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Super-resolution and reconstruction of sparse
images carried by incoherent light
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We demonstrate theoretically and experimentally the reconstruction of images borne on incoherent light at
a resolution greatly exceeding the finest resolution defined by the NA of the system. Our method relies on
compressed sensing techniques, which assume that the object is sparse in a known basis, and only that. The
approach is robust against noise and can be used for reconstructing subwavelength images through mea-
surements taken in the optical far field. © 2010 Optical Society of America
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A fundamental concept in microscopy is the Abbe dif-
fraction limit, setting the highest resolution of an im-
aging system to one half of the optical wavelength �,
implying that subwavelength information suffers
from inevitable loss due to exponentially decaying
evanescent waves [1]. Modern methods overcome this
limit by point-by-point scanning with a subwave-
length tip [2,3] or a light source [4], or by randomly
distributing fluorescent molecules on the sample and
averaging over multiple exposures [5,6]. These solu-
tions require scanning or repetitive experiments,
thus limiting real-time applications. Other methods
rely on negative-index materials [7–12]), but their
current technology involves high loss and fabrication
at nanometer precision. In addition, several ap-
proaches for algorithmic recovery of subwavelength
features were proposed [13–15]. However, these algo-
rithms are highly sensitive to noise in the measured
data and to the assumptions made on the prior
knowledge (see [1], chapter on the super-resolution).
Consequently, the diffraction limit is still a practical
barrier, especially for real-time imaging [1].

Recently, we proposed a new approach for recon-
structing subwavelength images, assuming prior
knowledge that the image is sparse (in real space)
[16]. This assumption can be utilized for the super-
resolution, by using modern information processing
techniques known as compressed sensing (CS)
[17,18]. These methods assume only that the image is
sparse in a known basis, i.e., under a suitable basis
transform, the image comprises of only a few nonzero
values. Under rather general conditions, these meth-
ods can improve the resolution way beyond the nu-
merical aperture of the system (or beyond the diffrac-
tion limit, if the aperture is infinite). Ideally, the
improvement can be by up to a factor of 1/ �2��, with
� being the fraction of basis functions occupied by the
original image, i.e., the smallest recoverable feature
can be smaller than the diffraction limit by 1/ �2��.
We demonstrated this idea theoretically, along with
an experimental proof of concept, with coherent light
[16]. However, many imaging systems employ inco-
herent illumination; hence it is important to modify
the technique to work with incoherent light.

Here, we demonstrate the super-resolution via CS
for images borne on quasi-monochromatic spatially

incoherent light, with the only prior knowledge being
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that the image is sparse (in real space). We discuss
the possibility to extend this idea incoherent sub-
wavelength imaging and for white light.

When the light is fully spatially incoherent, the op-
tical intensity in the imaging plane (output plane) is
the convolution of the intensity at the object plane
(input plane) with the absolute value of the incoher-
ent point spread function (PSF) [1],

uout�x,y� = uin � hic�x,y�, �1�

where hic�x ,y� is the PSF of the system, uin�x ,y� is the
object intensity, and uout�x ,y� is the image intensity.
In the spatial-frequency domain, this relation yields
Uout��x ,�y�=Uin��x ,�y�Hic��x ,�y�, where Hic��x ,�y� is
the optical transfer function (OTF). In 2D, the OTF is
a cone [Fig. 1(a)], whereas in 1D it is a triangular
window [Fig. 1(b)], both acting as low-pass filters
with a cutoff frequency �c. If the imaging system has
an infinite aperture, then �c=2/� [Fig. 1(b)].

In signal processing, the problem is as follows.
Given a measured signal smeared by a low-pass filter
[say, the triangle in 1D; Fig. 1(b)], we wish to recon-
struct the true signal, including its high-frequency
information. Since all information carried by fre-
quencies beyond cutoff is lost, there are an infinite
number of signals, which—after being smeared by
the low-pass filter—will result in the measured im-
age. (E.g., adding any signal containing only frequen-
cies above the cutoff to a candidate signal leaves the
measured data unchanged). In order to restore high
frequency information, assumptions on the object
must be made [15]. A common assumption is that the
true signal (object) is limited in space to a known
support, in which case iterative methods may be used
to restore it. A further assumption that can be made,

Fig. 1. (Color online) (a) Simulated 2D OTF. (b) Our mea-

sured 1D OTF (only positive frequencies shown).
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for images borne upon incoherent illumination, is
that the object is nonnegative. These methods offer
limited success either for the super-resolution or for
subwavelength imaging, mainly due to noise in the
measured data. For discussions dealing with the
limitations of these techniques, see [1,15,19].

A different approach, which we take here, assumes
that the true signal is sparse in a known basis—
meaning that it comprises of few functions belonging
to a known subspace. This assumption is quite gen-
eral, since many natural images are sparse in some
known basis. The simplest examples in optics are im-
ages that are sparse in real space, e.g., living cells or
bacteria, where the information is only at the contour
lines of the various organs, while everywhere else the
cells/bacteria are transparent. In the field of signal
processing, the sparsity assumption has recently
gained widespread use, and many efficient tools for
utilizing sparsity have emerged [20–22]. The sparsity
assumption can be used to recover signals extending
beyond the cutoff of a filter (in our case, the OTF) us-
ing the following approach. Among all signals that
can be written as a combination of some known basis
functions, which yield the measured results after be-
ing “smeared” by the known OTF, find the sparsest
one, i.e., the one comprised of the fewest basis func-
tions. If the true object is sparse enough, then
sparsity-based reconstruction methods are bound to
find it (exactly—in the noiseless case or up to a
bounded error—in the presence of noise) [23,24]. The
sparsest solution can be found using simple algo-
rithms [20]. Here, we employ the basis-pursuit de-
noising method [25], which solves the “sparsest-
solution” problem, by relaxing the sparsity
constraint. Our consistency requirement is between
the low-pass Fourier coefficients of the reconstructed
image and the low-pass Fourier coefficients of the
measured smeared signal, divided by the OTF (trian-
gular window). The problem we therefore solve is

x̂ = arg
x

min�x�1 subject to ���TW��1/2 � �,

x � 0, � �2�

with �=FAx−b, where x is the sparse vector, F is the
partial Fourier matrix (up to the cutoff frequency �c),
A is a matrix representing the basis in which the ob-
ject is sparse, b’s are the measurements in Fourier
domain, after normalization-division by the OTF, and
� is a parameter determined by the noise value. W is
a diagonal matrix containing the squared magnitude
of the OTF, for increasing frequency values on its di-
agonal. Its purpose is as follows: When the low-pass
filter is a sharp window (as in [16]), the measured
data at frequencies beyond �c contain only noise and
can be set to zero. However, the OTF is a gradual fil-
ter, yielding small signal values at frequencies
slightly below �c, where the Fourier coefficients are
divided by small values (hence noise is amplified
greatly) near �c. The weight matrix W allows greater
errors near �c, through a weighted basis-pursuit
method. The reconstructed object is then yrec=Ax̂.

We first demonstrate the idea theoretically, on a 1D

optical image containing delicate features borne on
incoherent light. Figure 2 shows an example: the in-
put image [Fig. 2(a)] is a set of shifted rectangles,
containing spatial frequencies extending way beyond
�c of the 1D triangular filter [Fig. 1(b)]. The input im-
age is sparse in the shifted-rectangle space (�
=4/100 in this example). The triangular OTF multi-
plies the power spectrum and cuts it at �c [Fig. 2(d)],
which is translated into a smeared image [Fig. 2(c)]
where all the delicate features are lost. In addition,
noise with energy at 1% of the measured energy is
added. Our method yields the reconstruction of the
image [Fig. 2(e)] and its power spectrum [Fig. 2(f)],
both displaying excellent correspondence to the input
image and its spectrum [Figs. 2(a) and 2(b)].

Next, we provide an experimental proof of concept,
demonstrating image recovery at a resolution greatly
exceeding the finest resolution defined by the OTF of
a spatial filter. Our system (Fig. 3) is a 4-F imaging
system, with a tunable low-pass spatial filter posi-
tioned at the Fourier plane. The light source is a 532
nm laser beam, passed through a rotating diffuser,
making the light partially spatially incoherent with a
speckle size of �2–3 �m, while the feature size in
our image is 	100 �m. Our reconstruction method is
designed for taking the data in the Fourier plane,
where the data are the least sparse [16]. However,
when the low-pass filter is sufficiently narrow such
that the smeared data are broad enough, one can

Fig. 2. (Color online) Theoretical example demonstrating
reconstruction of a 1D image carried by incoherent light.
(a) 1D image comprising of rectangles 2/ �5�c� wide (� /5, if
�c=2/�). (b) Spatial power spectrum of (a). (c) Smeared (fil-
tered) image. (d) Spatial power spectrum of the filtered im-
age of (c), with the triangle marking the OTF. (e) CS-
reconstructed image. (f) Spatial power spectrum of the
reconstructed image. Note the reconstructed frequencies in
(f), residing far beyond �c. Although showing only the mag-
nitude of the spectrum, the phase of the Fourier transform

was also reconstructed well.
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take the measurements in the plane of the smeared
image [16], which is experimentally more convenient.
Accordingly, we measure the smeared image with a
CCD camera and utilize the CS technique to recover
the original image. For simplicity, we demonstrate
here the reconstruction of 1D signals, achieved by av-
eraging the measured data over the vertical axis. The
extension to 2D is straightforward—as it simply re-
quires a 2D model for the signal, and F from Eq. (2)
to be the 2D partial Fourier matrix. Figure 4 shows
the true image [Fig. 4(a)], the measured image after
the low-pass filter [Fig. 4(b)], and the CS-
reconstructed image [Fig. 4(c)]. The recovered image
has excellent correspondence to the original image.
This experiment shows a resolution improvement by
a factor of �5, over the resolution limit imposed by
the low-pass filter. The only prior information used to
reconstruct Fig. 4(c) from Fig. 4(b) is that the object
is nonnegative, comprising of few rectangles—i.e., it
is sparse in the basis of shifted rectangles.

The ideas demonstrated here call for the discussion
of the possibility of reconstructing subwavelength
images. Our previous work with coherent light [16]
works well in the subwavelength regime (as indeed
current experiments in our laboratory prove), be-
cause the transfer function for coherent light is exact
[1]. However, for spatially incoherent light, Eq. (1) is
approximate—assuming that the light in a com-
pletely uncorrelated, i.e., the transverse correlation,
distance (�speckle size) is much smaller than the
feature size in the input image. In the above-
wavelength domain, this assumption is easily appli-
cable, because the speckle size can be as small as the
Abbe diffraction limit since it arises from interfer-
ence among radiation (nonevanescent) waves. For
sub-wavelength images, the speckle size at the plane
of the input image depends on the distance of that
plane from the light source. If the subwavelength im-
age is placed within the near-field range of an inco-
herent light source (e.g., the fluorescent molecules of
[5,6]), the evanescent waves make the speckles
smaller than �. In this case, the relation between the
width of each stripe in Fig. 4 and the cutoff frequency
of the low-pass filter is equivalent to image recon-
struction in a system with subwavelength stripes

Fig. 3. (Color online) Experimental setup.

Fig. 4. (Color online) Experiments. (a) Original 2D image
of three stripes. (b) Smeared (filtered) image. (c) CS-
reconstructed image. The weak “ghost” rectangles in (c)
arise from slight mismatch between the locations of the ba-
sis functions in the model and the true locations of the
stripes; this happens because the blurred image is sampled

by the pixels of the camera, leading to quantization error.
with a width of � /9.5, way beyond the Abbe diffrac-
tion limit. However, if that distance between the light
source and the input subwavelength image is beyond
near-field range, the speckle size is diffraction lim-
ited, implying that Eq. (1) is no longer valid. In this
case, the OTF should be replaced with the expression
for the intermediate case of partially spatially inco-
herent light, accounting for partial correlations in the
image. The analysis is more complicated, but doable.
Clearly, CS techniques can be used for reconstructing
subwavelength features also under incoherent illumi-
nation. Finally, these ideas can be extended to white
light if the spectrum of the light is known. This could
facilitate the super-resolution and recovery of sub-
wavelength features in every microscope.
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