given by
in this setting, is not affected by the fact that we do not

know the carrier frequencies. This is because as we increase
the observation period, their effect becomes negligible. The set
of signals of the form (6) is a union of subspaces, where the
frequencies determine the subspace and the amplitudes

determine the position within the subspace.
To the best of our knowledge, only union-of-subspace set-

tings were treated within the FRI literature. However, FRI
signals do not have to conform to the union-of-subspace
model. An example is continuous-phase modulation (CPM)
transmissions. These include continuous phase frequency shift
keying (CPFSK) and minimum shift keying (MSK), tamed
frequency modulation (TFM), Gaussian MSK (GMSK), and
more. Here, the transmitted signal takes on the form

(7)

where is a fixed carrier frequency,
are the message symbols, is the modulation

index (usually a rational number), and is a pulse shape that
is supported on for some integer and satisfies

. The rate of innovation of CPM signals can
be determined by expressing (7) as

(8)

where

(9)

and

(10)

1In fact, the original definition of FRI signals, given in [16], was limited only
to functions of the form (4).
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Since knowing is equivalent to knowing (up to ini-
tial boundary condition) and is supported on ,
the number of coefficients affecting on any interval
is the same as in (2) with and . Conse-
quently, the rate of innovation of CPM signals is

(11)

and their asymptotic rate is .
Finally, we note that there are union-of-subspace models that

do not correspond to FRI signals. As an example, consider the
set of signals

(12)

where the only knowledge we have about the pulses is
that they decay exponentially as . Clearly, every pos-
sible choice of pulse shapes corresponds to a subspace. Never-
theless, for each , the number of parameters required for de-
scribing is infinite.
Any arbitrary length- segment of an FRI signal is deter-

mined by at most parameters. Therefore, it is rea-
sonable to expect that a properly designed set of measure-
ments should suffice to identify the parameters of the segment.
As discussed in the introduction, this is often the case, implying
that many FRI signals can be perfectly recovered from samples
taken at their rate of innovation.
Without loss of generality, we focus in this paper on the re-

covery of an arbitrary segment from an FRI signal. From an ab-
stract viewpoint, any such segment is a vector in some Hilbert
space , which is known to lie within the set

(13)

where is an open set in and is some given
function. For example, for any integer , the segment

from (2) is affected only by the pulses with indices
. Consequently, this segment corresponds to the

parameter vector and to the function
given by

(14)

Note that, since the signal prior corresponds to a subspace in this
case, the function is linear. In the channel sounding model (4),
however, this is no longer true. Specifically, with a minimal sep-
aration of seconds between any two of the time delays ,
the segment from (4) is affected by no more
than pulses. Indexing these pulses as , this set-
ting corresponds to the -dimensional parameter vector

and to the nonlinear function
given by

(15)

We will assume in the sequel that is Fréchet differentiable
with respect to the parameter vector . This demand is not very
restrictive and is satisfied in most practical scenarios. In partic-
ular, if the pulse shape is in , then the models (2), (5) and
(8) are all Fréchet differentiable with respect to their parameters
on any finite-duration interval. If, in addition, is differen-
tiable and its derivative is in , then the model (4) is also
Fréchet differentiable. For example, the Fréchet derivative of
of (15) at is the linear
operator defined
by2

(16)

In addition to the recovery of , it is often of interest to iden-
tify the parameters defining it. This goal, of course, cannot be
achieved if the parametrization of the set is redundant in the
sense that there exist parameters such that

. To be able to recover in a stable manner, we require the
slightly stronger condition that

(17)

for some constant and for all . As we dis-
cuss in Section II-B below, some of the aforementioned signal
models do not comply with this requirement unless the feasible
set is chosen appropriately.
No further assumptions on the structure of , beyond (17),

are needed for our analysis. Nevertheless, a few remarks are in
place regarding the implication of this condition in the widely
studied union-of-subspace setting.

B. Implication to Union-of-Subspace Models

Suppose that can be partitioned as3 , where
the parameters determine a subspace in and the pa-
rameters determine a vector within . This setting in-
cludes as special cases (4), in which comprises the time shifts

and the amplitudes , and (5), in which comprises
the frequencies and the sequences .
In this situation, condition (17) implies that must be

bounded away from zero for every signal . Indeed,
otherwise we could choose and so that

despite the fact that .
Condition (17) also imposes limitations on the parameters .

Specifically, assume that the parametrization is such that the
subspace is not affected by permutation of the elements
of . This is the case, for instance, in the channel sounding
application (4) and in the multiband setting (5) where com-
prises the time delays and frequencies , respectively.
This permutation-invariance implies that if two elements of the
vector are equal, then there exist multiple choices for the pa-
rameters yielding the same signal. Therefore, condition (17)

2Fréchet differentiability is guaranteed in this setting by the fact that the
Gateaux (namely directional) derivative of at in the direction is a
bounded linear function of .
3The superscripts “N” and “L” stand for nonlinear and linear respectively,

intending as a reminder that is linear in and nonlinear in .
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is clearly violated in this case. We thus conclude that in a per-
mutation-invariant parametrization, the elements of must be
bounded away from each other.
Finally, condition (17) imposes restrictions on the maximal

possible distance for any two vectors .
More concretely, suppose that the function is such that

cannot be made arbitrarily large by varying
only the subvectors and of and . This always hap-
pens, for example, in the channel sounding setting (4) with a
finitely-supported pulse because the pulses and

cease to overlap when the distance exceeds the
pulse’s width. In this setting, condition (17) cannot be satisfied
unless the distance is bounded. In other words,
must be restricted to a bounded set. Therefore, in model (4), for
instance, the time delays must all lie in some bounded in-
terval. Perhaps a more appealing alternative is to require that
lie in some bounded interval and that there exist an upper bound
on the separation between any two consecutive time-delays.
To conclude, in the union-of-subspace setting the feasible set
must be such that elements of are bounded away from

zero, the vector is restricted to a bounded set in and its
elements are sufficiently separated. This can be achieved in the
model (4), for example, by requiring that

(18)

for every , where is a lower-bound on the
amplitude, constitute a lower- and an
upper-bound on the separation between consecutive time-delays
and is an arbitrary constant.

C. Sampling Method

Our goal is to recover by observing generalized samples
obtained as

(19)

where is some (possibly nonlinear) Fréchet differ-
entiable operator. This representation is more general than the
widely used linear setting, in which

(20)

for some set of vectors in . In particular, (19) may
account for nonlinear distortions introduced by the sampling de-
vice. For example, can represent the samples

(21)

where is a nonlinear sensor response.
We say that a sampling operator is stable with respect to

if there exist constants such that

(22)

for all . This definition is the same as that used in
[21] apart from the fact that here the set is not necessarily a
union of subspaces and the operator is not necessarily linear.
The left-hand inequality ensures that if two signals and are
sufficiently different from one another, then their samples
and are different as well. In particular, it implies that two

different signals cannot produce the same set of
samples, so that there is a unique recovery associated
with every valid set of samples .
Conditions (22) and (17) lie at the heart of any practical sam-

pling theorem, whether implicitly or not. It is out of the scope
of this paper to survey the situations in which these conditions
are satisfied, as this is rather problem-specific. The interested
reader may refer to [10] for an analysis of the SI model (2) with
nonlinear samples (21), to [29] for linear sampling of several
union-of-subspace models and for [30] for a general theory for
the stability of FRI models. In the sequel we show that these two
conditions dictate a minimal sampling rate below which perfect
recovery cannot be guaranteed. More interestingly, we will also
show that when (22) and (17) hold, perfect recovery can be at-
tained at this minimal sampling rate by using a wide family of
iterative algorithms.

III. MINIMAL SAMPLING RATE

To be able to devise a general reconstruction strategy for sig-
nals in that were sampled by , we first determine the min-
imal number of samples required for perfect recovery. Inter-
estingly, conditions (22) and (17) implicitly impose a limitation
on .
Proposition 1: Suppose that the function satisfies

(17) and that the operator satisfies (22). Then

(23)

Before providing a proof, we note that Proposition 1 shows
that the minimal number of samples required for perfect
recovery is the number of parameters defining . In other
words, stable recovery is impossible when sampling below the
rate of innovation. While very intuitive and stated in every FRI
sampling paper, we believe that this result was not formally
proved before for the general signal model and acquisition
mechanism discussed in this paper.
Proposition 1 further shows that sampling at the rate of inno-

vation is insufficient if the null space of is nonempty
at some . When is a linear operator and is a sub-
space, spanned by vectors , this condition implies that
the vectors should be linearly independent. In other
words, the matrix whose entry is , should
have an empty nullspace, where are the sampling vec-
tors of (20). If is linear but is not contained in any fi-
nite-dimensional subspace, then sampling at the rate of inno-
vation necessitates that the sampling vectors be lin-
early independent. Indeed, if are linearly dependent,
then there exists an index such that for
some coefficients . Consequently, the sample can
be expressed in terms of the other samples as

and thus can be disregarded.
As another example, suppose that one of the measurements

produced by the sensing device, say , is the energy
of . In this case . Consequently, from Propo-
sition 1, sampling at the minimal rate is impossible if the set of
signals contains the signal . The intuition here fol-
lows from the observation that small perturbations in around
the signal do not show in . Therefore, if the input to



1126 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 3, MARCH 2012

our sampling device happens to be in this setting, then
sampling is unavoidably unstable, as the left-hand side of con-
dition (22) is violated.

Proof: Since and are Fréchet differentiable, it
follows that the function is Fréchet differen-
tiable as well.Wewill start by showing that its derivative ,
which is an matrix, has an empty null space.
By definition, the Fréchet derivative at satisfies

(24)

In particular, for any nonzero ,

(25)

where is a scalar variable. Now, assume that .
Then (25) implies that

(26)

However, (17) and (22) imply that

(27)

for every . This contradicts (26) and therefore demon-
strates that , which implies that

.
Next, note that

so that

. Therefore,

(28)

Since (28) holds for every , it holds for the minimizing
the right-hand side, completing the proof.
Throughout the rest of the paper we focus on the case in which

samples of are obtained with an operator satis-
fying

(29)

This corresponds to sampling at the rate of innovation.

IV. LEAST SQUARES RECOVERY

Suppose we want to recover a signal from its
samples , where is an unknown parameter
vector and is a given sampling operator. To
address this problem, it is natural to seek the minimizer of the
function

(30)

where we defined . The reasoning behind this
choice follows from the following observation
Proposition 2: Suppose that the function satis-

fies (17) and that the operator satisfies (22). Then
is the unique global minimizer of .
Proof: Clearly, for every and ,

so that is a global minimizer of . This minimizer is unique
since, due to (17) and (22), so that

for every .
The LS criterion (30) is also plausible when the samples

correspond to a perturbation of the true sample vector by white
Gaussian noise. In this case, the minimizer of (30) is a max-
imum-likelihood estimate of from .
Unfortunately, the function is generally nonconvex and

might possess many local minima. It therefore seems that stan-
dard optimization techniques may fail in finding its global min-
imizer . However, as we show next, when sampling at the
rate of innovation, assumptions (17) and (22) guarantee that
is the unique stationary point of . Thus, any algorithm de-
signed to trap a stationary point, necessarily converges to the
true parameter vector . The proof of this result follows that of
[10, Theorem 6], which treats the special case of SI signals and
memoryless nonlinear samples.
Theorem 1: Suppose that the function satisfies

(17), the operator satisfies (22) and its Fréchet
derivative satisfies (29). Then only if
.
Proof: The gradient is given by

(31)

We showed in the proof of Proposition 1 that
. Since here is a matrix, it follows that

(32)

so that only if . This, by Proposition 2,
happens only if , completing the proof.
The importance of Theorem 1 lies in the fact that it provides

a unified mechanism for recovering FRI signals from samples
taken at the rate of innovation. Namely, rather than developing
a different algorithm for every choice of signal family and sam-
pling method, we can employ the same general-purpose opti-
mization technique to find the stationary point of (30). Further-
more, this strategy is also advantageous over the iterative ap-
proach of [29], as it avoids the need for projecting the signal
estimate onto in each iteration, an operation that possesses
no closed form solution for most FRI signal classes.
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Fig. 2. Schematic interpretation of one iteration of (35).

V. ITERATIVE RECOVERY

There are numerous optimization algorithms that can be used
to find the stationary point of the objective function over
. For simplicity, we focus here on unconstrained optimization

methods, namely those that can be applied when . This
does not limit the generality of the discussion since if ,
then the constrained problem can be transformed
into the unconstrained problem , where

is one-to-one and onto. The latter problem possesses
a unique stationary point . Therefore, once
is determined, the desired solution can be computed as

. For example, the model (4) with the set of constraints
defined by (18) can be handled by defining

(33)

where and , so that

(34)

With this choice, the set of all feasible signals is obtained by

varying and over the entire space and not over some
subset of .
Most unconstrained optimization methods start with an initial

guess and perform iterations of the form

(35)

where is a scalar step size obtained by means of a one di-
mensional search and is a positive definite matrix. Due to
the structure of in our case (see (31)), the iterations (35)
can be given a simple interpretation, as shown in Fig. 2. Specif-
ically, at the th iteration, the current estimate of the param-
eters is used to construct our estimate of the signal by
applying the function . This estimate is then sampled using the
operator to obtain an estimated sample vector . Finally, the
difference between and the true set of samples is multiplied
by a correction matrix and added to to yield the updated es-
timate of the parameter vector .

In our setting, the objective function is bounded from
below. The iterations (35) are therefore guaranteed to converge
to a stationary point of if is chosen to satisfy the Wolfe
conditions [31], is chosen such that

(36)

for some constant independent of , and the gradient
is Lipschitz continuous in an environment of the level-set

[31].
A step size satisfying the Wolfe conditions can be found

by using the backtracking method [31], as presented in Al-
gorithm 1. Condition (36) is trivially satisfied with ,
which corresponds to the steepest descent method. As we
show in Appendix A, this condition is also satisfied with

if

(37)

for some and for all . This choice cor-
responds to the Gauss-Newton method, which typically con-
verges much faster than steepest descent. Finally, we show in
Appendix B that a sufficient condition for to be Lips-
chitz continuous over is that the derivative of be Lipschitz
continuous there, namely that

(38)

for some and for all . The analyses in
Appendices A and B follow closely those in the proof of [10,
Theorem 7]. To summarize, we have the following result.
Theorem 2: Suppose that the function satisfies

(17), its Fréchet derivative satisfies (38), the operator
satisfies (22) and its Fréchet derivative

satisfies (29). Consider the iterations (35), where the step size
is obtained via Algorithm 1. Then, each of the following options
guarantees that :
• ;
• and condition (37)
holds.

Algorithm 1: Backtracking line search

set and

while do

end while

return

VI. APPLICATION TO CHANNEL SOUNDING

We now demonstrate our approach in the channel sounding
setting (4). Specifically, suppose that

(39)
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where is a known pulse shape, are unknown am-
plitudes, and are unknown time-delays. As explained
in Section II-B, the parameter vector

(40)

cannot be stably recovered unless the amplitudes all surpass a
certain threshold and the pulses are well separated yet confined
to a bounded interval. We therefore adopt the assumptions (18)
and transform the optimization problem into an unconstrained
one by using the parameter vector described in
(33), with the transformation of (34). Our goal is
to recover the signal parameters from the samples (21), where

are sampling kernels in and is a
nonlinear response function.
As discussed in the introduction, when is the identity

operator, there are several combinations of pulse shapes
and sampling kernels that can be treated via existing
algorithms in a stable manner, such as [18] and [19]. However,
none of the existing techniques is applicable when is non-
linear. Furthermore, as we demonstrate in Section VI-A below,
our approach allows recovery from SI samples with a kernel that
is not supported by [18]. Moreover, in Section VI-B we apply
our technique in a multichannel setting for which the algorithm
of [19] is applicable, and show the advantage of our approach
in the presence of noise.
To apply the Gauss-Newton or steepest decent methods, we

note that, with the transformation of (34),

(41)

Explicit computation shows that

(42)

with

...
...

(43)

...
... (44)

and

(45)

Furthermore,

(46)

with

(47)

Fig. 3. Nonlinear and nonideal sampling.

and

...
...

. . .
...

(48)

We now demonstrate our method in several specific settings.

A. Gaussian Pulses and Gaussian Kernels With
Nonlinear Distortion

Consider the sampling system of Fig. 3, in which is
sampled after being convolved with a filter and passing
through an amplitude limiter . The resulting samples can be
described by (21), with . Since the
model (39) is clearly determined by parameters, we
would like to recover any such from samples.
We choose the sampling period to equal and the offset
to be , so that the sampling functions span the entire ob-

servation segment .
Fig. 4 demonstrates the convergence of the Newton itera-

tions for recovering pulses over the period from
samples. Here, the pulse shape and the sampling filter

were taken to be Gaussian functions with variances
and , respectively. Note that, with this choice, all
inner products in (43) and (44) can be computed analytically
at every iteration. The nonlinear response curve was set to be

. The constraints (18) we assumed
on the parameters corresponded to

and .
The true parameters in this experiment were

and . As shown in Fig. 4(a), the iterations
were initialized at and .
The estimated samples at this point, shown in “x”-marks, de-
viate substantially from the true samples, marked with circles.
As can be seen, though, this gap decreases quickly in the first 15
iterations [see Fig. 4(b)] and almost completely vanishes after
30 iterations [Fig. 4(c)]. Fig. 4(d) shows the rapid decrease in
the LS objective (30) as a function of the iterations.
Fig. 5 demonstrates the behavior of the algorithm in the pres-

ence of noise. The setting here is the same as that of Fig. 4 with
the distinction that white Gaussian noise is added to the sam-
ples prior to recovery. This figure depicts the mean-square error
(MSE) in , defined as

(49)

as a function of the signal-to-noise (SNR) ratio. The solid line
corresponds to the Cramér–Rao bound (CRB), developed in
[28], which is a lower bound on the MSE attainable by any un-
biased estimation technique. As can be seen, the MSE of our
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Fig. 4. Convergence of Newton iterations for pulse stream recovery. (a) Ini-
tialization. (b) Fifteenth iteration. (c) Thirtieth iteration. (d) LS objective value
as a function of the iterations.

Fig. 5. MSE as a function of SNR for pulse stream recovery in the setting of
Fig. 4.

method coincides with the CRB in high SNR scenarios and out-
performs it at low SNR levels. This is a result of the fact that
our technique is biased.

B. Periodic Pulses and Sinusoidal Kernels

Next, we turn to demonstrate our approach in a periodic
pulse-stream scenario with the multichannel sampling system
of [19]. Specifically, suppose that in (39) is -peri-
odic with Fourier coefficients , where

Fig. 6. Linear multichannel sampling.

. In [19], it was shown that the pulse parame-
ters can be identified in this setting by using the multichannel
sampling system depicted in Fig. 6, where the sampling kernels

correspond to combinations of the complex exponentials
with being a set of consecutive indices. The

algorithm of [19] was developed for linear sampling, so that
of (21) is set to be the identity. This algorithm is based on

applying techniques for identifying the frequencies of complex
exponentials, such as the matrix pencil [32] or annihilating
filter [16] methods.
If we restrict attention to real sampling functions, then the

minimal number of samples supported by the method of [19]
is . This is achieved by choosing4

(50)

Due to the very small over-sampling factor, only the annihi-
lating filter method is applicable within the approach of [19].
Our approach can operate with a budget of only samples

and with arbitrary sampling kernels, as long as (22) is satisfied.
Nevertheless, we now wish to demonstrate that our method is
advantageous over that of [19] even in settings in which the
sampling kernels are chosen as (50).
We note that the convergence guarantees we provided in pre-

vious sections do not hold when sampling above the rate of inno-
vation. However, in practice, the algorithm performs well also
in mild over-sampling scenarios, such as the one treated here.
To compare between iterative recovery and the algorithm of

[19], we concentrated on signals with period comprising
pulses and thus used samples

to recover them. We chose a pulse with Fourier coefficients
, which, as shown in Fig. 7(a) is very wide in

the time domain. This renders the determination of pulse posi-
tions a challenging task. The constraints (18) were the same as in
Section VI-A. The true time delays were
and and the true amplitudes were ran-
domly generated to yield and . The
initialization of the algorithm was the same as in Section VI-A.
At each iteration of the algorithm, the matrices and com-
prise the (weighted) Fourier coefficients of shifted versions of

and of . These quantities can be obtained analytically
from the Fourier coefficients of .
In Fig. 7(b), the performance of both approaches is compared

against the CRB when the samples are contaminated by white
Gaussian noise. As can be seen, the Gauss-Newton method out-
performs the annihilating-filter-based algorithm at all SNR.

4For notational convenience the samples are indexed as in this ex-
ample rather than .
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Fig. 7. (a) One period of the periodic signal comprising two wide pulses.
(b) MSE as a function of SNR for recovery with the samples corre-
sponding to (50). The dashed and dashed–dotted lines correspond, respectively,
to the method of [19] and Gauss-Newton iterations. The solid line corresponds
to the CRB for estimating from the samples.

C. Stability

Although time-delay estimation is a long-studied problem,
stability was not given much attention in past works. In [29] an
example was presented in which the delay of a rectangular
pulse can be determined from uniformly-spaced sam-
ples taken at the output of a triangular impulse-response filter,
but this cannot be achieved in a stable manner. For a general
channel-sounding setting, it is not trivial to obtain simple-to-
verify conditions on the pulse shape , sampling functions

, nonlinearity and the parameters ,
and such that stable recovery is guaranteed. However, as we
now demonstrate, unstable settings can be identified numeri-
cally using the proposed approach.
Assume that samples are obtained with a mono-

tonic nonlinearity and a set of linearly inde-
pendent sampling kernels. In this case, condition (29) is satis-
fied. Assume further that for a certain parameter vector

and certain initial guess , the
algorithm terminates at a point for which . This
means that is not the unique stationary point of the LS ob-
jective so that, according to Theorem 1, stable recovery is not
possible in this setting for all in the constraint set . More
specifically, either condition (17) or (22) (or both) are violated
for some .
In fact, the point at which (17) or (22) are violated is no other

than . Indeed, the fact that and im-
plies that (see (31) and (30)). Therefore, by the
definition of the Fréchet derivative,

(51)

Fig. 8. CRB versus for fixed in a setting with sinusoidal sampling kernels
with nonconsecutive frequencies.

contradicting the requirements (17) and (22) that

(52)

This can also be seen from an estimation viewpoint. Namely,
suppose that the samples are perturbed by white Gaussian
noise with variance . Then the unbiased CRB for estimating
from these noisy measurements is given at by [28]

(53)

If then there exists no unbiased technique that
can recover the parameters with a finite MSE.
As a demonstration of the utilization of this approach, con-

sider again the setting of Section VI-B. As mentioned above,
existing techniques that do not involve discretization can only
handle the case in which the frequencies of the sampling ker-
nels are consecutive. An interesting question is whether there
is a potential gain in using nonconsecutive indices. To study
this setting, we used our algorithm to recover two time de-
lays, where was taken to be a pulse whose Fourier coef-
ficients are equal 1 up to some large index and 0 otherwise.
We used four sinusoidal sampling functions (two sines and two
cosines) with frequencies 1 and 3. While the true parameters
were , the algorithm
converged to the point . This means
that the CRB for estimating explodes at this point. Fig. 8 de-
picts the CRB as function of for , veri-
fying that this is indeed the case. We therefore conclude that in
this setting there exist parameter values that cannot be recov-
ered stably by any technique.
A word of caution is in place, though. For our approach to be

able to recover a parameter vector , we need that every
can be stably recovered and not only itself. Therefore, the fact
that in some settings with nonconsecutive sampling frequencies
there exist unstable points in limits the applicability of our
method in those scenarios. It may thus be of interest in certain
applications to pursue methods that can recover any stably-re-
constructible , regardless if there exist other points in at
which the CRB is infinite.

VII. APPLICATION TO CPM COMMUNICATION

As mentioned in Section II, an important application area
not treated in the FRI literature is CPM communication (see
(7)). For a general rational modulation index and pulse width
, optimum coherent detection can be performed by means of
the Viterbi algorithm. A major limitation with this approach,
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Fig. 9. Proposed CPM receiver.

though, is that it requires sampling at a rate of at the output
of linear filters [33]. This corresponds to an over-sampling
factor of beyond the rate of innovation. Furthermore, for

, where and have no common factors, the number
of states in the Viterbi decoder is . Here, we propose a
suboptimal alternative, which employs an average sampling rate
of only , as depicted in Fig. 9. Our approach consists in
treating the data symbols in (7) as continuous-valued and
quantizing the resulting recoveries to the nearest element in the
set . We emphasize that our proposed ap-
proach does not perform well in noise and serves here merely as
a demonstration of treatment of non union-of-subspace models.
In principle, cleverly designed measurements at a rate of

should suffice (in the noiseless setting) for perfect recovery.
However, as we will see, neither of the branches of Fig. 9 suf-
fices by itself for recovery of all symbols with our iterative ap-
proach. Instead, wewill alternately use bunches of samples from
each of the branches. The signals and contain one
replica of the frequency content of around and one
around . Suppose for the moment that the filter sup-
presses the replica around so that, to high precision, for

,

(54)

where we adopted the representation (8) and denoted
and . Thus, for ,

(55)

Linear sampling of a SI signal passing through memoryless
nonlinearity, as in (55), was studied in [10], [15]. In particular,
it was shown that if the nonlinearity is a monotone function that
does not vary too rapidly, then a stationary point of the LS ob-
jective is necessarily a global minimum. In our setting, neither

nor are monotone functions. However, since
can only vary by from one symbol to the next, the phase

(56)

is guaranteed to vary by less than over short enough time
segments. Specifically, is a monotone function of
over a certain time interval if

(57)

or

(58)

for some throughout this period. For such a segment
and assuming that the support of is contained in
, all samples with indices
conform to the model in [10] and [15]. These samples can

be used to recover a corresponding set of symbols.
To summarize, our approach for the simple setting in which
is supported on is as follows. Suppose that all sym-

bols up to index were recovered. These allow to determine
, which is used to decide, according to (57) and (58),

weather the next batch of samples is to be taken from the first
branch or from the second one. Next, the maximal index
such that the phase remains within the corresponding interval
for every is determined.5 The sam-
ples with indices are then used to recover
the symbols with the corresponding indices. This process is re-
peated sequentially.
The th sample in the th channel is given by ,

where . Assume, without loss of generality,
that . Direct computation shows that

...
... (59)

where

(60)

and we denoted . To account for the fact that
, we chose to enforce the constraint by

using the parametrization . The deriva-
tive of the corresponding transformation is

.
Fig. 10 shows the phase of a typical binary CPM signal

(namely, with ) with modulation index
and with the 5 REC pulse . Fig. 10(c)
shows the recovery of the symbols with only 2 iterations per
batch of samples. Here the sampling kernels were taken as

. The batches of samples on which the
algorithm operated are marked with dashed vertical lines. As
can be seen, even with two iterations, the original symbols can
be recovered by quantization of the recovered symbols.

VIII. CONCLUSION

In this paper, we studied recovery of the parameters defining
an FRI signal from samples taken at the rate of innovation. We
showed that in any situation in which the parameters can be
stably recovered, this can be achieved by a general-purpose un-
constrained optimization method. Our approach thus provides
a simple means for treating a wide range of FRI signal classes
and sampling methods. We demonstrated the usefulness of our
strategy in reconstructing finite and periodic pulse streams from
nonlinear and nonideal samples as well as in decoding CPM

5This can be done by noting that the change in phase for
is due both to the contribution of the known symbols and to the
symbols , which are yet to be recovered. The largest change occurs
if the latter are all or .
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Fig. 10. Binary 5 REC CPM modulation with index . (a) Symbols
. (b) Corresponding phase . (c) The “x”-marks denote the recovered

coefficients using 2 Gauss-Newton iterations (before quantization).

modulated messages. We also showed that our method is often
advantageous in noisy settings.

APPENDIX A
CONVERGENCE OF GAUSS-NEWTON ITERATIONS

Letting and substituting and
(31), the left-hand side of (36) becomes

(61)

Here, we used the fact that , which was established
in the proof of Theorem 1, so that . Now, the
right-hand side of (22), together with (37), imply that

. Similarly, the left-hand side of (22), together with (17),
imply that . Therefore,

(62)

so that (36) is satisfied with any .

APPENDIX B
PROOF OF GRADIENT LIPSCHITZ CONTINUITY

Denoting , we have

(63)

Assuming that , conditions (22) and (38) imply that

(64)

Furthermore, (22) implies that

(65)

Since , it also follows that

(66)

Finally,

(67)

Substituting (64), (65), (66) and (67) into (63) yields

(68)

which proves that is Lipschitz continuous over with
Lipschitz bound .
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