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We consider stability and uniqueness in real phase retrieval problems over general input
sets, when the data consists of random and noisy quadratic measurements of an unknown
input x0 ∈ R

n that lies in a general set T . We study conditions under which x0 can
be stably recovered from the measurements. In the noise-free setting we show that the
number of measurements needed to ensure a unique and stable solution depends on the
set T through its Gaussian mean-width, which can be computed explicitly for many sets of
interest. In particular, for k-sparse inputs, O (k log(n/k)) measurements suffice, while if x0
is an arbitrary vector in R

n , O (n) measurements are sufficient.
In the noisy case, we show that if the empirical risk is bounded by a given, computable
constant that depends only on statistical properties of the noise, the error with respect
to the true input is bounded by the same Gaussian parameter (up to logarithmic factors).
Therefore, the number of measurements required for stable recovery is the same as in the
noise-free setting up to log factors.
It turns out that the complexity parameter for the quadratic problem is the same as the
one used for analyzing stability in linear measurements under very general conditions.
Thus, no substantial price has to be paid in terms of stability when there is no knowledge
of the phase of the measurements.

© 2013 Published by Elsevier Inc.

1. Introduction

Recently, there has been growing interest in recovering an input vector x0 ∈ R
n from quadratic measurements

yi = ∣∣〈ai, x0〉
∣∣2 + wi, i = 1, . . . , N. (1.1)

Here, we focus on the case in which (ai)
N
i=1 are selected independently according to a random vector a on R

n , and (wi)
N
i=1

are selected independently according to the noise w , and are assumed to be independent of (ai)
N
i=1.

Since only the magnitude of 〈ai, x0〉 is measured, and not the phase (or the sign, in the real case), this family of problems
is referred to as phase retrieval. These problems arise in many areas of optics, where the detector can only measure the
magnitude of the received optical wave. Several applications of phase retrieval include X-ray crystallography, transmission
electron microscopy and coherent diffractive imaging [39,20,19,46].
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Many algorithmic methods have been developed for phase recovery (see, e.g., [20]) which often rely on prior informa-
tion on the signal, such as positivity or support constraints. One of the most popular techniques is based on alternating
projections, such as the Gerchberg and Saxton [16] and Fienup [15] iterations. To circumvent the difficulties associated with
convergence of alternating projections, more recently, phase retrieval problems have been treated using semidefinite relax-
ation, and low-rank matrix recovery ideas [7,41]. Another possible approach that potentially leads to robust solutions is
to assume that the input signal x0 is sparse, namely, that it contains only a few non-zeros values in an appropriate basis
expansion. Both the semidefinite relaxation [41,21,37] and greedy recovery methods [36,5,40] can be extended to phase
retrieval of sparse inputs.

Despite the vast interest in phase retrieval, there has been little theoretical work on the fundamental limits of this
problem, which is the focus of this article. One question in this context is to estimate the number of measurements that are
needed in order to ensure robust recovery of the input x0 – and regardless of the specific recovery method used. Several
recent works treat this problem; most, study the case in which x0 is a general input, namely, there is no sparsity (or
other) constraints on x0. For example, in this case, with probability one, N = 4n − 2 randomized equations are sufficient for
recovery using a brute force (intractable) method, when there is no noise [2]. However, it is not clear, even in that restricted
scenario, whether a stable recovery method exists with this number of measurements. In [8,9] the authors consider the
case in which ai are real or complex vectors that are either uniform on the sphere of radius

√
n, or iid zero-mean Gaussian

vectors with unit variance. Under these assumptions they show that on the order of n measurements are needed in order
to recover a generic x0 (and while using a semidefinite relaxation approach). In the presence of noise, it is shown in [8]
that one can find an estimate x̂ satisfying

∥∥x̂ − eiφx
∥∥

2 � C0 min

(
‖x‖2,

‖w‖1

N‖x‖2

)
, (1.2)

for some φ, where C0 is a constant and w is the noise vector that is assumed to be bounded so that ‖w‖1 is finite.
The article [27] treats the case in which the input x0 is of norm one and k-sparse, and ai are independent, zero-mean

normal vectors. It shows that if N is on the order of k2 log n, then recovery is possible (by using a sparse semidefinite
relaxation approach).

Here, we treat the real case and random measurements, using reasonable ensembles. The first question addressed is
that of stable uniqueness, namely, identifying conditions under which a unique solution can be found in a stable way.
Though the results presented here apply to arbitrary sets T ⊂ R

n , the examples we consider are T = R
n , and the class of

k-sparse vectors. For the latter, O (k log(n/k)) measurements suffice for stability. This result is better by a factor of k than
the estimate from [27]. Also, when x0 can be any vector in R

n , O (n) measurements suffice, which is also the bound derived
in [8].

It turns out that the same complexity parameter, the Gaussian mean-width, captures both linear and quadratic problems.
This observation will be discussed in Section 5. It implies that in a rather general sense, the number of measurements
required for stable recovery in the quadratic setting, is of the same order of magnitude as the one needed to ensure
stability under linear sampling.

The second main result of this article deals with the noisy phase retrieval problem; more specifically, recovery from noisy
measurements of the form (1.1), generated by x0 ∈ T . A straightforward approach is to select x̂ that minimizes the empirical
risk, but since this leads to a nonconvex problem, finding its global solution is in general not possible. Nonetheless, one
can show that if the empirical risk of x̂ is bounded by a given, computable constant (and that depends only on statistical
properties of the noise), then ‖x̂ − x0‖2‖x̂ + x0‖2 may be controlled using the Gaussian mean-width of the set. In particular,
for reasonable noise levels, in the case of k-sparse vectors on the Euclidean sphere Sn−1, one can guarantee stable recovery
from O (k log(n/k)(log2 k + log2 log(n/k))) noisy measurements, and when x0 can be any vector in Sn−1, O (n log2 n) noisy
measurements are sufficient. An exact formulation of both main results is presented in the next section.

A conclusion that could have practical importance is that although the squared error for nonlinear measurements as
in (1.1) cannot be minimized directly, it is sufficient to find a point for which the empirical error is bounded by a known
constant. Thus, one may use any desired recovery algorithm and check whether the solution x̂ satisfies the bound. For
this purpose, methods such as those developed in [40] are advantageous since they allow for arbitrary initial points. As
different initializations lead to different choices of x̂, the algorithm can be used several times until an appropriate value of
x̂ is found. The theoretical analysis ensures that such an x̂ is sufficiently close to x0 or to −x0 if enough measurements are
used.

The reminder of the article is organized as follows. The problem and main results are formulated in Section 2. Stability
results in the noise-free setting are developed in Section 3, while the noisy setting is treated in Section 4. In Section 5 the
relation between the results in the quadratic case and those in the linear setting is discussed.

Throughout the article we use the following notation. All absolute constants (that is, fixed positive numbers) are denoted
by c1, c2, etc. Their values may change from line to line. The expectation is denoted by E, and if the probability space is a
product space (Ω × Ω ′,μ ⊗ μ′), then Eμ and Eμ′ are the conditional expectations. In the context of an empirical process,
P N f denotes the empirical mean of f while P f is its expectation. If X is a random variable, then ‖X‖Lp = (E|X |p)1/p . If
x ∈ R

n , ‖ ‖p denotes its �p norm. �n
p is the normed space (Rn,‖ ‖p), the corresponding unit ball is Bn

p and Sn−1 is the
Euclidean sphere in R

n .
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The relation a ∼ b means that a is equal to b up to absolute multiplicative constants, i.e., that there are positive numbers
c and C , independent of a,b or any other parameters of the problem, for which ca � b � Ca. The inequality a � b means
that a � Cb for some constant C . We use a �L,γ b to denote the fact that the constant C depends only on L and γ .

2. Problem formulation and main results

Suppose that one is given measurements yi as in (1.1). Let s be a vector in R
N , denote by φ(s) the length-N vector with

elements |si|2 and put Ax = (〈ai, x〉)N
i=1. With this notation, (1.1) can be written as

y = φ(Ax) + w. (2.1)

Our goal is to study conditions under which stable recovery is possible irrespective of the specific recovery method used, and
to develop guarantees that ensure that empirical minimization or approximate empirical minimization lead to an estimate
x̂ that is close to x in a squared-error sense.

2.1. Assumptions on x0 and a

We assume throughout that x0 lies in a subset T of Rn , which can be arbitrary. It is natural to expect that the number of
measurements needed for stable recovery or for noisy recovery depends on the set T , though the way in which it depends
on T is not obvious. Identifying the correct complexity parameter of T is one of the main goals of this work.

The assumption on the measurement vectors ai is that they are independent, and distributed according to a probability
measure μ on R

n that is isotropic and L-subgaussian [26,45,10]:

Definition 2.1. Let μ be a probability measure on R
n and let a be distributed according to μ. The measure μ is isotropic

if for every t ∈ R
n , E|〈a, t〉|2 = ‖t‖2

2. It is L-subgaussian if for every t ∈ R
n and every u � 1, Pr(|〈a, t〉| � Lu‖〈t,a〉‖L2 ) �

2 exp(−u2/2).

Among the examples of isotropic, L-subgaussian measures on R
n for a constant L that is independent of the dimension n

are the standard Gaussian measure, the uniform measure on {−1,1}n and the volume measure on the “correct” multiple of
the unit ball of �n

p for 2 � p �∞ (that is, the volume measure on cnn1/p Bn
p , where cn ∼ 1, see, e.g., [4]). Also, it is standard

to verify that if X is a zero-mean, variance 1 random variable that satisfies Pr(|X | � Lu) � 2 exp(−u2/2), then a vector of
independent copies of X is isotropic and cL subgaussian, for a suitable absolute constant c.

Definition 2.2. A class of functions F on a probability space (Ω,μ) is L-subgaussian if for every f ,h ∈ F ∪ {0} and every
t � 1

Pr
(| f − h|� tL‖ f − h‖L2

)
� 2 exp

(−t2/2
)
.

Clearly, if μ is an L-subgaussian measure on R
n then every class of linear functionals on R

n is L-subgaussian.

2.2. Stability results

The noise-free setting is studied in Section 3. Since one is given only the absolute values of Ax0, it is impossible to
distinguish x0 and −x0. Therefore, uniqueness will always be up to the sign of x0. If φ(Ax0) is an invertible stable mapping,
then it is natural to expect that when s �= t and s �= −t , φ(As) is far enough from φ(At) in some sense.

Definition 2.3. The mapping φ(Ax) is stable with a constant C in a set T if for every s, t ∈ T ,∥∥φ(At) − φ(As)
∥∥

1 � C‖s − t‖2‖s + t‖2. (2.2)

Note that stability in a set is a much stronger property than invertibility. Indeed, for the latter it suffices that if s �= ±t
then ‖φ(At) − φ(As)‖1 > 0, but without any quantitative estimate on the difference.

The �1 norm, used on the left-hand side, is the natural way of measuring distances for the quadratic function φ, if one
wishes to compare the results with the linear case, in which the �2 distance is used (see Section 5 for more details). Using
the �1 distance also has a technical advantage, as it simplifies the analysis considerably. Distances based on other �p norms
lead to processes that are harder to control, since higher powers emphasize the “unbounded” or “peaky” parts of a random
variable, and make concentration around the mean much harder.

To formulate the stability result, Let (gi)
n
i=1 be independent, standard Gaussian variables. The Gaussian mean-width of

T ⊂ R
n is defined by

�(T ) = E sup
t∈T

∣∣∣∣∣
n∑

giti

∣∣∣∣∣, (2.3)

i=1
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and set

d(T ) = sup
t∈T

‖t‖2. (2.4)

Geometrically, �(T ) measures the best correlation (or width) of T in a random direction generated by the random vector
G = (g1, . . . , gn). This parameter appears in many different areas of mathematics, and is also essential in the study of
compressed sensing problems (see, for example [10] for a survey on such results). We refer the reader to the books [26,44,
38,35] for more information on this parameter and for methods of computing it. For example, it is well known that �(T )

can be bounded from above and below (with a possible
√

log n gap between the upper and lower bounds) using the �2
covering numbers of T .

Consider the two sets

T− =
{

t − s

‖t − s‖2
: t, s ∈ T , t �= s

}
,

T+ =
{

t + s

‖t + s‖2
: t, s ∈ T , t �= −s

}
. (2.5)

Let

E = max

{
E sup

v∈T−

n∑
i=1

gi vi, E sup
w∈T+

n∑
i=1

gi wi

}
(2.6)

and put

ρT ,N = E√
N

+ E2

N
. (2.7)

Finally, for every v, w ∈ R
n , set

κ(v, w) = E
∣∣〈a, v/‖v‖2

〉〈
a, w/‖w‖2

〉∣∣. (2.8)

Using these definitions one can state the main result in the noise-free case:

Theorem 2.4. For every L � 1 there exist constants c1, c2 and c3 that depend only on L for which the following holds. Let μ be an
isotropic, L-subgaussian measure. Then, for u � c1 , with probability at least 1 − 2 exp(−c2u2 min{N, E2}), for every s, t ∈ T ,∥∥φ(As) − φ(At)

∥∥
1 � ‖s − t‖2‖s + t‖2

(
κ(s − t, s + t) − c3u3ρT ,N

)
.

To put Theorem 2.4 in the right perspective, one has to obtain lower bounds on κ(s − t, s + t) and upper bounds on ρT ,N .
Since the latter depends on the number of measurements N , its behavior provides insight into the number of measurements
that are needed for stability.

The value of κ(v, w) may be bounded using several methods, as will be explained in Section 3.2.2. One natural example
in which infv,w∈Sn−1 κ(v, w) is bounded from below, is when a satisfies a small ball assumption, namely, that for every
t ∈R

n and every ε > 0,

Pr
(∣∣〈a, t〉∣∣� ‖t‖2ε

)
� cε. (2.9)

It turns out that if (2.9) holds, then infv,w∈Sn−1 κ(v, w) � c1, and c1 depends only on the constant c in (2.9). This assumption
is satisfied for a large family of measures, such as the Gaussian measure on R

n (see Section 3.2.2 for further details).
As for ρT ,N , one may show, for example, that if T is the set of k-sparse vectors in R

n , then ρT ,N �
√

k log(en/k)/N .
Hence, under (2.9), and since infv,w∈Sn−1 κ(v, w) � c1, it suffices to select N large enough to ensure that c2u3ρT ,N � c1/2
to obtain a stability result. This leads to the following estimate:

Corollary 2.5. For every L, c > 0 there exist constants c1 , c2, c3 and c4 that depend only on L and c for which the following holds. Let T
be the set of k-sparse vectors in R

n, set μ to be an isotropic, L-subgaussian measure, and assume that a is distributed according to μ.
If a satisfies (2.9) with constant c, then for u > c1 and N � c2u3k log(en/k), with probability at least 1 − 2 exp(−c3u2k log(en/k)),
for every s, t ∈ T∥∥φ(As) − φ(At)

∥∥
1 � c4‖s − t‖2‖s + t‖2.

In particular, the result is true for a random Gaussian matrix A, and c1, c2, c3 and c4 are absolute constants.
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Since the analysis in the case of linear measurements uses very similar machinery (see [31] and Section 5), it should
come as no surprise that the same complexity parameter appears, and leads to similar estimates. For example, the number
of measurements for which stable recovery is guaranteed in the quadratic and linear settings is the same up to multiplicative
constants – at least for ensembles that have a well-behaved infv,w∈Sn−1 κ(v, w).

In Section 3.2 we study other choices of T , and the number of measurements needed in order to guarantee stability.

2.3. Noisy recovery results

Section 4 is devoted to the case in which the measurements are contaminated by iid noise. The goal is to find a point x̂
for which ‖x̂ − x0‖2‖x̂ + x0‖2 is small, using the data (ai, yi)

N
i=1, and the fact that y is generated according to (1.1) for some

x0 ∈ T .
A natural approach is to recover x0 from y by minimizing the empirical risk:

min
x

�x = min
x

1

N

N∑
i=1

∣∣yi − ∣∣〈ai, x〉∣∣2∣∣p
, (2.10)

for some 1 < p � 2 (which will be taken to be very close to 1). The objective in (2.10) is not convex, and therefore it is
not clear how to find its minimizer. Fortunately, it is possible to show that in order to find an estimate x̂ close to x0 one
does not need to strictly minimize (2.10). Instead, it is sufficient to find a point x̂ for which the empirical risk of x̂ is small
enough.

Suppose that w is L-subgaussian and that ‖w‖L2 = σ . For a given 1 < p � 2, and u � 1 (which will later on govern the
probability estimates), one produces x̂ satisfying

1

N

N∑
i=1

∣∣∣∣〈ai, x̂〉∣∣2 − yi
∣∣p � E|w|p + uLp σ p

√
N

. (2.11)

It follows that, with high probability, such a point x̂ is close to either x0 or to −x0.

Theorem 2.6. For every κ > 0 and every L � 1 there exists constants c1, c2, c3 and c4 that depend only on L and κ for which the
following holds. Let a be distributed according to an isotropic, L-subgaussian measure, assume that T ⊂ R

n is a bounded set and that
κT � κ where κT = infs,t∈T κ(s, t). Let w be L-subgaussian, set

βN = max
{

c1
((

1 + σ + d2(T )
)

log N + d2(T )E2), e2},
and put

p = 1 + 1/ logβN .

If x̂ satisfies (2.11) for c2 � u � N, then with probability at least 1 − 2 exp(−c3u1/3), for ρ = ρT ,N and d = d(T ),

‖x0 − x̂‖2‖x0 + x̂‖2 � c4u max

{
(σ + d + 1)ρ logβN ,

σ

N1/4

√
logβN

}
.

We point out that the results in Section 4 are stated in a slightly stronger form using the decay properties of the noise,
though under our assumptions, the two formulations are, in fact, equivalent.

Section 4.4 is devoted to some implications of Theorem 2.6. In particular, it follows that for k-sparse vectors on the
sphere, stable recovery is possible from O (k log(n/k)(log k + log log(en/k))2) noisy measurements (this estimate is off only
by a log k factor from the optimal estimate in the linear case). Also, if x0 can be any vector in Sn−1, then the theorem
implies that O (n log n) noisy measurements suffice.

2.4. Method of analysis

The method used in the proof of both main results is based on properties of the empirical process indexed by
{ f h: f ∈ F ,h ∈ H}. Although the estimates involved are true in a far more general setting, for the sake of simplicity they
are formulated only in the context required here. We refer the reader to [29,30] for the more general statement and precise
results, and to [25] for applications of these results to similar problems in statistics (e.g., regression).

Here, F and H are classes of linear functionals or of absolute values of linear functionals on R
n , which is endowed

with an isotropic, L-subgaussian probability measure μ. In Theorem 2.7, for the stability result F = {|〈t, ·〉|: t ∈ T+} and
H = {|〈t, ·〉|: t ∈ T−}, while in the noisy case, F = {〈t − x0, ·〉: t ∈ T } and H = {〈t + x0, ·〉: t ∈ T }. In both scenarios, the two
indexing sets are denoted by T1, T2 ⊂R

n .
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Theorem 2.7. (See [30].) For every L � 1 there are constants c1, c2, c3 and c4 that depend only on L and for which the following
hold. Let T1, T2 ⊂ R

n of cardinality at least 2 and set F and H to be the corresponding classes. Assume without loss of generality that
�(T1)/d(T1)� �(T2)/d(T2). Then, for every u � c1 , with probability at least

1 − 2 exp
(−c2u2 min

{
N,

(
�(T1)/d(T1)

)2})
,

sup
f ∈F ,h∈H

∣∣∣∣∣ 1

N

N∑
i=1

f (ai)h(ai) −E f h

∣∣∣∣∣� c3u3
(

d(T2)
�(T1)√

N
+ �2(T1)

N

)
.

If (εi)
N
i=1 are independent, symmetric {−1,1}-valued random variables that are also independent of (ai)

N
i=1 , then with the same

probability estimate (relative to the product measure (ε ⊗ μ)N ),

sup
f ∈F ,h∈H

∣∣∣∣∣ 1

N

N∑
i=1

εi f (ai)h(ai)

∣∣∣∣∣� c3u3
(

d(T2)
�(T1)√

N
+ �2(T1)

N

)
.

In particular, for every q � 2,∥∥∥∥∥ sup
f ∈F ,h∈H

∣∣∣∣∣ 1

N

N∑
i=1

εi f (ai)h(ai)

∣∣∣∣∣
∥∥∥∥∥

Lq

� c4q3/2
(

d(T2)
�(T1)√

N
+ �2(T1)

N

)
.

3. Stability results

In this section we present the proof of Theorem 2.4, followed by estimates on the values of κ(v, w) and ρT ,N appearing
in the theorem.

3.1. Proof of Theorem 2.4

Observe that

∥∥φ(At) − φ(As)
∥∥

1 =
N∑

i=1

∣∣∣∣〈ai, t〉∣∣2 − ∣∣〈ai, s〉∣∣2∣∣ =
N∑

i=1

∣∣〈ai, s − t〉〈ai, s + t〉∣∣. (3.1)

Therefore, to establish the desired stability result, it suffices to show that

inf{s,t∈T , s �=±t}
‖φ(At) − φ(As)‖1

‖s − t‖2‖s + t‖2
� C,

i.e., that

inf{s,t∈T , s �=±t} zt,s �
C

N
, (3.2)

where

zt,s = 1

N

N∑
i=1

∣∣∣∣
〈
ai,

s − t

‖s − t‖2

〉〈
ai,

s + t

‖s + t‖2

〉∣∣∣∣. (3.3)

Since κ(s − t, s + t) = Ezt,s , if κ(s − t, s + t) is very small, then a random selection of ai is unlikely to lead to (3.2).
Therefore, a reasonable pre-requisite for a stability result is that infs �=±t, s,t∈T κ(s − t, s + t) is bounded away from zero.
Indeed, with this assumption, one may obtain the following stability result.

Proposition 3.1. For every L � 1 there exist constants c1, c2 and c3 that depend only on L for which the following holds. Let μ be an
isotropic, L-subgaussian measure on R

n and set a to be a random vector distributed according to μ. Then, for u � c1 , with probability
at least 1 − 2 exp(−c2u2 min{N, E2}), for every s, t ∈ T ,

zs,t �
(
κ(s − t, s + t) − c3u3ρT ,N

)‖s − t‖2‖s + t‖2.

Proof. Observe that

sup
∣∣zt,s − κ(s − t, s + t)

∣∣ = sup
v∈T+, w∈T−

∣∣∣∣∣ 1

N

N∑∣∣〈ai, v〉〈ai, w〉∣∣−E
∣∣〈ai, v〉〈ai, w〉∣∣

∣∣∣∣∣.

i=1
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By Theorem 2.7 for F = {|〈v, ·〉|: v ∈ T+} and H = {|〈w, ·〉|: w ∈ T−}, it follows that if N � c1 E2 and u � c2, then with
probability at least 1 − 2 exp(−c3u2 E2),

sup
v∈T−, w∈T+

∣∣∣∣∣ 1

N

N∑
i=1

∣∣〈ai, v〉〈ai, w〉∣∣−E
∣∣〈ai, v〉〈ai, w〉∣∣

∣∣∣∣∣� c4u3ρT ,N . (3.4)

The claim now follows immediately from the definition of zs,t and of κ(s − t, s + t). �
3.2. Computing κ and ρT ,N

3.2.1. Bounding ρT ,N

It is well known that if T ⊂ R
n then �(T ) (and therefore, ρT ,N as well) is determined by the Euclidean metric structure

of T . This is the outcome of the celebrated majorizing measures/generic chaining theory (see the books [26,12,44] for a
detailed exposition on this topic). In the examples we present here, the following estimate, which is, in general, suboptimal,
suffices.

Definition 3.2. Let (T ,d) be a compact metric space. For every ε > 0, let N(T ,d, ε) be the smallest number of open balls of
radius ε needed to cover T . The numbers N(T ,d, ε) are called the ε-covering numbers of T relative to the metric d.

Given T ⊂ R
n , set N(T , ε) = N(T ,‖ ‖2, ε), i.e., the covering numbers relative to the Euclidean metric.

Proposition 3.3. There exist absolute constants c and C for which the following holds. If T ⊂ R
n then

c sup
ε>0

ε
√

log N(T , ε) � �(T ) � C

d(T )∫
0

√
log N(T , ε)dε.

The upper bound is due to Dudley [13] and the lower to Sudakov [43]. The proof of both bounds may be found, for
example, in [26,38,12].

It is straightforward to verify that the gap between the upper and lower bounds in Proposition 3.3 is at most ∼ √
log n,

and in all the examples we study below, the resulting upper estimate is sharp.

3.2.2. Bounding κ
Here, we present two simple methods for bounding infv,w∈Sn−1 κ(v, w) from below. These methods are not the only

possibilities by which one may obtain such a bound; rather, they serve as an indication that the assumption on κ is less
restrictive than may appear at first glance.

Recall the small ball assumption: for every t ∈R
n and every ε > 0, Pr(|〈a, t〉| � ε‖t‖2)� cε.

Lemma 3.4. If a satisfies the small ball assumption with constant c then

inf
v,w∈Sn−1

κ(v, w) � κ,

where κ depends only on c.

Proof. Consider ε for which cε � 1/4. Then, for every v ∈ Sn−1, there is an event of measure at least 3/4 on which
|〈v,a〉| � ε. Hence, for two fixed vectors v, w ∈ Sn−1,

Pr
({∣∣〈v,a〉∣∣� ε

}∩ {∣∣〈w,a〉∣∣� ε
})

� 1/2,

and thus E|〈v,a〉〈w,a〉| � ε2/2. �
The small ball assumption is true in many cases. The simplest example is the standard Gaussian measure on R

n . Indeed,
if a = (g1, . . . , gn) then |〈a, v〉| is distributed as ‖v‖2|g| and the small ball property follows immediately by applying the
L∞ estimate on the density of g .

A more general example is based on the notion of log-concavity. A measure μ on R
n is called log-concave if for every

nonempty, Borel measurable sets A, B ⊂ R
n , and any 0 � λ� 1, μ(λA + (1 − λ)B) �μλ(A)μ1−λ(B), where λA + (1 − λ)B =

{λa + (1 − λ)b: a ∈ A, b ∈ B}. It is well known that μ is a log-concave measure if and only if it has a density of the form
exp(φ) for a concave function φ : Rn → R.

The following lemma is standard (see e.g. [17,6,34]).
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Lemma 3.5. There exists an absolute constant c for which the following holds. Let a be distributed according to an isotropic, symmetric,
log-concave measure. Then for every θ ∈ Sn−1 , 〈a, θ〉 is distributed according to an isotropic, symmetric, log-concave measure on R.
Also, if fθ is the density of 〈a, θ〉 then ‖ fθ‖∞ � c.

The desired small ball estimate clearly follows from the lemma, since

Pr
(∣∣〈a, θ〉∣∣� ε

) =
ε∫

−ε

fθ (t)dt � 2cε.

Among the family of log-concave measures are volume measures on convex symmetric bodies (i.e. measures that have a
constant density on the body and zero outside the body). Moreover, it can be shown (see, e.g., [17]), that for every convex
body K ⊂R

n there is an invertible linear operator A for which the volume measure on AK is also isotropic.
Another example of log-concave measures on R

n are product measures of log-concave measures on R. If X is a real
valued, symmetric, log-concave random variable (i.e. with a log-concave density) with variance one, and X1, . . . , Xn are iid
copies of X , then a = (X1, . . . , Xn) is an isotropic log-concave measure on R

n . Standard examples for log-concave measures
on R are those with a density proportional to exp(−cp |t|p) for p � 1.

The second method for obtaining a lower bound on κ , and which we only outline, is based on a Paley–Zygmund argu-
ment.

Corollary 3.6. Let X be a symmetric, variance 1 random variable, with a finite L2q moment for some q > 2. If a = (X1, . . . , Xn) then

inf
v,w∈Sn−1

κ(u, v)� c
(
EX4 − 1

)1/2
,

where c depends on q and on ‖X‖L2q .

Observe that the two assumptions are not very restrictive, since a is assumed to be isotropic and L-subgaussian. Hence,
if a = (X1, . . . , Xn), then ‖X‖Lq � Lq for every q � 2 (see Section 4.1). Also note that for any random variable X , EX4 �
(EX2)2 = 1, so that the square root is well defined.

The proof of the Corollary relies on the Paley–Zygmund lemma.

Lemma 3.7. (See [11].) Let Z be a random variable, set 0 < p < q and put cp,q = ‖Z‖Lp /‖Z‖Lq . Then, for every 0 � λ� 1,

Pr
(|Z | > λ‖Z‖L p

)
�

[(
1 − λp)cp

p,q
]q/q−p

.

In particular, E|Z |� c1‖Z‖Lp , where c1 depends only on p,q and cp,q.

Fix p = 2 and q > 2. Assume that (Xi)
n
i=1 are independent copies of a symmetric, variance 1 random variable and set

a = (X1, . . . , Xn). If v, w ∈ Sn−1, then a straightforward computation shows that

E
∣∣〈a, v〉〈a, w〉∣∣2 =

∑
i �= j

v2
i w2

j + 2
∑
i �= j

(vi wi)(v j w j) +EX4
N∑

i=1

v2
i w2

i

=
∑
i �= j

(
v2

i w2
j + (vi wi)(v j w j)

)+ 〈v, w〉2 + (
EX4 − 1

) n∑
i=1

v2
i w2

i . (3.5)

Using the fact that ‖v‖2 = ‖w‖2 = 1, (3.5) reduces to

E
∣∣〈a, v〉〈a, w〉∣∣2 = 1 + 2〈v, w〉2 − 2

n∑
i=1

v2
j w2

j + (
EX4 − 1

) n∑
i=1

v2
i w2

i . (3.6)

Consider two cases. First, if
∑n

i=1 v2
j w2

j � 1/10, and since EX4 � (EX2)2 = 1, then it follows from (3.6) that

E
∣∣〈a, v〉〈a, w〉∣∣2 � 1/2.

On the other hand, if the reverse inequality holds, then using∑
i �= j

(
v2

i w2
j + (vi wi)(v j w j)

)+ 〈v, w〉2 =
∑
i> j

(vi w j + v j wi)
2 + 〈v, w〉2 � 0,
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and applying (3.5),

E
∣∣〈a, v〉〈a, w〉∣∣2 � (

EX4 − 1
) n∑

i=1

v2
i w2

i �
(
EX4 − 1

)
/10.

Proof of Corollary 3.6. Assume that X ∈ L2q for some q > 2. Observe that if v ∈ Sn−1 then for every 2 � r � 2q, ‖〈a, v〉‖Lr �
cr‖X‖Lr . Indeed, by a Rosenthal type inequality (see, e.g., [11, Section 1.5]),

∥∥∥∥∥
n∑

i=1

vi Xi

∥∥∥∥∥
Lr

� cr max

{(
n∑

i=1

v2
i EX2

i

)1/2

,

(
n∑

i=1

vr
iE|Xi |r

)1/r}
.

Since ‖X‖Lr � ‖X‖L2 and ‖v‖r � ‖v‖2 = 1, the claim follows.
Therefore, supv∈Sn−1 ‖〈a, v〉‖L2q � cq‖X‖L2q , and thus,∥∥〈a, v〉〈a, w〉∥∥Lq

�
∥∥〈a, v〉∥∥L2q

∥∥〈a, w〉∥∥L2q
�q ‖X‖2

L2q
.

Let Z = 〈a, v〉〈a, w〉. Using the notation of Lemma 3.7, c2,q � (E|X |4 − 1)1/2/‖X‖2
L2q

. Hence, for every v, w ∈ Sn−1,

E|〈a, v〉〈a, w〉| � c(E|X |4 − 1)1/2, where c depends only on q and on ‖X‖L2q , as claimed. �
Observe that if EX4 = 1, then it is possible that E|〈a, v〉〈a, w〉| = 0, even for v, w of the specific form one would like

to control – namely, v = (s + t)/‖s + t‖2 and w = (s − t)/‖s − t‖2 for s �= ±t . Indeed, let X be a symmetric, {−1,1}-valued
random variable (and in particular, it is L-subgaussian as well). Let (ei)

n
i=1 be the standard basis in R

n and set s = e1,
t = e2. It is straightforward to verify that in this case, E|〈a, v〉〈a, w〉| = 0, and therefore, the assumption on EX4 cannot be
relaxed.

3.3. Examples

We now consider a few special cases in which Theorem 2.4 can be applied. To that end, explicit expressions for ρT ,N are
required for the sets of interest.

3.3.1. Entire space T =R
n

If T = R
n then T+ = T− = Sn−1. Therefore,

E = E sup
x∈Sn−1

n∑
i=1

gi xi = E

(
n∑

i=1

g2
i

)1/2

∼ √
n,

implying that

ρRn,N �
(√

n

N
+ n

N

)
.

Corollary 3.8. For every L � 1 there are constants c1 , c2 and c3 that depend only on L and for which the following holds. If
infv,w∈Sn−1 κ(v, w) � κ , u � c1 and N � c2u3n/κ2 , then with probability at least 1 − 2 exp(−c3u2n), for every s, t ∈ R

n,

∥∥φ(As) − φ(At)
∥∥

1 �
κ

2
‖s − t‖2‖s + t‖2.

The corollary follows from the fact that with this choice of N , cu3ρT ,N � κ/2.
When κ is given by a constant, independent of the dimension n, Corollary 3.8 implies that it is sufficient to choose N ∼ n

to ensure stable recovery with high probability.

3.3.2. Sparse vectors
Next, let T = Sk , the set of k-sparse vectors in R

n . Denote Uk = {x ∈ Sn−1: ‖x‖0 � k} and observe that T+, T− ⊂ U2k .
Therefore,

E = E sup
x∈U2k

n∑
i=1

gi xi = E

(
2k∑

i=1

(
g∗

i

)2

)1/2

,
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where (v∗
i )

n
i=1 is a monotone rearrangement of (|vi |)n

i=1. It is standard to verify (see, e.g., [18]) that there is an absolute
constant c satisfying that for every 1 � k � n/4,

E

(
2k∑

i=1

(
g∗

i

)2

)1/2

� c
√

k log(en/k).

Therefore,

ρSk,N �
(√

k log(en/k)

N
+ k log(en/k)

N

)
.

Corollary 3.9. For every L � 1 there are constants c1 , c2 and c3 that depend only on L and for which the following holds. If
infv,w∈Uk κ(v, w) � κ , u � c1 and N � c2u3k log(en/k)/κ2 , then with probability at least 1 − 2 exp(−c3u2k log(en/k)), for every
s, t ∈ Sk,

∥∥φ(As) − φ(At)
∥∥

1 �
κ

2
‖s − t‖2‖s + t‖2.

When κ is an absolute constant, Corollary 3.9 implies that it is sufficient to choose N ∼ k log(en/k) to ensure stable
recovery with high probability.

3.3.3. Finite set
Assume now that T is a finite set. Then T+, T− ⊂ Sn−1 are of cardinality at most |T |2. A straightforward application of

the union bound to each random variable
∑n

i=1 vi gi shows that if V ⊂R
n is a finite set, then

E sup
v∈V

n∑
i=1

gi vi �
√

log |V |d(V ).

Therefore, E �
√

log |T |2 ∼ √
log |T |, implying that

ρT ,N �
(√

log |T |
N

+ log |T |
N

)
.

Corollary 3.10. For every L � 1 there are constants c1 , c2 and c3 that depend only on L and for which the following holds. If
infv,w∈T+ κ(v, w) � κ , u � c1 and N � c2u3 log |T |/κ2 , then with probability at least 1 − 2 exp(−c3u2 log |T |), for every s, t ∈ T ,

∥∥φ(As) − φ(At)
∥∥

1 �
κ

2
‖s − t‖2‖s + t‖2.

In this case, with constant κ , N ∼ log |T | measurements ensure stable recovery with high probability.

3.3.4. Block sparse vectors
Let T = Sd

k be the set of block sparse vectors of size d. Let (I�), � = 1, . . . ,n/d be a decomposition of {1, . . . ,n} to disjoint
blocks of cardinality d, and set Wk to be the vectors in the unit sphere, supported on at most k blocks. Then T+, T− ⊂ W2k ,
and it remains to estimate

E = E sup
v∈W2k

n∑
i=1

gi vi .

Lemma 3.11. There exist absolute constants c1 and c2 for which the following holds. For every 0 < ε < 1/2,

log N(Wk, ε) � c1
(
k log

(
en/(dk)

)+ dk log(5/ε)
)
.

Therefore,

E sup
v∈V

n∑
i=1

gi vi � c2

√
k
(√

log
(
en/(dk)

)+ √
d
)
.
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Proof. Let I J = {i ∈ I j, j ∈ J } and observe that

Wk =
⋃

{ J⊂{1,...,n}: | J |=k}
S I J ,

where for every I ⊂ {1, . . . ,n}, S I is the Euclidean sphere on the coordinates I . Clearly, there are at most
(n/d

k

)
such subsets

J . Using a standard volumetric estimate (see, e.g., [38,10]), for every fixed set J and every ε < 1/2, one needs at most
(5/ε)d| J | = (5/ε)dk Euclidean balls of radius ε to cover S I J . Therefore, for every 0 < ε < 1/2,

log N
(
Wk, εBn

2

)
� k log

(
en/(dk)

)+ dk log(5/ε),

as claimed.
The second part of the claim is an immediate consequence of Proposition 3.3 and the fact that N(T , ε) is a decreasing

function of ε. �
Corollary 3.12. For every L � 1 there are constants c1 , c2 and c3 that depend only on L and for which the following holds. If
infv,w∈Wk κ(v, w) � κ , u � c1 and N � c2u3(k log(en/(dk))+dk)/κ2 , then with probability at least 1−2 exp(−c3u(k log(en/(dk))

+ dk)), for every s, t ∈ Sd
k ,

∥∥φ(As) − φ(At)
∥∥

1 �
κ

2
‖s − t‖2‖s + t‖2.

When κ is constant we conclude that N ∼ k(log(en/(kd)) + d) measurements are needed for stability. This result is
consistent with that of [14] which shows that the same value N ensures that a random Gaussian matrix satisfies the block
restricted-isometry constant.

4. Noisy measurements

Next, consider the phase retrieval problem in the presence of noise. The goal is to find an estimate x̂ of the true signal
x0 that is close to x0 (or −x0) in a squared-error sense.

Suppose that

yi = ∣∣〈ai, x0〉
∣∣2 + wi, i = 1, . . . , N (4.1)

for some x0 ∈ T . Let a be an isotropic, L-subgaussian random vector and assume that the noise w is independent of a,
symmetric, and of reasonable decay properties, that will be specified in Assumption 4.1 below.

Question 4.1. Given (ai, yi)
N
i=1 , combined with the information that the noisy data yi is generated by a point x0 ∈ T via (4.1), is it

possible to produce an estimate x̂ ∈ T for which ‖x̂ − x0‖2‖x̂ + x0‖2 is small?

Definition 4.2. Given T ⊂ R
n and an integer N , the procedure x̂ is an ε-recovery procedure with confidence parameter δ, if

for every x0 ∈ T , with probability at least 1 − δ over N-samples (ai, yi)
N
i=1 generated according to (4.1),

‖x̂ − x0‖2‖x̂ + x0‖2 < ε.

Note that the error is measured by the product ‖x̂ − x0‖2‖x̂ + x0‖2, since it impossible to distinguish between x0 and
−x0.

The answer to Question 4.1 is affirmative, and one may obtain quantitative estimates on and ε and δ in Definition 4.2
when x̂ is selected to have a well-behaved empirical risk, as will be explained below.

4.1. Preliminaries: ψα random variables

Throughout this section it is assumed that the noise w decays quickly. The rate of decay is quantified using the notion
of ψα random variables (see [26,45,10] as general references for properties of ψα random variables).

Definition 4.3. Let X be a random variable. For 1 � α � 2 let

‖X‖ψα = inf
{

C > 0: Eexp
(|X/C |α)� 2

}
,

and denote by Lψα the set of random variables for which ‖X‖ψα < ∞.
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The ψα norm can be characterized using information on the tail of X . Indeed, there exists an absolute constant c,
for which, if t � 1, then Pr(|X | � t) � 2 exp(−ctα/‖X‖α

ψα
). The reverse direction is also true, that is, if Pr(|X | � t) �

2 exp(−tα/Aα), then ‖X‖ψα � c1 A for an absolute constant c1.
It is well known that ‖ ‖ψα is a norm on Lψα , and that

‖X‖ψα ∼ sup
p�1

‖X‖L p

p1/α
.

Therefore, if p � 1, then

‖X‖L p � ‖X‖ψα p1/α. (4.2)

In the language of the previous section, X is L-subgaussian if and only if ‖X‖ψ2 � cL‖X‖L2 . Since the ψα norms have a
natural hierarchy, it follows that if X is L-subgaussian then

‖X‖L2 � ‖X‖ψ1 � ‖X‖ψ2 � cL‖X‖L2 .

Therefore, if X is L-subgaussian and mean-zero then ‖X‖ψ2 ∼L σX , where σX is the standard deviation of X .
A straightforward application of the tail behavior of a ψα random variable implies that if X1, . . . , XN are independent

copies of X and t � 1, then

Pr
(

max
i�N

|Xi |� t log1/α N‖X‖ψα

)
� 2 exp

(−c2t1/α
);

hence,

‖ max
1�i�N

Xi‖ψα � c3‖X‖ψα log1/α N. (4.3)

From the definition of the ψα norm it is evident that if α = β/q then∥∥|X |q∥∥
ψα

= ‖X‖q
ψβ

, (4.4)

and in particular, X ∈ Lψβ for β > 1 if and only if |X |β ∈ Lψ1 .
Although there are versions of the following theorem (and of Definition 4.3) for any α > 0, for the sake of simplicity, we

shall restrict ourselves to the case α = 1, which is the setting needed in the proofs below.

Theorem 4.4. There exists an absolute constant c1 for which the following holds. If X ∈ Lψ1 and X1, . . . , XN are independent copies
of X, then for every t > 0,

Pr

(∣∣∣∣∣ 1

N

N∑
i=1

Xi −EX

∣∣∣∣∣ > t‖X‖ψ1

)
� 2 exp

(−cN min
{

t2, t
})

.

Combining Theorem 4.4 and (4.4) leads to the following corollary:

Corollary 4.5. Let p > 1 and assume that w is a random variable for which |w|p ∈ Lψ1 (or w ∈ Lψp ). Then, with probability at least
1 − 2 exp(−ct) for 0 < t < N,∣∣∣∣∣ 1

N

N∑
i=1

|wi |p −E|w|p

∣∣∣∣∣� ‖w‖p
ψp

√
t

N
.

The corollary follows immediately from Theorem 4.4 by taking t′ = √
t/N for 0 < t < N , and since ‖|w|p‖ψ1 = ‖w‖p

ψp
.

We will also be interested in decay properties of the random variable supt∈T |〈X, t〉| for a set T ⊂ R
n . If μ is an isotropic,

L-subgaussian measure on R
n , then one has the following (see, e.g., [29]).

Theorem 4.6. For every L > 1 there exist constants c1 , c2, c3 and c4 that depend only on L and for which the following holds. If u � c1 ,
then with probability at least 1 − 2 exp(−c2u log N),

max
1�i�N

sup
t∈T

∣∣〈ai, t〉∣∣2 � c3u
(
�2(T ) + d2(T ) log N

)
,

where �(T ) and d(T ) are defined by (2.3) and (2.4).
In particular,∥∥ max

1�i�N
sup
t∈T

∣∣〈ai, t〉∣∣2∥∥
ψ1

� c4
(
�2(T ) + d2(T ) log N

)
.
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4.2. The recovery approach

The assumptions we make throughout this section are as follows:

Assumption 4.1. Assume that T ⊂ R
n is a bounded set, that a is an isotropic and L-subgaussian random vector, and that the noise w

is a symmetric, ψ2 random variable that is independent of a.

Recall that the goal is to find an estimate x̂ of x0 that is close to x0 or to −x0. Given the measurements (yi)
N
i=1,

a reasonable approach is to seek a value of x that minimizes the empirical risk function:

P N�x = 1

N

N∑
i=1

∣∣∣∣〈ai, x〉∣∣2 − yi
∣∣p

, (4.5)

for some p in the regime 1 < p � 2 that is close to 1; the exact choice of p will become clear later on. Note that for every
x ∈ T ,

�x = ∣∣∣∣〈a, x〉∣∣2 − y
∣∣p = ∣∣〈a, x − x0〉〈a, x + x0〉 − w

∣∣p
. (4.6)

Since the empirical average P N�x is not a convex function of x, it is impossible in general to find a value of x that minimizes
it. Furthermore, given a candidate solution, it is not clear how to check whether indeed it is a minimizer. Luckily, for our
purposes, one does not need an exact minimizer. Instead, in order to bound the estimation error, it is sufficient to find a
value of x for which the empirical risk is small enough, as incorporated in Definition 4.7 below. This provides a concrete
way of checking whether a candidate point is valid: all that has to be done is to substitute it into the bound. To find such
a point, one may use any algorithm for phase retrieval and check whether the resulting solution satisfies the bound. To
that end, techniques that depend on the initial starting point could prove useful; such methods can be started from several
different points, and in that way, if a particular solution does not satisfy the bound then the algorithm may be used again,
but from a different starting point. Eventually, with high probability, a point satisfying the bound will be obtained. One
algorithm of this form is the GESPAR method developed in [40].

Definition 4.7. Let 1 < p � 2 be given, and choose a value of u � 1. Given the data (ai, yi)
N
i=1, x̂ ∈ T is called a good estimate

if it satisfies that

1

N

N∑
i=1

∣∣∣∣〈ai, x̂〉∣∣2 − yi
∣∣p � E|w|p + u

‖w‖p
ψ2√

N
. (4.7)

The parameter u tunes the probability estimate, and for the moment is of secondary importance. The exact choice of p
will be specified in Theorem 4.9.

To motivate Definition 4.7, observe that the bound in (4.7) is independent of the data, and depends only on the number
of measurements N and on the noise properties. This choice of x̂ is a modified empirical risk minimization – modified in
two ways. First, instead of minimizing the loss functional P N�x , the search is for an empirical feasible point. In fact, the
significance of a minimizer of the empirical loss functional is that it is also a minimizer of

1

N

N∑
i=1

∣∣∣∣〈ai, x〉∣∣2 − yi
∣∣p − 1

N

N∑
i=1

|wi |p . (4.8)

Let

Lx = �x − �x0 = ∣∣〈a, x − x0〉〈a, x + x0〉 − w
∣∣p − |w|p, (4.9)

be the excess risk functional. It is evident that a minimizer of (4.8) is simply a minimizer of the empirical excess risk P NLx .
Since x0 is a candidate in this minimization problem, the empirical excess risk of the minimizer is non-positive. Thus, the
choice of a minimizer allows one to identify a point x for which P NLx � 0. The heart of the analysis of the problem is
showing that such a point has a small conditional expectation ELx̂ .

Unfortunately, it is impossible to estimate the empirical excess risk directly, as one does not have access to the sampled
noise w1, . . . , w N , and therefore, nor to 1

N

∑N
i=1 |wi |p – which is the reason for the second modification. By Assumption 4.1,

w ∈ Lψ2 and consequently |w|p ∈ Lψ1 . From Corollary 4.5, if u � N , then with probability at least 1 − 2 exp(−c1u2),∣∣∣∣∣ 1

N

N∑
i=1

|wi |p −E|w|p

∣∣∣∣∣� u
‖w‖p

ψ2√
N

.

Thus, one may replace the empirical mean with E|w|p ± u‖w‖p
/
√

N , leading to a small value of P NLx̂:
ψ2
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Proposition 4.8. There exists an absolute constant c1 for which the following holds. Let x̂ be a point that satisfies (4.7). If 0 � u � N,
then with probability at least 1 − 2 exp(−c1u2), P NLx̂ � 2u‖w‖p

ψ2
/
√

N.

To see that there is always a point x̂ that satisfies (4.7), observe that for x0 and 0 < u � N , with probability at least
1 − 2 exp(−cu2)

1

N

N∑
i=1

∣∣∣∣〈ai, x0〉
∣∣2 − yi

∣∣p = 1

N

N∑
i=1

|wi |p � E|w|p + u
‖w‖p

ψ2√
N

.

To formulate the main result of this section, let κT = infs,t∈T κ(s, t) and recall that

E = max
{
�(T+), �(T−)

}
and ρT ,N = E√

N
+ E2

N
. (4.10)

Theorem 4.9. For every κ > 0 and every L � 1 there exists constants c1, c2 > 1 and c3, c4 that depend only on L and κ for which the
following holds. Let a be distributed according to an isotropic, L-subgaussian measure, assume that T ⊂ R

n is a bounded set and that
κT � κ . Assume further that ‖w‖ψ2 < ∞. For every integer N set

βN = max
{

c1
((

1 + ‖w‖ψ2 + d2(T )
)

log N + d2(T )E2), e2}
and let

p = 1 + 1/ logβN .

If x̂ satisfies (4.7) for c2 � u � N, then with probability at least 1 − 2 exp(−c3u1/3), for ρ = ρT ,N and d = d(T ),

‖x0 − x̂‖2‖x0 + x̂‖2 � c4u max

{(‖w‖ψ2 + d
)
ρ logβN ,

‖w‖ψ2

N1/4

√
logβN

}
= (∗).

In particular, if (∗) < ε, then the choice of x̂ is an ε-recovery procedure with confidence parameter δ = 2 exp(−c3u1/3).

As an example, consider the case in which T is the set of k-sparse vectors on the sphere. Thus, d(T ) = 1, and by results
from Section 3.2, E ∼ (k log(en/k))1/2. If w is L-subgaussian with standard deviation σ , then ‖w‖ψ2 �L σ and

βN ∼L (σ + 1) log N + k log(en/k).

Assume that σ � k, and thus

logβN � log k + log log N + log log(en/k).

Let k � N � k2 log2(en/k). Since log βN > 1, it is straightforward to verify that

ρ �
√

k log(en/k)

N
,

and that

σ

N1/4

√
log βN � (1 + σ logβN)

√
k log(en/k)

N
.

Thus, by Theorem 4.9, for those values of N ,

‖x̂ − x0‖2‖x̂ + x0‖2 �L,κ u(1 + σ logβN)

√
k log(en/k)

N
.

If N � k2 log2(en/k), then

‖x̂ − x0‖2‖x̂ + x0‖2 �L,κ u(1 + σ logβN)
1

N1/4
.

Therefore, x̂ is an ε-recovery procedure with confidence parameter δ = 2 exp(−cu1/3) if

N(ε) �L,u (1 + σ)2 log2 βN max
{
ε−2k log(en/k), ε−4}.
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Remark 4.10. Since x0, x̂ ∈ Sn−1, it follows that either ‖x̂−x0‖2 � 1 or ‖x̂+x0‖2 � 1. Thus, if (∗) < ε then either ‖x̂−x0‖2 � ε
or ‖x̂ + x0‖2 � ε.

In comparison, note that in the case of linear measurements, with high probability,

‖x̂ − x0‖2 �L σ

√
k log(en/k)

N

(see also the discussion in Section 5), which means that up to logarithmic factors and the dependence of σ (particularly, for
small values of σ ), and as long as ε � 1/

√
k log(en/k), the two estimates are of the same order of magnitude.

4.3. Proof of Theorem 4.9

The proof of the theorem requires several preliminary facts about empirical and Bernoulli processes. We refer the reader
to [26,24] for more details on these processes.

Let (Ω,μ) be a probability space and set (Xi)
N
i=1 to be independent variables, distributed according to μ. Let ε1, . . . , εN

be independent, symmetric, {−1,1}-valued random variables, that are independent of X1, . . . , XN .
The first result we require is the contraction inequality for Bernoulli processes.

Theorem 4.11. (See [26].) Let F : R+ → R
+ be convex and increasing. Assume that φi : R → R satisfy that φi(0) = 0 and have a

Lipschitz constant at most A. Then, for any bounded T ⊂R
N ,

EF

(
1

2A
sup
t∈T

∣∣∣∣∣
N∑

i=1

εiφi(ti)

∣∣∣∣∣
)
� EF

(
sup
t∈T

∣∣∣∣∣
N∑

i=1

εiti

∣∣∣∣∣
)

.

The following symmetrization argument allows one to bound an empirical process using the Bernoulli process indexed
by the random set {(h(Xi))

N
i=1: h ∈ H}.

Theorem 4.12. [45] If F : R+ →R
+ is convex and increasing and H is a class of functions, then

EF

(
sup
h∈H

∣∣∣∣∣ 1

N

N∑
i=1

h(Xi) −Eh

∣∣∣∣∣
)
� EF

(
2 sup

h∈H

∣∣∣∣∣ 1

N

N∑
i=1

εih(Xi)

∣∣∣∣∣
)

.

Given a bounded T ⊂ R
n and x0 ∈ T , let hx(a) = 〈x − x0,a〉〈x + x0,a〉 and recall that Lx = |hx(a) − w|p − |w|p . Theo-

rems 4.11 and 4.12 will be used with the choices F (x) = |x|q for q � 2 and H = {Lx: x ∈ T }.

Lemma 4.13. There exists an absolute constant c1 for which the following holds. Let 1 < p < 2. If ‖hx‖Lp � 2‖w‖Lp /(p − 1)1/2 then

ELx � c1κ
2 p(p − 1)‖x − x0‖2

2‖x + x0‖2
2/
(‖w‖2−p

L2

);
and if ‖hx‖Lp � 2‖w‖Lp /(p − 1)1/2 , then

ELx � c1κ
p‖x − x0‖p

2‖x + x0‖p
2 .

Proof. Since w is a symmetric random variable, it is distributed as εw , where, as always, ε is a symmetric {−1,1}-valued
random variable, independent of w and of a. Therefore,

ELx = Ea×W Eε

(∣∣hx(a) − εw
∣∣p − |w|p)

= Ea×W

(
1

2

∣∣w − hx(a)
∣∣p + 1

2

∣∣w + hx(a)
∣∣p − |w|p

)
(4.11)

= 1

2

(‖w − hx‖p
L p

+ ‖w + hx‖p
L p

)− ‖w‖p
L p

. (4.12)

It is well known (see, e.g., [28,3] ) that if 1 < p � 2, then

1

2

(‖w − hx‖p
L p

+ ‖w + hx‖p
L p

)
�

(‖w‖2
Lp

+ (p − 1)‖hx‖2
Lp

)p/2
. (4.13)

Set a = ‖w‖Lp and b = ‖hx‖Lp . Observe that

(
a2 + (p − 1)b2)p/2 − ap = ap((1 + (p − 1)(b/a)2)p/2 − 1

)
,
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and that if 0 < y < 4 then (1 + y)p/2 − 1 � py/12. Indeed, since 1 < p � 2 and y > 0, it suffices to show that (1 + y)1/2 �
y/6, which holds for 0 < y < 4. Let

y = (p − 1)(b/a)2 = (p − 1)
(‖hx‖L p /‖w‖L p

)2
,

and note that by the assumption on x ∈ T , y � 4; thus,

(‖w‖2
Lp

+ (p − 1)‖hx‖2
Lp

)p/2 − ‖w‖p
L p

� p(p − 1)
‖hx‖2

Lp

‖w‖2−p
L p

.

Recall that by the assumption on a, for every s, t ∈ T and p � 1,(
E
∣∣〈a, t〉〈a, s〉∣∣p)1/p � E

∣∣〈a, t〉〈a, s〉∣∣� κ‖t‖2‖s‖2,

and since ‖w‖Lp � ‖w‖L2 , it follows that

ELx � κ2 p(p − 1)
‖x − x0‖2

2‖x + x0‖2
2

‖w‖2−p
L2

.

On the other hand, if y = (p − 1)(b/a)2 � 4, that is, if ‖hx‖2
Lp

� 4‖w‖2
Lp

/(p − 1), then reversing the roles in (4.13),

1

2

(‖w − hx‖p
L p

+ ‖w + hx‖p
L p

)
�

(‖hx‖2
Lp

+ (p − 1)‖a‖2
Lp

)p/2 � ‖hx‖p
L p

.

Therefore,

ELx � ‖hx‖p
L p

− ‖w‖p
L p

� 1

2
‖hx‖p

L p
+ ‖w‖p

L p

(
1

2

(
2√

p − 1

)p

− 1

)

� 1

2
‖hx‖p

L p
� κ p‖x − x0‖p

2‖x + x0‖p
2 ,

provided that p � 2. �
For every r > 0, set

Tr = {
x ∈ T : r < ‖x − x0‖2‖x + x0‖2 � 2r

}
,

let

T1 = {
x ∈ T : ‖hx‖L p � 2‖w‖L p /(p − 1)1/2},

and put T2 = T \T1.
The key step in the proof is the following estimate on the supremum of the empirical process

x → |P NLx − PLx| =
∣∣∣∣ 1

N

N∑
i=1

Lx(ai, yi) −ELx

∣∣∣∣,
indexed by Tr and by T1.

Lemma 4.14. For every L � 1, there exist constants c1 and c2 that depend only on L for which the following holds. For every r > 0,
with probability at least 1 − 2 exp(−c1u1/3),

sup
x∈Tr

|P NLx − PLx| � c2rρT ,N .

Also, with probability at least 1 − 2 exp(c1u1/3),

sup
x∈T1

|P NLx − PLx| � c2 d(T )ρT ,N .

Proof. We will present a proof of the first part of the claim and omit the proof of the second one, as it follows an almost
identical path to the proof of the first.

Fix r > 0 and consider the empirical process x → |P NLx − PLx| indexed by Tr . Set q � 2. By the symmetrization theorem
(Theorem 4.12) and the independence of a and w ,
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E sup
x∈Tr

|P NLx −ELx|q � EEε sup
x∈Tr

∣∣∣∣∣ 2

N

N∑
i=1

εiLx(ai, wi)

∣∣∣∣∣
q

= EEε sup
x∈Tr

∣∣∣∣∣ 2

N

N∑
i=1

εi
(∣∣〈ai, x − x0〉〈ai, x + x0〉 − wi

∣∣p − |wi|p)∣∣∣∣∣
q

.

Let

D∞,N = 2 max
1�i�N

(
|wi | + sup

x∈Tr

∣∣〈ai, x − x0〉〈ai, x + x0〉
∣∣),

and observe that for every realization of (wi)
N
i=1, the functions y → |y − wi |p − |wi |p vanish at 0 and are Lipschitz on

[−b,b] with a constant p(b + |wi |)p−1. For b � max1�i�N supx∈Tr
|〈ai, x − x0〉〈ai, x + x0〉| this constant is proportional to

D p−1
∞,N , as p � 2. Applying the contraction inequality (Theorem 4.11), conditioned on w1, . . . , w N and a1, . . . ,aN ,

Eε sup
x∈Tr

∣∣∣∣∣
N∑

i=1

εi
(∣∣〈ai, x − x0〉〈ai, x + x0〉 − wi

∣∣p − |wi |p)∣∣∣∣∣
q

� cq(D p−1
∞,N

)q
Eε · sup

x∈Tr

∣∣∣∣∣
N∑

i=1

εi〈ai, x − x0〉〈ai, x + x0〉
∣∣∣∣∣
q

= cq(D p−1
∞,N

)q
Eε · sup

x∈Tr

(
A(x)BT ,N(x)

)q
,

where A(x) = ‖x − x0‖2‖x + x0‖2 and

BT ,N(x) =
∣∣∣∣∣

N∑
i=1

εi

〈
ai,

x − x0

‖x − x0‖2

〉〈
ai,

x + x0

‖x + x0‖2

〉∣∣∣∣∣.
By the Cauchy–Schwarz inequality, and recalling that on Tr , A(x) � 2r,

Ea×W Eε

[(
D p−1

∞,N

)q · sup
x∈Tr

(
A(x)BT ,N(x)

)q
]
� cqrq

∥∥D p−1
∞,N

∥∥q
L2q

·
(
E sup

v∈T+,u∈T−

∣∣∣∣∣
N∑

i=1

εi〈ai, v〉〈ai, u〉
∣∣∣∣∣
2q)1/2

,

for a suitable absolute constant c. Setting

BT ,N,q =
∥∥∥∥∥ sup

v∈T+, u∈T−

∣∣∣∣∣ 1

N

N∑
i=1

εi〈ai, v〉〈ai, u〉
∣∣∣∣∣
∥∥∥∥∥

L2q

,

it follows from Theorem 2.7 that

BT ,N,q � q3/2
(

E√
N

+ E2

N

)
.

Next, by Theorem 4.6,∥∥∥ max
1�i�N

sup
x∈Tr

∣∣∣〈a, x − x0〉〈a, x + x0〉
∣∣∥∥

ψ1
� r

∥∥∥∥ max
1�i�N

sup
x∈Tr

∣∣∣∣
〈
a,

x − x0

‖x − x0‖2

〉〈
a,

x + x0

‖x − x0‖2

〉∣∣∣∣
∥∥∥∥

ψ1

�L r
(

E2 + log N
)
.

Hence, from (4.3),

‖D∞,N‖ψ1 �
(∥∥∥ max

1�i�N
wi

∥∥∥
ψ1

+
∥∥∥ max

1�i�N
sup
x∈Tr

∣∣〈a, x − x0〉〈a, x + x0〉
∣∣∥∥∥

ψ1

)
�

((‖w‖ψ1 + r
)

log N + rE2)� βN .

Since p = 1 + 1/ log βN and applying the moment characterization of the ψ1 norm (4.2), it is evident that∥∥D p−1
∞,N

∥∥
L2q

� qp−1. (4.14)

Indeed,(
ED(p−1)2q

∞,N

)1/(p−1)2q � (p − 1)q‖D∞,N‖ψ1 ,
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and thus,∥∥D p−1
∞,N

∥∥
L2q

�
(
(p − 1)q

)p−1‖D∞,N‖p−1
ψ1

�
(
(p − 1)q

)p−1
β

1/ log βN
N � qp−1.

With the two estimates in place, it is evident that there exists a constant c1 that depends only on L, for which, for every
q � 2,

∥∥∥sup
x∈Tr

∣∣P NLx −ELx
∣∣∥∥∥

Lq
� c1q3/2+(p−1)

(
E√
N

+ E2

N

)
· r � c1q3rρT ,N .

Therefore, it is standard to show (see, e.g., [10] for a similar argument), that for u � 1, with probability at least 1 −
2 exp(−c2u1/3),

sup
x∈T

|P NLx −ELx|� c3urρT ,N ,

where c2 and c3 depend only on L. �
Next, set σ = ‖w‖L2 ; since w is L-subgaussian, ‖w‖ψ2 ∼L σ . By the choice of p,

σ p = σ 1+1/ log βN � σ 1+1/ log(2+σ ) � eσ .

Therefore,

P NLx̂ � 2u
‖w‖p

ψ2√
N

�L u
σ p

√
N

�L u
σ√

N
.

Finally, let

ρ
2−p
0 = ασρT ,N ,

for a constant α satisfying α ∼κ 1/(p − 1).

Corollary 4.15. There exist constants c1, c2 and c3 that depend only on L and for which the following holds. If j0 � c1 , then with
probability at least 1 − 2 exp(−c22 j0(2−p)), for every x ∈ T2 with ‖x − x0‖2‖x + x0‖2 � 2 j0ρ0 ,

|P NLx −ELx|� 1

2
ELx.

Proof. Fix j0 � c1 and j � j0. Put u j = 2 j(2−p) and set r j = 2 jρ0. By Lemma 4.14 for Tr j , with probability at least 1 −
2 exp(−c1u1/3

j ) = 1 − 2 exp(−c12 j(2−p)/3),

sup
x∈Tr j

|P NLx − PLx|� c22 j(2−p)r p
j ρT ,N � 2 j(2−p)

(‖x − x0‖2‖x + x0‖2
)p

ρT ,N ,

because on Tr j , ‖x − x0‖2‖x + x0‖2 ∼ r j .
Taking the union bound over these events, there is an event Ω0 of probability at least

1 − 2
∑
j� j0

exp
(−c12 j(2−p)/3)� 1 − 2 exp

(−c32 j0(2−p)/3),
on which, for every j � j0 and every x ∈ T j ,

|P NLx − PLx| � 2 j(2−p)
(‖x − x0‖2‖x + x0‖2

)p
ρT ,N .

Fix a sample in Ω0 and x ∈ Tr j ∩ T2 for j � j0. By Lemma 4.13,

1

2
ELx − |P NLx −ELx| � κ2(p − 1)

‖x − x0‖2
2‖x + x0‖2

2

σ 2−p
− |P NLx −ELx|

� κ2(p − 1)
‖x − x0‖2

2‖x + x0‖2
2

σ 2−p
− ‖x − x0‖p

2‖x + x0‖p
2 2 j(2−p)ρT ,N

�
(‖x − x0‖2‖x + x0‖2

)p ·
(
κ2(p − 1)

(‖x − x0‖2‖x + x0‖2)
2−p

σ 2−p
− 2 j(2−p)ρT ,N

)
> 0,
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provided that α ∼κ 1/(p − 1). Indeed, ρ
2−p
T ,N ∼ ρT ,N and σ 2−p ∼ σ . For this choice of α and every x ∈ Tr j ,

κ2(p − 1)
(‖x − x0‖2‖x + x0‖2)

2−p

σ 2−p
� κ2(p − 1)

r2−p
j

σ
= κ2(p − 1)

2 j(2−p)ρ
2−p
0

σ

� κ2(p − 1)
2 j(2−p)

σ
· ασρT ,N � 2 j(2−p)ρT ,N ,

completing the proof. �
Finally, fix 1 � u � N let j0 satisfy that 2 j0(2−p) ∼ u. Consider the event Ω1 on which both

1. supx∈T1
|P NLx − PLx| � c1ud(T )ρT ,N and

2. |P NLx − PLx| � 1
2ELx for x ∈ T2 ∩ {z: ‖z − x0‖2‖z + x0‖2 � 2 j0ρ0}.

By the second part of Lemma 4.14 and Corollary 4.15, Pr(Ω1) � 1 − 2 exp(−c2u1/3).
Fix a sample in Ω1, let x̂ be the point selected by the feasible point procedure (4.7) and consider the two possibilities:

either x̂ ∈ T1 or x̂ ∈ T2.
If x̂ ∈ T1 then by Lemma 4.13 and Lemma 4.14,

κ p‖x − x0‖p
2‖x + x0‖p

2 � ELx̂ � P NLx̂ + sup
x∈T1

|P NLx − PLx|

� P NLx̂ + c1ud(T )ρT ,N �L u
σ p

√
N

+ ud(T )ρT ,N .

By the choice of p, (d(T )ρT ,N )1/p ∼ d(T )ρT ,N and since 1 � u � N , u1/p ∼ u. Thus,

‖x − x0‖2‖x + x0‖2 �L,κ u

(
σ

N1/2p
+ d(T )ρT ,N

)
.

If x̂ ∈ T2 and ‖x̂ − x0‖2‖x̂ + x0‖2 � 2 j0ρ0, then by property (2) in the definition of Ω1 and the choice of p,

ELx̂ � P NLx̂ + |P NLx̂ −ELx̂|�L u
σ√

N
+ 1

2
ELx̂.

Hence, ELx̂ �L uσ/
√

N . By Lemma 4.13 and since

σ 2−p ∼ σ and ELx̂ �
κ2(p − 1)

σ
‖x̂ − x0‖2

2‖x̂ + x0‖2
2,

it is evident that

‖x̂ − x0‖2‖x̂ + x0‖2 �L,κ

(
σ 2u

(p − 1)
√

N

)1/2

= u1/2σ

√
logβN

N1/4
.

Otherwise, if x̂ ∈ T2 and ‖x̂ − x0‖2‖x̂ + x0‖2 � 2 j0ρ0, then using the choice of p,

‖x̂ − x0‖2‖x̂ + x0‖2 � 2 j0ρ0 �κ 2 j0σρT ,N/(p − 1) ∼κ uσρT ,N logβN .

Therefore, on Ω1, since 2 j0(2−p) ∼ u � 1,

‖x̂ − x0‖2‖x̂ + x0‖2 �L,κ u max

{(
σ

N1/2p
+ d(T )ρT ,N

)
,σ

√
logβN

N1/4
,σρT ,N logβN

}
.

Finally, observe that log βN � 1, and thus,

σ

N1/2p
�

√
logβN

σ

N1/4
and d(T )ρT ,N �

(
σ + d(T )

)
ρT ,N log βN ,

and the claim follows. �
4.4. Examples

Next, consider some of the examples presented in Section 3.2, this time, in the noisy setting. Other examples may be
derived with similar arguments.

In all the examples below T ⊂ Sn−1 and so d(T ) = 1. Since w is symmetric and L-subgaussian, ‖w‖ψ1 � ‖w‖ψ2 � Lσ ,
where, as always, σ is the noise variance. Also, since 1 < p � 2, ‖|w|p‖ψ1 = ‖w‖p � (Lσ)p .
ψp
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4.4.1. The unit sphere T = Sn−1

If T = Sn−1 then E ∼ √
n. Thus,

ρT ,N �
(√

n

N
+ n

N

)
�

√
n

N

and

βN ∼ (σ + 1) log N + n.

Suppose that σ �
√

n and that n � N � n2. Then, by Theorem 4.9, with probability at least 1 − 2 exp(−cu1/3),

‖x̂ − x0‖2‖x̂ + x0‖2 �L,κ u(1 + σ logn)

√
n

N
, (4.15)

and if N � n2, then

‖x̂ − x0‖2‖x̂ + x0‖2 �L,κ uσ
(log n + log log N)1/2

N1/4
.

Therefore, if σ ∼ 1, one may ensure ε-recovery with confidence parameter δ if

N(ε) �L,κ,δ max
{
ε−2n log2 n, ε−4(log2 n + log2(log N)

)}
.

4.4.2. Block sparse vectors
The norm-one block-sparse setting can be treated in a similar manner, leading to the following corollary.

Corollary 4.16. For every L � 1 and κ > 0 there exist constants c1 , c2, c3 that depend only on L and κ and for which the following
holds. Assume that σ �

√
n and let T to be the set of k-block sparse vectors of length d on the sphere. Then,

βN �L (1 + σ) log N + k
(
d + log(en/dk)

)
.

If (
k log(en/dk) + dk

)
� N �

(
k log(en/dk) + dk

)2
,

and c2 � u � N, then with probability at least 1 − 2 exp(−c3u1/3),

‖x̂ − x0‖2‖x̂ + x0‖2 �L,κ u(1 + σ)

√
k(log(en/dk) + d)

N
· logβN .

Furthermore, if N � k(d + log(en/dk))2 , then

‖x̂ − x0‖2‖x̂ + x0‖2 �L,κ uσ

√
logβN

N1/4
.

Thus, if σ ∼ 1, and setting

log m = max
{

log k, log d, log log(en/dk), log log N
}
,

x̂ is an ε-recovery procedure with confidence parameter δ � exp(−cN1/3) when

N(ε) �L,κ,δ log2 m max
{
ε−2k

(
d + log(en/dk)

)
, ε−4}.

5. Connection with results on linear estimation

The methods used throughout this article are very similar in nature to the analogous techniques used in the setting
of linear measurements. Both stability and noisy recovery are well understood in the linear case, and in a sharp way, as
explained below.

First, consider the question of stability. Suppose that the measurements are given by y = Ax for some N × n matrix A.
In the linear setting, a natural notion of stability in a set T ⊂ R

n is that for every s, t ∈ T ,

‖At − As‖2 � C‖t − s‖2, (5.1)

where C is a positive constant.
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Note that here the �2 norm is used in the left-hand side, rather than the �1 norm. An �2 stability result is superior to
an �1 estimate, because the �2 norm is smaller. It is natural to compare an �2 stability result in the linear case to the �1
stability result for quadratic measurements established here.

Stability in a set T for a random operator ensemble depends on the way in which a typical operator in the ensemble
acts on the set

T− =
{

t − s

‖t − s‖2
: t �= s, t ∈ T

}
⊂ Sn−1.

Indeed, because a is distributed according to an isotropic measure, for every z ∈ Sn−1, E|〈a, z〉|2 = 1. Thus, stability on T is
equivalent to an estimate on

sup
z∈T−

∣∣∣∣∣ 1

N

N∑
i=1

∣∣〈ai, z〉∣∣2 − 1

∣∣∣∣∣, (5.2)

which is strictly smaller than 1. With this in mind, the stability constant of R
n is a lower bound on the smallest singular

value of a typical operator from the given random ensemble.
The study of the process (5.2), both for T− = Sn−1 and for an arbitrary subset of the sphere has been extensive in recent

years. A good starting point for the interested reader would be [22,31] for subgaussian ensembles, [1,29] for log-concave
ensembles, and [42,32,33] for ensembles with heavy tails.

In the context of this article, subgaussian ensembles, the best estimate on (5.2) follows from Theorem 2.7, applied to
the class F = H = {〈v, ·〉, v ∈ T−}. Moreover, in [30] it was shown that under very mild assumptions on the set T− , the
following estimate is sharp.

Theorem 5.1. For every L � 1 there exist constants c1, c2 and c3 that depend only on L for which the following holds. If T ⊂ R
n and

a is distributed according to an isotropic, L-subgaussian measure, then for u � c1 , with probability at least 1 − 2 exp(−c2u2�2(T−)),
for every s, t ∈ T ,

‖As − At‖2 � ‖s − t‖2/
√

2,

provided that N � c3u3�2(T−).

Proof. Since

‖At − As‖2
2

‖t − s‖2
2

=
N∑

i=1

∣∣〈ai, z〉∣∣2,
for z = (t − s)/‖t − s‖2 ∈ T− , and setting zs,t = N−1 ∑N

i=1 |〈ai, z〉|2, it suffices to bound infs,t∈T , s �=t zs,t from below. Recall
that a is isotropic and thus Ezs,t = E|〈a, z〉|2 = 1. Applying Theorem 2.7 for N �L u6�2(T−) and recalling that T− ⊂ Sn−1, it
follows that with probability at least 1 − 2 exp(−cu2�2(T−)),

sup
z∈T−

∣∣∣∣∣ 1

N

N∑
i=1

〈z,a〉2 − 1

∣∣∣∣∣�L u3
(

�(T−)√
N

+ �2(T−)

N

)
� 1/2.

On that event, for every s �= t ,

‖As − At‖2
2 = ∥∥A(s − t)

∥∥2
2 � ‖s − t‖2

2/2,

as claimed. �
Observe that the same complexity parameter appears in both the linear case and in the “quadratic” stability result – the

Gaussian complexity of a “projection” of T − T onto the sphere (and, of course, the T + T component does not appear). In
all the examples we presented in this note, T + T and T − T have essentially (or exactly) the same complexity, and thus
the stability estimates in the linear case coincide with quadratic bounds, as will be the case for any T ⊂ R

n with a similar
property. Thus, in these cases, there is essentially no loss in requiring stability over quadratic measurements rather than
with respect to linear ones.

The noisy recovery problem in the linear case is much simpler, since the resulting empirical process is well behaved
even if one uses the squared loss functional. The advantage in considering a squared loss is that one has the benefit of the
required convexity “for free”. With this objective, noisy recovery becomes a linear regression problem in R

n , indexed by T .
This is a well studied topic in statistics. We refer the reader to [23] for relatively recent results related to this question.

The best results to-date on linear regression that take into account the complexity of the indexing set T can be found
in [25]. One may show that these estimates are sharp under very mild assumptions on T , and it turns out that these
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assumptions are satisfied in the examples that have been presented here. Unfortunately, the methods required to prove the
optimality of the bounds are rather involved, and we will not explore this issue here. Rather, we refer the reader to [25], in
which the linear case is explored.
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