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Abstract—Many real world datasets exhibit an embedding of
low-dimensional structure in a high-dimensional manifold. Exam-
ples include images, videos and internet traffic data. It is of great
significance to estimate and track the low-dimensional structure
with small storage requirements and computational complexity
when the data dimension is high. Therefore we consider the
problem of reconstructing a data stream from a small subset of
its entries, where the data is assumed to lie in a low-dimensional
linear subspace, possibly corrupted by noise. We further consider
tracking the change of the underlying subspace, which can be ap-
plied to applications such as video denoising, network monitoring
and anomaly detection. Our setting can be viewed as a sequential
low-rank matrix completion problem in which the subspace is
learned in an online fashion. The proposed algorithm, dubbed
Parallel Estimation and Tracking by REcursive Least Squares
(PETRELS), first identifies the underlying low-dimensional sub-
space, and then reconstructs the missing entries via least-squares
estimation if required. Subspace identification is performed via
a recursive procedure for each row of the subspace matrix in
parallel with discounting for previous observations. Numerical
examples are provided for direction-of-arrival estimation and
matrix completion, comparing PETRELS with state of the art
batch algorithms.

Index Terms—Matrix completion, online algorithms, partial
observations, recursive least squares, subspace identification and
tracking.

I. INTRODUCTION

W HEN data is generated by a process that is governed by
a small number of parameters, it can be represented as

a low dimensional structure embedded in a much higher dimen-
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sional space. If the embedding is assumed linear, then the un-
derlying low-dimensional structure becomes a linear subspace.
Subspace Identification and Tracking (SIT) of a data stream
plays an important role in various signal processing tasks such
as online identification of network anomalies [2], moving target
localization [3], beamforming [4], and video denoising [5].
A common way to determine low dimensional structure for

static data is by using Principal Component Analysis (PCA)
[6], which requires computing an eigendecomposition of an ap-
propriate correlation matrix. In order to attempt to reduce the
complexity in dynamic settings, typical SIT algorithms main-
tain an estimate of the underlying subspace at each time slot
using all data collected at the current time and limited historical
data about the subspace trajectory [7], [8].
When the data dimension is high, it may be impossible or

prohibitively expensive to collect every data entry. In recom-
mender systems it is unrealistic to expect every user to provide
feedback on every product. In wireless sensor networks every
measurement drains battery power and it is important to ex-
tend network lifetime by making fewer measurements. Hence
there is growing interest in identifying and tracking a low-di-
mensional subspace from highly incomplete observations of the
data stream.
Recent advances in Compressive Sensing (CS) [9]–[11] and

Matrix Completion (MC) [12], [13] enable batch inference of
data structure from observations that are highly incomplete with
respect to the ambient dimension. CS enables reconstruction of
a single vector from a few attributes by assuming it is sparse in
a known basis or dictionary. MC reconstructs a matrix from a
small subset of its entries assuming the matrix is low rank. It
is equivalent to subspace identification from incomplete batch
data since matrix reconstruction is straightforward once the row
or column space is known.
MC does not require prior knowledge of rank and can be ac-

complished by minimizing the nuclear norm of the matrix [12],
[13]. A common approach to render MC tractable is to pass to a
convex relaxation of rank minimization just as sparse recovery
can be made tractable by relying on -minimization [14]. Al-
ternative approaches to MC include greedy algorithms such as
OptSpace [15] and ADMiRA [16] which require an initial esti-
mate of matrix rank.
The problem of testing whether a highly incomplete vector

lies in a given subspace is also clearly related to MC. Here it
is possible to show that hypothesis testing succeeds with high
probability when the number of observed entries is slightly
larger than the subspace rank [17]. We note that with high
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probability it is also possible to estimate the covariance matrix
of a dataset from incomplete batch data [18].
Given partial observations from a data stream, we introduce a

new SIT algorithm, Parallel Estimation and Tracking by REcur-
sive Least Squares, which we abbreviate as PETRELS. The un-
derlying low-dimensional subspace is identified by minimizing
a geometrically discounted sum of projection residuals on the
observed entries at each time index. If missing entries are re-
quired then they can be reconstructed via least squares estima-
tion. The discount factor maintains a balance between capturing
long term behavior and responding to changes in that behavior.
PETRELS represents the underlying subspace as the row space
of a matrix and the discount factor is applied to each row of
this matrix in parallel. The subspace is updated recursively so
that it is not necessary to retain historical data indefinitely. Run
time is on the order of per time index, where is the sub-
space rank. Updating rows of the subspace matrix in parallel
renders run time independent of the ambient dimension of the
data stream.
If the underlying subspace is fixed and the data stream is fully

observed, then we show that PETRELS converges to the true
subspace by connecting to prior analysis of the Projection Ap-
proximation Subspace Tracking (PAST) algorithm [7]. For par-
tially observed data, PETRELS is a second order stochastic gra-
dient descent algorithm. We show that it always converges lo-
cally to a stationary point of the proposed objective function.
Section VI provides a numerical assessment of how well PE-

TRELS is able to respond to changes in the underlying sub-
space. The context for the numerical examples is direction-of-
arrival estimation and we measure the impact of the fraction
of observed entries, the discount factor, and the subspace rank.
We compare performance against the GROUSE algorithm [19]
which uses rank-one updates to track the underlying subspace
on the Grassmannian manifold. The performance of GROUSE
is limited by the existence of “barriers” in the search path [20]
which results in GROUSE being trapped at local minima. In
contrast, updates in PETRELS are not restricted to the Grass-
mannianmanifold.We show that PETRELS is better able to sep-
arate closely located modes and to respond quickly to changes
in the underlying scene in the context of direction-of-arrival es-
timation. We also compare PETRELS with state of the art batch
MC algorithms and show that it is competitive in terms of the
tradeoff between run time and accuracy.
The rest of the paper is organized as follows. Section II in-

troduces the problem of subspace tracking and describes prior
work. Implementation of PETRELS is considered in Section III,
while Section IV addresses convergence when the data stream
is fully observed. Extensions to PETRELS that improve robust-
ness, reduce complexity, and incorporate compressive measure-
ments are presented in Section V. Numerical results are pre-
sented in Section VI and conclusions in Section VII.

II. PROBLEM STATEMENT AND RELATED WORK

A. Problem Statement

We consider the following problem. At each time , a vector
is generated as:

(1)

where the columns of span a low-dimensional
subspace, the vector specifies the linear combina-
tion of columns, and is additive white Gaussian noise dis-
tributed as . When we analyze convergence
in Section IV we will make the additional assumption that

. The rank of the underlying subspace at time is
allowed to change slowly over time. It is assumed to be bounded
above by a constant but it is not required to be known exactly
at any specific time . The entries in might represent mea-
surements in a sensor network, pixel values in a video frame, or
individual movie ratings.
We collect only partial entries of the full vector at time
. Partial observations correspond to point-wise multiplication
of the vector by a binary mask , where

with if the
th entry is observed at time . The set of observed entries at

time is denoted by

(2)

where stands for point-wise multiplication. We denote
as the set of observed entries at time . In

a random observation model every entry of the vector is
observed uniformly at random.
Given a sequence of incomplete observations , we

seek to identify and track changes in the underlying subspace.
The output of our online algorithm at time is an matrix
, where the rank of the estimated subspace is assumed

known and fixed throughout the algorithm as . The target sub-
space is the column space of this matrix, and is ideally equiv-
alent to the column space of . The following properties are
desirable.
• Small storage: The storage required by the online algo-
rithm should not grow with the volume of historical data.

• Adaptivity: The online algorithm should respond quickly
to changes in the underlying subspace.

• Convergence: If the underlying subspace is constant then
the subspace generated from the online algorithm should
converge to the true subspace.

In Section III, we show that the algorithm proposed in this
paper satisfies the first two desiderata. In Section IV, we prove
that when the data stream is fully observed, our algorithm con-
verges to the true subspace. If the data stream is partially ob-
served then we are able to establish local convergence.

B. Conventional Subspace Identification and Tracking

The problem of subspace identification and tracking when the
data are fully observed has been widely studied in the signal
processing literature (see [21] and the references therein). In
this scenario, the Projection Approximation Subspace Tracking
(PAST) algorithm [7] is most similar to our algorithm so we
begin by describing PAST.
For simplicity assume is fixed over time, and con-

sider a scalar function with respect to a subspace
, given by

(3)
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where the expectation is taken with respect to . Let
be the data covariance matrix as-

suming that . It is shown in [7] that the global
minima of is the only stable stationary point, and it is
given by with orthogonal columns, where is
composed of the dominant eigenvectors of , and
is a unitary matrix.Without loss of generality, we can choose
to be composed of orthogonal columns which span the column
space of . This motivates PAST to optimize the following
function at time without constraining to have orthogonal
columns:

(4)

(5)

The expectation in (3) is replaced in (4) by a sum in which prior
observations are discounted by a geometric factor
. This sum is further approximated in (5) where replacement
of the second by leads to a recursion for . The
matrix is found by first estimating the coefficient vector
as , then updating the matrix estimate as

(6)

The PAST algorithm belongs to the class of power-based
techniques, which include Oja’s method [22], the Novel Infor-
mation Criterion (NIC) method [23] and others. These algo-
rithms have been analyzed in [24] within a uniform framework
with slight variations for each approach. Specifically, the sub-
space estimate is updated at time as

(7)

where is the sample data covariance matrix given by

(8)

with . The normalization in (7) ensures that the
updated subspace is orthogonal. This normalization is not
performed in all power-based algorithms.
If we were able to replace in (7) by the ground truth ,

then it is shown in [24] that these power-based methods will
converge to the principal subspace spanned by the most signif-
icant eigenvectors of . When the entries of the data vector
are fully observed, converges rapidly to , explaining why
power-based methods perform very well in practice. However,
if the fraction of entries observed at time is relatively small,
then only a fraction of entries in are updated at time
so that convergence is slow. Therefore, in the partially observed
setting, it is ineffective to apply the above methods without sub-
stantial modification.

C. Matrix Completion

When , our problem is closely related to the MC
problem. Assume is a low-rank matrix, and

is a binary mask matrix with 0 at missing entries and
1 at observed entries. Let be the

observed partial matrix where the missing entries are filled in as
zeros. MC aims to solve the following problem:

(9)

namely, to find a matrix with minimal rank such that the ob-
served entries are satisfied. The rank constraint makes this opti-
mization problem intractable. However, given weak conditions
on it can be shown that the solution coincides with that of
the following nuclear norm minimization problem (see [12] for
details):

(10)

Here is the nuclear norm of , i.e. the sum of singular
values of , and is a regularization parameter. The nu-
clear norm of can be expressed as [25]

(11)

where and . Substituting (11) into (10)
we can rewrite the MC problem as

(12)

Our problem formulation can be viewed as an online way
of solving (12) which avoids large matrix multiplications. We
simply define a random process that first selects columns of
uniformly and then selects a subset of entries uniformly from
the given column. MC reduces to the problem of identifying the
underlying column space since the matrix can be recovered
from this estimate by the method of least squares. The poten-
tial tradeoff between performance and complexity is explored
in Section VI where PETRELS is compared with standard MC
algorithms.

III. THE PETRELS ALGORITHM

We now describe our proposed Parallel Estimation and
Tracking by REcursive Least Squares (PETRELS) algorithm.

A. Objective Function

We assume that the rank of the target subspace is known
and that it remains fixed throughout. Note that the dimension
of the true subspace may be smaller than . Subspaces appear
throughout as the column spaces of matrices and we shall de-
scribe our algorithm as a procedure for updatingmatrices. Given
an matrix , we define the total projection residual

on the observed entries at time by

(13)

At time we select the -dimensional subspace that mini-
mizes the loss function given by

(14)

where the parameter discounts past observations.
To motivate the loss function in (14) we note that if
is not changing over time, then the right hand side of (14) is
minimized to zero when spans the subspace defined by .
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If is slowly changing, then is used to control the memory
and tracking ability at time .
Before developing PETRELS, we note that if there are further

constraints on the coefficients ’s, a regularization term can be
incorporated in as:

(15)

where . For example, enforces a sparsity constraint,
and enforces an energy constraint.
In (14) the discount factor is fixed, and the influence of past

observations decreases geometrically; a more general online ob-
jective function can be given as

(16)

where the sequence is used to control the memory and
adaptivity of the algorithm in a more flexible way.
Fixing , can be written as

(17)

where denotes the pseudo-inverse. Plugging this back into (14)
the exact optimization problem becomes:

This problem requires storing all previous observations and is
difficult to solve exactly. PETRELS provides an approximate
solution.

B. PETRELS

The proposed PETRELS algorithm is summarized by Algo-
rithm 1. At each time , PETRELS alternates between esti-
mating the coefficient vector and updating the subspace .
The estimate for the coefficient vector is obtained bymin-
imizing the projection residual on the subspace derived
at time :

(18)

where is a random subspace initialization. The full
vector is then estimated as:

(19)

The subspace is then updated by minimizing

(20)

where , are estimates from (18). We have simpli-
fied the problem of finding by replacing the optimal coeffi-
cients appearing in (14) with previously estimated coefficients.
The discount factor mitigates error propagation and enables the
algorithm to recover from losses incurred by the use of these
estimated coefficients.

Algorithm 1: PETRELS for SIT from Partial Observations

Input: a stream of vectors , observed patterns and .

Initialization: an random matrix
, and , for all

.

1: for do

2: .

3: If stream reconstruction is required: .

4: for do

5: ,

6: ,

7: ,

8: .

9: end for

10: end for

The objective function in (20) decomposes into a
parallel set of smaller problems, one for each row of

. Thus

(21)

for . To find the optimal , we set the derivative
of (21) equal to zero, resulting in

This equation can be rewritten as

(22)

where and
. Therefore, can be found

as

(23)

When is not invertible, we choose the least-norm solution.
We now show how (22) can be updated recursively. For

, we first rewrite

(24)

(25)

Next, substitute (24) and (25) into (22) to obtain

(26)



CHI et al.: PETRELS 5951

where is the estimate for row at time . Hence

(27)

defines a recursive procedure for updating all rows of the matrix
in parallel.
Finally we note that the matrix can be updated

without recourse to matrix inversion. We apply the Recur-
sive Least Squares (RLS) updating formula for the general
pseudo-inverse matrix [26], [27] to obtain

(28)

Here , with and given as

In RLS updating, the diagonal entries of the initial matrix
are required to be large and for all we

set , . RLS updating is in general very
efficient but care needs to be taken as finite precision operations
suffer from numerical instability when running for a long time
[28].

C. Second-Order Stochastic Gradient Descent

The PETRELS algorithm can be regarded as a second-order
stochastic gradient descent method to solve (14) by using ,

as a warm start at time . Specifically, we can
write the gradient of in (13) at as

(29)

where is given in (18). Then the gradient of at
is given as

The Hessian for each row of at is therefore

(30)

It follows that the update rule for each row can be written as

(31)

which is equivalent to second-order stochastic gradient descent.
Therefore, PETRELS converges to a stationary point of
[29], [30]. Compared with first-order algorithms, PETRELS en-
joys a faster convergence speed to the stationary point [29], [30].

D. Comparison With GROUSE

GROUSE is an algorithm proposed by Balzano et al. [19] for
online identification of a low-rank subspace from highly incom-

plete observations. It does not discount prior observations and
can be viewed as optimizing (14) for . In fact GROUSE
aims to solve the following optimization problem:

(32)

where is the orthogonal
Grassmannian rather than .
The GROUSE algorithm performs first-order stochastic gra-

dient descent on the orthogonal Grassmannian. It updates the
subspace estimate along the direction of on
, given by

(33)

where with given in (19),
, and is the step-size at time .
At time GROUSE provides a fast rank one update of

by alternating between coefficient estimation (18) and subspace
estimation (33). Since GROUSE is a first order gradient descent
algorithm, given weak conditions on the step size, specifically

(34)

it is guaranteed to converge to a stationary point on .
However this stationary point may not be a global optimum be-
cause of barriers in the search path on the Grassmannian [20].
Estimation of direction-of-arrival in Section VI provides an ex-
ample where GROUSE is trapped at a local minima.
The performance of GROUSE depends strongly on proper

tuning of the step size to satisfy (34). The performance of PE-
TRELS depends on the discount factor , but without any tuning

it can still converge to the global optimum when the
data is fully observed (see Section IV).
If we relax the objective function of GROUSE (32) to all

rank- subspaces by setting

(35)

then the objective function becomes equivalent to PETRELS
without discounting. It is then possible to solve (35) by second
order stochastic gradient descent with an appropriate step size.
The update rule for each row of is then

(36)

where is given in (30), and is the step-size
at time . In this paper we do not investigate the performance
of PETRELS with this alternative update rule.

E. Complexity Issues

We now compare both storage complexity and computational
complexity for PETRELS, GROUSE and the PAST algorithm.
The storage complexity of PAST and GROUSE is ,
which is the size of the low-rank subspace. On the other hand,
PETRELS has a larger storage complexity of , which
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is the total size of ’s for each row. In terms of computational
complexity, PAST has a complexity of per iteration,
while PETRELS and GROUSE have a similar complexity
on the order of , where the main contribution to
complexity comes from computation of the coefficient (18).
Parallel implementation reduces the computational complexity
of PETRELS to . We note that partial observation can
be used to reduce computational complexity when the ambient
dimension is high.

IV. GLOBAL CONVERGENCE WITH FULL OBSERVATIONS

PETRELS is a second order stochastic gradient descent,
hence even when data is only partially observed it converges to
a stationary point of . In general, convergence to a global
optimum remains open. In this section we show convergence
to a global optimum for the fully observed setting.
When data is fully observed and past observations are not

discounted PETRELS is essentially equivalent to PAST
[7] though the two algorithms differ in the method of estimating
coefficients. With the notation of Section II-B, PAST forms the
estimate whereas PETRELS forms

the estimate .
Ljung [31] describes how Ordinary Differential Equations

(ODEs) may be used to analyze stochastic recursive algorithms.
This method is applied to PAST in [32] where asymptotic con-
vergence in continuous time follows from the equilibrium be-
havior of the ODE:

(37)

(38)

where , and are con-
tinuous time versions of and , and the
derivatives are taken with respect to . It is proved in [32] that as
increases, converges to the global optima, i.e. to a ma-
trix which spans the eigenvectors of corresponding to the
largest eigenvalues.
The asymptotic dynamics of the PETRELS algorithm are de-

scribed by the following ODE:

(39)

(40)

Here , and
are continuous-time versions of and . Now let

and . From (40),

and

Furthermore

for any function of . Hence,

and

Therefore (39) and (40) can be rewritten as

which is equivalent to the ODE given in (37) and (38) that
describes PAST. Hence the subspace estimate derived by PE-
TRELS converges asymptotically to the same global optimum,
that is to the rank- principal subspace of , with the same
dynamics as the PAST algorithm.

V. EXTENSIONS TO THE PETRELS ALGORITHM

A. Simplified Update Rule

If we remove the partial observation operator from the objec-
tive function (20) then we obtain

(41)
where and , are estimates from earlier
steps calculated as in (18) and (19). It remains true that

if the corresponding th
entry of is unobserved, i.e. . Indeed,

The minimum is therefore obtained when for
.
This modification leads to a simplified update rule for ,

since now the updating formula for all rows is identical as
for all . Hence the row update

formula (27) is replaced by

(42)

which further reduces the storage required by PETRELS from
, to , i.e. the size of the subspace. Numerical

examples in Section VI suggest that this simplification leads to
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slower convergence, but that it may still have an advantage if
the subspace rank is underestimated.

B. Incorporating Prior Information

It is possible to incorporate regularization terms into PE-
TRELS to encode prior information about the data stream. In
Section II-C, the data stream is partially observed columns
drawn from a low rank matrix, and the low rank prior is encoded
in (10) using the nuclear norm. In this Section we suppose that
at time the subspace is updated according to

(43)

where is the regularization parameter. It follows from
the analysis given in Section III-B that (43) decomposes into
parallel problems, one for each row of
as

The matrix can be updated as

and can be updated as in (25).

C. Extension to Compressive Measurements

Until now, we have focused on direct observation of data.
However, it is straightforward to modify PETRELS to handle
compressive measurements in which the observation at time
is given by

(44)

where , and is the measurement
matrix. We estimate and track the underlying subspace from

by alternating between coefficient updates and sub-
space estimates. At time , given the subspace estimated
at time , we first estimate the coefficient vector as

(45)

and then update the subspace by

(46)

Partial observation is a special case of compressive measure-
ment where the matrices are partial identity matrices. It is
not possible to parallelize updates for general measurement ma-
trices, but it is still possible to update subspaces recursively. To

see this, let , and , where de-
notes column-wise vectorization. Note that

where denotes the Kronecker product. We rewrite (46) as

(47)

where , and .
We now use the Woodbury matrix identity [26] to recursively
update from as earlier, so that (47) becomes

where is the projection residual at time .
Note that at time , the new update rule involves inversion of a
matrix of size .

VI. NUMERICAL RESULTS

Our numerical results contain four parts. First we examine the
influence of parameters specified in the PETRELS algorithm,
such as discount factor, rank estimation, and its robustness to
noise level. Next we look at the problem of direction-of-arrival
estimation and show that PETRELS demonstrates performance
superior to GROUSE by identifying and tracking all the targets
almost perfectly even in low SNR. Thirdly, we compare our ap-
proachwithMC, and show that PETRELS is at least competitive
with state of the art batch algorithms. Finally, we provide numer-
ical simulations for the extensions of the PETRELS algorithm.

A. Choice of Parameters

At each time , a vector is generated as

(48)

where is an -dimensional subspace generated with i.i.d.
entries, is an vector with i.i.d. entries,

and is an Gaussian noise vector with i.i.d.
entries. We further fix the signal dimension and the
subspace rank . We assume that a fixed number of
entries in , denoted by , are revealed each time. This re-
striction is not necessary for PETRELS to work as is shown
in the MC simulations, but we make it here in order to get a
meaningful estimate of . Denoting the estimated subspace at
time by , we use the normalized subspace reconstruction
error to examine the algorithm performance. This is calculated
as , where is the projection op-
erator onto the orthogonal complement of .
The choice of discount factor plays an important role in how

fast the algorithm converges. We assume , so that only
10% of the entries are observed, and the rank is given accurately
as in a noise-free setting where . We run the algo-
rithm to time , and find that the normalized subspace
reconstruction error of the above data is minimized when is
around 0.98 as shown in Fig. 1. Hence, we will keep
hereafter.
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Fig. 1. The normalized subspace reconstruction error as a function of the dis-
count factor after running the algorithm to time when 50 out of
500 entries of the signal are observed each time without noise.

Fig. 2. Normalized subspace reconstruction error as a function of data stream
index when the rank is over-estimated when 50 out of 500 entries of the signal
are observed each time without noise.

In reality it is almost impossible to accurately estimate the
intrinsic rank in advance. Fortunately the convergence rate of
our algorithm degrades gracefully as the rank estimation error
increases. In Fig. 2, the evolution of normalized subspace re-
construction error is plotted against data stream index, for rank
estimation , 12, 14, 16, 18. We only examine over-esti-
mation of the rank here since we can easily make it the case in
applications. In the next section we show examples for the case
of rank under-estimation.
Taking more measurements per time leads to faster con-

vergence, as shown in Fig. 3. Theoretically it requires
measurements to test if an incom-

plete vector is within a subspace of rank [17]. The simulation
shows our algorithm can work even when is close to this
lower bound.
Finally, the robustness of PETRELS is tested against the noise

variance in Fig. 4, where the normalized subspace recon-
struction error is plotted as a function of the data stream index

Fig. 3. Normalized subspace reconstruction error as a function of data stream
index when the number of entries observed per time out of 500 entries are
varied with accurate rank estimation and no noise.

Fig. 4. Normalized subspace error versus data stream index with different noise
level when 50 out of 500 entries of the signal are observed each time with
accurate rank estimation.

for different noise levels. The estimated subspace deviates from
the ground truth as we increase the noise level, hence the nor-
malized subspace error degrades gracefully and converges to an
error floor determined by the noise variance.
We now consider a scenario where a subspace of rank

changes abruptly at time index and , and
examine the performance of GROUSE [19] and PETRELS in
Fig. 5 when the rank is over-estimated by 4 and the noise level
is . The normalized residual error for the data stream,
calculated as at each time , is
shown in Fig. 5(a), and the normalized subspace error is shown
in Fig. 5(b) respectively. Both PETRELS and GROUSE can
successfully track the changed subspace, but PETRELS tracks
the change faster.

B. Direction-of-Arrival Analysis

Given GROUSE [19] as a baseline, we evaluate the resilience
of PETRELS to different data models and applications. We use
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Fig. 5. Tracking a subspace with fixed rank . The rank is over-estimated by 4, the noise level is , and 50 out of 500 entries of the signal are
observed each time for both GROUSE and PETRELS. (a) Normalized residual error. (b) Normalized subspace error.

the following example of direction-of-arrival analysis in array
processing to compare the performance of these two methods.
Assume there are sensors from a linear array, and the
measurements from all sensors at time are given as

(49)

Here is a Vandermonde matrix given by

(50)

where , with
, and is a diagonal matrix
which characterizes the amplitudes of each mode. The coeffi-
cients ’s are generated with entries, and the noise is
generated with entries, where .
At each time slot we collect measurements from

sensors uniformly at random. We are interested in identifying
all and . This can be done by applying the well-
known ESPRIT algorithm [33] to the estimated subspace
of rank at each time , where corresponds to the number
of modes and can be estimated, for example via the Maximum
Description Length (MDL) algorithm [34]. Specifically, let
and be the submatrices of with the first and the last

rows of . The set of directions can be recovered from
the eigenvalues of the matrix , denoted by ,

, given as

(51)

where is the phase of the complex number in .
The ESPRIT algorithm also plays a role in recovery of multi-
path delays from low-rate samples of the channel output [35].
In a dynamic setting when the underlying subspace is

varying, PETRELS is superior to GROUSE in terms of dis-
carding out-of-date modes and picking up new modes. We
divide the running time into 4 segments, with the frequencies
and amplitudes in each segment specified as follows:

Fig. 6. Ground truth of the actual mode locations and amplitudes in a dynamic
scenario.

1) Start with the same frequencies

and amplitudes .
2) Change two modes (only frequencies) at stream index
1000:

and amplitudes .
3) Add one new mode at stream index 2000:

and amplitudes .
4) Delete the weakest mode at stream index 3000:

and amplitudes .
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Fig. 7. Tracking of mode changes in direction-of-arrival estimation using PETRELS and GROUSE algorithms: the estimated directions at each time for 10 modes
are shown against the data stream in (a) and (b) for PETRELS and GROUSE respectively. The estimations in (a) and (b) are further thresholded with respect to
level 0.5, and the thresholded results are shown in (c) and (d) respectively. All changes are identified and tracked successfully by PETRELS, but not by GROUSE.
(a) Petrels; (b) Grouse; (c) Petrels (thresholded); (d) Grouse (thresholded).

Fig. 6 shows the ground truth of mode locations and ampli-
tudes for the scenario above. Note that there are three closely
located modes and one weak mode in the beginning, and var-
ious modes entering and exiting the scene, which makes the
task challenging. We compare the performance of PETRELS
and GROUSE in Fig. 7. The rank specified in both algorithms
is , which is the number of estimated modes at each time
index; in our case it is twice the number of the initial true modes.
The estimated mode locations and amplitudes of PETRELS

and GROUSE are shown against the data stream index respec-
tively in Fig. 7(a) and (b). The color shows the amplitude corre-
sponding to the color bar. The direction-of-arrival estimations
in Fig. 7(a) and (b) are further thresholded with respect to an
amplitude level 0.5, and the thresholded results are shown in
Fig. 7(c) and (d) for PETRELS and GROUSE respectively. PE-
TRELS identifies all modes correctly. In particular, PETRELS
distinguishes the three closely-spacedmodes perfectly in the be-
ginning, and identifies the weak modes that enter the scene at

a later time. With GROUSE the closely spaced nodes are er-
roneously estimated as one mode, the weak mode is missing,
and spurious modes have been introduced. PETRELS also fully
tracked the later changes in accordance with the entrance and
exit of eachmode, while GROUSE is not able to react to changes
in the data model.
Since the number of estimated modes at each time is greater

than the number of true modes, the additional rank in the
estimated subspace contributes “auxiliary modes” that do not
belong to the data model. In PETRELS these modes become
scatter points with small amplitudes as in Fig. 7(a), so they
will not be identified as spurious targets in the scene. While
in GROUSE, these auxiliary modes are tracked and appear as
spurious modes as seen in Fig. 7(b).

C. Matrix Completion

We next compare performance of PETRELS for MC against
batch algorithms including LMaFit [36], FPCA [37], Singular
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Fig. 8. Comparison of MC algorithms in terms of speed and accuracy: PETRELS is a competitive alternative for MC tasks when the low-rank matrix is
generated from a factorization model with the entries of and are from (a) ; and (b) .

Value Thresholding (SVT) [38], OptSpace [15] and online
GROUSE [19]. The low-rank matrix is generated from a matrix
factorization model as , where

and . The entries in and
are generated from standard normal distribution

(Gaussian data) or uniform distribution (uniform data).
The sampling rate is taken to be 0.05, so only 5% of the entries
of are revealed.
The running time is plotted against the normalized matrix re-

construction error for Gaussian data and uniform data respec-
tively in Fig. 8(a) and (b). The normalized matrix reconstruction
error is calculated as , where is the recon-
structed low-rank matrix. PETRELS matches the performance
of batch algorithms on Gaussian data and improves upon the ac-
curacy of most algorithms on uniform data, where the Grassma-
niann-based optimization approach may encounter “barriers”
for its convergence. Note that different algorithms have different
input parameter requirements. For example, OptSpace needs to
specify the tolerance to terminate the iterations, which directly
determines the trade-off between accuracy and running time;
PETRELS and GROUSE require an initial estimate of the rank.
Our simulation here only shows one particular realization and
we simply conclude that PETRELS is competitive.

D. PETRELS Using Simplified Update Rule

We consider the same simulation setup as for Fig. 2, except
that a subspace of rank 10 is generated by ,
where is a diagonal matrix with 5 entries from and
5 entries from . We examine the performance of
the simplified PETRELS algorithm (with optimized )
proposed in Section V-A and the original PETRELS (with opti-
mized ) algorithm. We consider both when the sub-
space rank is over-estimated as 12 and the rank is under-es-
timated as 8 where Fig. 9 shows the normalized subspace re-
construction error against data stream index. When the rank is
over-estimated, the change in (9) will introduce more errors and

Fig. 9. Normalized subspace reconstruction error against data stream index
when the rank is over-estimated as 12 or under-estimated as 8 for the original
PETRELS and modified algorithm.

converges slower compared with the original PETRELS algo-
rithm; however, when the subspace rank is under-estimated, the
simplified PETRELS performs better than PETRELS. This is an
interesting feature of the proposed simplification, and quantita-
tive justification of this phenomenon is beyond the scope of this
paper. Intuitively, when the rank is under-estimated, the simpli-
fied PETRELS also uses the interpolated entries to update the
subspace estimate, which seems to help the performance.

E. PETRELS With Compressive Measurements

We assume the data stream is generated using (48), where
the subspace , and each time the data stream
is measured using a matrix of size 20 100 with i.i.d. stan-
dard Gaussian entries. The underlying subspace is estimated
via the modified PETRELS in Section V-C to handle compres-
sive measurements. Fig. 10 shows the normalized subspace re-
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Fig. 10. Normalized subspace reconstruction error against data stream index
when the size of the underlying subspace is 100 10, and 20 measurements are
taken using a matrix of i.i.d. Gaussian entries at each time.

construction error against the data stream index with optimized
.

VII. CONCLUSIONS

We considered the problem of reconstructing a data stream
from a small subset of its entries, where the data stream is as-
sumed to lie in a low-dimensional linear subspace, possibly cor-
rupted by noise. This has significant implications for lessening
the storage burden and reducing complexity, as well as tracking
the changes in the subspace for applications such as video de-
noising, network monitoring and anomaly detection when the
problem size is large. The well-known low-rank MC problem
can be viewed as a batch version of our problem. The PETRELS
algorithm first identifies the underlying low-dimensional sub-
space via a discounted recursive procedure for each row of the
subspace matrix in parallel, then reconstructs the missing en-
tries via least-squares estimation if required. The discount factor
allows the algorithm to capture long-term behavior as well as
track the changes of the data stream. We have shown that PE-
TRELS converges to a stationary point given it is a second-order
stochastic gradient descent algorithm. When data is fully ob-
served we further proved that PETRELS actually converges
globally by making a connection to the PAST algorithm. We
demonstrated demonstrate superior performance of PETRELS
in direction-of-arrival estimation and showed that it is compet-
itive with existing batch MC algorithms.
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