
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. IMAGING SCIENCES c© 2013 Society for Industrial and Applied Mathematics
Vol. 6, No. 1, pp. 199–225

Phase Retrieval via Matrix Completion∗

Emmanuel J. Candès†, Yonina C. Eldar‡, Thomas Strohmer§, and Vladislav Voroninski¶

Abstract. This paper develops a novel framework for phase retrieval, a problem which arises in X-ray crystal-
lography, diffraction imaging, astronomical imaging, and many other applications. Our approach,
called PhaseLift, combines multiple structured illuminations together with ideas from convex pro-
gramming to recover the phase from intensity measurements, typically from the modulus of the
diffracted wave. We demonstrate empirically that a complex-valued object can be recovered from
the knowledge of the magnitude of just a few diffracted patterns by solving a simple convex opti-
mization problem inspired by the recent literature on matrix completion. More importantly, we also
demonstrate that our noise-aware algorithms are stable in the sense that the reconstruction degrades
gracefully as the signal-to-noise ratio decreases. Finally, we introduce some theory showing that one
can design very simple structured illumination patterns such that three diffracted figures uniquely
determine the phase of the object we wish to recover.
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1. Introduction.

1.1. The phase retrieval problem. This paper considers the fundamental problem of re-
covering a general signal, an image, for example, from the magnitude of its Fourier transform.
This problem, also known as phase retrieval, arises in many applications and has challenged
engineers, physicists, and mathematicians for decades. Its origin comes from the fact that de-
tectors oftentimes can record only the squared modulus of the Fresnel or Fraunhofer diffraction
pattern of the radiation that is scattered from an object. In such settings, one cannot measure
the phase of the optical wave reaching the detector, and, therefore, much information about
the scattered object or the optical field is lost since, as is well known, the phase encodes a lot
of the structural content of the image we wish to form.
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200 E. J. CANDÈS, Y. C. ELDAR, T. STROHMER, AND V. VORONINSKI

Historically, one of the first important applications of phase retrieval is X-ray crystallog-
raphy [58, 33], and today this may very well still be the most important application. Over
the last century or so, this field has developed a wide array of techniques for recovering Bragg
peaks from missing-phase data. Of course, the phase retrieval problem permeates many other
areas of imaging science, and other applications include diffraction imaging [12], optics [73],
astronomical imaging [21], and microscopy [55], to name just a few. In particular, X-ray
tomography has become an invaluable tool in biomedical imaging to generate quantitative
three-dimensional density maps of extended specimens on the nanoscale [22]. Other subjects
where phase retrieval plays an important role are quantum mechanics [65, 20] and even dif-
ferential geometry [8]. We note that phase retrieval has seen a resurgence in activity in recent
years, fueled on the one hand by the desire to image individual molecules and other nanopar-
ticles, and on the other hand by new imaging capabilities: one such recent modality is the
availability of new X-ray synchrotron sources that provide extraordinary X-ray fluxes; see, for
example, [59, 68, 9, 55, 22]. References and various instances of the phase retrieval problem
as well as some theoretical and numerical solutions can be found in [37, 49, 43].

There are many ways in which one can pose the phase retrieval problem, for instance,
depending upon whether one assumes a continuous- or discrete-space model for the signal.
In this paper, we consider finite length signals (one-dimensional (1D) or multidimensional)
for simplicity and because numerical algorithms ultimately operate with digital data. To fix
ideas, suppose we have a 1D signal x = (x[0], x[1], . . . , x[n − 1]) ∈ C

n and write its Fourier
transform as

(1.1) x̂[ω] =
1√
n

∑
0≤t<n

x[t]e−i2πωt/n, ω ∈ Ω.

Here, Ω is a grid of sampled frequencies, and an important special case is Ω = {0, 1, . . . , n−1}
so that the mapping is the classical unitary discrete Fourier transform (DFT).1 The phase
retrieval problem consists in finding x from the magnitude coefficients |x̂[ω]|, ω ∈ Ω. When Ω
is the usual frequency grid as above and without further information about the unknown signal
x, this problem is ill-posed since there are many different signals whose Fourier transforms
have the same magnitude. Clearly, if x is a solution to the phase retrieval problem, then (1)
cx for any scalar c ∈ C obeying |c| = 1 is also a solution, (2) the “mirror function” or time-
reversed signal x̄[−t mod n], where t = 0, 1, . . . , n − 1, is also a solution, and (3) the shifted
signal x[t−a mod n] is also a solution. From a physical viewpoint these “trivial associates” of
x are acceptable ambiguities. But in general infinitely many solutions can be obtained from
{|x̂[ω]| : ω ∈ Ω} beyond these trivial associates [67].

We wish to make clear that our claims apply only to the discrete setting considered in
this problem. It would, of course, be possible to develop a framework for continuous objects
as well. This would involve specifying a sampling mechanism and a finite model suitable for
finite computations. If, as empirically demonstrated in this paper, the discrete model is robust
vis-à-vis small errors, then accurate recovery of continuous objects would be possible since
small approximation/discretization errors would lead to small reconstruction errors.

1For later reference, we denote the Fourier transform operator by F and the inverse Fourier transform by
F−1.D
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1.2. Main approaches to phase retrieval. Holographic techniques are among the more
popular methods that have been proposed to measure the phase of the optical wave. While
holographic techniques have been successfully applied in certain areas of optical imaging, they
are generally difficult to implement in practice [23]. Hence, the development of algorithms for
signal recovery from magnitude measurements is still a very active field of research. Existing
methods for phase retrieval rely on all kinds of a priori information about the signal, such as
positivity, atomicity, support constraints, and real-valuedness [27, 28, 51, 19]. Direct methods
[34] are limited in their applicability to small-scale problems due to their large computational
complexity.

Oversampling in the Fourier domain has been proposed as a means of mitigating the
nonuniqueness of the phase retrieval problem [54]. While oversampling offers no benefit for
most 1D signals, the situation is more favorable for multidimensional signals, where it has
been shown that twofold oversampling in each dimension almost always yields uniqueness for
finitely supported, real-valued, and nonnegative signals [11, 35, 67]. In other words, a digital
image of the form x = {x[t1, t2]} with 0 ≤ t1 < n1 and 0 ≤ t2 < n2, whose Fourier transform
is given by

(1.2) x̂[ω1, ω2] =
1√
n1n2

∑
x[t1, t2]e

−i2π(ω1t1/n1+ω2t2/n2),

is usually uniquely determined from the values of |x̂[ω1, ω2]| on the oversampled grid ω =
(ω1, ω2) ∈ Ω = Ω1 × Ω2 in which Ωi = {0, 1/2, 1, 3/2, . . . , ni + 1/2}. (In other words, if we
think of (1/n1, 1/n2) as some Nyquist frequency, then we would need to sample at a rate
that is at least twice this Nyquist frequency.) This holds, provided that x has proper spatial
support and is real-valued and nonnegative.

As pointed out in [49], these uniqueness results do not say anything about how a signal
can be recovered from its intensity measurements, or about the robustness and stability of
commonly used reconstruction algorithms—a fact we shall make very clear in what follows. In
fact, theoretical uniqueness conditions do not readily translate into numerical methods and,
as a result, the algorithmic and practical aspects of the phase retrieval problem (from noisy
data) still pose significant challenges.

By and large, the most popular methods for phase retrieval from oversampled data are
alternating projection algorithms pioneered by Gerchberg and Saxton [30] and Fienup [27, 28].
These methods often require careful exploitation of signal constraints and delicate parameter
selection to increase the likelihood of convergence to a correct solution [62, 51, 19, 50]. We
describe the simplest realization of a widely used alternating projection approach [72], which
assumes support constraints in the spatial domain and oversampled measurements in the
frequency domain. With T being a known subset containing the support of the signal x
(supp(x) ⊂ T ) and Fourier magnitude measurements {y[ω]}ω∈Ω with y[ω] = |x̂[ω]|, the method
works as follows:

1. Initialization: Choose an initial guess x0 and set z0[ω] = y[ω] x̂0[ω]
|x̂0[ω]| for ω ∈ Ω.

2. Loop: For k = 1, 2, . . . , inductively define

(1) xk[t] =

{
(F−1zk−1)[t] if t ∈ T ,

0 else;D
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(2) zk[ω] = y[ω]
x̂k[ω]

|x̂k[ω]| for ω ∈ Ω

until convergence.

While this algorithm is simple to implement and amenable to additional constraints such
as the positivity of x, its convergence remains problematic. Projection algorithms onto convex
sets are well understood [10, 32, 75, 3]. However, the set {z : |ẑ[ω]| = |x̂[ω]|} is not convex,
and, therefore, the algorithm is not known to converge in general or even to give a reason-
able solution [44, 3, 49]. Some progress toward understanding the convergence behavior of
certain alternating projection methods has been made in [48]. Good numerical results have
been reported in certain oversampling settings, but they nevertheless appear to be somewhat
problematic in light of our numerical experiments from section 4. Reference [52] points out
that oversampling is not always practically feasible as certain experimental geometries allow
only for sub-Nyquist sampling; an example is the Bragg sampling from periodic crystalline
structures. Alternating projection algorithms may be more competitive when applied within
the framework of multiple structured illuminations, as proposed in this paper, instead of over-
sampling. Another direction of investigation is to utilize sparsity of the signal; see [52, 47, 74].
Here, the signal is known to have only a few nonzero coefficients, but the locations of the
nonzero coefficients (that is, the support of the signal) are not known a priori.

In a different direction, a frame-theoretic approach to phase retrieval has been proposed
in [2, 1], where the authors derive various necessary and sufficient conditions for the unique-
ness of the solution, as well as various numerical algorithms. While theoretically appealing,
the practical applicability of these results is limited by the fact that very specific types of
measurements are required, which cannot be realized in most applications of interest.

To summarize our discussion, we have seen many methods which all represent some im-
portant attempts to find efficient algorithms, and work well in certain situations. However,
these techniques do not always provide a consistent and robust result.

1.3. PhaseLift—a novel methodology. This paper develops a novel methodology for
phase retrieval based on a rigorous and flexible numerical framework. Whereas most of the
existing methods seek to overcome nonuniqueness by imposing additional constraints on the
signal, we pursue a different direction by assuming no constraints at all on the signal. There
are two main components to our approach.

• Multiple structured illuminations. We suggest collecting several diffraction patterns
providing “different views” of the sample or specimen. This can be accomplished in a
number of ways: for instance, by modulating the light beam falling onto the sample
or by placing a mask right after the sample; see section 2 for details. Taking multiple
diffraction patterns usually yields uniqueness as discussed in section 3.
The concept of using multiple measurements as an attempt to resolve the phase am-
biguity for diffraction imaging is, of course, not new, and was suggested in [60]. Since
then, a variety of methods have been proposed to carry out these multiple measure-
ments; depending on the particular application, these may include the use of various
gratings and/or masks, the rotation of the axial position of the sample, and the use
of defocusing implemented in a spatial light modulator; see [23] for details and refer-
ences. Other approaches include ptychography, an exciting field of research, where oneD
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records several diffraction patterns from overlapping areas of the sample; see [66, 69]
and references therein.

• Formulation of phase recovery as a matrix completion problem. We suggest (1) lifting
up the problem of recovering a vector from quadratic constraints into that of a recov-
ering of a rank-one matrix from affine constraints, and (2) relaxing the combinatorial
problem into a convenient convex program. Since the lifting step is fundamental to our
approach, we will refer to the proposed numerical framework as PhaseLift. The price
we pay for trading the nonconvex quadratic constraints for convex constraints is that
we must deal with a highly underdetermined problem. However, recent advances in
the areas of compressive sensing and matrix completion have shown that such convex
approximations are often exact.
Although our algorithmic framework appears to be novel for phase retrieval, the idea of
solving problems involving nonconvex quadratic constraints by semidefinite relaxations
has a long history in optimization; see [7] and the references therein, and section 1.4
below for more discussion.

The goal of this paper is to demonstrate that, taken together, multiple coded illuminations and
convex programming (trace-norm minimization) provide a powerful new approach to phase
retrieval. Further, a significant aspect of our methodology is that our systematic optimization
framework offers a principled way of dealing with noise and makes it easy to handle various
statistical noise models. This is important because in practice, measurements are always noisy.
In fact, our framework can be understood as an elaborate regularized maximum likelihood
method. Finally, our framework can also include a priori knowledge about the signal that can
be formulated or relaxed as convex constraints.

1.4. Precedents. At the abstract level, the phase retrieval problem is that of finding
x ∈ C

n obeying quadratic equations of the form |〈ak, x〉|2 = bk. Casting such quadratic
constraints as affine constraints about the matrix variable X = xx� has been widely used in
the optimization literature for finding good bounds on a number of quadratically constrained
quadratic problems (QCQP). Indeed, solving the general case of a QCQP is known to be an
NP-hard problem since it includes the family of Boolean linear programs [7]. The approach
usually consists in finding a relaxation of the QCQP using semidefinite programming (SDP),
for instance, via Lagrangian duality. An important example of this strategy is Max Cut,
an NP-hard problem in graph theory which can be formulated as a QCQP. In a celebrated
paper, Goemans and Williamson introduced a relaxation [31] for this problem, which lifts or
linearizes a nonlinear, nonconvex problem to the space of symmetric matrices. Although there
are evident connections to our work, our relaxation is quite different from these now-standard
techniques.

The idea of linearizing the phase retrieval problem by reformulating it as a problem of
recovering a matrix from linear measurements can be found in [1]. While this reference also
contains some intriguing numerical recovery algorithms, their practical relevance for most
applications is limited by the fact that the proposed measurement matrices either require
a very specific algebraic structure which does not seem to be compatible with the physical
properties of diffraction, or the number of measurements is proportional to the square of the
signal dimension, which is not feasible in most applications.D
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Figure 1. A typical setup for structured illuminations in diffraction imaging using a phase mask.

In terms of framework, the closest approach is the paper [18], in which the authors use a
matrix completion approach for array imaging from intensity measurements. Although this
paper executes a relaxation similar to ours, there are some differences. We present a “noise-
aware” framework, which makes it possible to account for a variety of noise models in a
systematic way. Moreover, our emphasis is on a novel combination of structured illuminations
and convex programming, which seems to bear great potential.

2. Methodology.

2.1. Structured illumination. Suppose x = {x[t]} is the object of interest (t may be a 1D
or multidimensional index). In this paper, we shall discuss illumination schemes collecting the
diffraction pattern of the modulated object w[t]x[t], where the waveforms or patterns w[t] may
be selected by the user. There are many ways in which this can be implemented in practice,
and we discuss just a few.

• Masking. One possibility is to modify the phase front after the sample by inserting a
mask or a phase plate; see [45], for example. A schematic layout is shown in Figure 1.
In [40], the sample is scanned by shifting the phase plate as in ptychography (discussed
below); the difference is that one scans the known phase plate rather than the object
being imaged.

• Optical grating. Another standard approach would be to change the profile or mod-
ulate the illuminating beam, which can easily be accomplished by the use of optical
gratings [46]. A simplified representation would look similar to the scheme depicted
in Figure 1, with a grating instead of the mask (the grating could be placed before or
after the sample).D
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Figure 2. A typical setup for structured illuminations in diffraction imaging using oblique illuminations.
The left image shows direct (on-axis) illumination, and the right image corresponds to oblique (off-axis) illu-
mination.

• Ptychography. Here, one measures multiple diffraction patterns by scanning a finite
illumination on an extended specimen [66, 69]. In this setup, it is common to maintain
a substantial overlap between adjacent illumination positions.

• Oblique illuminations. One can use illuminating beams that hit the sample at a user
specified angle [24]; see Figure 2 for a schematic illustration of this approach. One can
also imagine having multiple simultaneous oblique illuminations.

As is clear, there is no shortage of options, and one might prefer solutions which require
generating as few diffraction patterns as possible for stable recovery.

2.2. Lifting. Suppose we have x0 ∈ C
n or C

n1×n2 (or some higher-dimensional version)
about which we have quadratic measurements of the form

(2.1) A(x0) = {|〈ak, x0〉|2 : k = 1, 2, . . . ,m}.

In the setting where we would collect the diffraction pattern of w[t]x0[t] as discussed earlier,
the waveform ak[t] can be written as

(2.2) ak[t] ∝ w[t]ei2π 〈ωk ,t〉;

here, ωk is a frequency value so that ak[t] is a patterned complex sinusoid. One can assume
for convenience that the normalizing constant is such that ak is unit normed, i.e., ‖ak‖22 =∑

t |ak[t]|2 = 1. Phase retrieval is then the feasibility problem

(2.3)
find x
obeying A(x) = A(x0) := b.D
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As is well known, quadratic measurements can be lifted up and interpreted as linear
measurements about the rank-one matrix X = xx∗. Indeed,

|〈ak, x〉|2 = Tr(x∗aka∗kx) = Tr(aka
∗
kxx

∗) := Tr(AkX),

where Ak is the rank-one matrix aka
∗
k. In what follows, we will let A be the linear operator

mapping positive semidefinite matrices into {Tr(AkX) : k = 1, . . . ,m}. Hence, the phase
retrieval problem is equivalent to

(2.4)

find X
subject to A(X) = b,

X 
 0,
rank(X) = 1

⇔
minimize rank(X)
subject to A(X) = b,

X 
 0.

Upon solving the left-hand side of (2.4), we would factorize the rank-one solution X as xx∗,
hence finding solutions to the phase retrieval problem. Note that the equivalence between the
left- and right-hand sides of (2.4) is straightforward since by definition b = A(x0) = A(x0x

∗
0)

and there exists a rank-one solution. Therefore, our problem is a rank-minimization problem
over an affine slice of the positive semidefinite cone. As such, it falls into the realm of low-
rank matrix completion or matrix recovery, a class of optimization problems that has gained
tremendous attention in recent years; see, e.g., [64, 13, 15]. Just as in matrix completion,
the linear system A(X) = b, with the unknown in the positive semidefinite cone, is highly
underdetermined. For instance, suppose our signal x0 has n complex unknowns. Then we may
imagine collecting six diffraction patterns with n measurements for each (no oversampling).
Thus m = 6n, whereas the dimension of the space of n× n Hermitian matrices over the reals
is n2, which is obviously much larger.

We are, of course, interested in low-rank solutions, and this makes the search feasible.
This also raises an important question: what is the minimal number of diffraction patterns
needed to recover x, whatever x may be? Since each pattern yields n real-valued coefficients
and x has n complex-valued unknowns, the answer is at least two. Further, in the context of
quantum state tomography, Theorem II in [29] shows that one needs at least 3n − 2 inten-
sity measurements to guarantee uniqueness, hence suggesting an absolute minimum of three
diffraction patterns. Are three patterns sufficient? For some answers to this question, see
section 3.

2.3. Recovery via convex programming. The rank-minimization problem (2.4) is NP-
hard. We propose using the trace norm as a convex surrogate [5, 53] for the rank functional,
giving the familiar SDP (and a crucial component of PhaseLift),

(2.5)
minimize Tr(X)
subject to A(X) = b,

X 
 0;

here and below X 
 0 means that X is Hermitian positive semidefinite. This problem is
convex, and there exists a wide array of numerical solvers including the popular Nesterov’s
accelerated first-order method [61]. As far as the relationship between (2.4) and (2.5) is con-
cerned, the matrix A in most diffraction imaging applications is not known to obey any ofD
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the conditions derived in the literature [13, 15, 64] that would guarantee a formal equivalence
between the two programs. Nevertheless, the formulation (2.5) enjoys great empirical perfor-
mance as demonstrated in section 4. Furthermore, shortly after this work was submitted, it
was shown in [14] that for measurement vectors ak sampled independently and uniformly at
random on the unit sphere, PhaseLift can recover x exactly (up to a global phase factor) with
high probability, provided that the number of measurements is on the order of n log n.

We mentioned earlier that measurements are typically noisy and that our formulation
allows for a principled approach to dealing with this issue for a variety of noise models.
Suppose the measurement vector {bk} is sampled from a probability distribution p(·;μ), where
μ = A(x0) is the vector of noiseless values, μk = |〈ak, x0〉|2. Then a classical fitting approach
simply consists of maximizing the likelihood:

(2.6)
maximize p(b;μ)
subject to μ = A(x)

with optimization variables μ and x. (A more concise description is to find x such that
p(b;A(x)) is maximum.) Using the lifting technique and the monotonicity of the logarithm,
an equivalent formulation is

minimize − log(p(b;μ))
subject to μ = A(X),

X 
 0, rank(X) = 1.

This is, of course, not tractable and our convex formulation suggests solving instead

(2.7)
minimize − log p(b;μ) + λTr(X)
subject to μ = A(X),

X 
 0

with optimization variables μ and X (in other words, find X 
 0 such that − log p(b;A(X))+
λTr(X) is minimum). Above, λ is a positive scalar, and, hence, our approach is a penalized or
regularized maximum likelihood method, which trades off between goodness and complexity
of the fit. When the likelihood is log-concave, problem (2.7) is convex and solvable. We give
two examples for concreteness:

• Poisson data. Suppose that {bk} is a sequence of independent samples from the Poisson
distributions Poi(μk). The Poisson log-likelihood for independent samples has the form∑

k bk log μk − μk (up to an additive constant factor), and thus, our problem becomes

minimize
∑

k[μk − bk log μk] + λTr(X)
subject to μ = A(X),

X 
 0.

• Gaussian data. Suppose that {bk} is a sequence of independent samples from the
Gaussian distribution with mean μk and variance σ2

k (or is well approximated by
Gaussian variables). Then our problem becomes

minimize
∑

k
1

2σ2
k
(bk − μk)

2 + λTr(X)

subject to μ = A(X),
X 
 0.D
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If Σ is a diagonal matrix with diagonal elements σ2
k, this can be written as

minimize 1
2 [b−A(X)]∗Σ−1[b−A(X)] + λTr(X)

subject to X 
 0.

Both formulations are, of course, convex and in both cases, one recovers the noiseless trace-
minimization problem (2.5) as λ → 0+.

In addition, it is straightforward to include further constraints frequently discussed in
the phase retrieval literature such as real-valuedness, positivity, and atomicity. Suppose the
support of x is known to be included in a set T known a priori. Then we would add the linear
constraint

Xij = 0, (i, j) /∈ T × T.

(Algorithmically, one would simply work with a reduced-size matrix.) Suppose we would
like to enforce real-valuedness; then we simply assume that X is real-valued and positive
semidefinite. Finally positivity can be expressed as linear inequalities

Xij ≥ 0.

Of course, many other types of constraints can be incorporated into this framework, which
provides appreciable flexibility.

2.4. PhaseLift with reweighting. The trace norm promotes low-rank solutions, and this
is why it is often used as a convex proxy for the rank. However, it is possible to further promote
low-rank solutions by solving a sequence of weighted trace-norm problems, a technique which
has been shown to provide even more accurate solutions [26, 16]. The reweighting scheme
works like this: choose ε > 0; start with W0 = I and for k = 0, 1, . . . , inductively define Xk

as the optimal solution to

(2.8)

minimize Tr(WkX)
subject to A(X) = b,

X 
 0,

and update the “weight matrix” as

Wk+1 = (Xk + εI)−1.

The algorithm terminates on convergence or when the iteration count k attains a specified
maximum number of iterations kmax. One can see that the first step of this procedure is
precisely (2.5); after this initial step, the algorithm proceeds to solve a sequence of trace-norm
problems in which the matrix weights Wk are roughly the inverse of the current guess.

As explained in the literature [26, 25], this reweighting scheme can be viewed as attempting
to solve

(2.9)
minimize f(X) = log(det(X + εI))
subject to A(X) = b,

X 
 0,D
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by minimizing the tangent approximation to f at each iterate; that is to say, at step k, (2.8) is
equivalent to minimizing f(Xk−1) + 〈∇f(Xk−1),X −Xk−1〉 over the feasible set. (As for the
trace, the function log det(X+εI) serves as a surrogate for the rank functional.) This can also
be applied to noise-aware variants, where one would simply replace the objective functional
in (2.7) with

− log p(b;μ) + λTr(WkX)

at each step and update Wk in exactly the same way as before.
The log-det functional is closer to the rank functional than the trace norm. In fact,

minimizing this functional solves the phase retrieval problem as incorporated into the following
theorem.

Theorem 2.1. Suppose that A is one to one and that the identity matrix I is in the span
of the sensing matrices Ak. Then the unique solution of the phase retrieval problem (2.3) is
also the unique minimizer to (2.9)—up to global phase.2 This holds for all values of ε > 0.
The same conclusion holds without the inclusion assumption, provided that one modifies the
reweighting scheme and substitutes the objective function f(X) in (2.9) with f(RXR), where
R = (

∑
k Ak)

1/2.
Since the reweighting algorithm is a good heuristic for solving (2.9), we potentially have

an interesting and tractable method for phase retrieval. It is not a perfect heuristic, however,
as we cannot expect this procedure to always find the global minimum since the objective
functional is concave.

The assumption that the identity matrix is in the span of the Ak’s holds whenever the
modulus of the Fourier transform of the sample is measured. Indeed, if |Fx|2 is observed,
then, letting {f∗

k} be the rows of F , we have
∑

k fkf
∗
k = I.

Proof. Our assumption implies that for any feasible X, Tr(X) =
∑

k hk Tr(AkX) =∑
k hkbk is fixed. Assume without loss of generality that feasible points obey Tr(X) = 1

(if Tr(X) = 0, then the unique solution is X = 0). If x0 is the unique solution to phase
retrieval (up to global phase), then X0 = x0x

∗
0 is the only rank-one feasible point. We thus

need to show that any feasible X with rank(X) > 1 obeys f(X) > f(X0), a fact which follows
from the strong concavity of f (of the logarithm). Let X =

∑
j λjuju

∗
j be any eigenvalue

decomposition of a feasible point. Then

f(X) = log(det(εI +X)) =
∑
j

log(ε+ λj),

and it follows from the strict concavity of the log that∑
j

log(ε+ λj) >
∑
j

λj log(ε+ 1) + (1− λj) log ε = log(ε+ 1) + (n− 1) log ε.

The first strict inequality holds unless X is rank one, in which case we have equality. The
equality follows from

∑
j λj = Tr(X) = 1. Since the right-hand side is none other than f(X0),

the theorem is established.

2Quadratic measurements can, of course, never distinguish between x and cx in which c ∈ C has unit norm.
When the solution is unique up to a multiplication with such a scalar, we say that unicity holds up to global
phase. From now on, whenever we talk about unicity, it is implied up to global phase.D
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For the second part, set Bk = R−1AkR
−1 and consider a new data problem with con-

straints {X : Tr(BkX) = bk,X 
 0}. Now X is feasible for our problem if and only if RXR is
feasible for this new problem. (This is because the mapping X �→ RXR preserves the positive
semidefinite cone.) Now suppose that x0 is the solution to phase retrieval and set X0 = x0x

∗
0

as before. Since I is in the span of the sensing matrices Bk, we have just learned that for all
RXR �= RX0R and X feasible for our problem,

f(RXR) > f(RX0R).

This concludes the proof.

3. Theory. Our PhaseLift framework poses two main theoretical questions:

1. When do multiple diffracted images imply unicity of the solution?
2. When does our convex heuristic succeed in recovering the unique solution to the phase

retrieval problem?

Developing comprehensive answers to these questions constitutes a whole research program,
which clearly is beyond the scope of this work. In this paper, we shall limit ourselves to
introducing some theoretical results showing simple ways of designing diffraction patterns
which give unicity. Our focus is on getting uniqueness from a very limited number of diffraction
patterns. For example, we shall demonstrate that in some cases three diffraction images are
sufficient for perfect recovery. Thus, we give below partial answers to the first question and
will address the second in a later publication.

A frequently discussed approach to retrieving phase information uses a technique from
holography. Roughly speaking, the idea is to let the signal of interest x interfere with a
known reference beam y. One typically measures |x+y|2 and |x− iy|2, and precise knowledge
of y allows us, in principle, to recover the amplitude and phase of x. Holographic techniques
are hard to implement [23] in practice. Instead, we propose using a modulated version of the
signal itself as a reference beam, which in some cases may be easier to implement.

To discuss this idea, we need to introduce some notation. For a complex signal z ∈ C
n, we

let |z|2 be the nonnegative real-valued n-dimensional vector containing the squared magnitudes
of z. Suppose first that x is a 1D signal (x[0], x[1], . . . , x[n − 1]) and that Fn is the n × n
unitary DFT. In this section, we consider taking 3n real-valued measurements of the form

(3.1) A(x) = {|Fnx|2, |Fn(x+Dsx)|2, |Fn(x− iDsx)|2},

where D is the modulation,

D = diag({ei2πt/n}0≤t≤n−1),

and s is a nonnegative integer. These measurements can be obtained by illuminating the
sample with the three light fields 1, 1 + ei2πst/n, and 1 + ei2π(st/n−1/4). We show below that
these 3n measurements are generally sufficient for perfect recovery.

Theorem 3.1. Suppose that the DFT of x ∈ Cn does not vanish. Then x can be recovered
up to global phase from the 3n real numbers A(x) (3.1) if and only if s is prime with n.
In particular, assuming primality, if the trace-minimization program (2.5) or the iteratively
reweighted algorithm returns a rank-one solution, then this solution is exact.D
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Conversely, if the DFT vanishes at two frequency points k and k′ obeying k−k′ �= s mod n,
then recovery is not possible from the 3n real numbers (3.1).

The proof of this theorem is constructive, and we give a simple algorithm that achieves
perfect reconstruction. Further, one can use masks to scramble the Fourier transform so as to
make sure it does not vanish. Suppose, for instance, that we collect

A(Wx), W = diag({z[t]}0≤t≤n−1),

where the z[t]’s are independent and identically distributed (i.i.d.) N (0, 1). Then since the
Fourier transform of z[t]x[t] does not vanish with probability one, we have the following
corollary.

Corollary 3.2. Assume that s is prime with n. Then with probability one, x can be recovered
up to global phase from the 3n real numbers A(Wx), where W is the diagonal matrix with
Gaussian entries above.

Of course, one could derive similar results by scrambling the Fourier transform with the
aid of other types of masks, e.g., binary masks. We do not pursue such calculations.

We now turn our attention to the situation in higher dimensions and will consider the
two-dimensional (2D) case (higher dimensions are treated in the same way). Here, we have a
discrete signal x[t1, t2] ∈ C

n1×n2 about which we take the 3n1n2 measurements

(3.2) {|Fn1×n2x|2, |Fn1×n2(x+Dsx)|2, |Fn1×n2(x− iDsx)|2}, s = (s1, s2);

Fn1×n2 is the 2D unitary Fourier transform defined by (1.2) in which the frequencies belong
to the 2D grid {0, 1, . . . , n1 − 1} × {0, 1, . . . , n2 − 1}, s is a pair of nonnegative integers, and
Ds is the modulation

[Dsx][t1, t2] = ei2πs1t1/n1 ei2πs2t2/n1x[t1, t2].

With these definitions, we have the following result.

Theorem 3.3. Suppose that the DFT of x ∈ Cn1×n2 does not vanish. Then x can be
recovered up to global phase from the 3n1n2 real numbers (3.2) if and only if s1 is prime
with n1, s2 is prime with n2, and n1 is prime with n2. Under these assumptions, if the
trace-minimization program (2.5) or the iteratively reweighted algorithm returns a rank-one
solution, then this solution is exact.

Again, one can apply a random mask to turn this statement into a probabilistic statement
holding either with probability one or with very large probability depending upon the mask
that is used.

One can always choose s1 and s2 such that they are prime with n1 and n2, respectively.
The last condition may be less friendly, but one can decide to pad one dimension with zeros
to guarantee primality. This is equivalent to a slight oversampling of the DFT along one
direction. An alternative is to take 5n1n2 measurements in which we modulate the signal
horizontally and then vertically; that is to say, we modulate with s = (s1, 0) and then with
s = (0, s2). These 5n1n2 measurements guarantee recovery if s1 is prime with n1 and s2 is
prime with n2 for all sizes n1 and n2; see section 3.3 for details.D
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3.1. Proof of Theorem 3.1. Let x̂ = (x̂[0], . . . , x̂[n−1]) be the DFT of x. Then knowledge
of A(x) is equivalent to knowledge of

|x̂[k]|2, |x̂[k] + x̂[k − s]|2, and |x̂[k]− ix̂[k − s]|2

for all k ∈ {0, 1, . . . , n − 1} (above, k − s is understood mod n). Write x̂[k] = |x̂[k]|eiφ[k] so
that φ[k] is the missing phase, and observe that

|x̂[k] + x̂[k − s]|2 = |x̂[k]|2 + |x̂[k − s]|2 + 2|x̂[k]||x̂[k − s]|Re(ei(φ[k−s]−φ[k]),

|x̂[k]− ix̂[k − s]|2 = |x̂[k]|2 + |x̂[k − s]|2 + 2|x̂[k]||x̂[k − s]|Im(ei(φ[k−s]−φ[k]).

Hence, if x̂[k] �= 0 for all k ∈ {0, 1, . . . , n− 1}, our data gives us knowledge of all phase shifts
of the form

φ[k − s]− φ[k], k = 0, 1, . . . , n− 1.

We can, therefore, initialize φ[0] to be zero and then get the values of φ[−s], φ[−2s], and so
on.

This process can be represented as a cycle in the group Z/nZ as the sequence (0,−s,−2s, . . .).
We would like this cycle to contain n unique elements, which is true if and only if the cyclic
subgroup (0, s, 2s, . . .) has order n. This is equivalent to requiring gcd(s, n) = 1. If this sub-
group has a smaller order, then recovery is impossible since we finish the cycle before we have
all the phases; the phases that we are able to recover do not enable us to determine any more
phases without making further assumptions.

For the second part of the theorem, assume without loss of generality that s = −1 and
that (k, k′) = (0, k0) (1 < k0 < n − 1). For simplicity suppose these are the only zeros of
the DFT. This creates two disjoint sets of frequency indices: those for which 0 < k < k0 and
those for which k0 < k ≤ n − 1. We are given no information about the phase difference
between elements of these two subgroups, and hence recovery is not possible. This argument
extends to situations where the DFT vanishes more often, in which case we have even more
indeterminacy.

3.2. Proof of Theorem 3.3. Let x̂ = {x̂[k1, k2]}, where (k1, k2) ∈ {0, 1, . . . n1 − 1} ×
{0, 1, . . . , n2 − 1} is the DFT of x. Then we have knowledge of

|x̂[k1, k2]|2, |x̂[k1, k2] + x̂[k1 − ss, k2 − s2]|2, and |x̂[k1, k2]− ix̂[k1 − s1, k2 − s2]|2

for all (k1k2). With the same notation as before, this gives us knowledge of all phase shifts of
the form

φ[k1 − s1, k2 − s2]− φ[k1, k2], 0 ≤ k1 ≤ n1, 0 ≤ k2 ≤ n2 − 1.

Hence, we can initialize φ[0, 0] to be zero and then get the values of φ[−s1,−s2], φ[−2s1,−2s2]
and so on. The argument is as before: we would like the cyclic subgroup

(
(0, 0), (s1, s2), (2s1, 2s2),

. . .
)
in Z/n1Z × Z/n2Z to have order n1n2. Now the order of an element (s1, s2) ∈ Z/n1Z×

Z/n2Z is equal to

lcm(|s1|, |s2|) = lcm(n1/gcd(n1, s1), n2/gcd(n2, s2)),D
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where |s1| is the order of s1 in Z/n1Z and likewise for |s2|. Noting that lcm(a, b) ≤ ab and
that equality is achieved if and only if gcd(a, b) = 1, we must simultaneously have

gcd(s1, n1) = 1, gcd(s2, n2) = 1, and gcd(n1, n2) = 1

to have uniqueness.

3.3. Extensions. It is clear from our analysis that if we were to collect |Fn1×n2x|2 together
with

{|Fn1×n2(x+Dskx)|2, |Fn1×n2(x− iDskx)|2}, k = 1, . . . ,K,

so that one collects (2K + 1)n1n2 measurements, then 2D recovery would be possible if and
only if {s1, . . . , sK} generates Z/n1Z × Z/n2Z (and the Fourier transform has no nonzero
components). This can be understood by analyzing the generators of the group Z/n1Z ×
Z/n2Z.

A simple instance consists in choosing one modulation pattern to be (s1, 0) and another
to be (0, s2). If s1 is prime with n1 and s2 is prime with n2, these two modulations generate
the whole group regardless of the relationship between n1 and n2. An algorithmic way to see
this is as follows. Initialize φ(0, 0). Then by using horizontal modulations, one recovers all
phases of the form φ(k1, 0). Further, by using vertical modulations (starting with φ(k1, 0)),
one can recover all phases of the form φ(k1, k2) by moving upward.

4. Numerical experiments. This section introduces numerical simulations to illustrate
and study the effectiveness of PhaseLift.

4.1. Numerical solvers. All numerical algorithms were implemented in MATLAB using
TFOCS [6] as well as modifications of TFOCS template files. TFOCS is a library of MATLAB
files designed to facilitate the construction of first-order methods for a variety of convex
optimization problems, including those we consider here.

In a nutshell, suppose we wish to solve the problem

(4.1)
minimize g(X) := −�(b;A(X)) + λTr(X)
subject to X 
 0,

in which �(b;A(X)) is a smooth and concave (in X) log-likelihood. Then a projected gradient
method would start with an initial guess X0 and inductively define

(4.2) Xk = P(Xk−1 − tk∇g(Xk−1)),

where {tk} is a sequence of stepsize rules and P is the projection onto the positive semidefinite
cone. (Various stepsize rules are typically considered, including fixed stepsizes, backtracking
line search, and exact line search.)

TFOCS implements a variety of accelerated first-order methods pioneered by Nesterov;
see [61] and the references therein. One variant [4] works as follows. Choose X0, set Y0 = X0D

ow
nl

oa
de

d 
04

/0
7/

13
 to

 1
32

.6
8.

49
.1

86
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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and θ0 = 1, and inductively define

(4.3)

Xk = P(Yk−1 − tk∇g(Yk−1)),

θk = 2
[
1 +

√
1 + 4/θ2k−1

]−1
,

βk = θk(θ
−1
k−1 − 1),

Yk = Xk + βk(Xk −Xk−1),

where {tk} is a sequence of stepsize rules as before. The sequence {θk} is usually referred
to as a sequence of accelerated parameters, and {Yk} is an auxiliary sequence at which the
gradient is to be evaluated. The advantage of this approach is that the computational work
per iteration is as in the projected gradient method, but the number of iterations needed to
reach a certain accuracy is usually much lower [61]. TFOCS implements such iterations and
others like it but with various improvements.

For large problems, e.g., images with a large numberN of pixels, it is costly to hold theN×
N optimization variable X in memory. To overcome this issue, our computational approach
maintains a low-rank factorization of X. This is achieved by substituting the projection onto
the semidefinite cone (the expensive step) with a proxy. Whereas P dumps the negative
eigenvalues as in

P(X) =
∑
i

max(λi, 0)uiu
∗
i ,

where
∑

i λiuiu
∗
i (λ1 ≥ λ2 ≥ · · · ≥ λN ) is any eigenvalue decomposition of X, our proxy keeps

only the k largest eigenvalues in the expansion as in

(4.4) Pk(X) =
∑
i≤k

max(λi, 0)uiu
∗
i .

For small values of k—we use k between 10 and 20—this can be efficiently computed since
we need only compute the top eigenvectors of a low-rank matrix at each step. Although
this approximation gives good empirical results, convergence is no longer guaranteed. For a
method like (4.2) or (4.3), the main computational cost of a single iteration is dominated by
computing (4.4), whose complexity is in turn governed by the costs of applying A and A∗. By
maintaining a low-rank factorization of X or Y , these costs are on the order of k×M×n log n
for x ∈ C

n, where M is the number of illuminations. Roughly, each iteration costs on the
order of k ×M FFTs.

4.2. Error measures. To measure performance, we will use the mean-square error (MSE).
However, since a solution x0 is unique only up to global phase, it makes no sense to compute
the squared distance between x0 and the recovery x̂0. Rather, we compute the distance to
the solution space; i.e., we are interested in the relative MSE defined as

min
c:|c|=1

‖cx0 − x̂0‖22
‖x0‖22

.

This is the definition we will adopt throughout the paper;3 the signal-to-noise ratio (SNR) of
the measured data is defined as SNR = 10 log10 ‖b− b̃‖22/‖b‖22, where b̃ denotes the noisy data.

3Alternatively, we could use ‖x0x
∗
0 − x̂0x̂

∗
0‖F /‖x0x

∗
0‖F , which gives very similar values.D
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Although our algorithm favors low-rank solutions, it is not guaranteed to find a rank-one
solution. Therefore, if our optimal solution X̂0 does not have exactly rank one, we extract
the rank-one approximation x̂0x̂

∗
0, where x̂0 is an eigenvector associated with the largest

eigenvalue. We use a scaling such that ‖x̂0‖22 = ‖x0‖22. Note that the �2 norm of the true
solution is generally known since by Parseval’s theorem, the �2 norm of Fx0 is equal to ‖x0‖2.
Hence, observing the diffraction pattern of the object x0 reveals its squared �2 norm.

4.3. Alternating projections. For comparison, we will also apply an alternating projection
algorithm in some of the experiments. To describe this algorithm, put Ax := {〈aj , x〉}mj=1, in

which the aj ’s are as in (2.2) so that A(x) = |Ax|2. In the setting of multiple illuminations,
the alternating projection algorithm consists of the following steps: (1) choose an initial guess
x0; (2) compute b0 = Ax0 and for k = 0, 1, . . . ,

(i) adjust the modulus of bk so that it fits the measurements b,

b̃k[i] = b[i]
bk[i]

|bk[i]| , i = 1, . . . ,m;

(ii) reproject b̃k onto the range of A,

xk+1 = argmin ‖Ax− b̃k‖2,
bk+1 = Axk+1.

Observe that we can incorporate appropriate additional information about x (such as posi-
tivity, for example) via a suitable modification of the projection step (ii).

4.4. 1D simulations. Phase retrieval for 1D signals arises in fiber optics [17, 39, 38],
terahertz communications [42], and speech recognition [63], as well as in the determination
of concentration profiles and the detection of planar disorder in diffraction imaging [12, 70].
We evaluate PhaseLift for noiseless and noisy data using a variety of different “illuminations”
and test signals.

4.4.1. Noise-free measurements. In the first set of experiments we demonstrate the
recovery of two very different signals from noiseless data. Both test signals are of length
n = 128. The first signal, shown in Figure 3(a), is a linear combination of a few sinusoids and
represents a typical transfer function one might encounter in optics. The second signal is a
complex signal, with independent Gaussian complex entries (each entry is of the form a+ ib,
where a and b are independent N (0, 1) variables) so that the real and imaginary parts are
independent white noise sequences; the real part of the signal is shown in Figure 3(b).

Four random binary masks are used to perform the structured illumination so that we
measure |Ax|2, in which

A = F

⎡
⎢⎢⎣
W1

W2

W3

W4

⎤
⎥⎥⎦ ,

where each Wi is diagonal with either 0 or 1 on the diagonal, resulting in a total of 512
intensity measurements. We work with the objective functional 1

2‖b−A(X)‖22 + λTr(X) andD
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(a) Smooth signal and its reconstruction (b) Random signal and its reconstruction (real
part only)

Figure 3. Two test signals and their reconstructions. The recovered signals are essentially indistinguishable
from the originals.

the constraint X 
 0 to recover the signal, in which we use a small value for λ such as 0.05
since we are dealing with noise-free data. We apply the reweighting scheme as discussed in
section 2.4. (To achieve perfect reconstruction, one would have to let λ → 0 as the iteration
count increases.) The algorithm is terminated when the relative residual error is less than a
fixed tolerance, namely, ‖A(x̂0x̂

∗
0)− b‖2 ≤ 10−6‖b‖2, where x̂0 is the reconstructed signal just

as before. The original and recovered signals are plotted in Figures 3(a) and 3(b). The MSE
on a dB-scale (i.e., 10 log10(MSE)) is 87.3dB in the first case and 90.5dB in the second. The
computation time for the recovery of such a 1D signal was in the order of a few minutes.

We have repeated these experiments with the same test signals and the same algorithm,
but using Gaussian masks instead of binary masks. In other words, the Wi’s have Gaus-
sian entries on the diagonal. It turns out that in this case, three illuminations—instead of
four—were sufficient to obtain similar performance. This seems to be empirical support for
a long-standing conjecture in quantum mechanics due to Wright (see, e.g., the concluding
section of [71]). The conjecture is that there exist three unitary operators U1, U2, U3 such that
the phase of the (finite-dimensional) signal x is uniquely determined by the measurements
|U1x|, |U2x|, |U3x|.4 Our simulations suggest that one can choose U1 = F , U2 = FW1, and
U3 = FW2, where W1,W2 are diagonal matrices with i.i.d. complex normal random variables
as diagonal entries. A deterministic choice, which was equally successful in our experiments
and is closer to the quantum mechanical setting, is the following: U1 = F , U2 = I, U3 = FW ,
where the n × n diagonal matrix W has entries Wj,j = 1√

n
e−2πij(j+n)/(2n), j = 0, . . . , n − 1.

Furthermore, we point out that no reweighting was needed when we used six or more Gaus-
sian masks. Expressed differently, plain trace-norm minimization succeeds with 6n or more
intensity measurements of this kind.

4Shortly after submission of this manuscript, the paper “Quantum Tomography under Prior Information”
was posted on arXiv.org; cf. [36]. Based on the results in that paper, it is now assumed that Wright’s conjecture
is wrong.D

ow
nl

oa
de

d 
04

/0
7/

13
 to

 1
32

.6
8.

49
.1

86
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PHASE RETRIEVAL VIA MATRIX COMPLETION 217

We also applied the alternating projection algorithm of section 4.3, with random initial
guess, to the examples above. We terminate the iterations of the alternating projection
algorithm if the relative error between two successive iterates is less than 10−6. When using
three Gaussian masks (or the three operators I, F, FW related to the quantum mechanical
setting), alternating projections always failed to recover the correct solution. The algorithm
never even found an approximation with a relative MSE less than 1. With four illuminations
the alternating projections algorithm computed the correct solution in about 40% of the
experiments and returned a relative MSE greater than 1 in the other 60%. As we increased
the number of masks, the behavior of alternating projections improved; it succeeded in about
99% of the experiments with eight Gaussian illuminations.

4.4.2. Noisy measurements. In the next set of experiments, we consider the case when
the measurements are contaminated with Poisson noise. The test signal is again a complex
random signal as above. Four, six, and eight illuminations with random binary masks are used.
We add random Poisson noise to the measurements for five different SNR levels, ranging from
about 16dB to about 52dB. Since the solution is known, we have calculated reconstructions
for various values of the parameter λ balancing the negative log-likelihood and the trace norm,
and we report results for that λ giving the lowest MSE. We implemented this strategy via
the standard golden section search [41]. In practice one would have to find the best λ via a
strategy like cross validation (CV) or generalized cross validation (GCV). For each SNR level
we repeated the experiment 10 times with different random noise and different binary masks.

Figure 4 shows the average relative MSE in dB (the values of 10 log10(rel. MSE) are
plotted) versus the SNR. The error curves show clearly the desirable linear behavior between
SNR andMSE with respect to the log-log scale. The performance degrades very gracefully with
decreasing SNR. Furthermore, the difference of about 5dB between the error curve associated
with four measurements and the error curve associated with eight measurements corresponds
to an almost twofold error reduction, which is about as much improvement as one can hope
to gain by doubling the number of measurements.

We repeat this experiment with deterministic masks as described in section 3 (see (3.1))
instead of random masks. To achieve robustness vis-à-vis noise, three masks (as in Theo-
rem 3.1) do not seem to suffice. We thus collect 7n measurements of the form |Fnx|2, and
then {|Fn(x + Dsx)|2, |Fn(x − iDsx)|2} with s = 3, 5, 7 as in (3.1). The recovery is very
stable, and the performance curve is shown in Figure 5. For comparison we also show the
performance curve corresponding to seven Gaussian random masks. Gaussian random masks
yield better MSE in this example.

4.5. 2D simulations. We consider a stylized version of a setup one encounters in X-ray
crystallography or diffraction imaging. The test image, shown in Figure 6(a) (magnitude),
is a complex-valued image of size 256 × 256, whose pixel values correspond to the complex
transmission coefficients of a collection of gold balls embedded in a medium.

4.5.1. Noise-free measurements. In the first experiment, we demonstrate the recovery
of the image shown in Figure 6(a) from noiseless measurements. We consider two different
types of illuminations. The first type uses Gaussian random masks in which the coefficients
on the diagonal of Wk are independent real-valued standard normal variables. We use fourD
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218 E. J. CANDÈS, Y. C. ELDAR, T. STROHMER, AND V. VORONINSKI

Figure 4. Relative MSE versus SNR on a dB-scale for different numbers of illuminations with binary
masks. The linear relationship between SNR and MSE is apparent.

Figure 5. Relative MSE versus SNR on a dB-scale: seven illuminations with deterministic masks and with
random masks.

illuminations, one being constant, i.e., W1 = I, and the other three Gaussian. Again, we
choose a small value of λ set to 0.05 in 1

2‖b−A(X)‖22 + λTr(X) since we have no noise, and
stop the reweighting iterations as soon as the residual error obeys ‖A(x̂0x̂

∗
0)−b‖2 ≤ 10−4‖b‖2.

The reconstruction, shown in Figure 6(b), is visually indistinguishable from the original. Since
the original image and the reconstruction are complex-valued, we display only the absoluteD
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(a) Original image (b) Reconstruction via PhaseLift using four
Gaussian masks

(c) Reconstruction using eight binary
masks

(d) Error between (a) and (c)

Figure 6. Original gold balls image and reconstructions via PhaseLift.

value of each image throughout this and the next subsection.
Gaussian random masks may not be realizable in practice. Our second example uses simple

random binary masks, where the entries are either 0 or 1 with equal probability. In this case,
a larger number of illuminations as well as a larger number of reweighting steps are required
to achieve a reconstruction of comparable quality. The result for eight binary illuminations
is shown in Figure 6(c). The computation time for the recovery of such a 2D signal was
on the order of several hours. Depending on the application, the current implementation of
PhaseLift may be too slow for large-scale images. The development of a scalable algorithm is
an important task, but is beyond the scope of this paper and will be addressed in our future
research.

We repeated the experiment using as test signal an image with independent standard
normal complex entries; that is, an entry is of the form z1+iz2, where z1 and z2 are independentD
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(a) Low SNR (b) High SNR

Figure 7. Reconstructions from noisy data via PhaseLift using 32 Gaussian random masks.

N (0, 1) variables. Here, four Gaussian masks were not sufficient, but we did achieve successful
recovery with five Gaussian masks. We also applied the alternating projection algorithm to
both test images. In the gold balls example, alternating projections succeeded both with four
Gaussian masks and with eight binary masks. For the random image, however, alternating
projections failed to recover the correct solution when we used five Gaussian masks. The
best approximation it found has a relative MSE greater than 1. As in the 1D example,
the performance of alternating projections improved as we increased the number of masks,
eventually yielding consistent recovery of the correct image when we employed eight or more
Gaussian masks.

4.5.2. Noisy measurements. In the second set of experiments we consider the same test
image as before but now with noisy measurements. In the first experiment the SNR is 20dB;
in the second experiment the SNR is 60dB. We use 32 Gaussian random masks in each case.
The resulting reconstructions are depicted in Figure 7(a) (20dB case) and Figure 7(b) (60dB
case). The MSE in the 20dB case is 11.83dB. While the reconstructed image appears slightly
“fuzzier” than the original image, all features of the image are clearly visible. In the 60dB case
the MSE is 47.96dB, and the reconstruction is virtually indistinguishable from the original
image.

4.5.3. Multiple measurements via oversampling. Oversampling of 2D signals is widely
used to overcome the nonuniqueness of the phase retrieval problem. We now explore whether
this approach is viable.

Here, we consider signals with real, nonnegative values as test images, a case frequently
considered in the literature; see, e.g., [58, 57, 56]. These images are of size 128 × 128. We
take noiseless measurements and apply PhaseLift as the alternating projection algorithm (also
known as Fienup’s error reduction algorithm) [3, section 4.A]. For each method, we terminate
the iterations if the relative residual error is less than 10−3 or if the relative error between two
successive iterates is less than 10−6. Since we assume that the support of the signal is known,D

ow
nl

oa
de

d 
04

/0
7/

13
 to

 1
32

.6
8.

49
.1

86
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PHASE RETRIEVAL VIA MATRIX COMPLETION 221

there is no ambiguity of the solution with respect to translations. Moreover, the support is
chosen to be nonsymmetric around the origin, and thus there is also no ambiguity with respect
to reflections around the origin. Finally, since the signal is real-valued and positive, there is
no ambiguity with respect to global phase in this case.

• The simulations show that PhaseLift yields reconstructions that fit the measured data
well, yielding a small relative residual error ‖A(X)−y‖2/‖y‖2, yet the reconstructions
are far away from the true signal. This behavior is indicative of an ill-conditioned
problem.

• The iterates of the alternating projection algorithm stagnated most of the time without
converging to a solution. At other times the algorithms did yield reconstructions that
fit the measured data well, but in either case the reconstruction was always very
different from the true signal. Moreover, the reconstructions varied widely depending
on the initial (random) guess.

Table 1 displays the results of PhaseLift as well as the alternating projection algorithm as
described in [3, section 4. A] (the other versions discussed in section 4 of [3] yield comparable
results). The setup is this: we oversample the signal in each dimension by a factor of r, where
r = 2, 3, 4, 5. For each oversampling rate, we run 10 experiments using a different test signal
each time. The table shows the average residual errors over 10 runs as well as the average
relative MSE. The ill-posedness of the problem is evident from the disconnect between small
residual error and large reconstruction error; that is to say, we fit the data very well and yet
observe a large reconstruction error. Thus, in stark contrast to what is widely believed, our
simulations indicate that oversampling by itself is not a viable strategy for phase retrieval even
for nonnegative, real-valued images.

Table 1
MSE obtained by alternating projections and by PhaseLift with reweighting from oversampled DFT mea-

surements taken on 2D real-valued and positive test images. The alternating projection algorithm does not
always find a signal consistent with the data as well as the support constraint. (After the projection step in
the spatial domain, the current guess does not always match the measurement in Fourier space. After “pro-
jection” in Fourier space, the signal is not the Fourier transform of a signal obeying the spatial constraints.)
Our approach always finds signals matching measured data very well, and yet the reconstructions incur a large
reconstruction error. This indicates severe ill-posedness since we have several distinct solutions providing an
excellent fit to the measured data.

Algorithm | Oversampling 2 3 4 5

‖A(X) − y‖2/‖y‖2 (Alt.Proj.) 0.0650 0.0607 0.0541 0.0713

Relative MSE (Alt.Proj.) 0.6931 0.6882 0.6736 0.6878

‖A(X) − y‖2/‖y‖2 (PhaseLift) 0.0051 0.0055 0.0056 0.0052

Relative MSE (PhaseLift) 0.4932 0.4893 0.4960 0.4981

5. Discussion. This paper introduces a novel framework for phase retrieval, combining
multiple illuminations with tools from convex optimization, which has been shown to work
very well in practice and bears great potential. Having said this, we note that our work also
calls for improved theory, improved algorithms, and a physical implementation of these ideas.
Regarding this last point, it would be interesting to design physical experiments to test our
methodology on real data, and we hope to report on this in a future publication. For now, we
would like to bring up important open problems.D
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At the theoretical level, we need to understand the following: for which families of phys-
ically implementable structured illuminations does the trace-norm heuristic succeed? How
many diffraction patterns are provably sufficient for our convex programming approach to
work? Also, we have shown that our approach is robust to noise in the sense that the perfor-
mance degrades very gracefully as the SNR decreases. Can this be made rigorous? In a recent
follow-up paper [14], it has been proved that for measurement vectors sampled independently
and uniformly at random on the unit sphere, PhaseLift is indeed robust to noise, provided
that the number of measurements is on the order of n log n. It is natural to ask whether this
line of work extends to the structured illuminations we consider in this paper. Here, it is very
likely that the tools and ideas developed in the theories of compressed sensing and matrix
completion will play a key role in addressing these fundamental issues.

At the algorithmic level, we need to address the fact that the lifting creates optimization
problems of potentially enormous size. A tantalizing prospect is whether or not it is possible
to use knowledge that the solution has low rank, e.g., rank one, to design algorithms which
do not need to assemble or store very large matrices. If so, how can this be done? Here,
randomized algorithms holding up a sketch of the full matrix may prove very helpful.

Finally, we would like to close by returning to another finding of this paper. Namely, over-
sampling the Fourier transform—this is the same as assuming finite support of the specimen—
appears extremely problematic in practice, even for real-valued nonnegative signals. To be
sure, we have demonstrated that there typically exist very distinct 2D signals whose moduli
of the Fourier transform nearly coincide, whatever the degree of oversampling. In light of this
extreme ill-posedness, we have trouble understanding why this technique is used so heavily
when it does not produce useful results in the absence of very specific a priori information
about the image. Moreover, our concern is compounded by the additional fact that algorithms
in common use tend to return solutions that depend on an initial guess so that different runs
return widely different solutions. Of course, one might also be willing to rely on image priors
far stronger than finite spatial extent, real-valuedness, and positivity; they would, however,
need to be specified.

Acknowledgments. We are indebted to Stefano Marchesini for inspiring and helpful dis-
cussions on the phase problem in X-ray crystallography as well as for providing us with the
gold balls data set used in section 4. We want to thank Philippe Jaming for bringing to our
attention Wright’s conjecture in [71].
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