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Abstract— The use of multichannel data in line spectral
estimation (or frequency estimation) is common for improving
the estimation accuracy in array processing, structural health
monitoring, wireless communications, and more. Recently pro-
posed atomic norm methods have attracted considerable atten-
tion due to their provable superiority in accuracy, flexibility,
and robustness compared with conventional approaches. In this
paper, we analyze atomic norm minimization for multichannel
frequency estimation from noiseless compressive data, showing
that the sample size per channel that ensures exact estima-
tion decreases with the increase of the number of channels
under mild conditions. In particular, given L channels, order
K (log K)

(
1 + 1

L log N
)

samples per channel, selected randomly
from N equispaced samples, suffice to ensure with high proba-
bility exact estimation of K frequencies that are normalized and
mutually separated by at least 4

N . Numerical results are provided
corroborating our analysis.

Index Terms— Multichannel frequency estimation, atomic
norm, convex optimization, sample complexity, average case
analysis, compressed sensing.

I. INTRODUCTION

L INE spectral estimation or frequency estimation is a
fundamental problem in statistical signal processing [2].

It refers to the process of estimating the frequency and
amplitude parameters of several complex sinusoidal waves
from samples of their superposition. In this paper, we consider
a compressive multichannel setting in which each channel

Manuscript received December 15, 2017; accepted September 25, 2018.
Date of publication November 13, 2018; date of current version March 15,
2019. This was supported in part by the National Natural Science Foundation
of China under Grants 61603187, 61772275, and 61732007, in part by
the Natural Science Foundation of Jiangsu Province, China, under Grant
BK20160845, in part by the Israel Science Foundation under Grant 0100101,
and in part by the Ministry of Education, Republic of Singapore, under Grant
AcRF TIER 1 RG78/15. Part of this paper was presented at the 2018 23rd
IEEE International Conference on Digital Signal Processing [1].

Z. Yang was with the School of Automation, Nanjing University of Science
and Technology, Nanjing 210094, China. He is now with the School of
Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China
(e-mail: yangzai@njust.edu.cn).

J. Tang is with the School of Computer Science and Engineering, Nanjing
University of Science and Technology, Nanjing 210094, China (e-mail:
jinhuitang@njust.edu.cn).

Y. C. Eldar is with the Department of Electrical Engineering, Technion–
Israel Institute of Technology, Haifa 32000, Israel (e-mail: yonina@
ee.technion.ac.il).

L. Xie is with the School of Electrical and Electronic Engineering, Nanyang
Technological University, Singapore 639798 (e-mail: elhxie@ntu.edu.sg).

Communicated by P. Grohs, Associate Editor for Signal Processing.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2018.2881113

observes a subset of equispaced samples and the sinusoids
among the multiple channels share the same frequency profile.

The full N × L data matrix Y o is composed of equispaced
samples

�
yo

jl

�
that are given by

yo
jl =

K�
k=1

ei2π( j−1) fk skl , j = 1, . . . , N, l = 1, . . . , L, (1)

where N is the full sample size per channel, L is the number
of channels, i = √−1, and skl denotes the unknown complex
amplitude of the kth frequency in the lth channel. We assume
that the frequencies { fk} are normalized by the sampling rate
and belong to the unit circle T = [0, 1], where 0 and 1
are identified. Letting a ( f ) = �

1, ei2π f , . . . , ei2π(N−1) f
�T

represent a complex sinusoid of frequency f , and sk =
[sk1, . . . , skL ] the coefficient vector of the kth component,
we can express the full data matrix Y o as

Y o =
K�

k=1

a ( fk) sk . (2)

In the absence of noise, the goal of compressive multichannel
frequency estimation is to estimate the frequencies { fk} and
the amplitudes {skl }, given a subset of the rows of Y o. In the
case of L = 1 this problem is referred to as continuous/
off-the-grid compressed sensing [3], or spectral super-
resolution by swapping the roles of frequency and time
(or space) [4].

Multichannel frequency estimation appears in many appli-
cations such as array processing [2], [5], structural health
monitoring [6], wireless communications [7], radar [8]–[10],
and fluorescence microscopy [11]. In array processing, for
example, one needs to estimate the directions of several
electromagnetic sources from outputs of several antennas that
form an antenna array. In the common uniform-linear-array
case, the rows of Y o correspond to (spatial) locations of the
antennas, each column of Y o corresponds to one (temporal)
snapshot, and each frequency has a one-to-one mapping to
the direction of one source. Multichannel data are available
if multiple data snapshots are acquired. The compressive data
case arises when the antennas form a sparse linear array [12].
In structural health monitoring, a number of sensors are
deployed to collect vibration data of a physical structure
(e.g., a bridge or building) that are then used to estimate
the structure’s modal parameters such as natural frequencies
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and mode shapes. In this case, the rows of Y o correspond to
the (temporal) sampling instants and each column to one (spa-
tially) individual sensor. Multichannel data can be acquired by
deploying multiple sensors. The use of compressive data has
potential to relax the requirements on data acquisition, storage
and transmission.

Due to its connection to array processing, multichannel
frequency estimation has a long history dating back to at
least World War II when the Bartlett beamformer was pro-
posed to estimate the directions of enemy planes. The use
of multichannel data can improve estimation performance by
taking more samples and exploiting redundancy among the
data channels. As the number of channels increases, the Fisher
information about the frequency parameters increases if the
data are independent among channels [13], and the number
of identifiable frequencies increases in general as well [14].
However, in the worst case where all vector coefficients {sk}
are identical up to scaling factors, referred to as coherent
sources in array processing, the multichannel data will be iden-
tical up to scaling factors. Therefore, the frequency estimation
performance cannot be improved by increasing the number
of channels. The possible presence of coherent sources is
known to form a difficult scenario for multichannel frequency
estimation.

In multichannel frequency estimation, the sample data
is a highly nonlinear function of the frequencies. Conse-
quently, (stochastic and deterministic) maximum likelihood
estimators [5] are difficult to compute. Subspace-based meth-
ods were proposed to circumvent nonconvex optimization and
dominated research on this topic for several decades. However,
these techniques have drawbacks such as sensitivity to coher-
ent sources and limited applicability in the case of missing
data or when the number of channels is small [2], [5]. Convex
optimization approaches have recently been considered and are
very attractive since they can be globally solved in polynomial
time. In addition, they are applicable to various kinds of
noise and data structures, are robust to coherent sources
and have provable performance guarantees [3], [4], [15]–[21].
However, the performance of such techniques under mul-
tichannel data has not been thoroughly derived. Extensive
numerical results presented in [18], [19], and [22] show that
the frequency estimation performance improves (in terms of
accuracy and resolution) with the number of channels in
the case of noncoherent sources; nevertheless, few theoretical
results have been developed to support this empirical behavior.

In this paper, we provide a rigorous analysis of one of the
empirical findings: The sample size per channel that ensures
exact frequency estimation from noiseless data can be reduced
as the number of channels increases. Our main result is
described in the following theorem.

Theorem 1: Suppose we observe the N × L data matrix
Y o = �K

k=1 a ( fk) sk on rows indexed by � ⊂ {1, . . . , N},
where � is of size M, selected uniformly at random, and given.
Assume that the vector phases φk = sk�sk�2

are independent
random variables that are drawn uniformly from the unit
L-dimensional complex sphere, and that the frequency support

T = { fk} satisfies the minimum separation condition

�T := min
p �=q

�� f p − fq
�� > 1

�(N − 1)/4� , (3)

where the distance is wrapped around on the unit circle.
Then, there exists a numerical constant C, which is fixed and
independent of the parameters K , N, L and δ, such that

M ≥ C max

	
log2 N

δ
, K



log

K

δ

�

1 + 1

L
log

N

δ

��
(4)

is sufficient to guarantee that, with probability at least 1 − δ,
the full data Y o and its frequency support T can be uniquely
produced by solving a convex optimization problem (defined
in (10) or (12) below).

Theorem 1 provides a non-asymptotic analysis for multi-
channel frequency estimation that holds for arbitrary num-
ber of channels L. According to (4), the sample size per
channel that ensures exact frequency estimation decreases
as L increases. Consider the case of interest in which the
lower bound is dominated by the second term in it, which is
true once the number of frequencies is modestly large such
that K log K

δ ≥ min

log2 N

δ , L log N
δ

�
. The sample size per

channel then becomes

M ≥ C K



log

K

δ

�

1 + 1

L
log

N

δ

�
, (5)

where the lower bound is a monotonically decreasing function
of L. In fact, to solve for { fk} and {skl } which consist of
(2L + 1)K real unknowns, the minimum number of complex-
valued samples is 1

2 (2L + 1)K . Consequently, the sample size
per channel for any method must satisfy

M ≥ 1

2L
(2L + 1)K = K



1 + 1

2L

�
. (6)

Our sample order in (5) nearly reaches this information-
theoretic rate up to logarithmic factors of K and N . In addi-
tion, they share an identical decreasing rate with respect to L.

The assumption on the vector phases φk = sk�sk�2
is

made in Theorem 1 to avoid coherent sources. It is inspired
by [23] and [24] which show performance gains of multiple
channels in the context of sparse recovery. This assumption
is satisfied by the rotational invariance of Gaussian random
vectors if {skl } are independent complex Gaussian random
variables with

skl ∼ CN (0, pk) ,

where the variance pk refers to the power of the kth source.
This latter assumption is usually adopted in the literature to
derive the Cramer-Rao bound or to analyze the theoretical
performance of subspace-based methods [5].

Note that the 4/N minimum separation condition (3) comes
from the single-channel analysis in [3] and [4]. It is reasonably
tight in the sense that, if the separation is under 2/N , then
the data corresponding to two different sets of frequencies
can be practically the same and it becomes nearly impossible
to distinguish them [22]. This condition is conservative in
practice, and a numerical approach was implemented in [25]
to further improve resolution. Such a separation condition is
not required for subspace-based methods, at least in theory.
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A corollary of Theorem 1 can be obtained when the frequen-
cies lie on a known grid. This scenario may be unrealistic but
is often assumed in practice to simplify the algorithm design.

Corollary 1: Consider the problem setup of Theorem 1
when in addition the frequencies { fk} lie on a given fixed
grid (that can be nonuniform or arbitrarily fine). Under the
assumptions of Theorem 1 and given the same number of
samples, the frequencies can be exactly estimated with at least
the same probability by solving an �2,1 norm minimization
problem (defined in (15) below).

It is worth noting that Corollary 1 holds regardless of the
density of the grid, while the grid is used to define the �2,1
norm minimization problem. In fact, Theorem 1 corresponds
to the extreme case of Corollary 1 in which the grid becomes
infinitely fine and contains infinitely many points. In this
case, the �2,1 norm minimization problem in Corollary 1
becomes computationally intractable. In contrast, the convex
optimization problem in Theorem 1 is still applicable.

The rest of the paper is organized as follows. Section II
revisits prior art in multichannel frequency estimation and
related topics and discusses their connections to this work.
Section III presents the convex optimization methods men-
tioned in Theorem 1 and Corollary 1. The former method
is referred to as atomic norm minimization originally intro-
duced in [18] and [19]. The latter is known as �2,1 norm
minimization [24], [26]. Section IV presents simulation results
to verify our main theorem. Section V provides the detailed
proof of Theorem 1. Finally, Section VI concludes this paper.

Throughout the paper, log a b means (log a) b unless we
write log (ab). The notations R and C denote the set of real
and complex numbers, respectively. The normalized frequency
interval is identified with the unit circle T = [0, 1]. Boldface
letters are reserved for vectors and matrices. The �1, �2 and
Frobenius norms are written as �·�1, �·�2 and �·�F respec-
tively, and |·| is the magnitude of a scalar or the cardinality of
a set. For matrix A, AT is the transpose, AH is the conjugate
transpose, rank (A) denotes the rank, and tr (A) is the trace.
The fact that a square matrix A is positive semidefinite is
expressed as A ≥ 0. Unless otherwise stated, x j is the
j th entry of a vector x, A jl is the ( j, l)th entry of a matrix A,
and A j denotes the j th row. Given an index set �, x� and
A� are the subvector and submatrix of x and A, respectively,
that are formed by the rows of x and A indexed by �. For a
complex argument, 
 and � return its real and imaginary parts.
The big O notation is written as O (·). The expectation of a
random variable is denoted by E [·], and P (·) is the probability
of an event.

II. PRIOR ART

The advantages of using multichannel data have been well
understood for parametric approaches for frequency estima-
tion, e.g., maximum likelihood and subspace-based meth-
ods. Under proper assumptions on {skl }, which are similar
to those in Theorem 1, these techniques are asymptotically
efficient in the number of channels L and therefore their
accuracy improves with the increase of L [27]. However,
few theoretical results on their accuracy are available with
fixed L, in contrast to Theorem 1 which holds for any L.

Note that theoretical guarantees of two common subspace-
based methods, MUSIC [28] and ESPRIT [29], have recently
been developed in [30] and [31] in the single-channel full
data case. For multichannel sparse recovery in discrete models,
MUSIC has been applied or incorporated into other methods,
with theoretical guarantees, see [32]–[35].

Theorem 1 is related to the so-called average-case analy-
sis for multichannel sparse recovery in compressed sensing
problems [23], [24], [36]. In such settings, the goal is to
recover multiple sparse signals sharing the same support from
their linear measurements. Average case analysis (as opposed
to the worst case) attempts to analyze an algorithm’s average
performance for generic signals. Under an assumption on
the sparse signals similar to that on {skl } in Theorem 1,
the papers [23] and [24] showed that, if the columns of the
sensing matrix are weakly correlated (in terms of mutual
coherence [37] or the restricted isometry property (RIP) [38]),
then the probability of successful sparse recovery improves as
the number of channels increases. While [23] used the greedy
method of orthogonal matching pursuit (OMP) [39], [40],
the work in [24] was focused on �2,1 norm minimization. The
proof of Theorem 1 is partially inspired by these results. How-
ever, the frequency parameters are continuously valued so that
the weak correlation assumption is not satisfied. In addition to
this, Theorem 1 provides an explicit expression of the sample
size per channel as a decreasing function of the number of
channels.

Multichannel sparse recovery methods have been applied
to multichannel frequency estimation using, e.g., �2,1 norm
minimization as in Corollary 1 [26]. These approaches uti-
lize the fact that the number of frequencies is small, and
attempt to find the smallest set of frequencies on a grid
describing the observed data. It was empirically shown in a
large number of publications (see, e.g., [26], [41], [42]) that,
compared with conventional nonparametric and parametric
methods, such sparse techniques have improved resolution
and relaxed requirements on the number of channels and the
type of sources and noise. However, these approaches can be
applied only if the continuous frequency domain is discretized
so that the frequencies are restricted to a finite set of grid
points. Due to discretization errors and high correlations
among the candidate frequency components, few theoretical
guarantees were developed to support the good empirical
results. Corollary 1 provides theoretical support under the
assumption of no discretization errors.

Assume in Corollary 1 a uniform grid of size equal to N
(without taking into account discretization errors). The case
of L = 1 then degenerates to the compressed sensing problem
studied in [43], where the weak correlation assumption can
be satisfied with sample complexity O

�
K log2 K log N

�
[44].

This means that given approximately the same number of
samples, the resolution can be increased from 4/N to 1/N
if a stricter assumption is made on the frequencies. In this
case, the benefits of using multichannel data have been shown
in [23] and [24], as discussed previously.

The gap between the discrete and continuous frequency
setups has been closed in the past few years. In the pioneer-
ing work of Candès and Fernandez-Granda [4], the authors
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studied the single-channel full data setting and proposed
a convex optimization method (to be specific, semidefinite
program (SDP)) in the continuous domain, referred to as
total variation minimization, that is a continuous analog of �1
minimization in the discrete setup. They proved that the true
frequencies can be recovered if they are mutually separated
by at least 4/N—the minimum separation condition (3). The
idea and method were then extended by Tang et al. [3] to
compressive data using atomic norm minimization [45] which
is equivalent to the total variation norm. They showed that
exact frequency localization occurs with high probability under
the 4/N separation condition if M ≥ O (K log K log N)
samples are given. This result is a special case of Theorem 1
in the single-channel case.

Multichannel frequency estimation using atomic norm
was studied by Yang and Xie [18], Li and Chi [19], and
Li et al. [21]. The paper [18] showed that exact frequency
estimation occurs under the same 4/N separation condition
with full data. In the compressive setting, a sample complexity
of O(K log K log(

√
L N)) per channel was derived under the

assumption of centered independent random phases

φk

�
.

Compared with Theorem 1, the assumption on

φk
�

is weaker
but the sample complexity is larger. Unlike Theorem 1,
the sources are allowed to be coherent in [18] and therefore
the above results do not shed any light on the advantage of
multichannel data. These results may be considered as a worst-
case analysis, if we refer to Theorem 1 as an average-case
analysis.

A slightly different compressive setting was considered
in [19], in which the samples are taken uniformly at random
from the entries (as opposed to the rows) of Y o, and an average
per-channel sample complexity of O (K log(L K ) log(L N))
was stated under an assumption on {skl } similar to that in
Theorem 1. This result is weaker than that of Theorem 1 and
again fails to show the advantage of multichannel data.1

A different means for data compression was considered
in [21], in which each column of Y o is compressed by using a
distinct sensing matrix generated from a Gaussian distribution.
In this case M ≥ max

 8
L log 1

δ + 2, C K log N
�

samples per
channel suffice to guarantee exact frequency estimation with
probability at least 1 − δ by using atomic norm minimization,
where C is a constant. The sample size M decreases with
the number of channels if the lower bound is dominated by
the first term or equivalently if L (C K log N − 2) is less than
a constant depending on δ. Evidently, such a benefit from
multichannel data diminishes if any one of L, K or N becomes
large. This benefit is a result of the different sampling matrices
applied on each channel, which we do not require in our
analysis.

Another convex optimization method operating on the
continuum for multichannel frequency estimation is gridless
SPICE (GLS) [42], [46], [47]. It was shown to be equivalent
to an atomic norm method for small L and a weighted atomic
norm method for large L [25], [48]. Under an assumption on
{skl } similar to that in Theorem 1, GLS is asymptotically

1Note that an explicit proof of this result was not included in [19], which
was also pointed out in [21, Footnote 8].

efficient in L. However, such benefits from multichannel data
have not been analyzed for small L.

Finally, sparse estimation methods using nonconvex opti-
mization have been proposed in [49] and [50], but few
theoretical guarantees on their estimation accuracy have been
derived. Readers are referred to [48] for a review on sparse
methods for multichannel frequency estimation.

III. MULTICHANNEL ATOMIC NORM MINIMIZATION

Atomic norm [45] provides a generic approach to finding
a sparse representation of a signal by exploiting particular
structures in it. It generalizes the �1 norm for sparse signal
recovery and the nuclear norm for low rank matrix recovery.
For multichannel frequency estimation, the set of atoms is
defined as [18], [19]:

A :=
�

a ( f )φ : f ∈ T, φ ∈ S
2L−1
�
,

where

S
2L−1 :=

�
φ ∈ C

1×L : �φ�2 = 1
�

denotes the unit L-dimensional complex sphere, or equiva-
lently, the unit 2L-dimensional real sphere. The atomic norm
of a multichannel signal Y ∈ C

N×L is defined as the gauge
function of the convex hull of A:

�Y�A = inf {t > 0 : Y ∈ tconv (A)}
= inf

��
k

ck : Y =
�

k

ck a ( fk)φk, ck > 0

�

= inf

��
k

�sk�2 : Y =
�

k

a ( fk) sk

�
. (7)

When only the rows of Y o indexed by � ⊂ {1, . . . , N} are
observed, which form the submatrix Y o

�, the following atomic
norm minimization problem was introduced to recover the full
data matrix Y o and its frequencies [18], [19]:

min
Y

�Y�A ,

subject to Y� = Y o
�. (8)

In particular, by (8) we attempt to find the signal that is
consistent with the observed data and has the smallest atomic
norm. The problem in (8) can then be cast as an SDP in order
to solve it, in two ways. The first was proposed in [18] and [19]
(and later reproduced in [51]) by writing �Y�A as:

�Y�A = min
X,t

1

2
tr (X) + 1

2
t0,

subject to

�
X Y H

Y T

�
≥ 0. (9)

It follows that (8) can be equivalently written as:

min
X,t,Y

1

2
tr (X) + 1

2
t0,

subject to

�
X Y H

Y T

�
≥ 0 and Y� = Y o

�. (10)

In (9) and (10), T is an N × N Hermitian Toeplitz matrix and
is defined as Tml = tl−m , 1 ≤ m ≤ l ≤ N , and t = �t j

�N−1
j=0 .



2306 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 4, APRIL 2019

Alternatively, an SDP can also be provided for the following
dual of (8):

max
V

�
V �, Y o

�

�
R

,

subject to �V�∗
A ≤ 1 and V �c = 0, (11)

where �A, B�R = 
tr
�

BH A
�

is the inner product of
matrices A and B. The dual atomic norm �V�∗

A is defined as:

�V�∗
A = sup

a∈conv(A)

�V , a�R
= sup

a∈A
�V , a�R

= sup
f

���aH ( f ) V
���

2
.

It follows that the constraint �V�∗
A ≤ 1 is equivalent to

���aH ( f ) V
���

2
≤ 1 for all f ∈ T.

Using theory of positive trigonometric polynomials [52],
the above constraint can be cast as a linear matrix inequal-
ity (LMI) so that the dual SDP is given by:

max
V

�
V�, Y o

�

�
R

,

subject to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�
I V H

V H

�
≥ 0,

tr (H) = 1,�N− j
n=1 Hn,n+ j = 0, j = 1, . . . , N − 1,

V �c = 0.

(12)

Both (10) and (12) can be solved using off-the-shelf SDP
solvers. In fact, when one is solved using a primal-dual
algorithm, the solution to the other is given simultaneously.
While the solved signal Y is given by the primal solution,
the frequencies in Y can be retrieved from either the primal
or the dual solution. In particular, given the primal solu-
tion T , the frequencies can be obtained from its so-called
Vandermonde decomposition [2] given as:

T =
r�

j=1

c j a
�

f j
�

aH � f j
�
, (13)

where r = rank (T) and c j > 0. This decomposition is unique
in the typical case of rank (T) < N and can be computed using
subspace-based methods such as ESPRIT [29]. The atomic
decomposition of Y can then be obtained by solving for the
coefficients


s j
�r

j=1 from (2) using a least squares method.

Interestingly, it holds that c j = ��s j
��

2. This means that,
besides the frequencies, their magnitudes are also given by
the Vandermonde decomposition of T .

Given the solution V in the dual, Q( f ) = aH ( f )V is
referred to as the (vector) dual polynomial. The frequencies
in Y can be identified by those values f j satisfying

��Q( f j )
��

2 =
���aH ( f j )V

���
2

= 1.

Subsequently, the coefficients in the atomic decomposition can
be solved for in the same manner.

The dimensionality of both the primal SDP in (10) and
the dual SDP in (12) increases as the number of channels L
increases. To reduce the computational workload when L is
large, a dimensionality reduction technique was introduced

in [25] that, in the case of L > rank
�
Y o

�

�
, reduces the

number of channels from L to rank
�
Y o

�

�
and at the same

time produces the same T , from which both the frequencies
and their magnitudes are obtained. In particular, for any �Y o

�

satisfying �Y o
�
�Y o

�

H = Y o
�Y oH

� , whose number of columns
may be as small as rank

�
Y o

�

�
, the solution to T remains

unchanged if, in (10), we replace Y o
� with �Y o

� and properly
change the dimensions of X and Y . This means that the same
T can be obtained by solving the following SDP:

min
X,t,Y

1

2
tr (X) + 1

2
t0,

subject to

�
X Y H

Y T

�
≥ 0 and Y� = �Y o

�. (14)

Similar techniques were also reported in [51] and [53].
Suppose that the source powers are approximately constant

across different channels. Then the magnitude of �Y o
� increases

and may even become unbounded as L increases. To render
(14) solvable for large L, we consider a minor modification
by shrinking �Y o

� by
√

L so that �Y o
�
�Y o

�

H = 1
L Y o

�Y oH
� (note

that 1
L Y o

�Y oH
� is the sample covariance matrix). Consequently,

the solution to T shrinks by
√

L, resulting in the same
frequencies and scaled magnitudes. As L approaches infinity,
the sample covariance matrix approaches the data covariance
matrix by the law of large numbers and therefore, given the
data covariance matrix R, this modification enables us to
deal with the case of L → ∞ by choosing �Y o

� satisfying
�Y o

�
�Y o

�

H = R. This result will be used in Section IV to
study the numerical performance of atomic norm minimization
as L → ∞.

Finally, if we assume that the frequencies lie on a given

fixed grid, denoted by
�

f̃g

�G

g=1
⊂ T, where G is the grid

size, then the atomic norm minimization in (8) and (10)
can be simplified to the following �2,1 norm minimization
problem [26]:

min{s̃g}
G�

g=1

��s̃g
��

2 ,

subject to
G�

g=1

a�

�
f̃g

�
s̃g = Y o

�. (15)

In (15), a�(·) is a subvector of a(·), and the frequency support
T can be identified from the solutions to


s̃g
�

that are nonzero.
This �2,1 norm minimization problem is used in Corollary 1
for frequency estimation.

IV. NUMERICAL SIMULATIONS

We now present numerical simulations demonstrating the
decrease and its rate of the required sample size per channel
with the increase of the number of channels. Numerical
results provided in previous publications [18], [19], [22], [25]
show the advantages of taking more channel signals in either
improving the probability of successful frequency estimation
or enhancing the resolution.

In our simulations, we let N = 128, K = 10, L ∈
{1, 2, 4, 8, 16,∞}, and M ∈ {10, 12, . . . , 50}. Note that the
case of L = ∞ can be dealt with by using the dimension-
ality reduction technique presented in Section III. For each
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Fig. 1. Success rates of atomic norm minimization for multichannel
frequency estimation, with N = 128, K = 10, L = 1, 2, 4, 8, 16,∞ and
M = 10, 12, . . . , 50, under the minimum separation condition in (3). White
means complete success and black means complete failure. The red curve
plots M = 28 + 16/L . The decreasing behavior and rate of the sample size
with respect to the number of channels match those predicted in Theorem 1.

pair (L, M), 20 Monte Carlo runs are carried out. In each
run, the frequencies { fk} are randomly generated and satisfy
the minimum separation condition (3), and the amplitudes
{skl } are independently generated from a standard complex
Gaussian distribution. After the full data matrix Y o is com-
puted according to (1), M rows of Y o are randomly selected
and fed into atomic norm minimization for frequency estima-
tion implemented using CVX [54]. The frequencies are said
to be successfully estimated if the root mean squared error,
computed as �  !�K

k=1

��� fk − f̂k

���
2

K
,

is less than 10−4, where f̂k denotes the estimate of fk .
We also calculate the rate of successful estimation over the
20 runs. Our simulation results are presented in Fig. 1. It can
be seen that the required sample size per channel for exact
frequency estimation decreases with the number of channels.
Evidently, the decrease rate matches well with that predicted
in Theorem 1 even in such a low-dimensional problem setup.

V. PROOF OF THEOREM 1

We now prove Theorem 1. The proof of Corollary 1 is
similar and is given in Appendix F. Our proof is inspired
by the analysis for multichannel frequency estimation in [18],
the average case analysis for multichannel sparse recovery
in [24], and several earlier publications on compressed sensing
and super-resolution [3], [4], [23], [43]. We mainly follow the
steps of [18], with non-trivial modifications. To make the proof
concise and self-contained, we first revisit the result in [18]
and then highlight the key differences in our problem.

A. Revisiting Previous Analysis
The following theorem is proved in [18].
Theorem 2: Suppose we observe the N × L data matrix

Y o =�K
k=1 ck a ( fk) φk on rows indexed by � ⊂ {1, . . . , N},

where � is of size M, selected uniformly at random, and
given. Assume that the vector phases


φk

�
are independent

and centered random variables and that the frequencies { fk}
satisfy the same separation condition as in Theorem 1. Then,
there exists a numerical constant C such that

M ≥ C max

�
log2

√
L N

δ
, K log

K

δ
log

√
L N

δ

�
(16)

is sufficient to guarantee that, with probability at least 1 − δ,
the full data Y o and its frequency support T can be uniquely
produced by solving (8) [or equivalently (10)].

According to [18], the optimality of a solution to (8) can
be validated using a dual certificate that is provided in the
following proposition.

Proposition 1: The matrix Y o = �K
k=1 ck a ( fk)φk is the

unique optimizer of (8) if {a� ( fk)} fk∈T are linearly inde-
pendent and if there exists a vector-valued dual polynomial
Q : T → C

1×L

Q( f ) = aH ( f )V (17)

satisfying

Q ( fk) = φk, fk ∈ T , (18)��Q ( f )
��

2 < 1, f ∈ T\T , (19)

V j = 0, j ∈ �c, (20)

where V is an N × L matrix and V j denotes its j th row.
Moreover, Y o = �K

k=1 ck a ( fk) φk is the unique atomic
decomposition achieving the atomic norm with �Y o�A =�K

k=1 ck .
Applying Proposition 1, Theorem 2 is proved in [18] by

showing the existence of an appropriate dual polynomial
Q( f ) under the assumptions of Theorem 2 (note that in this
process the condition of linear independence of {a� ( fk)} fk∈T
is also satisfied). To explicitly construct the dual polyno-
mial Q( f ), it is shown in [18] that we may consider the
symmetric case where the rows of Y o are indexed by J :=
{−2n, . . . , 2n} instead of {1, . . . , N}, where N = 4n + n0
with n0 = 1, 2, 3, 4. Moreover, we may equivalently consider
the Bernoulli observation model following from [3] and [43],
in which each row of Y o is observed independently with
probability p = M

4n , rather than the uniform observation model
as in Theorems 1 and 2. The remainder of the proof consists
of two steps.

1) Consider the full data case where �c is empty and
construct Q( f ), referred to as Q( f ), satisfying (18) and

�Q( f )�2
2 ≤ 1 − c1n2( f − fk)

2,

f ∈ Nk :=



fk − 0.16

n
, fk + 0.16

n

�
, (21)

�Q( f )�2 ≤ 1 − c2, f ∈ F := T \
K"

k=1

Nk, (22)

d2 �Q( f )�2
2

d f 2 ≤ −2c1n2, f ∈ Nk, (23)

where c1 and c2 are positive constants. Note that
(21) and (22) form a stronger condition than (19).
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2) In the compressive data case of interest, construct a
random polynomial Q( f ) satisfying (18) and (20) with
respect to the Bernoulli sampling scheme. Show that,
if M satisfies (16), then Q( f ) (and its first and second
derivatives) is close to Q( f ) (and its first and second
derivatives) on the whole unit circle T with high prob-
ability under the assumptions of Theorem 2, and Q( f )
also satisfies (21) and (22). As a result, Q( f ) is a
polynomial as required in Proposition 1.

In the ensuing subsections, we prove Theorem 1 following
the aforementioned steps of the proof of Theorem 2. The
difference is in the second step above, namely, showing that
Q( f ) − Q( f ) and its derivatives are arbitrarily small on the
unit circle T with high probability under the assumptions of
Theorem 1, with M in (4) being a decreasing function of the
number of channels L. In particular, we show in Subsection V-
B how the dual certificate Q( f ) is constructed, summarize
in Subsection V-C some useful lemmas shown in [3], [4],
and [18], analyze in Subsection V-D the residue Q( f )−Q( f ),
and complete the proof in Subsection V-E.

B. Construction of Q(f)
To construct Q( f ), we start with the squared Fejér kernel

K ( f ) =
�

sin(π(n + 1) f )

(n + 1) sin (π f )

�4

=
2n�

j=−2n

gn ( j) e−i2π j f (24)

with coefficients

gn ( j) = 1

n + 1

min( j+n+1,n+1)�
k=max( j−n−1,−n−1)



1 − |k|

n + 1

�

×



1 − | j − k|
n + 1

�

obeying 0 < gn ( j) ≤ 1, j = −2n, . . . , 2n. This kernel
equals unity at the origin and decays rapidly away from it.
Let

δ j
�

j∈J be i.i.d. Bernoulli random variables with

P
�
δ j = 1

� = p = M

4n
.

It follows that

� =  j ∈ J : δ j = 1
�

with E |�| ≈ M . This allows us to write a compressive-data
analog of the squared Fejér kernel as

K ( f ) =
�
j∈�

gn ( j) e−i2π j f =
2n�

j=−2n

δ j gn ( j) e−i2π j f (25)

and define the vector-valued polynomial Q( f ) as

Q ( f ) =
�
fk∈T

αkK ( f − fk) +
�
fk∈T

βkK
(1)

( f − fk), (26)

where αk and βk are 1 × L vector coefficients to specify and
the superscript l denotes the lth derivative.

It is evident that Q ( f ) in (26) satisfies the support con-
dition in (20). According to [3], K and its derivatives are
concentrated around their expectations, pK and its derivatives,
if M is large enough. As a result, Q ( f ) is expected to peak

near fk ∈ T if Q ( f ) is dominated by the first term and
the coefficients αk and βk are appropriately chosen. To make
Q ( f ) satisfy (18), we impose for any f j ∈ T ,
�
fk∈T

αkK
�

f j − fk
�+
�
fk∈T

βkK
(1) �

f j − fk
� = φ j . (27)

To satisfy (19), a necessary condition is that the derivative of��Q ( f )
��2

2 vanishes at f j ∈ T , leading to

d
��Q ( f )

��2
2

d f

����
f = f j

= 2

�

Q
(1) �

f j
�

Q
H �

f j
��

= 2

�

Q
(1) �

f j
�
φH

j

�

= 0. (28)

Consequently, one feasible choice is to let, for any f j ∈ T ,

Q
(1) �

f j
� =

�
fk∈T

αkK
(1) �

f j − fk
�+
�
fk∈T

βkK
(2) �

f j − fk
�

= 0. (29)

The conditions in (27) and (29) consist of 2K L equations
and therefore may determine the coefficients {αk} and


βk

�
(and hence Q ( f )). Define the K × K matrices Dl , l =
0, 1, 2 such that

�
Dl
�

j k = K(l) �
f j − fk

�
(note that the zeroth

derivative is itself). Then, (27) and (29) lead to the following
system of linear equations:

D
�

α

c0β

�
=
�

D0 c−1
0 D1

−c−1
0 D1 −c−2

0 D2

� �
α

c0β

�
=
�
�

0

�
, (30)

where � is the K × L matrix formed by stacking

φ j

�
together, with α and β similarly defined. The constant c0 =#��K(2) (0)

�� =
#

4π2n(n+2)
3 is introduced so that the coefficient

matrix D is symmetric and well-conditioned [3]. Note that all
compressive-data (random) quantities defined above such as
Q and D have full-data (deterministic) analogs, denoted by
Q and D by removing the overlines and obtained by replacing
K in their expressions with K [refer Q to (21) and (22)].
The remaining task is to show that, if M satisfies (4), then
D is invertible and Q ( f ) can be uniquely determined under
the assumptions of Theorem 1. In addition, show that Q ( f )
satisfies (19), which together with Proposition 1 completes the
proof.

C. Useful Lemmas
To complete the proof we rely on some useful results shown

in [3], [4], and [18] that are summarized below.
First consider the invertibility of D. For τ ∈ �0, 1

4

�
, define

the event

E1,τ :=
����p−1 D − D

���
2

≤ τ
�
.

Let δ, � be small positive numbers and C a constant, which
are independent of the parameters K , M , N and L, and may
vary from instance to instance. Then we have the following
lemma which, in addition to the invertibility of D, also
guarantees linear independence of {a� ( fk)} fk∈T as required
in Proposition 1.
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Lemma 1 [3], [4], [18]: Assume �T ≥ 1
n and n ≥ 64

and let τ ∈ �0, 1
4

�
. Then, D is invertible, D is invertible

on E1,τ , {a� ( fk)} fk∈T are linearly independent on E1,τ , and
P
�
E1,τ

� ≥ 1 − δ if

M ≥ 50

τ 2 K log
2K

δ
.

On E1,τ , we introduce the partitions D
−1 = �L R

�
and

D−1 = �L R
�
, where L, R, L and R are all 2K ×K matrices.

For l = 0, 1, 2, let

vl ( f ) = c−l
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K(l)H
( f − f1)
...

K(l)H
( f − fK )

c−1
0 K(l+1)H

( f − f1)
...

c−1
0 K(l+1)H

( f − fK )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(31)

and similarly define its deterministic analog vl ( f ), where f j ∈
T and the superscript H denotes the complex conjugate for a
scalar. It follows that on the event E1,τ ,�

α

c0β

�
= D

−1
�
�

0

�
= L�, (32)

c−l
0 Q

(l)
( f ) =

�
fk∈T

αkc−l
0 K(l)

( f − fk)

+
�
fk∈T

c0βk · c−(l+1)
0 K(l+1)

( f − fk)

= vH
l ( f ) L�

:=
*
�, L

H
vl ( f )

+
, (33)

where the notation of inner-product is abused since the result
of the product is a vector rather than a scalar.

We write L
H

vl ( f ) in (33) in three parts:

L
H

vl ( f ) = L Hvl ( f ) + L
H

(vl ( f ) − pvl ( f ))

+
�

L − p−1 L
�H

pvl ( f ) ,

which results in the following decomposition of c−l
0 Q

(l)
( f ):

c−l
0 Q

(l)
( f ) =

*
�, L

H
vl ( f )

+

=
*
�, L H vl ( f )

+

+
*
�, L

H
(vl ( f ) − pvl ( f ))

+

+
,
�,
�

L − p−1 L
�H

pvl ( f )

-

= c−l
0 Q(l) ( f ) + I l

1 ( f ) + I l
2 ( f ) , (34)

where we have defined

I l
1 ( f ) :=

*
�, L

H
(vl ( f ) − pvl ( f ))

+
,

I l
2 ( f ) :=

,
�,
�

L − p−1 L
�H

pvl ( f )

-
.

As a result of (34), a connection between Q ( f ) and
Q ( f ) is established. Our goal is to show that the random

perturbations I l
1 ( f ) + I l

2 ( f ), l = 0, 1, 2 can be arbitrarily

small when M is sufficiently large, meaning that c−l
0 Q

(l)
( f )

is concentrated around c−l
0 Q(l) ( f ). To this end, we need the

following results shown in [3].
Lemma 2 [3]: Assume �T ≥ 1

n , let τ ∈ �
0, 1

4

�
, and

consider a finite set Tgrid = { fd } ⊂ T. Then, we have

P

.
sup

fd∈Tgrid

���L
H

(vl ( fd ) − pvl ( fd))
���

2

≥ 4

/
22l+3

0
K

M
+ n

M
aσ l

1
, l = 0, 1, 2

2

≤ 64
��Tgrid

�� e−γ a2 + P
�
Ec

1,τ

�

for some constant γ > 0, where σ 2
l = 24l+1 M

n2 max
�

1, 24 K√
M

�

and

0 < a ≤
⎧
⎨
⎩

√
2M

1
4 , if 24 K√

M
≥ 1,

√
2

4

#
M
K , otherwise.

Lemma 3 [3]: Assume �T ≥ 1
n . On the event E1,τ , we have����

�
L − p−1 L

�H
pvl ( f )

����
2

≤ Cτ

for some constant C > 0.

D. Analysis of Q( f ) − Q( f ) and Its Derivatives

In this subsection we show that the quantities c−l
0 Q

(l)
( f )−

c−l
0 Q(l) ( f ), l = 0, 1, 2 can be arbitrarily small on the unit

circle. We first consider a set of finite grid points Tgrid ⊂ T

and define the event

E2 :=
�

sup
fd∈Tgrid

c−l
0

���Q
(l)

( fd ) − Q(l)( fd )
���

2
≤ �, l = 0, 1, 2

�
.

The following result states that E2 occurs with high probability
if M is sufficiently large.

Proposition 2: Suppose Tgrid ⊂ T is a finite set of grid
points. Under the assumptions of Theorem 1, there exists a
numerical constant C such that if

M ≥ C
1

�2 max

�
log2

��Tgrid
��

δ
,

K log
K

δ

/
1 + 1

L
log

��Tgrid
��

δ

1�
, (35)

then

P (E2) ≥ 1 − δ.

To prove Proposition 2, we need to show that both I l
1 ( f )

and I l
2 ( f ) are small on Tgrid. To make the lower bound on M

decrease as L increases, inspired by [24], we use the following
lemma that generalizes the Bernstein inequality for Steinhaus
sequences in [55, Proposition 16] to higher dimensions.

Lemma 4 [24]: Let 0 �= w ∈ C
K and


φk
�K

k=1 be a series
of independent random vectors that are uniformly distributed
on the complex sphere S

2L−1. Then, for all t > �w�2,

P

/�����
K�

k=1

wkφk

�����
2

≥ t

1
≤ e

−L



t2

�w�2
2
−log t2

�w�2
2
−1

�

. (36)
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The following result will be used to move the dependence
on L from the upper bound on the probability in (36) to the
sample size M .

Lemma 5: Let y(x) ≥ 1 be the solution to the equation
y − log y − 1 = x for x ≥ 0. Then, y(x) is monotonically
increasing in x and 1 + x ≤ y(x) ≤ 2(1 + x).

Proof: See Appendix A.
Applying Lemmas 4 and 5, we show in the following two

lemmas that both I l
1 ( f ) and I l

2 ( f ) can be arbitrarily small on
Tgrid with M being a decreasing function of L.

Lemma 6: Under the assumptions of Theorem 1, there
exists a numerical constant C such that if

M ≥ C max

	
1

�2 K

/
1 + 1

L
log

��Tgrid
��

δ

1
,

1

�2 log2

��Tgrid
��

δ
, K log

K

δ

�
,

then we have

P

�
sup

fd∈Tgrid

���I l
1 ( fd )

���
2

≤ �, l = 0, 1, 2

�
≥ 1 − 9δ.

Proof: See Appendix B.
Lemma 7: Under the assumptions of Theorem 1, there

exists a numerical constant C such that if

M ≥ C
1

�2 K log
K

δ

/
1 + 1

L
log

��Tgrid
��

δ

1
,

then we have

P

�
sup

fd∈Tgrid

���I l
2 ( fd )

���
2

< �, l = 0, 1, 2

�
≥ 1 − 6δ.

Proof: See Appendix C.
Proposition 2 is a direct consequence of combining

Lemmas 6 and 7. We next extend Proposition 2 from the set
of finite grid points Tgrid to the whole unit circle T. To this
end, for any f ∈ T, we make the following decomposition:

Q
(l)

( f ) − Q(l) ( f )

=
�

Q
(l)

( f ) − Q
(l)

( fd )
�

+
�

Q
(l)

( fd ) − Q(l) ( fd )
�

+
�

Q(l) ( fd ) − Q(l) ( f )
�

. (37)

Because (37) holds for any fd ∈ Tgrid, the inequalities in (38)
then follow (shown at the bottom of this page).

The second term in (38) can be arbitrarily small according
to Proposition 2. We next show that the first term can also

be arbitrarily small. Recall that c−l
0 Q

(l)
( f ) =

*
�, L

H
vl ( f )

+
,

c−l
0 Q(l) ( f ) = ��, L Hvl ( f )

�
, and thus

c−l
0

�
Q

(l)
( fd ) − Q

(l)
( f )
�

+ c−l
0

�
Q(l) ( fd ) − Q(l) ( f )

�

=
*
�, L

H
(vl ( fd ) − vl ( f )) + L H (vl ( fd ) − vl ( f ))

+
.

(39)

The magnitudes of L H (vl ( f ) − vl ( fd )) and L
H

(vl ( f )) −
vl ( fd ) in (39) are controlled in the following lemma.

Lemma 8: Assume �T ≥ 1
n . On the event E1,τ , we have

���L H (vl ( f ) − vl ( fd ))
���

2
≤ Cn2 | f − fd | , (40)

���L
H

(vl ( f ) − vl ( fd ))
���

2
≤ Cn3 | f − fd | (41)

for f, fd ∈ T and some constant C > 0.
Proof: See Appendix D.

Applying Lemmas 8, 4 and 5, we show in the following
lemma that the first term on the right hand side of (38) can
be arbitrarily small if Tgrid is properly chosen, where the grid
size
��Tgrid

�� decreases with L.
Lemma 9: Suppose Tgrid is a finite set of uniform grid

points. Under the assumptions of Theorem 1, there exists a
constant C such that if M ≥ C K log K

δ and

��Tgrid
�� =
3

C
n3

�

0
1 + 1

L
log

1

δ

4
, (42)

then

P



sup
f ∈T

inf
fd∈Tgrid

c−l
0

���
�

Q
(l)

( f ) − Q
(l)

( fd )
�

+
�

Q(l) ( fd ) − Q(l) ( f )
����

2
< �, l = 0, 1, 2

�

≥ 1 − 6δ.

Proof: See Appendix E.
Combining Proposition 2 and Lemma 9, we have the fol-

lowing proposition, where the bound on M in (43) is obtained
by modifying (35) using (42) with the relaxation

��Tgrid
�� =
3

C
n3

�

0
1 + 1

L
log

1

δ

4

≤ C
n3

�

0
2 log

1

δ

≤ √
2C

n3

�
√

δ
.

sup
f ∈T

c−l
0

���Q
(l)

( f ) − Q(l) ( f )
���

2

≤ sup
f ∈T

inf
fd∈Tgrid

�
c−l

0

���
�

Q
(l)

( f ) − Q
(l)

( fd )
�

+
�

Q(l) ( fd ) − Q(l) ( f )
����

2
+ c−l

0

���Q
(l)

( fd ) − Q(l) ( fd )
���

2

�

≤ sup
f ∈T

inf
fd∈Tgrid

c−l
0

���
�

Q
(l)

( f ) − Q
(l)

( fd )
�

+
�

Q(l) ( fd ) − Q(l) ( f )
����

2
+ sup

fd∈Tgrid

c−l
0

���Q
(l)

( fd ) − Q(l) ( fd )
���

2
. (38)
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Proposition 3: Under the assumptions of Theorem 1, there
exists a numerical constant C such that if

M ≥ C
1

�2 max

	
log2 n

�δ
, K log

K

δ



1 + 1

L
log

n

�δ

��
, (43)

then with probability 1 − δ, we have

sup
f ∈T

c−l
0

���Q
(l)

( f ) − Q(l) ( f )
���

2
≤ �, l = 0, 1, 2. (44)

E. Completion of the Proof
We have shown by Proposition 3 that Q( f ) (and its deriv-

atives) can be arbitrarily close to Q( f ) (and its derivatives)
with high probability provided that M satisfies (43). Following
the same steps as in [56], we can show that Q( f ) also
satisfies (21), (22) and (23), if � is taken to be a small value.
In particular, it follows from (22) and (44) that for f ∈ F ,��Q( f )

��
2 ≤ �Q( f )�2 + ��Q( f ) − Q( f )

��
2

≤ 1 − c2 + �. (45)

For f ∈ Nk , it follows from (44) and the proof
of [56, Lemma 6.8] that�����

d2
��Q ( f )

��2
2

d f 2 − d2 �Q ( f )�2
2

d f 2

�����
≤
�

8C1� + 4�2
�

c2
0

≤ 8

3
π2
�

8C1� + 4�2
�

n2,

where C1 is a constant. Then,

d2
��Q ( f )

��2
2

d f 2

≤ d2 �Q ( f )�2
2

d f 2 +
�����
d2
��Q ( f )

��2
2

d f 2 − d2 �Q ( f )�2
2

d f 2

�����

≤



−2c1 + 8

3
π2
�

8C1� + 4�2
��

n2. (46)

Letting

� = 1

2
min

	
c2,

3c1

4π2 (8C1 + 4)

�
(47)

and substituting (47) into (45) and (46), we have��Q( f )
��

2 ≤ 1 − c�
2, f ∈ F , (48)

d2
��Q( f )

��2
2

d f 2 ≤ −2c�
1n2, f ∈ Nk, (49)

where c�
1 and c�

2 are positive constants as well. By con-

secutively applying
��Q( fk)

��2
2 = 1 (according to (27)),

d
��Q( f )

��2
2

d f

���
f = fk

= 0 (according to (28)) and (49), we have for

f ∈ Nk ,

��Q( f )
��2

2 = 1 +
5 f

fk

d
��Q(s)

��2
2

ds
ds

= 1 +
5 f

fk

ds
5 s

fk

d2
��Q(t)

��2
2

dt2 dt

≤ 1 +
5 f

fk

ds
5 s

fk

−2c�
1n2dt

= 1 − c�
1n2( f − fk)

2. (50)

It follows from (48) and (50) that Q( f ) satisfies (19).
Therefore, Q( f ) is a polynomial satisfying the constraints
in (18)–(20), as required in Proposition 1. Finally, substituting
(47) into (43) gives the bound on M in (4), completing the
proof.

VI. CONCLUSION

A rigorous analysis was performed in this paper to confirm
the observation that the frequency estimation performance of
atomic norm minimization improves as the number of channels
increases. The sample size per channel that ensures exact
frequency estimation from noiseless data was derived as a
decreasing function of the number of channels. Numerical
results were provided that agree with our analysis.

While we have shown the performance gain of the use of
multichannel data in reducing the sample size per channel,
future work is to answer the question as to whether the reso-
lution can be improved by increasing the number of channels.
A positive answer to the question was suggested by empirical
evidence presented in [18], [19], [22], and [25]. Another
interesting and important future work is to analyze the noise
robustness of atomic norm minimization with compressive
data.

APPENDIX

A. Proof of Lemma 5
Consider x as a function of y ≥ 1:

x(y) = y − log y − 1.

Since the derivative x �(y) = 1 − 1/y > 0, as y > 1, we have
that x(y) ≥ 0 is monotonically increasing on [1,+∞).
As a result, y(x) is the inverse function of x(y) and is
monotonically increasing.

To show the second part of the lemma, we first note that

y = x + log y + 1 ≥ x + 1.

Then, using the fact that log y ≤ 1
2 y for any y ≥ 1, we have

x = y − log y − 1 ≥ y − 1

2
y − 1 = 1

2
y − 1.

It follows that y ≤ 2(1 + x), completing the proof.

B. Proof of Lemma 6
The proof of this lemma follows similar steps as those of

the proofs of [3, Lemma IV.8] and [56, Lemma 6.6]. A main
difference is the use of Lemma 4, rather than Hoeffding’s
inequality.

Recall that I l
1 ( f ) =

*
�, L

H
(vl ( f ) − pvl ( f ))

+
, where the

rows of � are independent random vectors that are uniformly
distributed on the unit sphere. Conditioned on a particular
realization ω ∈ E where

E =
	
ω : sup

fd∈Tgrid

���L
H

(vl ( fd ) − pvl ( fd ))
���

2
< λl ,

l = 0, 1, 2, 3

�
,
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Lemma 4 and the union bound then imply, for � > λl ,

P

/
sup

fd∈Tgrid

���
*
�, L

H
(vl ( fd ) − pvl ( fd))

+���
2

> �

�����ω
1

≤ ��Tgrid
�� e

−L



�2

λ2
l
−log �2

λ2
l
−1
�

. (51)

It immediately follows that

P

/
sup

fd∈Tgrid

���
*
�, L

H
(vl ( fd ) − pvl ( fd ))

+���
2

> �

1

≤ ��Tgrid
�� e

−L



�2

λ2
l
−log �2

λ2
l
−1
�

+ P
�
Ec� .

Setting

λl = 4

/
22l+3

0
K

M
+ n

M
aσ̄l

1
(52)

in E and applying Lemma 2 yields

P

/
sup

fd∈Tgrid

���
*
�, L

H
(vl ( fd ) − pvl ( fd ))

+���
2

> �

1

≤ ��Tgrid
�� e

−L



�2

λ2
l
−log �2

λ2
l
−1
�

+ 64
��Tgrid

�� e−γ a2 + P
�
Ec

1,τ

�
. (53)

For the second term to be no greater than δ, a is chosen
such that

a2 = γ −1 log
64
��Tgrid

��
δ

and it will be fixed from now on. The first term is no greater
than δ if

�2

λ2
l

− log
�2

λ2
l

− 1 ≥ 1

L
log

��Tgrid
��

δ
.

Applying Lemma 5, this holds if

�2

λ2
l

≥ 2

/
1 + 1

L
log

��Tgrid
��

δ

1
. (54)

Note that (54) implies � > λl , which is required to verify (51).
We next derive a bound for M given (54). First consider

the case of 24 K/
√

M ≥ 1. The condition in Lemma 2 is
a ≤ √

2M1/4 or equivalently

M ≥ 1

4
a4 = 1

4
γ −2 log2 64

��Tgrid
��

δ
. (55)

In this case, we have aσ̄l ≤ 22l+3
√

M K
n , which inserting

into (52) results in

1

λ2
l

= 1

16



22l+3

#
K
M + n

M aσ̄l

�2 ≥ 1

42l+5

M

K
.

Now consider the other case of 24 K/
√

M < 1, which will
be discussed in two scenarios. If 32s ≥ a2, then aσ̄l ≤
22l+3

√
M K
n which again gives the above lower bound on 1

λ2
l
.

Otherwise if 32s ≤ a2, then λl ≤ 22l+3
√

2 a√
M

and

1

λ2
l

≥ 1

24l+7

M

a2 .

Therefore, to make (54) hold true, it suffices to take M
satisfying (55) and

M min



1

42l+5

1

K
,

1

24l+7

1

a2

�
≥ 2

�2

/
1 + 1

L
log

��Tgrid
��

δ

1
.

By the arguments above, the first term on the right hand side
of (53) is no greater than δ if

M ≥ max

	
2

�2 42l+5 K

/
1 + 1

L
log

��Tgrid
��

δ

1
,

2

�2 24l+7γ −1 log
64
��Tgrid

��
δ

/
1 + 1

L
log

��Tgrid
��

δ

1
,

1

4
γ −2 log2 64

��Tgrid
��

δ

�
. (56)

According to Lemma 1, the last term on the right hand side
of (53) is no greater than δ if

M ≥ 50

τ 2 K log
2K

δ
. (57)

Setting τ = 1
4 , combining (56) and (57) together,

absorbing all constants into one, and using the inequality

log |Tgrid|
δ

�
1 + 1

L log |Tgrid|
δ

�
≤ 2 log2 |Tgrid|

δ , we have

M ≥ C max

	
1

�2 K

/
1 + 1

L
log

��Tgrid
��

δ

1
,

1

�2 log2

��Tgrid
��

δ
, K log

K

δ

�

is sufficient to guarantee

sup
fd∈Tgrid

���I l
1 ( fd )

���
2

≤ �

with probability at least 1 − 3δ. Applying the union bound
then completes the proof.

C. Proof of Lemma 7

Recall that I l
2 ( f ) =

*
�,
�
L − p−1 L

�H
pvl ( f )

+
. According

to Lemma 3, we have on the set E1,τ����
�

L − p−1 L
�H

pvl ( f )

����
2

≤ Cτ

for some constant C > 0. Applying Lemma 4 and the union
bound gives for � > Cτ ,

P

/
sup

fd∈Tgrid

���I l
2 ( fd )

���
2

> �

1

≤ ��Tgrid
�� e−L

�
�2

Cτ2 −log �2

Cτ2 −1
�

+ P
�
Ec

1,τ

�
.

To make the first term no greater than δ, we take τ such that

�2

Cτ 2 − log
�2

Cτ 2 − 1 ≥ 1

L
log

��Tgrid
��

δ
.

According to Lemma 5, it then suffices to fix τ such that

1

τ 2 = C
2

�2

/
1 + 1

L
log

��Tgrid
��

δ

1
.
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To make the second term no greater than δ, it suffices by
Lemma 1 to take

M ≥ C

τ 2 K log
2K

δ

= C
1

�2 K log
2K

δ

/
1 + 1

L
log

��Tgrid
��

δ

1
.

Application of the union bound proves the lemma.

D. Proof of Lemma 8
Recall by inserting (24) into vl( f ) as given in (31) that

vl( f ) = 1

n

j=2n�
j=−2n



i2π j

c0

�l

gn( j)ei2π f j e( j)

where

e( j) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−i2π f1 j

...

e−i2π fK j

i2π j
c2

0
e−i2π f1 j

...
i2π j

c2
0

e−i2π fK j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It follows that

vl ( f ) − vl ( fd )

= 1

n

j=2n�
j=−2n



i2π j

c0

�l

gn( j)
�

ei2π f j − ei2π fd j
�

e( j).

Using the following bounds shown in [3], [4]:

�gn�∞ ≤ 1,����
i2π j

c0

���� ≤ 4 when n ≥ 2,

�e( j)�2
2 ≤ 14K when n ≥ 4

and the bound���ei2π f j − ei2π fd j
��� =
���eiπ( f + fd ) j · 2i sin (π( f − fd ) j)

���
= 2 |sin (π( f − fd ) j)|
≤ 2π | f − fd | · | j |
≤ 4nπ | f − fd | ,

we have

�vl ( f ) − vl ( fd )�2

≤ 1

n

j=2n�
j=−2n

����
i2π j

c0

����
l

|gn( j)|
���ei2π f j − ei2π fd j

��� �e( j)�2

≤ 1

n
· (4n + 1) · 4l · 4nπ | f − fd | · 14K

≤ CnK | f − fd |
≤ Cn2 | f − fd | .

We then obtain���L H (vl ( f ) − vl ( fd ))
���

2
≤ �L�2 �vl ( f ) − vl ( fd )�2

≤ Cn2 | f − fd | ,
since �L�2 ≤ ��D−1

��
2 ≤ 1.568 according to [4].

The bound in (41) can be shown using similar arguments,
while the exponent for n increases from 2 to 3 since

��L
��

2 ≤
2
��D−1

��
2 p−1 ≤ C n

M ≤ Cn according to [3].

E. Proof of Lemma 9

It follows from Lemma 8 that���L
H

(vl ( fd ) − vl ( f )) + L H (vl ( fd ) − vl ( f ))
���

2

≤
���L

H
(vl ( fd ) − vl ( f ))

���
2
+
���L H (vl ( fd ) − vl ( f ))

���
2

≤ Cn3 | f − fd | .
We then recall (33) and apply Lemma 4, having for � >
Cn3 | f − fd |,

P

�
c−l

0

���
�

Q
(l)

( fd ) − Q
(l)

( f )
�

+
�

Q(l) ( fd ) − Q(l) ( f )
� ���

2
≥ �
�

≤ e
−L



�2

Cn6 | f − fd |2 −log �2

Cn6 | f − fd |2 −1
�

+ P
�
Ec

1,τ

�
.

For the second term to be no greater than δ, it suffices to
take M ≥ C K log K

δ by Lemma 1. For the first term to be no
greater than δ, according to Lemma 5, it suffices to let

�2

Cn6 | f − fd |2 ≥ 2



1 + 1

L
log

1

δ

�
,

or equivalently

1

| f − fd | ≥ C
n3

�

0
1 + 1

L
log

1

δ
. (58)

Therefore, to guarantee, for any f ∈ T, that some fd ∈ Tgrid
can always be found such that (58) holds, it suffices to let
Tgrid be a uniform grid with

��Tgrid
�� =
3

C
n3

�

0
1 + 1

L
log

1

δ

4
.

Application of the union bound completes the proof.

F. Proof of Corollary 1
Similar to atomic norm minimization in Theorem 1, to cer-

tify optimality for �2,1 norm minimization in (15) it suffices to
construct a dual certificate Q ( f ) = aH ( f ) V satisfying (see
also [24, Th. 3.1])

Q ( fk) = φk, fk ∈ T , (59)��Q ( f )
��

2 < 1, f ∈ 6fg
�G

g=1 \T , (60)

V j = 0, j ∈ �c. (61)

The only difference from the dual certificate for atomic norm
minimization lies in that only finitely many constraints are
involved in (60). Therefore, the dual certificate constructed
in Section V for atomic norm minimization is naturally a
certificate for �2,1 norm minimization.
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