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Purpose: Magnetic resonance fingerprinting (MRF) is a relatively new approach that provides quan-

titative MRI measures using randomized acquisition. Extraction of physical quantitative tissue

parameters is performed offline, without the need of patient presence, based on acquisition with vary-

ing parameters and a dictionary generated according to the Bloch equation simulations. MRF uses

hundreds of radio frequency (RF) excitation pulses for acquisition, and therefore, a high undersam-

pling ratio in the sampling domain (k-space) is required for reasonable scanning time. This under-

sampling causes spatial artifacts that hamper the ability to accurately estimate the tissue’s

quantitative values. In this work, we introduce a new approach for quantitative MRI using MRF,

called magnetic resonance fingerprinting with low rank (FLOR).

Methods: We exploit the low-rank property of the concatenated temporal imaging contrasts, on top

of the fact that the MRF signal is sparsely represented in the generated dictionary domain. We present

an iterative recovery scheme that consists of a gradient step followed by a low-rank projection using

the singular value decomposition.

Results: Experimental results consist of retrospective sampling that allows comparison to a well

defined reference, and prospective sampling that shows the performance of FLOR for a real-data

sampling scenario. Both experiments demonstrate improved parameter accuracy compared to other

compressed-sensing and low-rank based methods for MRF at 5% and 9% sampling ratios for the ret-

rospective and prospective experiments, respectively.

Conclusions: We have shown through retrospective and prospective experiments that by exploiting

the low-rank nature of the MRF signal, FLOR recovers the MRF temporal undersampled images and

provides more accurate parameter maps compared to previous iterative approaches. © 2018 American

Association of Physicists in Medicine [https://doi.org/10.1002/mp.13078]

Key words: compressed sensing, low rank, MRF, QMRI

1. INTRODUCTION

Quantitative magnetic resonance imaging (QMRI) is widely

used to measure tissue’s intrinsic spin parameters such as the

spin-lattice magnetic relaxation time (T1) and the spin-spin

magnetic relaxation time (T2).1 Since tissue relaxation times

vary in disease, QMRI enables the diagnosis of different

pathologies, including multiple sclerosis (MS), Alzheimer,

Parkinson, epilepsy, and cancer.2–7 In addition, the knowl-

edge of tissue relaxation times allows generation of many

clinical MR imaging contrasts (such as FLAIR and STIR)

offline, and saves a significant amount of scanning time.

Despite the advantages of QMRI, clinical MRI today

mainly consists of weighted images. Values in weighted MR

imaging are given in arbitrary units, since the signal strength

is influenced by both intrinsic parameters (such as tempera-

ture, relaxation times and concentration of hydrogen atoms)

and nonintrinsic ones. Nonintrinsic parameters include trans-

mit and receive coils sensitivities, patient position in the

scanner, and vendor-based scanner specific parameters.

Weighted MRI images therefore lack quantitative information

and as a result, different materials may exhibit similar or

identical gray level values. In addition, weighted MRI con-

trast values vary between different follow-up scans of the

same patient. This fact may impair disease monitoring, if

based solely on those images. To date, weighted MRI scans

are more common than QMRI in the clinic, due to the extre-

mely long times often associated with QMRI using conven-

tional techniques.8–10

A plethora of methods have been proposed for QMRI. Ear-

lier approaches are based on a series of spin echo (SE) or

inversion recovery (IR) images with varying repetition times

(TR) and echo times (TE) to evaluate each magnetic parame-

ter (T1 or T2) separately. After acquisition, the curve of

intensities for each pixel is matched to the expected magnetic

signal, representing the appropriate magnetic tissue parame-

ters.8 Accelerated methods for QMRI consist of multiple-

flip-angle methods,11,12 the popular driven equilibrium single

pulse observation of T1 (DESPOT1)9 or T2 (DESPOT2)10

and the IR TrueFISP for simultaneous recovery of T1 and T2
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quantitative maps.1,13 These techniques do not require long

waiting times between excitations to reach an equilibrium

state, and therefore are significantly faster. Later works short-

ened the acquisition time required by those methods by

undersampling the data in both spatial and temporal

domains.14–18 However, obtaining accurate and high resolu-

tion QMRI in a reasonable clinical scanning time is still very

challenging.

An approach for QMRI called magnetic resonance finger-

printing (MRF) has drawn increased attention in the last few

years.19 MRF uses pseudorandomized acquisitions to gener-

ate many different imaging contrasts, acquired at a high

undersampling ratio. It exploits the different acquisition

parameters over time to produce a temporal signature, a “fin-

gerprint,” for each material under investigation. By matching

this unique signature to a pregenerated set of simulated pat-

terns, the quantitative parameters can be extracted off-line.

This approach saves valuable scan time compared to previous

methods for accelerated QMRI, demonstrating promising

efficient and reliable results.

MRF utilizes the fact that each tissue responds differently

to a given quasi-random pulse sequence. By varying the

acquisition parameters [e.g., repetition time (TR), echo time

(TE), and radio frequency flip angle (FA)], unique signals are

generated from different tissues. After acquisition, a pattern

recognition algorithm is used to match the acquired signal

from each voxel to an entry from a dictionary of possible tis-

sue candidates. The dictionary entries are created by simulat-

ing the tissue’s response to the sequence for a range of T1

and T2 parameter values, using the Bloch equations. The

resulting dictionary contains the temporal signatures of

various simulated materials, given the pseudorandom pulse

sequence. The quantitative parameters, such as the tissue’s

T1 and T2 relaxation times, can be retrieved from the data by

matching the signature acquired to the most correlated entry

in the dictionary.

In MRI, data are acquired in the Fourier domain of the

spatial image (a.k.a. k-space). The acquisition time of a high-

resolution, single-contrast three-dimensional (3D) MRI lasts

a substantial amount of time. Since MRF is based on rapid

acquisition of hundreds of different contrasts, severe under-

sampling is performed in k-space to obtain the temporal reso-

lution required for MRF. Figure 1 demonstrates the effect of

fully sampled vs undersampled data, acquired with spiral tra-

jectories and recovered using the inverse nonuniform fast

Fourier transform (NUFFT).20 It can be seen that the under-

sampled data is blurred and introduces aliasing artifacts.

Figure 2 illustrates the noise and undersampling artifacts of a

representative brain voxel intensity as function of time, where

the data is acquired with an MRF sequence based on fast

imaging with steady-state precession (FISP).21 Clearly,

undersampling also introduces a substantial level of noise in

the time domain. In addition, MRF uses a dictionary with dis-

crete values, while QMRI values are continuous. This leads

to quantization error, depending on the values represented in

the dictionary.

While in the original MRF paper19 these imaging artifacts

are not handled explicitly, recent works have implemented

advanced reconstruction techniques to overcome undersam-

pling artifacts. Approaches based on exploiting the sparsity

of the signal in some transform domain in a compressed sens-

ing (CS)22,23 framework are examined by Davies et al.24 and

t t t t

FIG. 1. Illustration of fully sampled (left) vs spiral trajectory undersampled (right) k-spaces and their corresponding reconstructed images using direct inverse

Fourier transform. In MRF, we acquire many undersampled images over time. When reconstructed by NUFFT, the undersampled data is blurred and contains

aliasing artifacts. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 2. Illustration of a single brain voxel’s temporal signature acquired with an MRF approach based on the FISP sequence. Fully sampled (top) vs noisy and

undersampled (bottom) at 15% sampling ratio. [Color figure can be viewed at wileyonlinelibrary.com]
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Wang et al.25. Zhao et al. 26 formulated MRF as a maximum

likelihood (ML) problem, and developed an iterative recon-

struction approach in order to estimate the magnetic parame-

ters. While these techniques showed improved results

compared to the original MRF method, they do not exploit

the temporal similarity between adjacent time-points, which

is intrinsic to the dynamic acquisition used in MRF.

A common approach to exploit redundancy exists in

dynamic MRI that is based on modeling the acquired data as

low-rank.27,28 This modeling was successfully applied for

various dynamic MRI applications, such as cardiac imag-

ing29,30 and functional MRI.31 In the context of MRF, early

works use low-rank MRF to compress the dictionary for fas-

ter reconstruction.32,33 This saves reconstruction time, but

does not necessarily improve the quality of the reconstructed

maps or the acquisition time. The first introduction of a sub-

space constrained low-rank approach for improved recon-

struction in MRF was proposed by Zhao et al.34,35 Following

these works, we suggested our variant for a subspace con-

strained low-rank approach.36 Liao et al. presented an exten-

sion of these ideas by adding a sparse term to the low-rank-

based reconstruction37 (a.k.a robust PCA38). Doneva

et al.39,40 assume that the k-t data matrix has a low-rank, and

presented an approach based on matrix completion in the k-

space domain. As opposed to conventional low-rank based

approaches that estimate the unknown rank from undersam-

pled data, in their approach the data subspace is estimated

from a small subset of fully sampled k-space data (a.k.a. cali-

bration data). While innovative, their implementation requires

a unique MRF acquisition to ensure that this calibration data

is acquired properly. Therefore, it may not be applicable for

reconstruction of previously acquired MRF data. Recently, a

few approaches that utilize prior knowledge of the dictionary

together with a low-rank constraint have been published.

Zhao et al.41 presented an efficient algorithm that performs a

singular value decomposition (SVD) on the dictionary and

embeds the right singular vectors into the solution, to obtain

better estimation of the temporal signatures. A similar

approach was presented by Assl€ander et al.42, who embed the

left singular vectors. These methods show that exploiting the

redundancy via a low-rank based solution improves

the results compared to a sparsity approach. However, the

obtained reconstructed maps still suffer from quantization

error, due to the nature of a matched-filter-based solution that

matches a single dictionary atom to a single pixel. In addi-

tion, most of these techniques are based on a fixed rank, set

in advance, which may be difficult to determine in advance.

In this paper, we extend our initial idea presented in our

conference paper36 and enforce a low-rank constraint in the

image domain together with constraining the solution to the

dictionary subspace. In particular, we exploit the low-rank

property of the temporal MRF domain, via an iterative

scheme that consists of a gradient step followed by a projec-

tion onto the subspace spanned by the dictionary elements in

order to constrain the structure of the tissue behavior simu-

lated in the dictionary. The estimated images are then decom-

posed using SVD and the singular values are soft-thresholded

to reduce the nuclear norm in every step. Our approach,

called magnetic resonance fingerprinting with low rank con-

straint (FLOR), incorporates three main advantages that were

only partially introduced in previous work:

• FLOR formulates the recovery problem of finding the

temporal images as a convex problem. The solution is

then rigorously developed based on the incremental

subgradient proximal method.43 This technique is

known to converge to the global minimum, regardless

of the initial starting point.

• FLOR is based on nuclear-norm minimization, and

does not require fixing the rank in advance. This leads

to a solution that adapts the rank according to the nature

of the specific dataset.

• The subspace constraint in FLOR is not limited to dic-

tionary items, but rather allows a solution that is

spanned by the dictionary. This enables better recon-

struction of the temporal imaging contrasts. It also

allows generation of quantitative parameters that do not

necessarily exist in the simulated dictionary, thereby

reducing the quantization error of the resulting maps.

While there are previous publications that introduce one

or two of the advantages pointed above (e.g., Zhao et al.41

describes a subspace constraint that is not limited to the dic-

tionary items), our work incorporates all of them together in

a convenient optimization framework.

Our reconstruction results are based on sampling with

variable density spiral trajectories, using 5% and 9% sam-

pling ratios, for retrospective and prospective experiments,

respectively. We compare our results to the methods devel-

oped by Davies et al.24 and Zhao,34 and show that FLOR

provides quantitative parameter maps with higher accuracy

or correspondence to literature compared to those tech-

niques.

This paper is organized as follows. Section 2 describes the

MRF problem and provides a review of common reconstruc-

tion methods, followed by our low-rank based approach. Sec-

tion 3 compares our results to previous MRF algorithms,

using retrospective and prospective undersampled MRF data

of a human subject. Sections 4 and 5 include a discussion on

the experimental results, followed by conclusions.

2. MATERIALS AND METHOD

2.A. Problem formulation

MRF data consists of multiple frames, acquired in the

image’s conjugate Fourier domain (a.k.a k-space), where each

frame results from different acquisition parameters. We stack

the measurements into a Q 9 L matrix Y, where L is the

number of frames and Q is the number of k-space samples in

each frame. Every column in Y is an undersampled Fourier

transform of an image frame, X:,i:

Y ¼ ½FufX:;1g; . . .;FufX:;Lg� þH (1)
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where Fu{�} denotes an undersampled two-dimensional (2D)

Fourier transform and H denotes a zero mean complex Gaus-

sian noise. The row Xj,: represents the temporal signature of a

single pixel (assumed to correspond to a single tissue). The

signature depends on the tissue’s relaxation times, T1 and

T2, and its proton density (PD), grouped as a row vector:

H
j
1 ¼ ½T1j;T2j;PDj�; 1� j�N: (2)

Each column, X:,i represents a response image acquired at a

single time point with different acquisition parameters,

stacked as a column vector:

H
i
2 ¼ ½TRi; TEi;FAi�T ; 1� i� L (3)

where TR and TE are the repetition time and time to echo and

FA represents the flip angle of the RF pulse. Therefore,

Xj;: ¼ f ðHj
1;H2Þ, where f{�} represents the Bloch equations.

Note that we omit the off-resonance parameter (which appeared

in Θ1 in the original MRF paper19), since the sequence used in

our retrospective experiments is derived from the FISP

sequence, which is insensitive to off resonance effects.21

The goal in MRF is to recover, from the measurements Y,

the imaging contrasts X and the underlying quantitative

parameters of each pixel defined in Eq. (2), under the

assumptions that every pixel in the image contains a single

type of tissue and that Θ2 is known.

Recovery is performed by defining a dictionary that con-

sists of simulating the signal generated from M tissues using

the Bloch equations (represented as M different combinations

of T1 and T2 relaxation times), when the length-L acquisition

sequence defined in Eq. (3) is used. As a result, we obtain a

dictionary D of dimensions M 9 L (M > L as the number of

simulated tissues is greater than the sequence length). The

PD is not simulated in the dictionary, as it is the gain used to

match the Bloch simulation performed on a single spin to the

signal obtained from a pixel containing multiple spins. It can

be easily determined after the T1 and T2 maps are known.

After successful recovery of X, each row in X is matched to a

single row in the dictionary, and T1 and T2 are estimated as

those used to generate the matched dictionary row. Every dic-

tionary signature has its own unique T1 and T2 values stored

in a lookup table (LUT), represented as the matrix LUT of

dimensions M 9 2.

2.B. Previous methods

The approach suggested in the original MRF paper19 is

described in Algorithm 1, and uses matched filtering to

match dictionary items to the acquired data. In the algorithm,

FH{�} is the 2D inverse NUFFT operator. The parameters kj
are the matching dictionary indices, j is a spatial index and i

is the temporal index, representing the ith frame in the acqui-

sition. The parameter maps are extracted from LUT, which

holds the values of T1 and T2 for each kj. This approach does

not incorporate sparse based reconstruction, which has been

proven to be very successful in MRI applications based on

undersampled data.44–46

Davies et al.24 suggested a method incorporating sparsity

of the data in the dictionary domain (i.e., each pixel is repre-

sented by at most one dictionary item), referred to as the

BLoch response recovery via Iterative Projection (BLIP)

algorithm. This approach is based on the projected Landwe-

ber algorithm (PLA), which is an extension of the popular

iterative hard thresholding method. BLIP (described here as

Algorithm 2) consists of iterating between two main steps: A

gradient step that enforces consistency with the measure-

ments, and a projection that matches each row of X to a sin-

gle dictionary atom.

Algorithm 1. Original MRF algorithm

Algorithm 2. BLIP
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BLIP and a few other works that are based on it25 do not

incorporate the temporal similarity across time points, which

is a fundamental characteristic of the MRF sequence. In addi-

tion, there is a high degree of similarity across signatures in

D. As a result, the space-time matrix X is typically a low-rank

matrix.

Low-rank based modeling for dynamic MRI in gen-

eral30,31,47,48 and MRF in particular32–42 has been proposed in

the past. To demonstrate the low-rank property of X, we used

T1, T2, and PD maps of size 128 9 128 (acquired using

DESPOT49) as an input to a simulation of a FISP sequence21

(simulated using the extended phase graph (EPG)).50 The

acquisition length in this experiment was L = 500 TRs. In

addition, we used random TR and FA values that have been

used in previous publications in the field of MRF.19,21 Note

that the general assumption of X being a low-rank matrix

holds as long as temporal similarity exist between time-

frames in X, and multiple voxels in the image belong to a sin-

gle tissue, regardless of the specific acquisition parameters.

Figure 3 shows the singular values of X. It can be seen that X

is indeed low-rank, as most of the data is represented in top

10% highest singular values, out of a total number of 500 sin-

gular values.

This low-rank property of X can be exploited for improved

reconstruction using the following optimization problem:

minimize
X;R

1

2
R
i
Y:;i � FufX:;ig

�

�

�

�

2

2

subject to rankðXÞ� r

X ¼ R1D

(4)

where R1 is a matrix that matches each pixel (Xj,:) with the

dictionary signatures. In many previous implementations of

low-rank for MRF, a matching of a single dictionary atom to

a single pixel is enforced, which means that the rows of R1

are one-sparse vectors. The parameter r is the rank of the

matrix, and is usually defined as a fixed prechosen parameter.

Typically r is not known in advance and determining it

upfront arise difficulty and may add error to the reconstruc-

tion scheme.

Algorithm 3. Model Based Iterative Reconstruction
MRF (MBIR-MRF)

Zhao et al.34 suggested an approximation for problem (2),

using an ADMM formulation51 as follows:

Xnþ1;Rnþ1
1 ;Znþ1 ¼ arg min

X;R1;Z

1

2
R
i
Y:;i � FufX:;ig

�

�

�

�

2

2

þ kwðZÞ þ g1 Qn � Xþ R1Dk k2F

þ g2 Wn � Xþ Zk k2F
Qnþ1 ¼ Qn þ g1 Xnþ1 � Rnþ1

1 D
� �

Wnþ1 ¼ Wn þ g2 Xnþ1 � Znþ1
� �

(5)

where the low-rank constraint is applied via the function

w(Z), defined as the P norm (P < 1) of the singular values of

Z to the power of P. The matrices Q and W are the Lagrange

multipliers. The method, coined as model-based iterative

reconstruction MRF (MBIR-MRF),34 is described in Algo-

rithm 3.

2.C. Proposed method

The constraint presented in previous approaches34 on

R1 to have one sparse rows that contain the corresponding

PD values for each row of X, is justified by the assump-

tion that only a single dictionary item should match an

acquired signature. However, in practice, we found that

superior results (in terms of spatial resolution and corre-

spondence to ground truth) are obtained by relaxing this

constraint, and allowing X to be comprised of multiple

Index #
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L
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g
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a
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e
s

10-5

100

105
Singular Values

FIG. 3. Singular values of FISP MRF sequence images in descending order.

Singular values #1–#100 are shown, out of a total 500 singular values,

presenting an effectively low-rank matrix. [Color figure can be viewed at

wileyonlinelibrary.com]
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dictionary elements at each step of the optimization algo-

rithm, where at the final stage each voxel is matched to a

single tissue. This allows for nonsimulated signatures to

be described by a linear combination of simulated ones.

In addition, the relaxation enables formulating the problem

as a convex problem, and saves the pattern recognition

search time during reconstruction. The matching between

X and the dictionary is performed only at the final stage,

after X is fully recovered by using a matched filter (MF),

in order to extract the parameter maps. For brevity, we

write the constraint X = RD as X 2 D where

D ¼ fX : NðXÞ � N ðDÞg, and consider the following

regularized form:

minimize
X2D

1

2
R
i
Y:;i � FufX:;ig

�

�

�

�

2

2
þkrankðXÞ (6)

for some fixed regularization parameter k.

Problem (6) is not convex due to the rank constraint.

We therefore relax this constraint by replacing the rank of

X with the nuclear norm ‖X‖*, defined as the sum of the

singular values of X.52 This results in the relaxed

problem:

minimize
X2D

1

2
R
i
Y:;i � FufX:;ig

�

�

�

�

2

2
þk Xk k�: (7)

In order to solve (7), we use the incremental subgradient

proximal method53 described in Appendix A.

Due to the convex modeling of the problem, we also

introduce an improvement that significantly reduces con-

vergence time. The improvement uses the acceleration

approach suggested by Nesterov54 for minimizing a

smooth convex function, and its extension for nonsmooth

composite functions of Beck and Teboulle.55,56 Our final

algorithm is detailed in Algorithm 4 and referred to as

FLOR, where the parameter k is chosen experimentally.

Note that by setting k = 0, enforcing R to have one-

sparse rows and eliminating the acceleration step, FLOR

reduces to BLIP.24

Figure 4 shows the reconstruction error of FLOR as

the number of iterations varies with and without the

acceleration step. Note that the CPU time of both algo-

rithms is similar.

Algorithm 4. FLOR - MRF with LOw Rank

2.D. Possible extension

Conventional MRF algorithms use a MF for the magnetic

parameter extraction. The MF operation introduces quantiza-

tion error since map values are continuous, as opposed to dis-

crete dictionary values. A possible extension of FLOR is to

add elements to the dictionary by linear interpolation, in

regions where a few candidates from the dictionary match a

single signature from the data. We then select the dictionary

signatures that exhibit a high correlation value (the ones

above a certain threshold) and average their matching T1 and

T2 values. An algorithm that incorporates this extension is

given as Algorithm 5, where “Max(�)” indicates a function

that finds the maximal element in a vector, and “Interpolate

(�)” indicates linear interpolation of a vector. Note that this

Algorithm is replaces the final stage of Algorithm 4 (the

restoration of the maps which is implemented as a standard

MF in Algorithm 4).

This improvement expands the possible solutions to

include ones that do not exist in the dictionary, and there-

fore exhibits improved accuracy compared to the conven-

tional matching. The major benefit from this extension is

reduced quantization errors that arise from conventional

MF used in MRF. This extension, coined FLOR II, is

FIG. 4. Comparison between the convergence of accelerated (plus sign) and

standard (asterisk) FLOR. [Color figure can be viewed at wileyonlinelibrary.

com]
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examined in the first part of our experimental results in the

next section.

Algorithm 5. FLOR II - (Extension to improve MF
stage)

3. EXPERIMENTAL RESULTS

This section describes two MRI experiments that were

carried out using brain scans of a healthy subject. The

first experiment is based on well-known quantitative maps

that were used, in a purely simulation environment to gen-

erate an MRF experiment with retrospectively sampled

data. While this experiment is a simulation based on real

quantitative maps, it allows accurate comparison of the

results of the different algorithms using a well defined ref-

erence.

In the second experiment, we used prospective sam-

pled real MRF data that was used to generate the results

in Ma et al.19 While this experiment lacks a gold stan-

dard for accurate error evaluation, it allows comparison

between different algorithms in a realistic multicoil acqui-

sition. To compare between different algorithms, for

prospective sampling, where no ground truth is available,

we examined the performance of the various algorithms

as a function of the total number of excitations, where

correspondence to values provided in literature for

various brain tissues is used for validation. In both exper-

iments, variable density spiral trajectories were used for

sampling.

In the first experiment, forward and inverse nonuniform

Fourier transforms were applied using SPURS, which is a

fast approach published recently.57 For the second experi-

ment, we used the NUFFT package,20 to adhere with the

reconstruction results of the original MRF paper.19 The

reconstruction times for all methods examined is given in

Table I. The long reconstruction times required for experi-

ment 2 are mainly due to the fact that multicoil

acquisition was used in that experiment, as opposed to

experiment 1.

3.A. Experiment 1: Retrospective undersampling of
simulated data

This experiment is based on simulating the acquisition of

data with known quantitative parameters. The reference

parameters maps were obtained by applying DESPOT1 and

DESPOT2 methods on realistic brain scans. Those scans

were acquired with a GE Signa 3T HDXT scanner. The pro-

cedures involving human subjects described in this experi-

ment were approved by the Institutional Review Board of Tel-

Aviv Sourasky Medical Center, Israel. We generated our ref-

erence data by acquisition of Fast Imaging Employing

Steady-state Acquisition (FIESTA) and Spoiled Gradient

Recalled Acquisition in Steady State (SPGR) images, at four

different flip angles (3∘ ,5∘, 12∘ and 20∘), implementing the

fast and well known DESPOT1 and DESPOT249 algorithms,

after improvements as described in Liberman et al.58, to gen-

erate T1,T2, and PD quantitative maps, each of size

128 9 128 pixels. While it is well known that the gold stan-

dard method for T1 measurement is the inversion recovery

spin echo with varying TIs and for T2 measurement is the

spin echo sequences with varying TEs, in this experiment,

DESPOTwas used as a reference thanks to its availability and

its relatively fast acquisition time. The FISP pulse sequence

has been applied for simulating acquisition of the reference,

[FISP was simulated using extended phase graph (EPG)].50 It

was simulated with constant TE of 2 ms, random TR values

in the range of 11.5–14.5 ms, and a sinusoidal variation of

FA (RF pulses) in the range of 0–70 degrees.21 The acquisi-

tion length in this experiment was L = 500 TRs.

To simulate noisy undersampled MRF samples, we added

complex Gaussian zero-mean noise to the k-space data to

obtain an SNR of 67 dB in the undersampled measurement

domain. Data were then undersampled to acquire only 876 k-

space samples in each TR with spiral trajectories. In particu-

lar, we used 24 variable density spirals with inner region size

of 20 and FOV of 24. In every time frame, each spiral is

shifted by 15 degrees. Figure 5 demonstrates the first spiral

trajectory. We define the undersampling ratio by the number

of the acquired samples in the k-space domain divided by the

number of pixels in the generated image. This leads to an

undersampling ratio of � 5% in this experiment. For compar-

ison, the undersampling ratio of the original MRF paper19 is

� 9%, since for each single spiral 1450 data points were

acquired.

TABLE I. Reconstruction times (in minutes).

Experiment #

Method

BLIP MBIR FLOR

Experiment 1 19 56 23

Experiment 2 152 509 205
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We generated the dictionary using Bloch equations, simu-

lating T1 values of [100:20:2000,2300:300:5000] ms and T2

values of [20:5:100,110:10:200,300:200:1900] ms. This range

covers the relaxation time values that can be found in a

healthy brain scan.59 The tuning parameters were experimen-

tally set as l = 1 and k = 5, after k was tested in the range

between 0 and 30. Data were fed as an input to BLIP, MBIR-

MRF, and the improved FLOR algorithm (described as Algo-

rithms 2, 3 above and Algorithms 4, 5). In addition, we per-

formed reconstruction using 100% of the data (without the

addition of noise) via conventional MRF (Algorithm 1), for

comparison purposes and to evaluate the error caused by the

effect of a discretized dictionary. All the iterative algorithms

were run until the difference between consecutive iterations

was below the same threshold.

The MATLAB code for reproducing the experiment pro-

vided in this section can be found at: http://webee.techni-on.ac.

il/Sites/People/YoninaEldar/software_det18.php. In this code,

spiral sampling trajectories design was based on Lee et al.60

Figure 6 shows the resulting maps for the recovery of T1,

T2, and PD obtained with the various algorithms against the

reference (left). To allow detailed view of the reconstruction

results, Fig. 6 shows a zoomed region for each map. Figure 7

shows the relative error maps with respect to the reference.

To provide a scalar value of the error for each resulting map,

FIG. 6. Reconstruction results of T1 and T2 in milliseconds, and PD in arbitrary units. Left: Reference maps, reconstruction using conventional MRF from 100%

of the noise-free data, followed by BLIP, MBIR-MRF, and FLOR reconstruction with extension (as described in Section II.D) from 5% of the noisy data. [Color

figure can be viewed at wileyonlinelibrary.com]

FIG. 5. One of the spiral trajectories use for undersampling a single image.

Each time, the trajectories are rotated by 15 degrees. [Color figure can be

viewed at wileyonlinelibrary.com]
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we calculated the mean relative error (MRE) between each

quantitative map estimation and the reference map, defined

as:
MREi ¼

1

N

X

N

j¼1

jhji �
^
h
j
ij

h
j
i

(8)

where h, ĥ represent a reference map (such as T1,T2, or PD)

and its corresponding reconstructed map (respectively), and j

is a spatial index. In Appendix B we provide the results when

TR = 300 and TR = 400 were used.

Note that the reference data in experiment 1 are the T1,

T2, and PD maps resulting from DESPOT1 and DESPOT2.

The fully sampled MRF results that appear in the leftmost

column of Fig. 6 (with corresponding error maps in Fig. 7 )

were obtained by simulating the FISP sequence, fully

sampling the acquired data (instead of using undersampling

via spiral trajectories), and then performing matching against

the dictionary. Therefore, the fully sampled MRF results con-

tain errors, which are mainly due to the fact that the dic-

tionary is quantized.

It can be seen that both FLOR and MBIR-MRF outper-

form BLIP reconstruction results, when using 5% of sampled

data by utilizing the low rank property. In addition, FLOR

provides a lower error compared to MBIR-MRF. The details

in the FLOR maps are comparable to those obtained by the

original MRF algorithm using 100% of the noise-free data.

Due to the very low sampling ratio in our experiments (mea-

sured as the number of samples divided by the number of

pixels in the image), conventional MRF using 5% of the data

FIG. 7. Relative error maps of the reconstruction of T1 and T2 in milliseconds, and PD in arbitrary units. Left: reconstruction using conventional MRF from

100% of the noise-free data, followed by BLIP, MBIR-MRF, and FLOR reconstruction with extension (as described in Section II.D) from 5% of the noisy data.

[Color figure can be viewed at wileyonlinelibrary.com]
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did not provide valuable reconstruction results and is there-

fore omitted in this analysis.

We next implemented the MF improvement described

in Section II.D. The results are shown in Fig. 8, with cor-

responding relative error maps in Fig. 9. These figures

compare the recovery maps of FLOR without (FLOR I)

and with (FLOR II) the proposed improvement. It can be

seen that FLOR II improves the results of FLOR I and

produces a smoother solution which better fits the refer-

ence maps.

3.B. Experiment 2: In vivo prospective sampling
experiment

The experiment in this section was carried out using the

data of the original MRF paper,19 which consisted of 48 spi-

ral trajectories shifted by 7.5 degrees, where 1450 samples

were acquired in each trajectory, leading to an underampling

ratio of 9%. The data were acquired with IR-bSSFP pulse

sequence and the pulses were amplitude modulated. The

bSSFP sequence alternated their phase between 0 and 180

degrees to address the usual bSSFP banding artifacts. Data

was acquired on a 1.5-T whole body scanner (Espree, SIE-

MENS Healthcare) using a 32-channel head receiver coil. To

handle multichannel acquisition, coil sensitivity maps were

estimated from the data using the adaptive combine

method.61 In addition, the forward and adjoint spatial Fourier

transforms (F{�} and FH{�}) were updated accordingly to

support multichannel data using an extension of the NUFFT

code developed by Chiew.62

Due to the lack of gold standard maps for this data, we

are unable to provide quantitative error results (e.g.,

NMSE). Therefore, in this experiment, we compare

between the various algorithms by examining reconstruc-

tion results using 400 TRs (representing 40% of scanning

time) to quantitative values of brain tissues from the litera-

ture. Since the results obtained in the original MRF exper-

iment (using 1000 TRs) mostly correspond to quantitative

values from the literature, the maps generated using 1000

TRs using the original MRF algorithm are provided in

Fig. 10, for reference. Those maps required acquisition

time of 12.3 s for 1000 TRs, as reported in Ma et al.19 In

this experiment, we compare between the algorithms’

results using 400 TRs (as using 1000 TRs leads to similar

T1 Reference FLOR I 5.3% sampled FLOR II 5.3% sampled

0

1000

2000

3000

4000

T2 Reference

0

500

1000

1500

PD Reference

0

50

100

[ms]

[ms]

FIG. 8. Comparison of FLOR recovery with regular MF (FLOR I), and FLOR recovery with extension (FLOR II, as described in Section II.D) out of 5% of the

data. T1 and T2 maps are in milliseconds, and PD is in arbitrary units. As can be seen in the magnified areas, FLOR II demonstrates a smoother solution (with

less quantization errors) which is more similar to the original reference maps. [Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 9. Reference maps (left) and relative error maps comparison, FLOR I vs FLOR II (right). It can be seen that FLOR II outperforms FLOR I. [Color figure

can be viewed at wileyonlinelibrary.com]

FIG. 10. The maps obtained when applying the original MRF algorithm on 1000 TRs. T1 and T2 color scales are in milliseconds, and PD in normalized color

scale and df color scale in Hz. [Color figure can be viewed at wileyonlinelibrary.com]
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results for all methods), which is equivalent to a shortened

acquisition time of 4.92 s.

The results of T1, T2, and PD maps for BLIP, MBIR-

MRF, and FLOR appear in Fig. 12. Since IR-bSSFP

sequence has been used in this experiment, off-resonance

frequency has also been computed and shown. We used

109 different values in the range between �250 and

240 Hz. It can be seen that for T1, all iterative algo-

rithms provide similar results, and T1 values of gray

matter (GM), white matter (WM), and cerebrospinal fluid

(CSF) regions correspond to similar values that appear in

the literature (see Table I in Ma et al.19) and in Fig. 10.

Noticeable artifacts appear in PD and T2 maps of all

techniques. The artifacts are the result of using a short-

ened sequence (400 TRs instead of 1000 TRs in the

original MRF paper). Since all the algorithms perform

well for 1000 TRs, we shortened the sequence to show

that low-rank/sparsity based methods can perform well,

with a minimal rate of artifacts, also when using a short-

ened sequence. FLOR real data results for 1000 TRs can

be seen in Fig. 11, showing T2 and PD maps with

reduced artifacts.

While T2 results exhibit visible differences between the

various methods, WM and GM values for all methods corre-

spond to values that appear in the literature. However, both

BLIP and MBIR MRF exhibit T2 values for CSF that are

lower than those reported in the literature. Fig. 18 in

Appendix C emphasizes this phenomenon, as it shows the

same T2 results shown in Fig. 12, where the color scale for

T2 is adjusted to 500–2000 ms (T2 values for CSF are

around 2000 ms). Underestimation of T2 values in CSF

regions was also reported in the original MRF experiment

with 1000 TRs (and were justified as out-of-plane flow in this

2D experiment). In our case, using the same acquired data, it

can be seen in Fig. 18 in Appendix C, that FLOR provides

CSF values that better correspond to literature values, when

compared to the other methods.

4. DISCUSSION

4.A. Relation to previous works

Although works that exploit the low-rank structure of

MRF sequences have been published in the past,32–35,37,40–42

our technique is unique mainly in the combination of convex

modeling and the ability to enable a solution with quantitative

values that do not exist in the dictionary. Our solution is

based on soft-thresholding the singular values,52 which is

mathematically justified in Appendix A.

Moreover, we compare our algorithm to both CS-based

and low-rank based methods for MRF and demonstrate supe-

rior results. While BLIP treats the original MRF problem as

an ‘0 optimization problem, FLOR first solves the relaxed

problem of (6) and only then uses a MF to extract the mag-

netic parameters. It leads to some beneficial properties such

as convergence guarantees, and the ability to use the accelera-

tion step as described in Algorithm 4.

4.B. Computational complexity

FLOR is divided into two main components: The first

recovers the imaging contrasts, and the second extracts the

parameter maps from the recovered contrasts. The computa-

tional burden of FLOR lies in the low-rank projection step, or

specifically, in the SVD calculation. This step does not exist in

BLIP nor the original MRF reconstruction. However, there are

efficient fast techniques to calculate the SVD,63 required by

FLOR. Note that the computation times reported in Table I

were computed using the standard SVD approach imple-

mented in MATLAB. Implementing an efficient technique for

fast SVD is expected to significantly reduce FLOR computa-

tion times. Moreover, unlike BLIP, and other low rank based

algorithms such as MBIR-MRF, FLOR does not require the

pattern recognition calculation at every iteration. Another time

consuming step that exists in all algorithms is the nonuniform

Fourier transform. By using the acceleration step, FLOR

reduces significantly the number of iterations required for con-

vergence and therefore saves computational cost.

In addition, while previous implementations of CS-

based reconstruction algorithms mainly use the inverse

NUFFT (iNUFFT) algorithm, in our retrospective experi-

ments we use SPURS.64 Based on our observations,

SPURS provides improved image reconstruction with the

same computational complexity compared to iNUFFT. In

the prospective sampling experiment, we used NUFFT and

not SPURS because: (a) SPURS is still under development

and currently does not support multichannel acquisition

and; (b) to allow a fair comparison against the results of

the original MRF algorithm,19 that were also obtained

using NUFFT.

FIG. 11. The maps obtained when applying FLOR algorithm on 1000 TRs. T1 and T2 color scales are in milliseconds and PD in normalized color scale. Artifacts

that appear in 400 TRs for T2 and PD maps are reduced. [Color figure can be viewed at wileyonlinelibrary.com]
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5. CONCLUSIONS

We presented FLOR, a method for high quality

reconstruction of quantitative MRI data using MRF, by

utilizing the low-rank property of MRF data. Due to

the fact that we exploit low-rank on top of the well

known sparsity of MRF in the dictionary matching

domain, we are able to obtain high quality reconstruc-

tion from highly undersampled data. Our method is

based on a convex minimization problem, leading to a

FIG. 12. Comparison between BLIP, MBIR-MRF, and FLOR reconstructions with data acquired out of 32 coils and 400 TRs. T1 and T2 color scales are in mil-

liseconds, and PD in normalized color scale and df color scale in Hz. [Color figure can be viewed at wileyonlinelibrary.com]
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solution in the dictionary subspace that overcomes its

quantization error.

We provide results that are comparable to fully sampled

MRF, using only 5% of the data in a simulation environment.

In addition, comparison against CS-based and low-rank

based methods for MRF shows the added value of our

approach in generating quantitative maps with less artifacts.

Our results consist of real-data, in vivo experiments that exhi-

bit FLOR superiority also for realistic multicoil data acquisi-

tion. Future work will examine more sophisticated patch wise

recoveries and additional experiments with different under-

sampling patterns.
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APPENDIX A

The basic implementation of FLOR, as described in Algo-

rithm 4 in the paper, aims to solve the following optimization

problem:

argmin
X2D

1

2
R
i
Y:;i � FufX:;ig

�

�

�

�

2

2
þkkXk� (A1)

where Fu is the partial Fourier transform operator, X has

dimensions N2 9 L and D ¼ fX : NðXÞ � N ðDÞg.

FLOR solves (A1) using the incremental proximal

method,53 which treats problems of the form:

argmin
X2D

fRm
i FiðXÞg (A2)

where Fi(X) = fi(X) + hi(X). The function fi(X) is convex

and nondifferentiable, hi(X) is a convex function and D is a

nonempty, closed, and convex subspace. The general step in

solving (A2) is given by [27, (4.12)–(4.13)]:

Zk ¼ PDðX
k � lkgikÞ (A3a)

Xkþ1 ¼ argmin
X2D

fik ðXÞ þ
1

2lk
kX� Zkk2F (A3b)

where gik 2 @hikðX
kÞ, lk is a positive step size, and PD is the

projection operator onto D defined as

FIG. 15. Relative error maps of the reconstruction of T1 and T2 in milliseconds, and PD in arbitrary units. Left: reconstruction using conventional MRF from

100% of the noise-free data, followed by BLIP, MBIR-MRF, and FLOR reconstruction with extension (as described in Section II.D) from 5% of the noisy data.

[Color figure can be viewed at wileyonlinelibrary.com]
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PDðXÞ ¼ argmin
Z2D

kZ� Xk2F: (A4)

The optimization problem, defined in the update step of

Xk+1, is referred to as the proximal gradient calculation of the

nondifferentiable fik , under the constraint X 2 D.
Our problem in Eq. (A1) corresponds to m = 1 in Eq.

(A2) and

hðXÞ ¼
1

2
R
i
Y:;i � FufX:;ig

�

�

�

�

2

2
¼

1

2
kY� FufXgk

2
F

f ðXÞ ¼ kkXk�: (A5)

Therefore,

@hðXÞ ¼ FH
u fY� FufXgg; (A6)

and

PDðXÞ ¼ XDyD ¼ XP: (A7)

The solution of (A3b) for f(X) = k‖X‖* without the con-

straint X 2 D is the singular value soft-thresholding operator

(SVT)52 defined as:

SVTlkkðZ
kÞ ¼ Ur½Rr � lkkI�þV

H
r : (A8)

Here, Σr is a diagonal matrix with the non-zero singular val-

ues of Zk on its diagonal, Ur and Vr are the r left and right

singular vectors of the SVD of Zk, associated with the r non-

zero singular values, and [x]+ = max(0,x). In our case, since

Zk 2 D (as follows from (A3a)) and the SVT calculation

keeps the operand in the same subspace, the constraint

X 2 D can be omitted. Therefore, (A3b) reduces to

Xkþ1 ¼ Ur½Rr � lkkI�þV
H
r : (A9)

Combining (A6), (A9), and (A7), the incremental subgra-

dient-proximal method for solving (A1) consists of two

updates in each iteration:

Zk ¼ ðXk � lkF
H
u fY� FufX

kggÞP (A10a)

Xkþ1 ¼ Ur½Rr � lkkI�þV
H
r : (A10b)

This constitutes the core of Algorithm 4. In our framework,

the step sizes are set to constant, lk = l, and k is chosen

experimentally.

Figure 13 shows a block diagram of the iterations of Algo-

rithm 4, after implementing the acceleration step.55

FIG. 16. Reconstruction results of T1 and T2 in milliseconds, and PD in arbitrary units, for TR = 400. Left: Reference maps, reconstruction using conventional

MRF from 100% of the noise-free data, followed by BLIP, MBIR-MRF, and FLOR reconstruction with extension (as described in Section II.D) from 5% of the

noisy data. [Color figure can be viewed at wileyonlinelibrary.com]
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APPENDIX B

In this Appendix, we present the results of all the methods

for TR = 300 and TR = 400. Figures 14 and 15 show the

parameter and error maps for TR = 300, and Figs. 16 and 17

show the parameter and error maps for TR = 400. By exam-

ining the results shown in this Appendix, as well as the

results for TR = 500 (in Figs. 6 and 7), it can clearly be seen

that increasing the number of TRs improves the performance

FIG. 17. Relative error maps of the reconstruction of T1 and T2 in milliseconds, and PD in arbitrary units. Left: reconstruction using conventional MRF from

100% of the noise-free data, followed by BLIP, MBIR-MRF, and FLOR reconstruction with extension (as described in Section II.D) from 5% of the noisy data.

[Color figure can be viewed at wileyonlinelibrary.com]

FIG. 18. Comparison between T2 map reconstructions of BLIP, MBIR-MRF and FLOR with sequence length of 400 TRs. T2 color scales are above 500 ms. It

can be seen that FLOR provides T2 values for CSF that better match the literature values in this case. [Color figure can be viewed at wileyonlinelibrary.com]
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of all approaches, while in all cases MBIR outperforms BLIP,

and FLOR is the most reliable one.

APPENDIX C

In this Appendix, we present in Fig. 18 the same T2 maps

shown in Fig. 12, where the color scale is adjusted to 500–

2000 ms (T2 values for CSF are around 2000 ms). Using the

same acquired data, it can be seen that FLOR provides CSF

values that better correspond to literature values, when com-

pared to the other methods.

a)Author to whom correspondence should be addressed. Electronic mail:

galmazor@campus.technion.ac.il; Telephone: +972-7-78871725.
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