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Abstract—Compressed sensing (CS) is an emerging field that has
attracted considerable research interest over the past few years.
Previous review articles in CS limit their scope to standard dis-
crete-to-discrete measurement architectures using matrices of ran-
domized nature and signal models based on standard sparsity. In
recent years, CS has worked its way into several new application
areas. This, in turn, necessitates a fresh look on many of the ba-
sics of CS. The random matrix measurement operator must be re-
placed by more structured sensing architectures that correspond to
the characteristics of feasible acquisition hardware. The standard
sparsity prior has to be extended to include a much richer class of
signals and to encode broader data models, including continuous-
time signals. In our overview, the theme is exploiting signal and
measurement structure in compressive sensing. The prime focus
is bridging theory and practice; that is, to pinpoint the potential
of structured CS strategies to emerge from the math to the hard-
ware. Our summary highlights new directions as well as relations
to more traditional CS, with the hope of serving both as a review
to practitioners wanting to join this emerging field, and as a refer-
ence for researchers that attempts to put some of the existing ideas
in perspective of practical applications.

Index Terms—Approximation algorithms, compressed sensing,
compression algorithms, data acquisition, data compression, sam-
pling methods.

I. INTRODUCTION AND MOTIVATION

C OMPRESSED sensing (CS) is an emerging field that has
attracted considerable research interest in the signal pro-

cessing community. Since its introduction only several years
ago [1], [2], thousands of papers have appeared in this area, and
hundreds of conferences, workshops, and special sessions have
been dedicated to this growing research field.

Due to the vast interest in this topic, there exist several excel-
lent review articles on the basics of CS [3]–[5]. These articles fo-
cused on the first CS efforts: the use of standard discrete-to-dis-
crete measurement architectures using matrices of randomized
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nature, where no structure beyond sparsity is assumed on the
signal or in its representation. This basic formulation already
required the use of sophisticated mathematical tools and rich
theory in order to analyze recovery approaches and provide per-
formance guarantees. It was therefore essential to confine atten-
tion to this simplified setting in the early stages of development
of the CS framework.

Essentially all analog-to-digital converters to date follow
the celebrated Shannon–Nyquist theorem which requires the
sampling rate to be at least twice the bandwidth of the signal.
This basic principle underlies the majority of digital signal pro-
cessing (DSP) applications such as audio, video, radio receivers,
radar applications, medical devices and more. The ever growing
demand for data, as well as advances in radio frequency (RF)
technology, have promoted the use of high-bandwidth signals,
for which the rates dictated by the Shannon–Nyquist theorem
impose severe challenges both on the acquisition hardware
and on the subsequent storage and DSP processors. CS was
motivated in part by the desire to sample wideband signals
at rates far lower than the Shannon–Nyquist rate, while still
maintaining the essential information encoded in the under-
lying signal. In practice, however, much of the work to date on
CS has focused on acquiring finite-dimensional sparse vectors
using random measurements. This precludes the important case
of continuous-time (i.e., analog) input signals, as well as prac-
tical hardware architectures which inevitably are structured.
Achieving the “holy grail” of compressive ADCs and increased
resolution requires a broader framework which can treat more
general signal models, including continuous-time signals with
various types of structure, as well as practical measurement
schemes.

In recent years, the area of CS has branched out to many new
fronts and has worked its way into several application areas.
This, in turn, necessitates a fresh look on many of the basics
of CS. The random matrix measurement operator, fundamental
in all early presentations of CS, must be replaced by more struc-
tured measurement operators that correspond to the application
of interest, such as wireless channels, analog sampling hard-
ware, sensor networks and optical imaging. The standard spar-
sity prior that has characterized early work in CS has to be ex-
tended to include a much richer class of signals: signals that
have underlying low-dimensional structure, not necessarily rep-
resented by standard sparsity, and signals that can have arbitrary
dimensions, not only finite-dimensional vectors.

A significant part of the recent work on CS from the signal
processing community can be classified into two major con-
tribution areas. The first group consists of theory and applica-
tions related to CS matrices that are not completely random and
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that often exhibit considerable structure. This largely follows
from efforts to model the way the samples are acquired in prac-
tice, which leads to sensing matrices that inherent their structure
from the real world. The second group includes signal represen-
tations that exhibit structure beyond sparsity and broader classes
of signals, such as continuous-time signals with infinite-dimen-
sional representations. For many types of signals, such struc-
ture allows for a higher degree of signal compression when
leveraged on top of sparsity. Additionally, infinite-dimensional
signal representations provide an important example of richer
structure which clearly cannot be described using standard spar-
sity. Since reducing the sampling rate in analog signals was one
of the driving forces behind CS, building a theory that can ac-
commodate low-dimensional signals in arbitrary Hilbert spaces
is clearly an essential part of the CS framework. Both of these
categories are motivated by real-world CS involving actual hard-
ware implementations.

In our review, the theme is exploiting signal and measure-
ment structure in CS. The prime focus is bridging theory and
practice—that is, to pinpoint the potential of CS strategies to
emerge from the math to the hardware by generalizing the un-
derlying theory where needed. We believe that this is an essen-
tial ingredient in taking CS to the next step: incorporating this
fast growing field into real-world applications. Considerable ef-
forts have been devoted in recent years by many researchers to
adapt the theory of CS to better solve real-world signal acquisi-
tion challenges. This has also led to parallel low-rate sampling
schemes that combine the principles of CS with the rich theory
of sampling such as the finite rate of innovation (FRI) [6]–[8]
and Xampling frameworks [9], [10]. There are already dozens
of papers dealing with these broad ideas. In this review we have
strived to provide a coherent summary, highlighting new direc-
tions and relations to more traditional CS. This material can
both serve as a review to those wanting to join this emerging
field, as well as a reference that attempts to summarize some of
the existing results in the framework of practical applications.
Our hope is that this presentation will attract the interest of both
mathematicians and engineers in the desire to promote the CS
premise into practical applications, and encourage further re-
search into this new frontier.

This review paper is organized as follows. Section II pro-
vides background motivating the formulation of CS and the
layout of the review. A primer on standard CS theory is pre-
sented in Section III. This material serves as a basis for the later
developments. Section IV reviews alternative constructions for
structured CS matrices beyond those generated completely at
random. In Section V, we introduce finite-dimensional signal
models that exhibit additional signal structure. This leads to the
more general union-of-subspaces framework, which will play
an important role in the context of structured infinite-dimen-
sional representations as well. Section VI extends the concepts
of CS to infinite-dimensional signal models and introduces re-
cent compressive ADCs which have been developed based on
the Xampling and FRI frameworks. For each of the matrices and
models introduced, we summarize the details of the theoretical
and algorithmic frameworks and provide example applications
where the structure is applicable.

II. BACKGROUND

We live in a digital world. Telecommunication, entertain-
ment, medical devices, gadgets, business—all revolve around
digital media. Miniature sophisticated black-boxes process
streams of bits accurately at high speeds. Nowadays, electronic
consumers feel natural that a media player shows their favorite
movie, or that their surround system synthesizes pure acoustics,
as if sitting in the orchestra instead of the living room. The
digital world plays a fundamental role in our everyday routine,
to such a point that we almost forget that we cannot “hear” or
“watch” these streams of bits, running behind the scenes.

Analog-to-digital conversion (ADC) lies at the heart of this
revolution. ADC devices translate the physical information into
a stream of numbers, enabling digital processing by sophisti-
cated software algorithms. The ADC task is inherently intri-
cate: its hardware must hold a snapshot of a fast-varying input
signal steady while acquiring measurements. Since these mea-
surements are spaced in time, the values between consecutive
snapshots are lost. In general, therefore, there is no way to re-
cover the analog signal unless some prior on its structure is in-
corporated.

After sampling, the numbers or bits retained must be stored
and later processed. This requires ample storage devices and
sufficient processing power. As technology advances, so does
the requirement for ever-increasing amounts of data, imposing
unprecedented strains on both the ADC devices and the subse-
quent DSP and storage media. How then does consumer elec-
tronics keep up with these high demands? Fortunately, most of
the data we acquire can be discarded without much perceptual
loss. This is evident in essentially all compression techniques
used to date. However, this paradigm of high-rate sampling fol-
lowed by compression does not alleviate the large strains on the
acquisition device and on the DSP. In his seminal work on CS
[1], Donoho posed the ultimate goal of merging compression
and sampling: “Why go to so much effort to acquire all the data
when most of what we get will be thrown away? Can’t we just
directly measure the part that won’t end up being thrown away?”

A. Shannon–Nyquist Theorem

ADCs provide the interface between an analog signal being
recorded and a suitable discrete representation. A common ap-
proach in engineering is to assume that the signal is bandlimited,
meaning that the spectral contents are confined to a maximal fre-
quency . Bandlimited signals have limited time variation, and
can therefore be perfectly reconstructed from equispaced sam-
ples with rate at least , termed the Nyquist rate. This funda-
mental result is often attributed in the engineering community
to Shannon–Nyquist [11], [12], although it dates back to earlier
works by Whittaker [13] and Kotelńikov [14].

Theorem 1 [12]: If a function contains no frequencies
higher than hertz, then it is completely determined by giving
its ordinates at a series of points spaced seconds apart.

A fundamental reason for processing at the Nyquist rate is the
clear relation between the spectrum of and that of its sam-
ples , so that digital operations can be easily substituted
for their analog counterparts. Digital filtering is an example
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where this relation is successfully exploited. Since the power
spectral densities of analog and discrete random processes are
associated in a similar manner, estimation and detection of pa-
rameters of analog signals can be performed by DSP. In con-
trast, compression is carried out by a series of algorithmic steps,
which, in general, exhibit a nonlinear complicated relationship
between the samples and the stored data.

While this framework has driven the development of signal
acquisition devices for the last half century, the increasing com-
plexity of emerging applications dictates increasingly higher
sampling rates that cannot always be met using available hard-
ware. Advances in related fields such as wideband communi-
cation and RF technology open a considerable gap with ADC
devices. Conversion speeds which are twice the signal’s max-
imal frequency component have become more and more difficult
to obtain. Consequently, alternatives to high rate sampling are
drawing considerable attention in both academia and industry.

Structured analog signals can often be processed far more
efficiently than what is dictated by the Shannon–Nyquist the-
orem, which does not take any structure into account. For ex-
ample, many wideband communication signals are comprised
of several narrow transmissions modulated at high carrier fre-
quencies. A common practice in engineering is demodulation
in which the input signal is multiplied by the carrier frequency
of a band of interest, in order to shift the contents of the narrow-
band transmission from the high frequencies to the origin. Then,
commercial ADC devices at low rates are utilized. Demodula-
tion, however, requires knowing the exact carrier frequency. In
this review we focus on structured models in which the exact
parameters defining the structure are unknown. In the context
of multiband communications, for example, the carrier frequen-
cies may not be known, or may be changing over time. The goal
then is to build a compressed sampler which does not depend on
the carrier frequencies, but can nonetheless acquire and process
such signals at rates below Nyquist.

B. Compressed Sensing and Beyond

A “holy grail” of CS is to build acquisition devices that
exploit signal structure in order to reduce the sampling rate,
and subsequent demands on storage and DSP. In such an
approach, the actual information contents dictate the sampling
rate, rather than the dimensions of the ambient space in which
the signal resides. The challenges in achieving this task both
theoretically and in terms of hardware design can be reduced
substantially when considering finite-dimensional problems in
which the signal to be measured can be represented as a discrete
finite-length vector. This has spurred a surge of research on
various mathematical and algorithmic aspects of sensing sparse
signals, which were mainly studied for discrete finite vectors.

At its core, CS is a mathematical framework that studies ac-
curate recovery of a signal represented by a vector of length
from measurements, effectively performing compres-
sion during signal acquisition. The measurement paradigm con-
sists of linear projections, or inner products, of the signal vector
into a set of carefully chosen projection vectors that act as a mul-
titude of probes on the information contained in the signal. In
the first part of this review (Sections III and IV) we survey the
fundamentals of CS and show how the ideas can be extended

to allow for more elaborate measurement schemes that incor-
porate structure into the measurement process. When consid-
ering real-world acquisition schemes, the choices of possible
measurement matrices are dictated by the constraints of the ap-
plication. Thus, we must deviate from the general randomized
constructions and apply structure within the projection vectors
that can be easily implemented by the acquisition hardware.
Section IV focuses on such alternatives; we survey both existing
theory and applications for several classes of structured CS ma-
trices. In certain applications, there exist hardware designs that
measure analog signals at a sub-Nyquist rate, obtaining mea-
surements for finite-dimensional signal representations via such
structured CS matrices.

In the second part of this review (Sections V and VI), we
expand the theory of CS to signal models tailored to express
structure beyond standard sparsity. A recent emerging theoret-
ical framework that allows a broader class of signal models to be
acquired efficiently is the union of subspaces model [15]–[20].
We introduce this framework and some of its applications in
a finite-dimensional context in Section V, which include more
general notions of structure and sparsity. Combining the princi-
ples and insights from the previous sections, in Section VI we
extend the notion of CS to analog signals with infinite-dimen-
sional representations. This new framework, referred to as Xam-
pling [9], [10], relies on more general signal models—union of
subspaces and FRI signals—together with guidelines on how to
exploit these mathematical structures in order to build sensing
devices that can directly acquire analog signals at reduced rates.
We then survey several compressive ADCs that result from this
broader framework.

III. COMPRESSED SENSING BASICS

CS [1]–[5] offers a framework for simultaneous sensing and
compression of finite-dimensional vectors, that relies on linear
dimensionality reduction. Specifically, in CS we do not acquire

directly but rather acquire linear measurements
using an CS matrix . We refer to as the mea-

surement vector. Ideally, the matrix is designed to reduce the
number of measurements as much as possible while allowing
for recovery of a wide class of signals from their measurement
vectors . However, the fact that renders the matrix
rank-defficient, meaning that it has a nonempty nullspace; this,
in turn, implies that for any particular signal , an in-
finite number of signals will yield the same measurements

for the chosen CS matrix .
The motivation behind the design of the matrix is, there-

fore, to allow for distinct signals within a class of signals
of interest to be uniquely identifiable from their measurements

, , even though . We must therefore
make a choice on the class of signals that we aim to recover from
CS measurements.

A. Sparsity

Sparsity is the signal structure behind many compression al-
gorithms that employ transform coding, and is the most preva-
lent signal structure used in CS. Sparsity also has a rich history
of applications in signal processing problems in the last century



4056 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 9, SEPTEMBER 2011

(particularly in imaging), including denoising, deconvolution,
restoration, and inpainting [21]–[23].

To introduce the notion of sparsity, we rely on a signal repre-
sentation in a given basis for . Every signal
is representable in terms of coefficients as

; arranging the as columns into the matrix
and the coefficients into the coefficient vector , we

can write succinctly that , with . Similarly, if
we use a frame1 containing unit-norm column vectors of
length with (i.e., ), then for any vector

there exist infinitely many decompositions
such that . In a general setting, we refer to as the
sparsifying dictionary [24]. While our exposition is restricted
to real-valued signals, the concepts are extendable to complex
signals as well [25], [26].

We say that a signal is -sparse in the basis or frame if
there exists a vector with only nonzero entries
such that . We call the set of indices corresponding to
the nonzero entries the support of and denote it by .
We also define the set that contains all signals that are

-sparse.
A -sparse signal can be efficiently compressed by pre-

serving only the values and locations of its nonzero coefficients,
using bits: coding each of the nonzero coeffi-
cient’s locations takes bits, while coding the magnitudes
uses a constant amount of bits that depends on the desired pre-
cision, and is independent of . This process is known as
transform coding, and relies on the existence of a suitable
basis or frame that renders signals of interest sparse or
approximately sparse.

For signals that are not exactly sparse, the amount of com-
pression depends on the number of coefficients of that we
keep. Consider a signal whose coefficients , when sorted in
order of decreasing magnitude, decay according to the power
law

(1)

where indexes the sorted coefficients. Thanks to the rapid
decay of their coefficients, such signals are well-approximated
by -sparse signals. The best -term approximation error for
such a signal obeys

(2)

with and denoting a constant that does not de-
pend on [27]. That is, the signal’s best approximation error
(in an -norm sense) has a power-law decay with exponent
as increases. We dub such a signal -compressible. When
is an orthonormal basis, the best sparse approximation of is
obtained by hard thresholding the signal’s coefficients, so that
only the coefficients with largest magnitudes are preserved.
The situation is decidedly more complicated when is a gen-
eral frame, spurring the development of sparse approximation
methods, a subject that we will focus on in Section III-C.

1A matrix � is said to be a frame if there exist constants �, � such that
���� � ���� � ���� for all �.

When sparsity is used as the signal structure enabling CS, we
aim to recover from by exploiting its sparsity. In contrast
with transform coding, we do not operate on the signal di-
rectly, but rather only have access to the CS measurement vector

. Our goal is to push as close as possible to in order
to perform as much signal “compression” during acquisition as
possible. In the sequel, we will assume that is taken to be the
identity basis so that the signal is itself sparse. In certain
cases we will explicitly define a different basis or frame that
arises in a specific application of CS.

B. Design of CS Matrices

The main design criteria for the CS matrix is to enable the
unique identification of a signal of interest from its measure-
ments . Clearly, when we consider the class of -sparse
signals , the number of measurements for any ma-
trix design, since the identification problem has unknowns
even when the support of the signal is provided.
In this case, we simply restrict the matrix to its columns cor-
responding to the indices in , denoted by , and then use the
pseudoinverse to recover the nonzero coefficients of :

(3)

Here, is the restriction of the vector to the set of indices
, and denotes the pseudoinverse of the

matrix . The implicit assumption in (3) is that has full
column-rank so that there is a unique solution to the equation

.
We begin by determining properties of that guarantee that

distinct signals , , lead to different measure-
ment vectors . In other words, we want each vector

to be matched to at most one vector such that
. A key relevant property of the matrix in this context is

its spark.
Definition 1 [28]: The spark spark of a given matrix is

the smallest number of columns of that are linearly dependent.
The spark is related to the Kruskal rank from the tensor

product literature; the matrix has Kruskal rank spark .
This definition allows us to pose the following straightforward
guarantee.

Theorem 2 [28]: If spark , then for each measure-
ment vector there exists at most one signal
such that .

It is easy to see that spark , so that Theorem 2
yields the requirement .

While Theorem 2 guarantees uniqueness of representation for
-sparse signals, computing the spark of a general matrix has

combinatorial computational complexity, since one must verify
that all sets of columns of a certain size are linearly indepen-
dent. Thus, it is preferable to use properties of that are easily
computable to provide recovery guarantees. The coherence of a
matrix is one such property.

Definition 2 [28]–[31]: The coherence of a matrix
is the largest absolute inner product between any two columns
of :

(4)
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It can be shown that ; the lower bound
is known as the Welch bound [32], [33]. Note that when

, the lower bound is approximately . One can tie
the coherence and spark of a matrix by employing the Gersh-
gorin circle theorem.

Theorem 3 [34]: The eigenvalues of an matrix
with entries , , lie in the union of discs

, , centered at with radius
.

Applying this theorem on the Gram matrix leads
to the following result.

Lemma 1: [28] For any matrix ,

spark (5)

By merging Theorem 2 with Lemma 1, we can pose the fol-
lowing condition on that guarantees uniqueness.

Theorem 4 [28], [30], [31]: If

(6)

then for each measurement vector there exists at most
one signal such that .

Theorem 4, together with the Welch bound, provides an upper
bound on the level of sparsity that guarantees uniqueness
using coherence: .

The prior properties of the CS matrix provide guarantees of
uniqueness when the measurement vector is obtained without
error. Hardware considerations introduce two main sources of
inaccuracies in the measurements: inaccuracies due to noise at
the sensing stage (in the form of additive noise ),
and inaccuracies due to mismatches between the CS matrix used
during recovery, , and that implemented during acquisition,

(in the form of multiplicative noise [35], [36]).
Under these sources of error, it is no longer possible to guarantee
uniqueness; however, it is desirable for the measurement process
to be tolerant to both types of error. To be more formal, we
would like the distance between the measurement vectors for
two sparse signals , to be proportional to
the distance between the original signal vectors and . Such
a property allows us to guarantee that, for small enough noise,
two sparse vectors that are far apart from each other cannot lead
to the same (noisy) measurement vector. This behavior has been
formalized into the restricted isometry property (RIP).

Definition 3 [4]: A matrix has the -restricted isom-
etry property ( -RIP) if, for all ,

(7)

In words, the -RIP ensures that all submatrices of of
size are close to an isometry, and therefore distance-pre-
serving. We will show later that this property suffices to prove
that the recovery is stable to presence of additive noise . In
certain settings, noise is introduced to the signal prior to mea-
surement. Recovery is also stable for this case; however, there
is a degradation in the distortion of the recovery by a factor of

[37]–[40]. Furthermore, the RIP also leads to stability with

respect to the multiplicative noise introduced by the CS matrix
mismatch [35], [36].

The RIP can be connected to the coherence property by using,
once again, the Gershgorin circle theorem (Theorem 3).

Lemma 2: [41] If has unit-norm columns and coherence
, then has the -RIP with .

One can also easily connect RIP with the spark. For each
-sparse vector to be uniquely identifiable by its measure-

ments, it suffices for the matrix to have the -RIP with
, as this implies that all sets of columns of are

linearly independent, i.e., spark (cf. Theorems 2 and
4). We will see later that the RIP enables recovery guarantees
that are much stronger than those based on spark and coher-
ence. However, checking whether a CS matrix satisfies the

-RIP has combinatorial computational complexity.
Now that we have defined relevant properties of a CS matrix

, we discuss specific matrix constructions that are suitable for
CS. An Vandermonde matrix constructed from
distinct scalars has spark [27]. Unfortunately,
these matrices are poorly conditioned for large values of ,
rendering the recovery problem numerically unstable. Similarly,
there are known matrices of size that achieve the
coherence lower bound

(8)

such as the Gabor frame generated from the Alltop sequence
[42] and more general equiangular tight frames [33]. It is also
possible to construct deterministic CS matrices of size

that have the -RIP for [43]. These

constructions restrict the number of measurements needed to
recover a -sparse signal to be , which is
undesirable for real-world values of and .

Fortunately, these bottlenecks can be defeated by random-
izing the matrix construction. For example, random matrices
of size whose entries are independent and identically dis-
tributed (i.i.d.) with continuous distributions have spark

with high probability. It can also be shown that when the
distribution used has zero mean and finite variance, then in the
asymptotic regime (as and grow) the coherence converges

to [44], [45]. Similarly, random matrices from
Gaussian, Rademacher, or more generally a sub-Gaussian dis-
tribution2 have the -RIP with high probability if [46]

(9)

Finally, we point out that while the set of RIP-fulfilling ma-
trices provided above might seem limited, emerging numerical
results have shown that a variety of classes of matrices are
suitable for CS recovery at regimes similar to those of the ma-
trices advocated in this section, including subsampled Fourier
and Hadamard transforms [47], [48].

2A Rademacher distribution gives probability to the values �1. A
random variable � is called sub-Gaussian if there exists � � � such that

�� � � � for all � � . Examples include the Gaussian, Bernoulli,
and Rademacher random variables, as well as any bounded random variable.
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C. CS Recovery Algorithms

We now focus on solving the CS recovery problem: given
and , find a signal within the class of interest such that

exactly or approximately.
When we consider sparse signals, the CS recovery process

consists of a search for the sparsest signal that yields the mea-
surements . By defining the “norm” of a vector as the
number of nonzero entries in , the simplest way to pose a re-
covery algorithm is using the optimization

subject to (10)

Solving (10) relies on an exhaustive search and is successful for
all when the matrix has the sparse solution unique-
ness property (i.e., for as small as , see Theorems 2 and 4).
However, this algorithm has combinatorial computational com-
plexity, since we must check whether the measurement vector

belongs to the span of each set of columns of ,
. Our goal, therefore, is to find computationally fea-

sible algorithms that can successfully recover a sparse vector
from the measurement vector for the smallest possible number
of measurements .

An alternative to the “norm” used in (10) is to use the
norm, defined as . The resulting adapta-
tion of (10), known as basis pursuit (BP) [22], is formally de-
fined as

subject to (11)

Since the norm is convex, (11) can be seen as a convex relax-
ation of (10). Thanks to the convexity, this algorithm can be im-
plemented as a linear program, making its computational com-
plexity polynomial in the signal length [49].3

The optimization (11) can be modified to allow for noise in
the measurements ; we simply change the constraint
on the solution to

subject to (12)

where is an appropriately chosen bound on the noise
magnitude. This modified optimization is known as basis pur-
suit with inequality constraints (BPIC) and is a quadratic pro-
gram with polynomial complexity solvers [49]. The Lagrangian
relaxation of this quadratic program is written as

(13)

and is known as basis pursuit denoising (BPDN). There exist
many efficient solvers to find BP, BPIC, and BPDN solutions;
for an overview, see [51].

Oftentimes, a bounded-norm noise model is overly pes-
simistic, and it may be reasonable instead to assume that the
noise is random. For example, additive white Gaussian noise

3A similar set of recovery algorithms, known as total variation minimizers,
operate on the gradient of an image, which exhibits sparsity for piecewise
smooth images [50].

is a common choice. Approaches designed to
address stochastic noise include complexity-based regulariza-
tion [52] and Bayesian estimation [53]. These methods pose
probabilistic or complexity-based priors, respectively, on the
set of observable signals. The particular prior is then leveraged
together with the noise probability distribution during signal re-
covery. Optimization-based approaches can also be formulated
in this case; one of the most popular techniques is the Dantzig
selector [54]:

(14)

where denotes the -norm, which provides the largest-
magnitude entry in a vector and is a constant parameter that
controls the probability of successful recovery.

An alternative to optimization-based approaches, are greedy
algorithms for sparse signal recovery. These methods are iter-
ative in nature and select columns of according to their cor-
relation with the measurements determined by an appropriate
inner product. For example, the matching pursuit and orthog-
onal matching pursuit algorithms (OMP) [24], [55] proceed by
finding the column of most correlated to the signal residual,
which is obtained by subtracting the contribution of a partial
estimate of the signal from . The OMP method is formally de-
fined as Algorithm 1, where denotes a thresholding
operator on that sets all but the entries of with the largest
magnitudes to zero, and denotes the restriction of to the
entries indexed by . The convergence criterion used to find
sparse representations consists of checking whether
exactly or approximately; note that due to its design, the al-
gorithm cannot run for more than iterations, as has
rows. Other greedy techniques that have a similar flavor to OMP
include CoSaMP [56], detailed as Algorithm 2, and subspace
pursuit (SP) [57]. A simpler variant is known as iterative hard
thresholding (IHT) [58]: starting from an initial signal estimate

, the algorithm iterates a gradient descent step followed
by hard thresholding, i.e.,

(15)

until a convergence criterion is met.

Algorithm 1: Orthogonal Matching Pursuit

Input: CS matrix , measurement vector

Output: Sparse representation

Initialize: , , ,

while halting criterion false do

{form residual signal estimate}

{update support with residual}

, {update signal estimate}

{update measurement residual}

end while

return
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Algorithm 2: CoSaMP

Input: CS matrix , measurement vector , sparsity

Output: -sparse approximation to true signal

Initialize: , ,

while halting criterion false do

{form residual signal estimate}

{prune residual}

{merge supports}

, {form signal estimate}

{prune signal using model}

{update measurement residual}

end while

return

D. CS Recovery Guarantees

Many of the CS recovery algorithms above come with guar-
antees on their performance. We group these results according
to the matrix metric used to obtain the guarantee.

First, we review results that rely on coherence. As a first ex-
ample, BP and OMP recover a -sparse vector from noiseless
measurements when the matrix satisfies (6) [28], [30], [31].
There also exist coherence-based guarantees designed for mea-
surements corrupted with arbitrary noise.

Theorem 5 [59]: Let the signal and write

. Denote . Suppose that and
in (12). Then the output of (12) has error bounded by

(16)

while the output of the OMP algorithm with halting criterion
has error bounded by

(17)

provided that for OMP, with being a
positive lower bound on the magnitude of the nonzero entries of

.
Note here that BPIC must be aware of the noise magnitude

to make , while OMP must be aware of the noise magni-
tude to set an appropriate convergence criterion. Additionally,
the error in Theorem 5 is proportional to the noise magnitude .
This is because the only assumption on the noise is its magni-
tude, so that might be aligned to maximally harm the estima-
tion process.

In the random noise case, bounds on can only be
stated in high probability, since there is always a small proba-
bility that the noise will be very large and completely overpower
the signal. For example, under additive white Gaussian noise
(AWGN), the guarantees for BPIC in Theorems 5 hold with high

probability when the parameter , with
denoting an adjustable parameter to control the probability of

being too large [60]. A second example gives a related re-
sult for the BPDN algorithm.

Theorem 6 [61]: Let the signal and write
, where . Suppose that

and consider the BPDN optimization problem (13) with
. Then, with probability on the order of ,

the solution of (13) is unique, its error is bounded by

(18)

and its support is a subset of the true -element support of .
Under AWGN, the value of one would need to choose in

Theorem 5 is , giving a bound much larger than The-
orem 6, which is . This demonstrates the noise
reduction achievable due to the adoption of the random noise
model. These guarantees come close to the Cramér–Rao bound,
which is given by [62]. We finish the study of coher-
ence-based guarantees for the AWGN setting with a result for
OMP.

Theorem 7 [61]: Let the signal and write
, where . Suppose that

and

(19)

for some constant . Then, with probability at least
, the output of OMP after itera-

tions has error bounded by

(20)

and its support matches the true -element support of .
The greedy nature of OMP poses the requirement on the min-

imum absolute-valued entry of in order for the support to be
correctly detected, in contrast to BPIC and BPDN.

A second class of guarantees are based on the RIP. The
following result for OMP provides an interesting viewpoint of
greedy algorithms.

Theorem 8 [63]: Let the signal and write .
Suppose that has the -RIP with . Then
OMP can recover a -sparse signal exactly in iterations.

Guarantees also exist for noisy measurement settings, albeit
with significantly more stringent RIP conditions on the CS ma-
trix.

Theorem 9 [64]: Let the signal and write
. Suppose that has the -RIP with . Then

the output of OMP after iterations has error bounded by

(21)

The next result extends guarantees from sparse to more gen-
eral signals measured under noise. We collect a set of indepen-
dent statements in a single theorem.
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Theorem 10 [4], [56]–[58]: Let the signal and write
. The outputs of the CoSaMP, SP, IHT, and BPIC

algorithms, with having the -RIP, obey

(22)
where is the best -sparse ap-
proximation of the vector when measured in the norm. The
requirements on the parameters , of the RIP and the values
of , , and are specific to each algorithm. For example,
for the BPIC algorithm, and suffice to obtain
the guarantee (22).

The type of guarantee given in Theorem 10 is known as uni-
form instance optimality, in the sense that the CS recovery error
is proportional to that of the best -sparse approximation to the
signal for any signal . In fact, the formulation of the
CoSaMP, SP and IHT algorithms was driven by the goal of in-
stance optimality, which has not been shown for older greedy
algorithms like MP and OMP. Theorem 10 can also be adapted
to recovery of exactly sparse signals from noiseless measure-
ments.

Corollary 11: Let the signal and write .
The CoSaMP, SP, IHT, and BP algorithms can exactly recover

from if has the -RIP, where the parameters , of
the RIP are specific to each algorithm.

Similarly to Theorem 5, the error in Theorem 10 is propor-
tional to the noise magnitude , and the bounds can be tai-
lored to random noise with high probability. The Dantzig se-
lector improves the scaling of the error in the AWGN setting.

Theorem 12 [54]: Let the signal and write
, where . Suppose that

in (14) and that has the and -RIPs with
. Then, with probability at least ,

we have

(23)

Similar results under AWGN have been shown for the OMP and
thresholding algorithms [61].

A third class of guarantees relies on metrics additional to co-
herence and RIP. This class has a nonuniform flavor in the sense
that the results apply only for a certain subset of sufficiently
sparse signals. Such flexibility allows for significant relaxations
on the properties required from the matrix . The next example
has a probabilistic flavor and relies on the coherence property.

Theorem 13 [65]: Let the signal with support drawn
uniformly at random from the available possibilities and
entries drawn independently from a distribution so that

. Write and fix and

. If and

then is the unique solution to BP (11) with probability at least
.

In words, the theorem says that as long as the coherence
and the spectral norm of the CS matrix are small enough,
we will be able to recover the majority of -sparse signals
from their measurements . Probabilistic results that rely on co-
herence can also be obtained for the BPDN algorithm (13) [45].

The main difference between the guarantees that rely solely
on coherence and those that rely on the RIP and probabilistic
sparse signal models is the scaling of the number of measure-
ments needed for successful recovery of -sparse signals.
According to the bounds (8) and (9), the sparsity level that al-
lows for recovery with high probability in Theorems 10, 12, and
13 is , compared with for the de-
terministic guarantees provided by Theorems 5, 6, and 7. This
so-called square root bottleneck [65] gives an additional reason
for the popularity of randomized CS matrices and sparse signal
models.

IV. STRUCTURE IN CS MATRICES

While most initial work in CS has emphasized the use of ran-
domized CS matrices whose entries are obtained independently
from a standard probability distribution, such matrices are often
not feasible for real-world applications due to the cost of multi-
plying arbitrary matrices with signal vectors of high dimension.
In fact, very often the physics of the sensing modality and the
capabilities of sensing devices limit the types of CS matrices
that can be implemented in a specific application. Furthermore,
in the context of analog sampling, one of the prime motivations
for CS is to build analog samplers that lead to sub-Nyquist sam-
pling rates. These involve actual hardware and therefore struc-
tured sensing devices. Hardware considerations require more
elaborate signal models to reduce the number of measurements
needed for recovery as much as possible. In this section, we re-
view available alternatives for structured CS matrices; in each
case, we provide known performance guarantees, as well as ap-
plication areas where the structure arises. In Section VI we ex-
tend the CS framework to allow for analog sampling, and in-
troduce further structure into the measurement process. This re-
sults in new hardware implementations for reduced rate sam-
plers based on extended CS principles. Note that the survey
of CS devices given in this section is by no means exhaus-
tive [66]–[68]; our focus is on CS matrices that have been inves-
tigated from both a theoretical and an implementational point of
view.

A. Subsampled Incoherent Bases

The key concept of a frame’s coherence can be extended to
pairs of orthonormal bases. This enables a new choice for CS
matrices: one simply selects an orthonormal basis that is inco-
herent with the sparsity basis, and obtains CS measurements by
selecting a subset of the coefficients of the signal in the chosen
basis [69]. We note that some degree of randomness remains in
this scheme, due to the choice of coefficients selected to repre-
sent the signal as CS measurements.

1) Formulation: Formally, we assume that a basis
is provided for measurement purposes, where

each column of corresponds to a different
basis element. Let be an column submatrix of that
preserves the basis vectors with indices and set .
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Under this setup, a different metric arises to evaluate the per-
formance of CS.

Definition 4 [28], [69]: The mutual coherence of the -di-
mensional orthonormal bases and is the maximum absolute
value of the inner product between elements of the two bases:

(24)

where denotes the column, or element, of the basis .
The mutual coherence has values in the range

. For example, when is the
discrete Fourier transform basis, or Fourier matrix, and is
the canonical basis, or identity matrix, and when
both bases share at least one element or column. Note also that
the concepts of coherence and mutual coherence are connected
by the equality . The definition of mutual
coherence can also be extended to infinite-dimensional repre-
sentations of continuous-time (analog) signals [33], [70].

2) Theoretical Guarantees: The following theorem provides
a recovery guarantee based on mutual coherence.

Theorem 14 [69]: Let be a -sparse signal
in with support , , and with
entries having signs chosen uniformly at random. Choose
a subset uniformly at random for the set
of observed measurements, with . Suppose that

and for fixed
values of . Then with probability at least ,
is the solution to (11).

The number of measurements required by Theorem 14 ranges
from to . It is possible to expand the guar-
antee of Theorem 14 to compressible signals by adapting an ar-
gument of Rudelson and Vershynin in [71] to link coherence and
restricted isometry constants.

Theorem 15 [71 Remark 3.5.3]: Choose a subset
for the set of observed measurements,

with . Suppose that

(25)

for a fixed value of . Then with probability at least
the matrix has the RIP with constant .

Using this theorem, we obtain the guarantee of Theorem 10
for compressible signals with the number of measurements
dictated by the coherence value .

3) Applications: There are two main categories of applica-
tions where subsampled incoherent bases are used. In the first
category, the acquisition hardware is limited by construction to
measure directly in a transform domain. The most relevant ex-
amples are magnetic resonance imaging (MRI) [72] and tomo-
graphic imaging [73], as well as optical microscopy [74], [75];
in all of these cases, the measurements obtained from the hard-
ware correspond to coefficients of the image’s 2-D continuous
Fourier transform, albeit not typically selected in a random-
ized fashion. Since the Fourier functions, corresponding to si-
nusoids, will be incoherent with functions that have localized
support, this imaging approach works well in practice for spar-
sity/compressibility transforms such as wavelets [69], total vari-
ation [73], and the standard canonical representation [74].

Fig. 1. Diagram of the single pixel camera. The incident lightfield (corre-
sponding to the desired image �) is reflected off a digital micro-mirror device
(DMD) array whose mirror orientations are modulated in the pseudorandom
pattern supplied by the random number generator (RNG). Each different mirror
pattern produces a voltage at the single photodiode that corresponds to one
measurement ����. The process is repeated with different patterns� times to
obtain a full measurement vector � (taken from [76]).

In the case of optical microscopy, the Fourier coefficients that
are measured correspond to the lowpass regime. The highpass
values are completely lost. When the underlying signal can
change sign, standard sparse recovery algorithms such as BP do
not typically succeed in recovering the true underlying vector.
To treat the case of recovery from lowpass coefficients, a special
purpose sparse recovery method was developed under the name
of Nonlocal Hard Thresholding (NLHT) [74]. This technique
attempts to allocate the off-support of the sparse signal in an
iterative fashion by performing a thresholding step that depends
on the values of the neighboring locations.

The second category involves the design of new acquisition
hardware that can obtain projections of the signal against a
class of vectors. The goal of the matrix design step is to find a
basis whose elements belong to the class of vectors that can be
implemented on the hardware. For example, a class of single
pixel imagers based on optical modulators [60], [76] (see an
example in Fig. 1) can obtain projections of an image against
vectors that have binary entries. Example bases that meet this
criterion include the Walsh–Hadamard and noiselet bases [77].
The latter is particularly interesting for imaging applications, as
it is known to be maximally incoherent with the Haar wavelet
basis. In contrast, certain elements of the Walsh-Hadamard
basis are highly coherent with wavelet functions at coarse
scales, due to their large supports. Permuting the entries of the
basis vectors (in a random or pseudorandom fashion) helps
reduce the coherence between the measurement basis and
a wavelet basis. Because the single pixel camera modulates
the light field through optical aggregation, it improves the
signal-to-noise ratio of the measurements obtained when com-
pared to standard multisensor schemes [78]. Similar imaging
hardware architectures have been developed in [79], [80].

An additional example of a configurable acquisition device is
the random sampling ADC [81], which is designed for acquisi-
tion of periodic, multitone analog signals whose frequency com-
ponents belong to a uniform grid (similarly to the random de-
modulator of Section IV-B-3). The sparsity basis for the signal
once again is chosen to be the discrete Fourier transform basis.
The measurement basis is chosen to be the identity basis, so
that the measurements correspond to standard signal samples
taken at randomized times. The hardware implementation em-
ploys a randomized clock that drives a traditional low-rate ADC
to sample the input signal at specific times. As shown in Fig. 2,
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Fig. 2. Diagram of the random sampling ADC. A pseudorandom clock gen-
erated by an FPGA drives a low-rate standard ADC to sample the input signal
at predetermined pseudorandom times. The samples obtained are then fed into
a CS recovery algorithm or a sketching algorithm for Fourier sparse signals to
estimate the frequencies and amplitudes of the tones present in the signal (taken
from [81]).

the random clock is implemented using an FPGA that outputs
a predetermined pseudorandom pulse sequence indicating the
times at which the signal is sampled. The patterns are timed ac-
cording to a set of pseudorandom arithmetic progressions. This
process is repeated cyclically, establishing a windowed acquisi-
tion for signals of arbitrary length. The measurement and spar-
sity framework used by this randomized ADC is also compatible
with sketching algorithms designed for signals that are sparse in
the frequency domain [81], [82].

B. Structurally Subsampled Matrices

In certain applications, the measurements obtained by the
acquisition hardware do not directly correspond to the sensed
signal’s coefficients in a particular transform. Rather, the obser-
vations are a linear combination of multiple coefficients of the
signal. The resulting CS matrix has been termed a structurally
subsampled matrix [83].

1) Formulation: Consider a matrix of available measurement
vectors that can be described as the product , where
is a mixing matrix and is a basis. The CS matrix
is obtained by selecting out of rows at random, and nor-
malizing the columns of the resulting subsampled matrix. There
are two possible downsampling stages: first, might offer only

mixtures to be available as measurements; second, we
only preserve of the mixtures available to represent
the signal. This formulation includes the use of subsampled in-
coherent bases simply by letting and , i.e., no
coefficient mixing is performed.

2) Theoretical Guarantees: To provide theoretical guar-
antees we place some additional constraints on the mixing
matrix .

Definition 5: The integrator matrix , for a divisor
of , is defined as , where the row of
is defined as , ,
with .

Fig. 3. Block diagram of the random demodulator (taken from [84]).

In words, using as a mixing matrix sums together intervals
of adjacent coefficients of the signal under the transform .
We also use a diagonal modulation matrix whose nonzero
entries are independently drawn from a Rademacher distribu-
tion, and formulate our mixing matrix as .

Theorem 16 [83, Theorem 1]: Let be a structurally sub-
sampled matrix of size obtained from the basis and the

mixing matrix via randomized subsampling.
Then for each integer , any and any ,
there exist absolute positive constants and such that if

(26)

then the matrix has the -RIP with probability at least
.

Similarly to the subsampled incoherent bases case, the pos-
sible values of provide us with a required number of
measurements ranging from to .

3) Applications: Compressive ADCs are one promising ap-
plication of CS, which we discuss in detail in Section VI-B-6
after introducing the infinite-dimensional CS framework. A first
step in this direction is the architecture known as the random
demodulator (RD) [84]. The RD employs structurally subsam-
pled matrices for the acquisition of periodic, multitone analog
signals whose frequency components belong in a uniform grid.
Such signals have a finite parametrization and therefore fit the
finite-dimensional CS setting.

To be more specific, our aim is to acquire a discrete uniform
sampling of a continuous-time signal observed
during an acquisition interval of 1 s, where it is assumed that

is of the form

(27)

The vector is sparse so that only of its values are nonzero.
As shown in Fig. 3, the sampling hardware consists of a mixer
element that multiplies the signal with a chipping sequence

at a rate chirps/s. This chipping sequence is the output
of a pseudorandom number generator. The combination of these
two units effectively performs the product of the Nyquist-sam-
pled discrete representation of the signal with the matrix in
the analog domain. The output from the modulator is sampled
by an “integrate-and-dump” sampler—a combination of an ac-
cumulator unit and a uniform sampler synchronized with each
other—at a rate of samples per interval. Such sampling effec-
tively performs a multiplication of the output of the modulator
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by the integrator matrix . To complete the setup, we set
and to be the discrete Fourier transform basis; it is easy

to see that these two bases are maximally incoherent. In the RD
architecture, all subsampling is performed at this stage; there is
no randomized subsampling of the output of the integrator.

A prototype implementation of this architecture is reported
in [85]; similar designs are proposed in [5] and [86]. Note that
the number of columns of the resulting CS matrix scales with
the maximal frequency in the representation of . Therefore,
in practice, this maximal frequency cannot be very large. For
example, the implementations reported above reach maximum
frequency rates of 1 MHz; the corresponding signal represen-
tation therefore has one million coefficients. The matrix mul-
tiplications can be implemented using algorithmic tools such
as the fast Fourier transform (FFT). In conjunction with certain
optimization solvers and greedy algorithms, this approach sig-
nificantly reduces the complexity of signal recovery. While the
original formulation sets the sparsity basis to be the Fourier
basis, limiting the set of recoverable signals to periodic mul-
titone signals, we can move beyond structurally subsampled
matrices by using redundant Fourier domain frames for spar-
sity. These frames, together with modified recovery algorithms,
can enable acquisition of a wider class of frequency-sparse sig-
nals [87], [88].

While the RD is capable of implementing CS acquisition for
a specific class of analog signals having a finite parametrization,
the CS framework can be adapted to infinite-dimensional signal
models, enabling more efficient analog acquisition and digital
processing architectures. We defer the details to Section VI.

C. Subsampled Circulant Matrices

The use of Toeplitz and circulant structures [89]–[91] as CS
matrices was first inspired by applications in communications—
including channel estimation and multi-user detection—where
a sparse prior is placed on the signal to be estimated, such as
a channel response or a multiuser activity pattern. When com-
pared with generic CS matrices, subsampled circulant matrices
have a significantly smaller number of degrees of freedom due to
the repetition of the matrix entries along the rows and columns.

1) Formulation: A circulant matrix is a square matrix
where the entries in each diagonal are all equal, and where the
first entry of the second and subsequent rows is equal to the last
entry of the previous row. Since this matrix is square, we per-
form random subsampling of the rows (in a fashion similar to
that described in Section IV-B) to obtain a CS matrix ,
where is an subsampling matrix, i.e., a submatrix of
the identity matrix. We dub a subsampled circulant matrix.

2) Theoretical Guarantees: Even when the sequence
defining is drawn at random from the distributions described
in Section III, the particular structure of the subsampled circu-
lant matrix prevents the use of the proof techniques
used in standard CS, which require all entries of the matrix
to be independent. However, it is possible to employ different
probabilistic tools to provide guarantees for subsampled cir-
culant matrices. The results still require randomness in the
selection of the entries of the circulant matrix.

Fig. 4. Compressive imaging via coded aperture. (a) Example of an ideal point
spread function for a camera with a pinhole aperture. The size of the support of
the function is dependent on the amount of blur caused by the imager. (b) Coded
aperture used for compressive imaging (taken from [94]).

Theorem 17 [91]: Let be a subsampled circulant matrix
whose distinct entries are independent random variables fol-
lowing a Rademacher distribution, and is an arbitrary
identity submatrix. Furthermore, let be the smallest value for
which (7) holds for all . Then for we have

provided that

where is a universal constant. Furthermore, for
,

where

for a universal constant .
In words, if we have , then the RIP

required for by many algorithms for successful recovery is
achieved with high probability.

3) Applications: There are several sensing applications
where the signal to be acquired is convolved with the sampling
hardware’s impulse response before it is measured. Addition-
ally, because convolution is equivalent to a product operator in
the Fourier domain, it is possible to speed up the CS recovery
process by performing multiplications by the matrices and

via the FFT. In fact, such an FFT-based procedure can
also be exploited to generate good CS matrices [92]. First, we
design a matrix in the Fourier domain to be diagonal and
have entries drawn from a suitable probability distribution.
Then, we obtain the measurement matrix by subsampling
the matrix , similarly to the incoherent basis case. While
this formulation assumes that the convolution during signal
acquisition is circulant, this gap between theory and practice
has been studied and shown to be controllable [93].

Our first example concerns imaging architectures. The im-
pulse response of the imaging hardware is known as the point
spread function (PSF), and it represents imaging artifacts such
as blurring, distortion, and other aberrations; an example is
shown in Fig. 4(a). It is possible then to design a compressive
imaging architecture by employing an imaging device that has a
dense PSF: an impulse response having a support that includes
all of the imaging field. This dense PSF is coupled with a
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Fig. 5. Schematic for the microelectronic architecture of the convolution-based
compressive imager. The acquisition device effectively implements a subsam-
pled circulant CS matrix. Here, � denotes the quantization operation with
resolution � (taken from [95]).

downsampling step in the pixel domain to achieve compressive
data acquisition [93], [94]. This is in contrast to the random
sampling advocated by Theorem 17. A popular way to achieve
such a dense PSF is by employing so-called coded apertures,
which change the pinhole aperture used for image formation
in most cameras to a more complex design. Fig. 4(b) shows
an example coded aperture that has been used successfully in
compressive imaging [93], [94].

Our second example uses special-purpose light sensor arrays
that perform the multiplication with a Toeplitz matrix using a
custom microelectronic architecture [95], which is shown in
Fig. 5. In this architecture, an pixel light sensor array is
coupled with a linear feedback shift register (LFSR) of length

whose input is connected to a pseudorandom number gen-
erator. The bits in the LFSR control multipliers that are tied to
the outputs from the light sensors, thus performing addi-
tions and subtractions according to the pseudorandom pattern
generated. The weighted outputs are summed in two stages:
column-wise sums are obtained at an operational amplifier be-
fore quantization, whose outputs are then added together in an
accumulator. In this way, the microelectronic architecture cal-
culates the inner product of the image’s pixel values with the
sequence contained in the LFSR. The output of the LFSR is
fed back to its input after the register is full, so that subsequent
measurements correspond to inner products with shifts of pre-
vious sequences. The output of the accumulator is sampled in

a pseudorandom fashion, thus performing the subsampling re-
quired for CS. This results in an effective subsampled circulant
CS matrix.

D. Separable Matrices

Separable matrices [96], [97] provide computationally
efficient alternatives to measure very large signals, such as hy-
percube samplings from multidimensional data. These matrices
have a succinct mathematical formulation as Kronecker prod-
ucts, and feature significant structure present as correlations
among matrix subblocks.

1) Formulation: Kronecker product bases are well suited for
CS applications concerning multidimensional signals, that is,
signals that capture information from an event that spans mul-
tiple dimensions, such as spatial, temporal, spectral, etc. These
bases can be used both to obtain sparse or compressible repre-
sentations or as CS measurement matrices.

The Kronecker product of two matrices and of sizes
and , respectively, is defined as

...
...

. . .
...

Thus, is a matrix of size . Let and be
bases for and , respectively. Then one can find a basis
for as . We focus now on
CS matrices that can be expressed as the Kronecker product of

matrices:

(28)

If we denote the size of as , then the matrix has
size , with and .

Next, we describe the use of Kronecker product matrices
in CS of multidimensional signals. We denote the entries
of a -dimensional signal by . We call
the restriction of a multidimensional signal to fixed indices
for all but its dimension a -section of the signal. For
example, for a 3-D signal , the vector

is a 3-section of .
Kronecker product sparsity bases make it possible to simul-

taneously exploit the sparsity properties of a multidimensional
signal along each of its dimensions. The new basis is simply the
Kronecker product of the bases used for each of its -sections.
More formally, we let

and assume that each -section is sparse or compress-
ible in a basis . We then define a sparsity/compressibility
basis for as , and obtain a coefficient
vector for the signal ensemble so that , where is
a column vector-reshaped representation of . We then have

.
2) Theoretical Guarantees: Due to the similarity between

blocks of Kronecker product CS matrices, it is easy to obtain
bounds for their performance metrics. Our first result concerns
the RIP.
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Lemma 3 [96], [97]: Let , , be matrices that
have the -RIP, , respectively. Then , defined
in (28), has the -RIP, with

(29)

When is an orthonormal basis, it has the -RIP with
for all . Therefore the RIP constant of the

Kronecker product of an orthonormal basis and a CS matrix is
equal to the RIP constant of the CS matrix.

It is also possible to obtain results on mutual coherence (de-
scribed in Section III) for cases in which the basis used for spar-
sity or compressibility can also be expressed as a Kronecker
product.

Lemma 4 [96], [97]: Let , be bases for for
. Then

(30)

Lemma 4 provides a conservation of mutual coherence across
Kronecker products. Since the mutual coherence of each -sec-
tion’s sparsity and measurement bases is upper bounded by one,
the number of Kronecker product-based measurements neces-
sary for successful recovery of the multidimensional signal (fol-
lowing Theorems 14 and 15) is always lower than or equal to the
corresponding number of necessary partitioned measurements
that process only a portion of the multidimensional signal along
its dimension at a time, for some . This re-
duction is maximized when the -section measurement basis
is maximally incoherent with the -section sparsity basis .

3) Applications: Most applications of separable CS matrices
involve multidimensional signals such as video sequences
and hyperspectral datacubes. Our first example is an exten-
sion of the single pixel camera (see Fig. 1) to hyperspectral
imaging [98]. The aim here is to record the reflectivity of a
scene at different wavelengths; each wavelength has a corre-
sponding spectral frame, so that the hyperspectral datacube
can be essentially interpreted as the stacking of a sequence
of images corresponding to the different spectra. The single
pixel hyperspectral camera is obtained simply by replacing the
single photodiode element by a spectrometer, which records
the intensity of the light reaching the sensor for a variety of
different wavelenghts. Because the digital micromirror array
reflects all the wavelengths of interest, the spectrometer records
measurements that are each dependent only on a single spec-
tral band. Since the same patterns are acting as a modulation
sequence to all the spectral bands in the datacube, the resulting
measurement matrix is expressible as , where
is the matrix that contains the patterns programmed into the
mirrors. Furthermore, it is possible to compress a hyperspectral
datacube by using a hyperbolic wavelet basis, which itself is
obtained as the Kronecker product of one-dimensional wavelet
bases [96].

Our second example concerns the transform imager [99], an
imaging hardware architecture that implements a separable CS
matrix. A sketch of the transform imager is shown in Fig. 6. The

Fig. 6. Schematic for the compressive analog CMOS imager. The acquisition
device effectively implements a separable CS matrix (taken from [99]).

image is partitioned into blocks of size to form
a set of tiles; here indexes the block locations. The transform
imager is designed to perform the multiplication ,
where and are fixed matrices. This product of three matrices
can be equivalently rewritten as , where
denotes a column vector reshaping of the block [100]. The
CS measurements are then obtained by randomly subsampling
the vector . The compressive transform imager sets and
to be noiselet bases and uses a 2-D undecimated wavelet trans-
form to sparsify the image.

V. STRUCTURE IN FINITE-DIMENSIONAL MODELS

Until now we focused on structure in the measurement ma-
trix , and considered signals with finite-dimensional sparse
representations. We now turn to discuss how to exploit structure
beyond sparsity in the input signal in order to reduce the number
of measurements needed to faithfully represent it. Generalizing
the notion of sparsity will allow us to move away from finite-di-
mensional models extending the ideas of CS to reduce sampling
rates for infinite-dimensional continuous-time signals, which is
the main goal of sampling theory.

We begin our discussion in this section within the finite-di-
mensional context by adding structure to the nonzero values of

. We will then turn, in Section VI, to more general, infinite-di-
mensional notions of structure, that can be applied to a broader
class of analog signals.

A. Multiple Measurement Vectors

Historically, the first class of structure that has been consid-
ered within the CS framework has been that of multiple mea-
surement vectors (MMVs) [101] which, similarly to sparse ap-
proximation, has been an area of interest in signal processing for
more than a decade [21]. In this setting, rather than trying to re-
cover a single sparse vector , the goal is to jointly recover a set
of vectors that share a common support. Stacking these
vectors into the columns of a matrix , there will be at most
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nonzero rows in . That is, not only is each vector -sparse,
but the nonzero values occur on a common location set. We use
the notation to denote the set of indices of the
nonzero rows.

MMV problems appear quite naturally in many different
applications areas. Early work on MMV algorithms focused
on magnetoencephalography, which is a modality for imaging
the brain [21], [102]. Similar ideas were also developed in the
context of array processing [21], [103], [104], equalization
of sparse communication channels [105], [106], and more
recently cognitive radio and multiband communications [9],
[86], [107]–[109].

1) Conditions on Measurement Matrices: As in standard CS,
we assume that we are given measurements , where each
vector is of length . Letting be the matrix with
columns , our problem is to recover assuming a known mea-
surement matrix so that . Clearly, we can apply any
CS method to recover from as before. However, since the
vectors all have a common support, we expect intuitively
to improve the recovery ability by exploiting this joint informa-
tion. In other words, we should in general be able to reduce the
number of measurements needed to represent below ,
where is the number of measurements required to recover one
vector for a given matrix .

Since , the rank of satisfies . When
, all the sparse vectors are multiples of each

other, so that there is no advantage to their joint processing.
However, when is large, we expect to be able to ex-
ploit the diversity in its columns in order to benefit from joint
recovery. This essential result is captured by the following nec-
essary and sufficient uniqueness condition:

Theorem 18 [110]: A necessary and sufficient condition for
the measurements to uniquely determine the jointly
sparse matrix is that

spark
(31)

The sufficiency result was initially shown for the case
[111]. As shown in [110], [112], we can

replace by in (31). The sufficient direction
of this condition was shown in [113] to hold even in the case
where there are infinitely many vectors . A direct conse-
quence of Theorem 18 is that matrices with larger rank can be
recovered from fewer measurements. Alternatively, matrices
with larger support can be recovered from the same number of
measurements. When and spark takes on its
largest possible value equal to , condition (31) becomes

. Therefore, in this best-case scenario, only
measurements per signal are needed to ensure uniqueness. This
is much lower than the value of obtained in standard CS via
the spark (cf. Theorem 4), which we refer to here as the single
measurement vector (SMV) setting. Furthermore, as we now
show, in the noiseless setting can be recovered by a simple
algorithm, in contrast to the combinatorial complexity needed
to solve the SMV problem from measurements for general
matrices .

2) Recovery Algorithms: A variety of algorithms have been
proposed that exploit the joint sparsity in different ways. As in

the SMV setting, two main approaches to solving MMV prob-
lems are based on convex optimization and greedy methods. The
analogue of (10) in the MMV case is

subject to (32)

where we define the norms for matrices as

(33)

with denoting the th row of . With a slight abuse of no-
tation, we also consider the quasi-norms with such that

for any . Optimization based algorithms
relax the norm in (32) and attempt to recover by mixed
norm minimization [17], [112], [114]–[117]:

subject to (34)

for some ; values of and have been
advocated.

The standard greedy approaches in the SMV setting have
also been extended to the MMV case [101], [110], [114],
[118]–[120]. The basic idea is to replace the residual vector
by a residual matrix , which contains the residuals with re-
spect to each of the measurements, and to replace the surrogate
vector by the -norms of the rows of . For example,
making these changes to OMP (Algorithm 1) yields a variant
known as simultaneous orthogonal matching pursuit, shown
as Algorithm 3, where denotes the restriction of to the
rows indexed by .

Algorithm 3: Simultaneous Orthogonal Matching Pursuit

Input: CS matrix , MMV matrix

Output: Row-sparse matrix

Initialize: , , ,

while halting criterion false do

, {form residual matrix
-norm vector}

{update row support
with index of residual’s row with largest magnitude}

, {update signal
estimate}

{update measurement residual}

end while

return

An alternative MMV strategy is the ReMBo (reduce MMV
and boost) algorithm [113]. ReMBo first reduces the problem
to an SMV that preserves the sparsity pattern, and then recovers
the signal support set; given the support, the measurements can
be inverted to recover the input. The reduction is performed by
merging the measurement columns with random coefficients.
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The details of the approach together with a recovery guarantee
are given in the following theorem.

Theorem 19: Let be the unique -sparse solution matrix
of and let have spark greater than . Let be a
random vector with an absolutely continuous distribution and
define the random vectors and . Consider the
random SMV system . Then:

1) for every realization of , the vector is the unique
-sparse solution of the SMV;

2) with probability one.
According to Theorem 19, the MMV problem is first reduced

to an SMV counterpart, for which the optimal solution is
found. We then choose the support of to be equal to that of

, and invert the measurement vectors over this support. In
practice, computationally efficient methods are used to solve the
SMV counterpart, which can lead to recovery errors in the pres-
ence of noise, or when insufficient measurements are taken. By
repeating the procedure with different choices of , the empir-
ical recovery rate can be boosted significantly [113], and lead to
superior performance over alternative MMV methods.

The MMV techniques discussed so far are rank blind, namely,
they do not explicitly take the rank of , or that of , into
account. Theorem 18 highlights the role of the rank of in the
recovery guarantees. If and (31) is satisfied, then
every columns of are linearly independent. This, in turn,
means that , where denotes the column
range of the matrix . We can therefore identify the support of

by determining the columns that lie in . One way
to accomplish this is by minimizing the norm of the projections
onto the orthogonal complement of :

(35)

where is the orthogonal projection onto the range of .
The objective in (35) is equal to zero if and only if . Since,
by assumption, the columns of are linearly independent,
once we find the support we can determine as .
We can therefore formalize the following guarantee.

Theorem 20 [110]: If and (31) holds, then
the algorithm (35) is guaranteed to recover from exactly.

In the presence of noise, we choose the values of for
which the expression (35) is minimized. Since (35) leverages the
rank to achieve recovery, we say that this method is rank aware.
More generally, any method whose performance improves with
increasing rank will be termed rank aware. It turns out that it
is surprisingly simple to modify existing greedy methods, such
as OMP and thresholding, to be rank aware: instead of taking
inner products with respect to or the residual , at each stage
the inner products are computed with respect to an orthonormal
basis for the range of or [110].

The criterion in (35) is similar in spirit to the MUSIC algo-
rithm [121], popular in array signal processing, which also ex-
ploits the signal subspace properties. As we will see below in
Section VI, array processing algorithms can be used to treat a
variety of other structured analog sampling problems.

The MMV model can be further extended to include the case
in which there are possibly infinitely many measurement vectors

(36)

where indicates an appropriate index set (which can be count-
able or uncountable). Here again the assumption is that the set
of vectors all have common support of size .
Such an infinite-set of equations is referred to as an infinite mea-
surement vector (IMV) system. The common, finite, support set
can be exploited in order to recover efficiently by solving
an MMV problem [113] Reduction to a finite MMV counterpart
is performed via the continuous to finite (CTF) block, which
aims at robust detection of . The CTF builds a frame (or a
basis) from the measurements using

(37)

Typically, is constructed from roughly snapshots ,
and the (optional) decomposition allows removal of the noise
space [109]. Once the basis is determined, the CTF solves
an MMV system with . An alternative
approach based on the MUSIC algorithm was suggested in [111]
and [122].

The crux of the CTF is that the indices of the nonidentically
zero rows of the matrix that solves the finite underdetermined
system coincide with the index set that is associated
with the infinite signal-set [113], as incorporated in the
following theorem.

Theorem 21 [109]: Suppose that the system of (36) has a
unique -sparse solution set with support , and that the ma-
trix satisfies (31). Let be a matrix whose column span is
equal to the span of . Then, the linear system

has a unique -sparse solution with row support
equal .

Once is found, the IMV system reduces to
, which can be solved simply by computing the

pseudo-inverse .
3) Performance Guarantees: In terms of theoretical guaran-

tees, it can be shown that MMV extensions of SMV algorithms
will recover under similar conditions to the SMV setting in
the worst-case scenario [17], [112], [119] so that theoretical
equivalence results for arbitrary values of do not predict any
performance gain with joint sparsity. In practice, however, mul-
tichannel reconstruction techniques perform much better than
recovering each channel individually. The reason for this dis-
crepancy is that these results apply to all possible input signals,
and are therefore worst-case measures. Clearly, if we input the
same signal to each channel, namely when , no ad-
ditional information on the joint support is provided from mul-
tiple measurements. However, as we have seen in Theorem 18,
higher ranks of the input improve the recovery ability. In par-
ticular, when , rank-aware algorithms such as
(35) recover the true value of from the minimal number of
measurements given in Theorem 18. This property is not shared
by the other MMV methods.

Another way to improve performance guarantees is by posing
a probability distribution on and developing conditions under
which is recovered with high probability [101], [118], [119],
[123]. Average case analysis can be used to show that fewer
measurements are needed in order to recover exactly [119].
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Fig. 7. Example performance of the MMV model for EEG inversion with
temporal regularization. The setup consists of a configuration of 306 sensors
recording simulated brain activity consisting of three vertices peaking at
distinct times over a 120-ms period. The figures show (a) the ground truth
EEG activity, (b) the inversion obtained by applying MMV recovery on all the
data recorded by the sensors, and (c) the inversion obtained by independently
applying sparse recovery on the data measured at each particular time instance.
In each case, we show three representative time instances (30, 65, and 72 ms,
respectively). The results show that MMV is able to exclude spurious activity
detections successfully through implicit temporal regularization (taken from
[124]).

Theorem 22 [119]: Let be drawn from a
probabilistic model in which the indices for its nonzero
rows are drawn uniformly at random from the possi-
bilities and its nonzero rows (when concatenated) are given
by , where is an arbitrary diagonal matrix and each
entry of is an i.i.d. standard Gaussian random variable. If

then can be recovered exactly from
via (34), with and , with high probability.

In a similar fashion to the SMV case (cf. Theorem 13), while
worst-case results limit the sparsity level to , av-
erage-case analysis shows that sparsity up to order
may enable recovery with high probability. Moreover, under a
mild condition on the sparsity and on the matrix , the failure
probability decays exponentially in the number of channels

[119].
4) Applications: The MMV model has found several

applications in the applied CS literature. One example is
in the context of electroencephalography and magnetoen-
cephalography (EEG/MEG) [21], [102]. As mentioned earlier,
sparsity-promoting inversion algorithms have been popular in
EEG/MEG literature due to their ability to accurately localize
electromagnetic source signals. It is also possible to further
improve estimation performance by introducing temporal
regularization when a sequence of EEG/MEG is available. For
example, one may apply the MMV model on the measurements
obtained over a coherent time period, effectively enforcing

temporal regularity on the brain activity [124]. Such temporal
regularization can correct estimation errors that appear as
temporal “spikes” in EEG/MEG activity. The example in Fig. 7
shows a test MEG activation signal with three active vertices
peaking at separate time instances. A 306-sensor acquisition
configuration was simulated with 3 dB. The perfor-
mance of MEG inversion with independent recovery of each
time instance exhibits spurious activity detections that are
removed by the temporal regularization enforced by the MMV
model. Additionally, the accuracy of the temporal behavior for
each vertex is improved; see [124] for details.

MMV models are also used during CS recovery for certain
infinite-dimensional signal models [18]. We will discuss this ap-
plication in more detail in Section VI-B.

B. Unions of Subspaces

To introduce more general models of structure on the input
signal, we turn now to extend the notion of sparsity to a much
broader class of signals which can incorporate both finite-di-
mensional and infinite-dimensional signal representations. The
enabling property that allows recovery of a sparse vector

from measurements is the fact that the set cor-
responds to a union of -dimensional subspaces within .
More specifically, if we know the nonzero locations of ,
then we can represent by a -dimensional vector of coeffi-
cients and therefore only measurements are needed in order
to recover it. Therefore, for each fixed location set, is restricted
to a -dimensional subspace, which we denote by . Since the
location set is unknown, there are possible subspaces in
which may reside. Mathematically, this means that sparse sig-
nals can be represented by a union of subspaces [15]:

(38)

where each subspace , , is a -dimensional sub-
space associated with a specific set of nonzero values.

For canonically sparse signals, the union is composed of
canonical subspaces that are aligned with out of the co-
ordinate axes of . Allowing for more general choices of
leads to powerful representations that accommodate many inter-
esting signal priors. It is important to note that union models are
not closed under linear operations: The sum of two signals from
a union is generally no longer in . This nonlinear behavior
of the signal set renders sampling and recovery more intricate.
To date, there is no general methodology to treat all unions in a
unified manner. Therefore, we focus our attention on some spe-
cific classes of union models, in order of complexity.

The simplest class of unions result when the number of sub-
spaces comprising the union is finite, and each subspace has finite
dimensions. We call this setup a finite union of subspaces (FUS)
model. Within this class, we consider below two special cases:

• Structured sparse supports: This class consists of sparse
vectors that meet additional restrictions on the support (i.e.,
the set of indices for the vector’s nonzero entries). This
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corresponds to only certain subspaces out of the
subspaces present in being allowed [20].4

• Sparse sums of subspaces where each subspace com-
prising the union is a direct sum of low-dimensional
subspaces [17]

(39)

Here, are a given set of subspaces
with dimensions , and denotes a
sum over indices. Thus, each subspace corresponds
to a different choice of subspaces that comprise the
sum. The dimensionality of the signal representation in this
case will be ; for simplicity, we will often
let for all so that . As we show, this
model leads to block sparsity in which certain blocks in
a vector are zero, and others are not [120], [133], [134].
This framework can model standard sparsity by letting ,

be the one-dimensional subspace spanned by
the canonical vector.

The two FUS cases above can be combined to allow only certain
sums of subspaces to be part of the union .

More complicated is the setting in which the number of possi-
bilities is still finite while each underlying subspace has infinite
dimensions. Finally, there may be infinitely many possibilities
of finite or infinite subspaces. These last two classes allow us to
treat different families of analog signals, and will be considered
in more detail in Section VI.

1) Conditions on Measurement Matrices: Guarantees for
signal recovery using a FUS model can be developed by ex-
tending tools used in the standard sparse setting. For example,
the -RIP for FUS models [15]–[17], [20] is similar to the
standard RIP where instead of the inequalities in (7) having to
be satisfied for all sparse vectors , they have to hold
only for vectors . If the constant is small enough, then
it can be shown that recovery algorithms tailored to the FUS
model will recover the true underlying vector .

An important question is how many samples are needed
roughly in order to guarantee stable recovery. This question is
addressed in the following proposition [16], [17], [20], [46].

Proposition 1 [46, Theorem 3.3]: Consider a matrix
of size with entries independently drawn from a
sub-Gaussian distribution, and let be composed of sub-
spaces of dimension . Let and be constant
numbers. If

(40)

then satisfies the -RIP with probability at least .
As observed in [46], the first term in (40) has the dominant

impact on the required number of measurements for sparse sig-
nals in an asymptotic sense. This term quantifies the amount of

4While the description of structured sparsity given via unions of subspaces is
deterministic, there exists many different CS recovery approaches that leverage
probabilistic models designed to promote structured sparsity, such as Markov
random fields, hidden Markov Trees, etc. [125]–[131], as well as deterministic
approaches that rely on structured sparsity-inducing norm minimization [17],
[132].

measurements that are needed to code the exact subspace where
the sparse signal resides. We now specialize this result to the
two FUS classes given earlier.

• In the structured sparse supports case, corresponds to
the number of distinct -sparse supports allowed by the
constraints, with ; this implies a reduction in
the number of measurements needed as compared to the
traditional sparsity model. Additionally, , since
each subspace has dimension .

• For the sparse sum of subspaces setting, we focus on the
case where each is of dimension ; we then have

. Using the approximation

(41)

we conclude that for a given fraction of nonzeros ,
roughly measurements
are needed. For comparison, to satisfy the standard RIP
a larger number is required. The FUS
model reduces the total number of subspaces and there-
fore requires times less measurements to code the signal
subspace. The subspace dimension equals the
number of degrees of freedom in .

Since the number of nonzeros is the same regardless of the spar-
sity structure, the term is not reduced in either
setting.

There also exists an extension of the coherence property to
the sparse sum of subspaces case [120]. We must first elaborate
on the notation for this setup. Given a signal our goal is
to recover it from measurements where is an appro-
priate measurement matrix of size . To recover from

we exploit the fact that any can be represented in an
appropriate basis as a block-sparse vector [135]. This follows
by first choosing a basis for each of the subspaces . Then,
any can be expressed as

(42)

following the notation of (39), where are the repre-
sentation coefficients in . Let be the column concatenation
of , and denote by the th subblock of a length- vector

over . The th subblock is of length , and
the blocks are formed sequentially so that

(43)

If for a given the th subspace does not appear in the sum
(39), then . Finally, we can write , where there
are at most nonzero blocks . Consequently, our union
model is equivalent to the model in which is represented by a
block-sparse vector . The CS measurements can then be written
as , where we denoted . An ex-
ample of a block-sparse vector with is depicted in Fig. 8.
When for all , block sparsity reduces to conventional
sparsity in the dictionary . We will say that a vector
is block -sparse if is nonzero for at most indices .
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Fig. 8. A block-sparse vector � over � � �� � � � � � � �. The gray areas repre-
sent ten nonzero entries that occupy two blocks.

The block-sparse model we present here has also been studied
in the statistical literature, where the objective is often quite
different. Examples include group selection consistency [136],
[137], asymptotic prediction properties [137], [138], and block
sparsity for logistic regression [139]. Block sparsity models are
also interesting in their own right (namely, not only as an equiva-
lence with an underlying union), and appear naturally in several
problems. Examples include DNA microarray analysis [140],
[141], equalization of sparse communication channels [105],
and source localization [104].

We now introduce the adaptation of coherence to sparse sums
of subspaces: the block-coherence of a matrix is defined as

(44)

with denoting the spectral norm of the matrix . Here
is represented as a concatenation of column-blocks of size

:

(45)

When , as expected, . More generally,
.

While quantifies global properties of the matrix ,
local properties are characterized by the subcoherence of , de-
fined as

(46)

We define for . In addition, if the columns of
are orthogonal for each , then .

2) Recovery Algorithms: Like in the MMV setting, it is
possible to extend standard sparsity-based signal recovery
algorithms to the FUS model. For example, greedy algorithms
may be modified easily by changing the thresholding
(which finds the best approximation of in the union of sub-
spaces ) to a structured sparse approximation step:

(47)

For example, the CoSaMP algorithm (see Algorithm 2) is modi-
fied according to the FUS model [20] by changing the following
two steps:

1) prune residual: ;
2) prune signal: .

A similar change can be made to the IHT algorithm (15) to ob-
tain a model-based IHT variant:

Structured sparse approximation algorithms of the form (47) are
feasible and computationally efficient for a variety of structured

sparse support models [20], [142]–[144]. For example, the ap-
proximation algorithm under block sparsity is equivalent to
block thresholding, with the blocks with the largest energies
(or norms) being preserved; we will show another example
in greater detail later in this section.

For the sparse sum of subspaces setting, it is possible to for-
mulate optimization-based algorithms for signal recovery. A
convex recovery method can be obtained by minimizing the sum
of the energy of the blocks . To write down the problem ex-
plicitly, we define the mixed norm as

(48)

We may then recover by solving [17], [134], [136], [137]

subject to (49)

The optimization constraints can be relaxed to address the case
of noisy measurements, in a way similar to the standard BPIC
algorithm. Generalizations of greedy algorithms to the block
sparse setting have been developed in [101] and [120].

3) Recovery Guarantees: Many recovery methods for the
FUS model inherit the guarantees of their standard counterparts.
Our first example deals with the model-based CoSaMP algo-
rithm. Since CoSaMP requires RIP of order , here we must
rely on enlarged unions of subspaces.

Definition 6: For an integer and a FUS model , denote
the -sum of as the sum of subspaces

(50)

following the notation of (39), which contains all sums of
signals belonging in .

We can then pose the following guarantee.
Theorem 23 [20]: Let and let be a

set of noisy CS measurements. If has the -RIP with
, then the signal estimate obtained from iteration of

the model-based CoSaMP algorithm satisfies

(51)

One can also show that under an additional condition on the
algorithm is stable to signal mismodeling [20]. Similar guaran-
tees exist for the model-based IHT algorithm [20].

Guarantees are also available for the optimization-based ap-
proach used in the sparse sum of subspaces setting.

Theorem 24 [17]: Let and let be
a set of noisy CS measurements, with . If has the

-RIP with , then the signal estimate
obtained from (49) with relaxed constraints
satisfies

(52)

where is defined in (47), and is a sparse sum of sub-
spaces.

Finally, we point out that recovery guarantees can also be
obtained based on block coherence.
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Fig. 9. The class of tree-sparse signals is an example of a FUS that enforces structure in the sparse signal support. (a) Example of a tree-structured sparse support
for a 1-D piecewise smooth signal’s wavelet coefficients (taken from [20]). (b) Example recovery of the� � ������� � 262 144-pixel Peppers test image from
� � 40 000 random measurements (15%) using standard CoSaMP (��� �17.45 dB�. (c) Example recovery of the same image from the same measurements
using model-based CoSaMP for the tree-structured FUS model �	�� � 22.6 dB�. In both cases, the Daubechies-8 wavelet basis was used as the sparsity/com-
pressibility transform.

Theorem 25 [120]: Both the greedy methods and the opti-
mization-based approach of (49) recover a block-sparse vector

from measurements if the block-coherence satisfies

(53)

In the special case in which the columns of are or-
thonormal for each , we have and therefore the

recovery condition becomes . Comparing to
Theorem 4 for recovery of a conventional -sparse signal we
can see that, thanks to , making explicit use of
block-sparsity leads to guaranteed recovery for a potentially
higher sparsity level. These results can also be extended to
both adversarial and random additive noise in the measure-
ments [145].

4) Applications: A particularly interesting example of
structured sparse supports corresponds to tree-structured sup-
ports [20]. For signals that are smooth or piecewise smooth,
including natural images, sufficiently smooth wavelet bases
provide sparse or compressible representations . Additionally,
because each wavelet basis element acts as a discontinuity
detector in a local region of the signal at a certain scale, it is
possible to link together wavelet basis elements corresponding
to a given location at neighboring scales, forming what are
known as branches that connect at the coarsest wavelet scale.
The corresponding full graph is known as a wavelet tree. For
locations where there exist discontinuities, the corresponding
branches of wavelet coefficients tend to be large, forming a
connected subtree inside the wavelet tree. Thus, the restriction
of includes only the subspaces corresponding to
this type of structure in the signal’s support. Fig. 9(a) shows
an example of a tree-sparse 1-D signal support for a wavelet
coefficient vector. Since the number of possible supports
containing this structure is limited to for a constant

, we obtain that random measurements are
needed to recover these signals using model-based recovery
algorithms. Additionally, there exist approximation algorithms
to implement for this FUS model based on both greedy
and optimization-based approaches; see [20] for more details.

Fig. 9(b) shows an example of improved signal recovery from
random measurements leveraging the FUS model.

In our development so far, we did not consider any structure
within the subspaces comprising the unions. In certain applica-
tions it may be beneficial to add internal structure. For example,
the coefficient vectors may themselves be sparse. Such sce-
narios can be accounted for by adding an penalty in (49) on
the individual blocks [146], an approach that is dubbed C-Hi-
Lasso in [147]. This allows to combine the sparsity-inducing
property of optimization at the individual feature level, with
the block-sparsity property of (49) on the group level, obtaining
a hierarchically structured sparsity pattern. An example FUS
model featuring sparse sums of subspaces that exploits the ad-
ditional structure described above is shown in Fig. 10. This ex-
ample is based on identification of digits; a separate subspace is
trained for each digit 0, , 9, and the task addressed is separa-
tion of a mixture of digits from subsampled information. We
collect bases that span each of the 10 subspaces
into a dictionary , and apply the FUS model where the sub-
spaces considered correspond to mixtures of pairs of digits.
The FUS model allows for successful source identification and
separation.

VI. STRUCTURE IN INFINITE-DIMENSIONAL MODELS

One of the prime goals of CS is to allow for reduced-rate sam-
pling of analog signals. In fact, many of the original papers in
the field state this as a motivating drive for the theory of CS. In
this section we focus on union models that include a degree of
infiniteness: This can come into play either by allowing for in-
finitely many subspaces, by letting the subspaces have infinite
dimension, or both. As we will show, the resulting models may
be used to describe a broad class of structured continuous-time
signals. We will then demonstrate how such priors can be trans-
lated into concrete hardware solutions that allow sampling and
recovery of analog signals at rates far below that dictated by
Nyquist.

The approach we present here to reduced-rate sampling is
based on viewing analog signals in unions of subspaces, and
is therefore fundamentally different than previous attempts to
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Fig. 10. Example of recovered digits (3 and 5) from a mixture with 60% of missing components. From left to right: noiseless mixture, observed mixture with
missing pixels highlighted in red, recovered digits 3 and 5, and active set recovered for 180 different mixtures using the C-HiLasso and (13) respectively. The last
two figures show the active sets of the recovered coefficients vectors � as a matrix (one column per mixture), where black dots indicate nonzero coefficients. The
coefficients corresponding to the subspace bases for digits 3 and 5 are marked as pink bands. Notice that C-HiLasso efficiently exploits the FUS model, succeeding
in recovering the correct active groups in all the samples. The standard approach (13), which lacks this stronger signal model, clearly is not capable of doing so,
and active sets spread all over the groups (taken from [147]).

treat similar problems [42], [84], [104], [148], [149]. The latter
typically rely on discretization of the analog input and are often
not concerned with the actual hardware. Furthermore, in some
cases the reduced rate analog stage results in high rate DSP. In
contrast, in all of the examples below we treat the analog for-
mulation directly, the DSP can be performed in real time at the
low rate, and the analog front end can be implemented in hard-
ware using standard analog design components such as modula-
tors, low rate ADCs and lowpass filters (LPFs). A more detailed
discussion on the comparison to discretized approaches can be
found in [10] and [150].

In our review, we consider three main cases:
1) finite unions of infinite dimensional spaces;
2) infinite unions of finite dimensional spaces;
3) infinite unions of infinite dimensional spaces.

In each one of the three settings above there is an element that
can take on infinite values. We present general theory and results
behind each of these cases, and focus in additional detail on a
representative example application for each class.

Before describing the three cases, we first briefly introduce
the notion of sampling in shift-invariant (SI) subspaces, which
plays a key role in the development of standard (subspace) sam-
pling theory [135], [151]. We then discuss how to incorporate
structure into SI settings, leading to the union classes outlined
above.

A. Shift-Invariant Spaces for Analog Signals

A signal class that plays an important role in sampling theory
are signals in SI spaces [151]–[154]. Such signals are charac-
terized by a set of generators where in
principle can be finite or infinite (as is the case in Gabor or
wavelet expansions of ). Here, we focus on the case in which

is finite. Any signal in such a SI space can be written as

(54)

for some set of sequences and pe-
riod . This model encompasses many signals used in commu-
nication and signal processing including bandlimited functions,
splines [151], multiband signals [108], [109], [155], [156], and
pulse amplitude modulation signals.

The subspace of signals described by (54) has infinite dimen-
sions, since every signal is associated with infinitely many coef-
ficients . Any such signal can be recovered
from samples at a rate of ; one possible sampling paradigm at
the minimal rate is given in Fig. 11. Here, is filtered with a
bank of filters, each with impulse response which can
be almost arbitrary, and the outputs are uniformly sampled with
period . Denote by a vector collecting the frequency re-
sponses of , . The signal is then recovered by
first processing the samples with a filter bank with frequency re-
sponse , which depends on the sampling filters and the
generators (see [18] for details). In this way we obtain the
vectors

(55)

containing the frequency responses of the sequences ,
. Each output sequence is then modulated by a periodic

impulse train with period , followed by fil-
tering with the corresponding analog filter .

In the ensuing subsections we consider settings in which fur-
ther structure is incorporated into the generic SI model (54). In
Sections VI-B and VI-D, we treat signals of the form (54) in-
volving a small number of generators, chosen from a finite
or infinite set, respectively, while in Section VI-C, we consider
a finite-dimensional counterpart of (54) in which the generators
are chosen from an infinite set. All of these examples lead to
union of subspaces models for analog signals. Our goal is to ex-
ploit the available structure in order to reduce the sampling rate.

Before presenting the more detailed applications we point out
that in all the examples below the philosophy is similar: we de-
velop an analog sensing stage that consists of simple hardware
devices designed to spread out (alias) the signal prior to sam-
pling, in such a way that the samples contain energy from all
subspace components. The first step in the digital reconstruction
stage identifies the underlying subspace structure. Recovery is
then performed in a subspace once the parameters defining the
subspace are determined. The difference between the examples
is in how the aliasing is obtained and in the digital recovery step
that identifies the subspace. This framework has been dubbed
Xampling in [9] and [10], which combines CS and sampling,
emphasizing that this is an analog counterpart to discrete CS
theory and methods.
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B. Finite Union of Infinite-Dimensional Subspaces

In this first case, we follow the model (38), (39) where is
composed of a finite number of subspaces, and each subspace
has infinite dimension (i.e., for ).

1) Analog Signal Model: To incorporate structure into (54)
we proceed in two ways (see Section VI-D for the complement).
In the first, we assume that only of the generators are
active, leading to the model

(56)

where the notation means a union (or sum) over at most
elements. If the active generators are known, then it suf-

fices to sample at a rate of corresponding to uniform samples
with period at the output of appropriate filters. However,
a more difficult question is whether the rate can be reduced if
we know that only of the generators are active but do not
know in advance which ones. This is a special case of the model
(39) where now each of the subspaces is a single-generator
SI subspace spanned by . For this model, it is possible to
reduce the sampling rate to as low as [18]. Such rate reduc-
tion is achieved by using a bank of appropriate sampling filters
that replaces the filters in Fig. 11, followed by postpro-
cessing via subspace reduction and solving an MMV problem
(cf. Section V-A). We now describe the main ideas underlying
this approach.

2) Compressive Signal Acquisition Scheme: A block
diagram of the basic architecture is very similar to the
one given in Fig. 11. We simply change the sampling
filters to sampling filters

and replace the filter bank with
the CTF block with real-time recovery (cf. Section V-A-2).
The design of the filters , relies on two main
ingredients:

1) a matrix chosen such that it solves a discrete MMV
problem with sparsity ;

2) a set of functions which can be
used to sample and reconstruct the entire set of generators

according to the Nyquist-rate scheme
of Fig. 11.

Based on these ingredients, the compressive sampling filters
consist of linear combinations of , with coefficients

that depend on the matrix through [18]

(57)

where denotes the conjugate, concatenate the
frequency responses of and

, respectively, and is a arbitrary invertible
matrix representing the discrete-time Fourier transform (DTFT)
of a bank of filters. Since this matrix can be chosen arbitrarily,
it allows for freedom in selecting the sampling filters.

3) Reconstruction Algorithm: Directly manipulating the
expression for the sampled sequences leads to a simple rela-

tionship between the measurements and the unknown
sequences [18]:

(58)

where the vector collects the mea-
surements at and the vector
collects the unknown generator coefficients for time period

. Since only out of the sequences are identi-
cally nonzero by assumption, the vectors are jointly

-sparse. Equation (58) is valid when for all ;
otherwise, the samples must first be pre-filtered with the inverse
filter bank to obtain (58). Therefore, by properly choosing the
sampling filters, we have reduced the recovery problem to an
IMV problem, as studied in Section V-A-2. To recover ,
we therefore rely on the CTF and then reconstruct by
interpolating with their generators .

4) Recovery Guarantees: From Theorem 21, it follows that
filters are needed in order to ensure recovery for all

possible input signals. In practice, since polynomial-time algo-
rithms will be used to solve the equivalent MMV, we will need
to increase slightly beyond .

Theorem 26 [18]: Consider a signal of the form (56). Let
, be a set of sampling filters defined by (57)

where is a size matrix. Then, the signal can be re-
covered exactly using the scheme of Fig. 11 as long as allows
the solution of an MMV system of size with sparsity .

Since our approach to recovering relies on solving an
MMV system, the quality of the reconstruction depends directly
on the properties of the underlying MMV problem. Therefore,
results regarding noise, mismodeling, and suboptimal recovery
using polynomial techniques developed in the MMV context
can immediately be adapted to this setting.

5) Example Application: We now describe an application
of the general analog CS architecture of Fig. 11: sampling of
multiband signals at sub-Nyquist rates. We also expand on
practical alternatives to this system, which reduce the hardware
complexity.

The class of multiband signals models a scenario in which
consists of several concurrent radio-frequency (RF) trans-

missions. A receiver that intercepts a multiband sees the
typical spectral support that is depicted in Fig. 12. We assume
that the signal contains at most (symmetric) frequency bands
with carriers , each of maximal width . The carriers are lim-
ited to a maximal frequency of . When the carrier frequen-
cies are fixed, the resulting signal model can be described as
a subspace, and standard demodulation techniques may be used
to sample each of the bands at low rate. A more challenging
scenario is when the carriers are unknown. This situation
arises, for example, in spectrum sensing for mobile cognitive
radio (CR) receivers [157], which aim at utilizing unused fre-
quency regions on an opportunistic basis.

The Nyquist rate associated with is ,
which can be quite high in modern applications—on the order
of several GHz. On the other hand, by exploiting the multiband
structure, it can be shown that a lower bound on the sampling
rate with unknown carriers is , as incorporated in the fol-
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Fig. 11. Sampling and reconstruction in shift-invariant spaces. A compressive signal acquisition scheme can be obtained by reducing the number of sampling
filters from � to � � � and replacing the filter bank��� � with a CTF block with real-time recovery (taken from [18]).

Fig. 12. Spectrum slices of ���� are overlayed in the spectrum of the output
sequences � ���. In the example, channels 	 and 	 realize different linear com-
binations of the spectrum slices centered around 
� � �
� � �
� . For simplicity,
the aliasing of the negative frequencies is not drawn (taken from [9]).

lowing theorem. We refer to a sampling scheme that does not
exploit the carrier frequencies as blind.

Theorem 27 [108]: Consider a multiband model with max-
imal frequency and total support . Let denote the
sampling density of the blind sampling set5 . Then,

.
In our case the support is equal to . Therefore, as long

as we can potentially reduce the sampling rate
below Nyquist.

Our goal now is to use the union of subspaces framework in
order to develop a sampling scheme which achieves the lower
bound of Theorem 27. To describe a multiband signal as a union
of subspaces, we divide the Nyquist range into

consecutive, nonoverlapping, slices of individual
widths as depicted in Fig. 12, such that . Each
spectrum slice represents a single bandpass subspace . By
choosing , we ensure that no more than spectrum

5For a formal definition of these parameters, see [108]. Intuitively, 
���
describes the average sampling rate where � � �� � are the sampling points.

slices are active, i.e., contain signal energy [18]. The conceptual
division to spectrum slices does not restrict the band positions;
a single band can split between adjacent slices.

One way to realize the sampling scheme of Fig. 11 is through
periodic nonuniform sampling (PNS) [108]. This strategy cor-
responds to choosing

(59)

where is the Nyquist period, and using a sam-
pling period of with . Here are integers
which select part of the uniform sampling grid, resulting in
uniform sequences

(60)

The IMV model (58) that results from PNS has sequences
representing the contents of the th bandpass subspace of the
relevant spectrum slice [108]. The sensing matrix is a partial
discrete Fourier transform (DFT), obtained by taking only the
row indices from the full DFT matrix.

We note that PNS was utilized for multiband sampling al-
ready in classic studies, though the traditional goal was to ap-
proach a rate of samples/s. This rate is optimal according
to the Landau theorem [158], though achieving it for all input
signals is possible only when the spectral support is known and
fixed. When the carrier frequencies are unknown, the optimal
rate is [108]. Indeed, [155] and [159] utilized knowledge
of the band positions to design a PNS grid and the required in-
terpolation filters for reconstruction. The approaches in [156],
[160] were semi-blind: a sampler design independent of band
positions combined with the reconstruction algorithm of [155]
which requires exact support knowledge. Other techniques tar-
geted the rate by imposing alternative constraints on the
input spectrum [111], [122]. Here, we demonstrate how analog
CS tools [18], and [113] can lead to a fully-blind sampling
system of multiband inputs with unknown spectra at the appro-
priate optimal rate [108]. A more thorough discussion in [108]
studies the differences between the analog CS method presented
here based on [18], [108], [113] and earlier approaches.
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Fig. 13. Block diagram of the modulated wideband converter. The input passes
through � parallel branches, where it is mixed with a set of periodic functions
� ���, lowpass filtered and sampled at a low rate (taken from [9]).

6) Example Hardware: As shown in [108], the PNS strategy
can approach the minimal rate of Theorem 27. However, it re-
quires pointwise samplers that are capable of accommodating
the wide bandwidth of the input. This necessitates a high band-
width track and hold device, which is difficult to build at high
frequencies. An alternative architecture referred to as the modu-
lated wideband converter (MWC) was developed in [109]. The
MWC replaces the need for a high bandwidth track and hold
device by using high bandwidth modulators, which are easier to
manufacture. Indeed, off-the-shelf modulators at rates of tens of
gigahertz are readily available.

The MWC combines the spectrum slices according to
the scheme depicted in Fig. 13. Its design is modular so that
when the carrier frequencies are known the same receiver can be
used with fewer channels or lower sampling rate. Furthermore,
by increasing the number of channels or the rate on each channel
the same realization can be used for sampling full band signals
at the Nyquist rate.

The MWC consists of an analog front-end with channels.
In the th channel, the input signal is multiplied by a peri-
odic waveform with period , lowpass filtered by a generic
filter with impulse response with cutoff , and then sam-
pled at rate . The mixing operation scrambles the spec-
trum of , so that as before, the spectrum is conceptually di-
vided into slices of width , and a weighted-sum of these slices
is shifted to the origin [109]. The lowpass filter transfers
only the narrowband frequencies up to from that mixture to
the output sequence . The output has the aliasing pattern
illustrated in Fig. 12. Sensing with the MWC leads to a matrix

whose entries are the Fourier expansion coefficients of the
periodic sequences .

The MWC can operate with as few as channels and
with a sampling rate on each channel, so that it
approaches the minimal rate of . Advanced configurations
enable additional hardware savings by collapsing the number

of branches by a factor of at the expense of increasing the
sampling rate of each channel by the same factor [109]. The
choice of periodic functions is flexible: The highest Dirac
frequency needs to exceed . In principle, any periodic func-
tion with high-speed transitions within the period can satisfy
this requirement. One possible choice for is a sign-alter-
nating function, with sign intervals within the
period [109], [161]. Imperfect sign alternations are allowed
as long as periodicity is maintained [9]. This property is crucial
since precise sign alternations at high speeds are extremely dif-
ficult to maintain, whereas simple hardware wirings ensure that

for every . The waveforms need
low mutual correlation in order to capture different mixtures of
the spectrum. Popular binary patterns, e.g., the Gold or Kasami
sequences, are especially suitable for the MWC [161]. Another
important practical design aspect is that the lowpass filter
does not have to be ideal. A nonflat frequency response can be
compensated for in the digital domain, using the algorithm de-
veloped in [162].

The MWC has been implemented as a board-level hard-
ware prototype [9].6 The hardware specifications cover
inputs with a 2-GHz Nyquist rate with spectrum occupation

120 MHz. The total sampling rate is 280 MHz, far
below the 2-GHz Nyquist rate. In order to save analog com-
ponents, the hardware realization incorporates the advanced
configuration of the MWC [109] with a collapsing factor .
In addition, a single shift-register provides a basic periodic
pattern, from which periodic waveforms are derived using
delays, that is, by tapping different locations of the register. A
nice feature of the recovery stage is that it interfaces seamlessly
with standard DSPs by providing (samples of) the narrowband
information signals. This capability is provided by a digital
algorithm that is developed in [10].7

The MWC board is a first hardware example of the use of
ideas borrowed from CS for sub-Nyquist sampling and low-rate
recovery of wideband signals where the sampling rate is di-
rectly proportional to the actual bandwidth occupation and not
the highest frequency. Existing implementations of the random
demodulator (RD) (cf. Section IV-B-3) recover signals at effec-
tive sampling rates below 1 MHz, falling outside of the class
of wideband samplers. Additionally, the signal representations
used by the RD have size proportional to the Nyquist frequency,
leading to recovery problems that are much larger than those
posed by the MWC. See [9] and [10] for additional information
on the similarities and differences between the MWC, the RD,
and other comparable architectures.

C. Infinite Union of Finite-Dimensional Subspaces

The second union class we consider is when is composed
of an infinite number of subspaces, and each subspace has
finite dimension.

6A video of experiments and additional documentation for the MWC
hardware are available at http://webee.technion.ac.il/Sites/People/Yoni-
naEldar/hardware.html. A graphical package demonstrating the MWC
numerically is available at http://webee.technion.ac.il/Sites/People/Yoni-
naEldar/software_det3.html.

7The algorithm is available online at http://webee.technion.ac.il/Sites/People/
YoninaEldar/software_det4.html.
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1) Analog Signal Model: As we have seen in Section VI-A,
the SI model (54) is a convenient way to describe analog signals
in infinite-dimensional spaces. We can use a similar approach to
describe analog signals that lie within finite-dimensional spaces
by restricting the number of unknown gains to be finite. In
order to incorporate structure into this model, we assume that
each generator has an unknown parameter associated
with it, which can take on values in a continuous interval, re-
sulting in the model

(61)

Each possible choice of the set leads to a different -di-
mensional subspace of signals , spanned by the functions

. Since can take on any value in a given interval,
the model (61) corresponds to an infinite union of finite dimen-
sional subspaces (i.e., ).

An important example of (61) is when
for some unknown time delay , leading to a stream of
pulses

(62)

Here, is a known pulse shape and , ,
are unknown delays and amplitudes. This model was

first introduced and studied by Vetterli et al. [6]–[8] as a special
case of signals having a finite number of degrees of freedom per
unit time, termed finite rate of innovation (FRI) signals.

Our goal is to sample and reconstruct it from a min-
imal number of samples. The primary interest is in pulses which
have small time-support, and therefore the required Nyquist rate
would be very high. However, since the pulse shape is known,
the signal has only degrees of freedom, and therefore, we ex-
pect the minimal number of samples to be , much lower than
the number of samples resulting from Nyquist rate sampling.

A simpler version of the problem is when the signal of
(62) is repeated periodically leading to the model

(63)

where is the known period. This periodic setup is easier to
treat because we can exploit the properties of the Fourier series
representation of due to the periodicity. The dimensionality
and number of subspaces included in the model (38) remain
unchanged.

2) Compressive Signal Acquisition: To date, there are no
general acquisition methods for signals of the form (61). In-
stead, we focus on the special case of (63).

Our sampling scheme follows the ideas of [6]–[8] and con-
sists of a filter followed by uniform sampling of the output
with period , where is the number of samples in one
period, and . The resulting samples can be written as
inner products . The following theorem
establishes properties of the filter that allow recovery from

samples.
Theorem 28 [163]: Consider the -periodic stream of pulses

of order given by (63). Choose a set of consecutive indices

for which where is the Fourier transform
of the pulse . Then the samples for ,
uniquely determine the signal as long as
for any satisfying

nonzero
arbitrary otherwise.

(64)

Theorem 28 was initially focused on low pass filters in [6], and
was later extended to arbitrary filters in [163].

To see how we can recover from the samples of Theorem
28, we note that the Fourier series coefficients of the peri-
odic pulse stream are given by [6]

(65)

where . Given , the problem of retrieving
and in (65) is a standard problem in array processing [6],

[164] and can be solved using methods developed in that con-
text such as the matrix pencil [165], subspace-based estimators
[166], [167], and the annihilating filter [8]. These methods re-
quire Fourier coefficients to determine and . In the next
subsection, we show that the vector of Fourier coefficients

can be computed from the samples of Theorem 28.
Since the LPF has infinite time support, the approach of (64)

cannot work with time-limited signals, such as those of the form
(62). A class of filters satisfying (64) that have finite time sup-
port are Sum of Sincs (SoS) [163], which are given in the Fourier
domain by

(66)

where , . Switching to the time domain

(67)

which is clearly a time compact filter with support . For the
special case in which and ,

where denotes the Dirichlet kernel.
Alternative approaches to sample finite pulse streams of the

form (63) rely on the use of splines [7]; this enables obtaining mo-
ments of the signal rather than its Fourier coefficients. The mo-
ments are then processed in a similar fashion (see the next sub-
section for details). However, this approach is unstable for high
values of [7]. In contrast, the SoS class can be used for stable
reconstruction even for very high values of , e.g., .

Multichannel schemes can also be used to sample pulse
streams. This approach was first considered for Dirac streams,
where a successive chain of integrators allows obtaining
moments of the signal [168]. Unfortunately, the method is
highly sensitive to noise. A simple sampling and reconstruction
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Fig. 14. Extended sampling scheme using modulating waveforms (taken from
[170]).

scheme consisting of two channels, each with an RC circuit,
was presented in [169] for the special case where there is no
more than one Dirac per sampling period. A more general mul-
tichannel architecture that can treat a broader class of pulses,
while being much more stable, is depicted in Fig. 14 [170].
The system is very similar to the MWC presented in the pre-
vious section. By correct choice of the mixing coefficients, the
Fourier coefficients may be extracted from the samples
by a simple matrix inversion.

3) Recovery Algorithms: In both the single-channel and mul-
tichannel approaches, recovery of the unknown delays and am-
plitudes proceeds in two steps. First, the vector of samples
is related to the Fourier coefficient vector through a
mixing matrix , as . Here, represents the
number of samples. When using the SoS approach with a filter

, where is a diagonal matrix with diagonal
elements , , and is a Vander-
monde matrix with element given by , ,
where denotes the sampling period. For the multichannel ar-
chitecture of Fig. 14, consists of the modulation coefficients

. The Fourier coefficient vector can be obtained from the
samples as .

The unknown parameters are recovered from
using, e.g., the annihilating filter method. The annihilating filter

is defined by its -transform

(68)

That is, the roots of equal the values through which the
delays can be found. It then follows that

(69)

where the last equality is due to . Assuming without
loss of generality that , the identity in (69) can be
written in matrix/vector form as

...
. . .

...
...

...

Thus, we only need consecutive values of to deter-
mine the annihilating filter. Once the filter is found, the values

are retrieved from the zeros of the -transform in (68). Fi-
nally, the Fourier coefficients are computed using (65). For
example, if we have the coefficients , ,
then (65) may be written as

...
...

. . .
...

... ...

Since this Vandermonde matrix is left-invertible, the values
can be computed by matrix inversion.
Reconstruction results for the sampling scheme based on the

SoS filter with are depicted in Fig. 15. The original signal
consists of Gaussian pulses, and samples were
used for reconstruction. The reconstruction is exact to numerical
precision. A comparison of the performance of various methods
in the presence of noise is depicted in Fig. 15 for a finite stream
consisting of three and five pulses. The pulse-shape is a Dirac
delta, and white Gaussian noise is added to the samples with a
proper level in order to reach the desired SNR for all methods.
All approaches operate using samples.

4) Applications: As an example application of FRI, we con-
sider multiple image registration for superresolution imaging.
A superresolution algorithm aims at creating a single detailed
image, called a super-resolved image (SR), from a set of low-
resolution input images of the same scene. If different images
from the same scene are taken such that their relative shifts are
not integer multiples of the pixel size, then subpixel information
exists among the set. This allows to obtain a higher resolution
accuracy of the scene once the images are properly registered.

Image registration involves any group of transformations that
removes the disparity between two low resolution (LR) images.
This is followed by image fusion, which blends the properly
aligned LR images into a higher resolution output, possibly re-
moving blur and noise introduced by the system [171]. The reg-
istration step is crucial is order to obtain a good quality SR
image. The theory of FRI can be extended to provide superres-
olution imaging. The key idea of this approach is that, using a
proper model for the point spread function (PSF) of the scene
acquisition system, it is possible to retrieve the underlying con-
tinuous geometric moments of the irradiance light-field. From
this information, and assuming the disparity between any two
images can be characterized by a global affine transformation,
the set of images may be registered. The parameters obtained
via FRI correspond to the shift vectors that register the different
images before image fusion. Fig. 16 shows a real-world super-
resolution example in which 40 low-resolution images allow an
improvement in image resolution by a factor of 8.

A second example application of the FRI model is ultrasonic
imaging. In this imaging modality, an ultrasonic pulse is trans-
mitted into a tissue, e.g., the heart, and a map of the underlying
tissues is created by locating the echoes of the pulse. Correct
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Fig. 15. Performance comparison of finite pulse stream recovery using Gaussian [6], B-spline, E-spline [7], and SoS sampling kernels. (a) Reconstructed signal
using SoS filters versus original one. The reconstruction is exact to numerical precision. (b) � � � Dirac pulses are present, (c) � � � pulses (taken from [163]).

location of the tissues and their edges is crucial for medical
diagnosis. Current technology uses high rate sampling and
processing in order to construct the image, demanding high
computational complexity. Noting that the received signal is a
stream of delayed and weighted versions of the known trans-
mitted pulse shape, FRI sampling schemes can be exploited in
order to reduce the sampling rate and the subsequent processing
rates by several orders of magnitude while still locating the
echoes. The received ultrasonic signal is modeled as a finite
FRI problem, with a Gaussian pulse-shape.

In Fig. 17, we consider a signal obtained using a phantom
consisting of uniformly spaced pins, mimicking point scatterers,
which is scanned by GE Healthcare’s Vivid-i portable ultra-
sound imaging system. The data recorded by a single element
in the probe is modeled as a 1D stream of pulses. The recorded
signal is depicted in Fig. 17(a). The reconstruction results using
the SoS filter with are depicted in Fig. 17(b)–(c). The
algorithm looked for the strongest echoes, using
and samples. In both simulations, the estimation error
in the location of the pulses is around 0.1 mm. These ideas have
also been extended recently to allow for 2-D imaging with mul-
tiple received elements [172].

D. Infinite Union of Infinite-Dimensional Subspaces

Extending the finite-dimensional model of Section VI-C to
the SI setting (54), we now incorporate structure by assuming
that each generator has an unknown parameter associ-
ated with it, leading to an infinite union of infinite-dimensional
spaces. As with its finite counterpart, there is currently no gen-
eral sampling framework available to treat such signals. Instead,
we focus on the case in which .

1) Analog Signal Model: Suppose that

(70)

where there are no more than pulses in an interval of length
, and that the pulses do not overlap interval boundaries. In this

case, the signal parameters in each interval can be treated sepa-
rately, using the schemes of the previous section. In particular,
we can use the sampling system of Fig. 14 where now the inte-
gral is obtained over intervals of length [170]. This requires

obtaining a sample from each of the channels once every sec-
onds, and using channels, resulting in samples taken at
the minimal possible rate.

We next turn to treat the more complicated scenario in which
may have support larger than . This setting can no longer

be treated by considering independent problems over periods of
. To simplify, we consider the special case in which the time

delays in (70) repeat periodically (but not the amplitudes) [19],
[150]. As we will show in this special case, efficient sampling
and recovery is possible even using a single filter, and without
requiring the pulse to be time limited. Under our assump-
tions, the input signal can be written as

(71)

where is a set of unknown time delays contained
in the time interval , are arbitrary bounded energy
sequences, and is a known pulse shape.

2) Compressive Signal Acquisition: We follow a similar ap-
proach to that in Section VI-B, which treats a structured SI set-
ting where there are possible generators. The difference is
that in this current case there are infinitely many possibilities.
Therefore, we replace the CTF in Fig. 11 with a block that sup-
ports this continuity: we will see that the ESPRIT method es-
sentially replaces the CTF block [173].

A sampling and reconstruction scheme for signals of the form
(71) is depicted in Fig. 18 [19]. The analog sampling stage is
comprised of parallel sampling channels. In each channel, the
input signal is filtered by a band-limited sampling kernel

with frequency support contained in an interval of width
, followed by a uniform sampler operating at a rate of , thus

providing the sampling sequence . Note that just as in the
MWC (Section VI-B-6), the sampling filters can be collapsed to
a single filter whose output is sampled at times the rate of a
single channel. The role of the sampling kernels is to spread out
the energy of the signal in time, prior to low rate sampling.

3) Recovery Algorithms: To recover the signal from the
samples, a properly designed digital filter correction bank,
whose frequency response in the DTFT domain is given by

, is applied to the sampling sequences in a manner
similar to (55). The matrix depends on the choice



DUARTE AND ELDAR: STRUCTURED COMPRESSED SENSING: FROM THEORY TO APPLICATIONS 4079

Fig. 16. Example of FRI-based image superresolution. 40 images of a target scene were acquired with a digital camera. (a) Example acquired image. (b) Region
of interest (128� 128 pixels) used for superresolution. (c) Superresolved image of size 1024� 1024 pixels ��� �����	 
 ��. The PSF in this case is modeled by
a B-spline of order 7 (scale 1). (d) Superresolved image of size 1024 � 1024 pixels ��� �����	 
 ��. The PSF in this case is modeled by a B-spline of order 3
(scale 2) (taken from [171]).

Fig. 17. Applying the SoS sampling scheme with � 
 
 on real ultrasound imaging data. Results are shown versus original signal which uses 4160 samples.
(a) Recorded ultrasound imaging signal. The data was acquired by GE healthcare’s Vivid-i ultrasound imaging system. Reconstructed signal (b) using � 
 
�
samples and (c) using � 
 �� samples (taken from [163]).

Fig. 18. Sampling and reconstruction scheme for signals of the form (71).

of the sampling kernels and the pulse shape . Its
entries are defined for , as

(72)

After the digital correction stage, it can be shown that the cor-
rected sample vector is related to the unknown amplitude
vector by a Vandermonde matrix which depends on the un-
known delays [19]. Therefore, we can now exploit known tools
taken from the direction of arrival [174] and spectral estima-
tion [164] literature to recover the delays ,
such as the well-known ESPRIT algorithm [173]. Once the de-
lays are determined, additional filtering operations are applied
on the samples to recover the sequences . In particular, re-
ferring to Fig. 18, the matrix is a diagonal matrix with di-

agonal elements equal to , and is a Vandermonde
matrix with elements . The ESPRIT algorithm is sum-
marized for our setting as Algorithm 4, where and de-
note the sub matrices extracted from by deleting its last/first
row, respectively.

Algorithm 4: ESPRIT Algorithm

Input: Signal , number of parameters .

Output: Delays .

{construct correlation matrix}

{calculate SVD}

singular vectors of associated with nonzero
singular values.

{compute ESPRIT matrix}

{obtain eigenvalues}

, {map eigenvalues to delays}

return

4) Recovery Guarantees: The proposed algorithm is guaran-
teed to recover the unknown delays and amplitudes as long as
is large enough [19].

Theorem 29 [19]: The sampling scheme of Fig. 18 is guar-
anteed to recover any signal of the form (71) as long as

, where is the dimension of the minimal subspace
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Fig. 19. Comparison between the target-detection performance for the case of nine targets (represented by �) in the delay—Doppler space with � � 10 �s,
� � 10 kHz, � � 1.2 MHz, and � � 0.48 ms. The probing sequence �� � corresponds to a random binary (�1) sequence with � � ��, the pulse ��	�
is designed to have a nearly flat frequency response and the pulse repetition interval is � � 10 �s. Recovery of the Doppler-delay plane using (a) a union of
subspaces approach, (b) a standard matched filter, and (c) a discretized delay-Doppler plane (taken from [150]).

containing the vector set . In addition, the fil-
ters are supported on and must be chosen such that

of (72) is invertible.
The sampling rate resulting from Theorem 29 is no larger

than since . For certain signals, the rate can
be reduced to . This is due to the fact that the outputs
are processed jointly, similar to the MMV model. Evidently, the
minimal sampling rate is not related to the Nyquist rate of the
pulse . Therefore, for wideband pulse shapes, the reduc-
tion in rate can be quite substantial. As an example, consider
the setup in [175], used for characterization of ultra-wide band
wireless indoor channels. Under this setup, pulses with band-
width of 1 GHz are transmitted at a rate of 2 MHz.
Assuming that there are 10 significant multipath components,
we can reduce the sampling rate down to 40 MHz compared
with the 2-GHz Nyquist rate.

5) Applications: Problems of the form (71) appear in a
variety of different settings. For example, the model (71) can
describe multipath medium identification problems, which
arise in applications such as radar [176], underwater acous-
tics [177], wireless communications, and more. In this context,
pulses with known shape are transmitted through a multipath
medium, which consists of several propagation paths, at a
constant rate. As a result the received signal is composed of
delayed and weighted replicas of the transmitted pulses. The
delays represent the propagation delays of each path, while
the sequences describe the time-varying gain coefficient
of each multipath component.

Another important application of (71) is in the context of
radar. In this example, we translate the rate reduction to in-
creased resolution with a fixed time–bandwidth product (TBP),
thus enabling super-resolution radar from low rate samples. In
radar, the goal is to identify the range and velocity of targets.
The delay in this case captures the range while the time varying
coefficients are a result of the Doppler delay related to the target
velocity [150]. More specifically, we assume that several targets
can have the same delays but possibly different Doppler shifts
so that denote the set of distinct delays. For each delay
value there are values of associated Doppler shifts
and reflection coefficients . We also assume that the system
is highly underspread, namely , where and

denote the maximal Doppler shift and delay. To identify the tar-
gets we transmit the signal

(73)

where is a known -length probing sequence, and is a
known pulse shape. The received signal can then be described
in the form (71), where the sequences satisfy

(74)

The delays and the sequences can be recovered using the
general scheme for time delay recovery. The Doppler shifts and
reflection coefficients are then determined from the sequences

using standard spectral estimation tools [164]. The tar-
gets can be exactly identified as long as the bandwidth of
the transmitted pulse satisfies , and the length of the
probing sequence satisfies [150]. This leads to a
minimal TBP of the input signal of , which
is much lower than that obtained using standard radar processing
techniques, such as matched-filtering (MF).

An example of the identification of nine close targets is illus-
trated in Fig. 19(a). The sampling filter used is a simple LPF.
The original and recovered targets are shown on the Doppler-
delay plane. Evidently all the targets were correctly identified.
The result obtained by MF, with the same TBP, is shown in
Fig. 19(b). Clearly, the compressive method has superior res-
olution than the standard MF in this low noise setting. Thus,
the union of subspaces viewpoint not only offers a reduced-
rate sampling method, but allows to increase the resolution in
target identification for a fixed low TBP when the SNR is high
enough, which is of paramount importance in many practical
radar problems.

Previous approaches for identifying the unknown delays and
gains involve sampling the received signal at the Nyquist rate
of the pulse [178]–[180]. However, prior knowledge of the
pulse shape results in a parametric viewpoint, and we would ex-
pect that the rate should be proportional to the number of de-
grees of freedom, i.e., the number of paths .
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Another approach is to quantize the delay-Doppler plane by
assuming the delays and Doppler shifts lie on a grid [42], [104],
[148], [149]. After discretization, CS tools for finite represen-
tations can be used to capture the sparsity on the discretized
grid. Clearly, this approach has an inherent resolution limitation.
Moreover, in real world scenarios, the targets do not lie exactly
on the grid points. This causes a leakage of their energies in the
quantized space into adjacent grid points [36], [87]. In contrast,
the union of subspaces model avoids the discretization issue and
offers concrete sampling methods that can be implemented ef-
ficiently in hardware (when the SNR is not too poor).

E. Discussion

Before concluding, we point out that much of the work in
this section (Sections VI-B, VI-C and VI-D) has been focused
on infinite unions. In each case, the approach we introduced is
based on a sampling mechanism using analog filters, followed
by standard array processing tools for recovery in the digital do-
main. These techniques allow perfect recovery when no noise
is present, and generally degrade gracefully in the presence of
noise, as has been analyzed extensively in the array processing
literature. Nonetheless, when the SNR is poor, alternative digital
recovery methods based on CS may be preferable. Thus, we may
increase robustness by using the analog sampling techniques
proposed here in combination with standard CS algorithms for
recovery in the digital domain. To apply this approach, once we
have obtained the desired samples, we can view them as the
measurement vector in a standard CS system; the CS matrix
is now given by a discretized Vandermonde matrix that captures
all possible frequencies to a desired accuracy; and the vector is
a sparse vector with nonzero elements only in those indices cor-
responding to actual frequencies [42], [84], [104], [148], [149].
In this way, we combine the benefits of CS with those of analog
sampling, without requiring discretization in the sampling stage.
The discretization now only appears in the digital domain during
recovery and not in the sampling mechanism. If we follow this
strategy, then the results developed in Section III regarding re-
covery in the presence of noise are relevant here as well.

VII. CONCLUSION

In this review, our aim was to summarize applications of the
basic CS framework that integrate specific constraints of the
problem at hand into the theoretical and algorithmic formula-
tion of signal recovery, going beyond the original “random mea-
surement/sparsity model” paradigm. Due to constraints given
by the relevant sensing devices, the classes of measurement
matrices available to us are limited. Similarly, some applica-
tions focus on signals that exhibit structure which cannot be
captured by sparsity alone and provide additional information
that can be leveraged during signal recovery. We also consid-
ered the transition between continuous and discrete represen-
tations bridged by analog-to-digital converters. Analog signals
are continuous-time by nature; in many cases, the application
of compressed sensing to this larger signal class requires the
formulation of new devices, signal models, and recovery algo-
rithms. It also necessitates a deeper understanding of hardware
considerations that must be taken into account in theoretical de-
velopments. This acquisition framework, in turn, motivates the

design of new sampling schemes and devices that provide the in-
formation required for signal recovery in the smallest possible
representation.

While it is difficult to cover all of the developments in com-
pressive sensing theory and hardware [66]–[68], [181]–[184],
our aim here was to select few examples that were representative
of wider classes of problems and that offered a balance between
a useful theoretical background and varied applications. We
hope that this summary will be useful to practitioners in signal
acquisition and processing that are interested in leveraging the
features of compressive sensing in their specific applications.
We also hope that this review will inspire further developments
in the theory and practice underlying CS: we particularly envi-
sion extending the existing framework to broader signals sets
and inspiring new implementation and design paradigms. With
an eye to the future, more advanced configurations of CS can
play a key role in many new frontiers. Some examples already
mentioned throughout are cognitive radio, optical systems,
medical devices such as MRI, ultrasound and more. These
techniques hold promise for a complete rethinking of many
acquisition systems and stretch the limit of current sensing
capabilities.

As we have also demonstrated, CS holds promise for in-
creasing resolution by exploiting signal structure. This can
revolutionize many applications such as radar and microscopy
by making efficient use of the available degrees of freedom
in these settings. Consumer electronics, microscopy, civilian
and military surveillance, medical imaging, radar and many
other rely on ADCs and are resolution-limited. Removing the
Nyquist barrier in these applications and increasing resolu-
tion can improve the user experience, increase data transfer,
improve imaging quality and reduce exposure time—in other
words, make a prominent impact on the analog-digital world
surrounding us.
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