
482 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 1, JANUARY 2019

The Distortion-Rate Function of
Sampled Wiener Processes

Alon Kipnis , Student Member, IEEE, Andrea J. Goldsmith, Fellow, IEEE, and Yonina C. Eldar , Fellow, IEEE

Abstract— We consider the recovery of a continuous-time
Wiener process from a quantized or a lossy compressed version
of its uniform samples under limited bitrate and sampling rate.
We derive a closed-form expression for the optimal tradeoff
among sampling rate, bitrate, and quadratic distortion in this
setting. This expression is given in terms of a reverse waterfilling
formula over the asymptotic spectral distribution of a sequence of
finite-rank operators associated with the optimal estimator of the
Wiener process from its samples. We show that the ratio between
this expression and the standard distortion rate function of the
Wiener process, describing the optimal tradeoff between bitrate
and distortion without a sampling constraint, is only a function
of the number of bits per sample. We also consider a sub-optimal
lossy compression scheme in which the continuous-time process
is estimated from the output of an encoder that is optimal with
respect to the discrete-time samples. We show that the latter is
strictly greater than the distortion under optimal encoding but
only by at most 3%. We, therefore, conclude that near optimal
performance is attained even if the encoder is unaware of the
continuous-time origin of the samples.

Index Terms— Brownian motion, Wiener process, sampling,
remote source coding, lossy compression, analog to digital
conversion, compress and estimate, Brownian bridge.

I. INTRODUCTION

THE Wiener process is a Gaussian stochastic process with
stationary independent increments and continuous sample

paths, with extensive applications in theoretical and applied
science. In particular, the Wiener process models motion of
diffusion particles, it is the driving process of risky financial
assets in financial mathematics [2], it arises as the limiting law
of sequential hypotesis testing procedures [3], it provides the
basis for continuous-time martingale theory [4], and it is used
to model phase noise in some communication channels [5].
In this work we are concerned with the problem of encoding
the path of a Wiener process using a limited number of bits per

Manuscript received September 5, 2016; revised August 31, 2018; accepted
October 1, 2018. Date of publication October 29, 2018; date of current version
December 19, 2018. This work was supported in part by the NSF Center for
Science of Information under Grant CCF-0939370 and in part by NSF–BSF
under Grant 1609695. This paper was presented in part at the 2016 IEEE
International Symposium on Information Theory [1].

A. Kipnis is with the Department of Statistics, Stanford University, Stanford,
CA 94305 USA.

A. J. Goldsmith is with the Department of Electrical Engineering, Stanford
University, Stanford, CA 94305 USA.

Y. C. Eldar is with the Department of Electrical Engineering, Technion–
Israel Institute of Technology, Haifa 32000, Israel.

Communicated by M. Bloch, Associate Editor for Shannon Theory.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2018.2878446

Fig. 1. Uniform sampling and source coding system model.

unit time (bitrate). This is a source coding (lossy compression)
problem that arises when a random signal whose probability
law follows that of the Wiener process is stored or processed in
digital memory, or transmitted over a link of limited capacity.

The optimal trade-off between bitrate and distortion in
encoding and reconstructing the Wiener process is described
by its distortion-rate function (DRF). This DRF was derived
by Berger [6], and is based on an encoding of the coefficients
of the Karhunen-Lòeve (KL) expansion of the Wiener process.
These coefficients are obtained by integrating the Wiener
path with respect to the KL basis elements. In practice,
however, implementing such integration using purely analog
components is extremely challenging since the Wiener process
has equal energy in all its frequency components, whereas
electronic devices tend to attenuate high frequencies. Conse-
quently, algorithms based on the KL expansion typically oper-
ate in discrete-time or require some sort of time-discretization,
namely, sampling [7]. In contrast to other processes that
are bandlimited or have a finite rate of innovation [8], the
self-similarity property of the Wiener path implies that its
fluctuations scale with time resolution. It is therefore impos-
sible to obtain an equivalent discrete-time representation of
the Wiener process by sampling its path [9]. Consequently,
Berger’s achievability scheme, as well as any source coding
approach that is based on transforming the Wiener path to
discrete coefficients, is prone to sampling error in addition to
the quantization distortion due to the bitrate constraint.

In order to account for the effect of sampling on the overall
distortion in encoding the Wiener process, we consider in this
work a combined setup of sampling and source coding as
described in Fig. 1. In this setup the continuous-time Wiener
process W(·) = {Wt }t≥0 is first uniformly sampled at rate fs

over the time interval [0, T ], resulting in the finite dimensional
random vector of samples W̄ �T fs �. This vector is then encoded
using no more than T R bits, and ultimately the original

0018-9448 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3798-8035
https://orcid.org/0000-0003-4358-5304


KIPNIS et al.: DISTORTION-RATE FUNCTION OF SAMPLED WIENER PROCESSES 483

Fig. 2. Two source coding approaches. Upper Path: Estimate-and-Compress (EC). Lower Path: Compress-and-estimate (CE). EC achieves the minimal
distortion in the combined sampling and source coding problem of Fig. 1. CE does not require parameters of the continuous-time model at the encoder.

Wiener path is reconstructed from this encoded version under
a mean squared error (MSE) distortion criterion. We analyze
the minimal distortion in the asymptotic regime of a large
time horizon T as a function of the sampling rate fs and the
bitrate R. The optimal tradeoff among the three is described
by the function D( fs , R), providing the minimal quadratic
distortion in reconstructing the Wiener path when the sampling
rate is fs and the bitrate is R. Consequently, the ratio beteween
D( fs , R) and the DRF of the Wiener process at bitrate R
from [6] represents the excess distortion due to a sampling
rate constraint fs in encoding the Wiener process.

In the combined sampling and source coding setting illus-
trated in Fig. 1, the encoder has no direct access to the
realizations of the source it is trying to describe. Therefore,
this problem falls within the regime of indirect source cod-
ing (ISC), a.k.a. remote or noisy source coding [10, Ch. 3.5].
It is well-known that the optimal source code in such problems
is attained by first estimating the original path from the
samples, and then encoding this estimate using a source code
that is optimal with respect to the estimated process [11].
As we explain in Section IV, this estimate-and-compress (EC)
strategy allows us to characterize D( fs , R) by considering
two separate problems: A minimal MSE (MMSE) estimation
problem that does not involve coding, and a standard source
coding problem with respect to the process resulting from this
estimation.

Although the EC strategy leads to the minimal distortion
under a sampling rate fs and a bitrate R, it has an interesting
caveat: It requires the availability of the sampling rate fs at the
encoder, or, equivalently, the time horizon T or the intensity
of the process σ 2 � E (Wt+1 − Wt )

2 (any one of σ 2, T
and fs uniquely determines the other two). In other words,
encoding in EC depends on the continuous-time model or the
mechanism by which the samples were acquired. In some
scenarios, the encoder may not be informed of any of these
parameters or may be unaware of the continuous-time ori-
gin of the samples it is given. This situation arises, for
example, when a model based on a continuous-time Wiener
process is fitted to the measurements only after these were
quantized or compressed to satisfy the bit constraint in the
acquisition process. In this scenario of missing informa-
tion, the encoder and decoder may operate according to a
compress-and-estimate (CE) source coding strategy, as illus-
trated in Fig. 2: the encoder employs an optimal source code
to compress the discrete-time samples subject to a quadratic
distortion criterion. The only information required by the

encoder in order to construct such an optimal code is the inten-
sity of the Gaussian random walk resulting from uniformly
sampling the Wiener process. This intensity equals σ 2/ fs , and
can be estimated from the samples. The decoder, provided
with the sampling rate (equivalently, T or σ 2), estimates the
continuous-time path from the output of the encoder. The
resulting distortion under a CE approach provides an upper
bound on D( fs , R), and describes the excess distortion due
to ignoring the continuous-time origin of the samples in the
encoding stage.

In this work we analyze the distortion under a CE source
coding approach when encoding is performed with respect to
the random codebook that attains the DRF of the discrete-
time vector of samples. We show that although encoding
with respect to the samples as in CE is not equivalent to
encoding with respect to the estimation of the Wiener process
from its samples, the ratio between the distortion under this
CE coding scheme is no more than 1.027 times higher than
D( fs , R). That is, while information removed at the encoding
stage differs between CE and EC, the performance difference
between the two is relatively minor.

The main contribution of this paper is the characterization
of the expected MSE distortion in the following cases:

(1) Minimal distortion under all possible bitrate R represen-
tations of uniform rate fs samples of the Wiener process
(the function D( fs , R)).

(2) Minimal distortion in the CE scenario where the uniform
rate fs samples are encoded using a random codebook
chosen to minimize the MSE distortion with respect to
the sequence of samples. We denote this distortion by
DCE( fs , R).

The characterization of D( fs , R) is achieved by first providing
an information theoretic description of this function as the
solution of a sequence of optimization problems involving
only probability density functions of limited mutual informa-
tion rate. This characterization leads to a similar information
expression for the process obtained by estimating the Wiener
process from its uniform samples. The KL transform of this
signal defines a sequence of finite-rank operators, and the
expression for D( fs , R) is given in terms of the limiting
eigenvalue distribution of these operators. Finally, we analyze
the ratio between D( fs , R) and the DRF of the Wiener process
from [6], as well as the the ratio between D( fs , R) and the
MMSE in estimating the Wiener process from its rate fs

uniform samples. These ratios describe the excess distortion
due to sampling in the lossy compression of the Wiener
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process, and the excess distortion due to a bitrate constraint
in the sampling of the Wiener process, respectively. We show
that both excess distortions are only a function of the number
of bits per sample R/ fs .

As opposed to D( fs , R) that describes the minimal dis-
tortion under any source code, in CE we consider a specific
source code: the compression of the samples of the Wiener
process using the achievable scheme for the DRF of the
discrete-time Wiener process described in [6]. We show that
when this source coding scheme is employed with coding
bitrates converging to R from above as the time horizon goes
to infinity, the resulting distortion converges to an expression
we denote as DCE( fs , R). This expression is defined in terms
of the asymptotic eigenvalue distribution of the operators
defining D( fs , R), as well as the asymptotic eigenvalues dis-
tribution of the covariance matrix of the samples of the Wiener
process. Finally, we compare DCE( fs , R) with D( fs , R), and
conclude that the ratio between the two is bounded from above
by 1.027. That is, the performance loss in using CE compared
to the optimal source coding scheme is at most 2.7%. This loss
can be seen as the penalty in ignoring the continuous-time ori-
gin of the samples at the encoder, not knowing the parameters
of the continuous time model from which these samples were
obtained, or possible suboptimality of the specific source code
used to compress the discrete time samples.

We conclude the introduction by reviewing some related
work. The DRF of the Wiener process was derived by
Berger [6]. Gray [12] established similar results for the
more general family of unstable auto-regressive processes. See
also [13] for applications of Berger’s and Gray’s works in
reliable communication of unstable processes [13]. The work
of Neuhoff and Pradhan [14] derives conditions under which
the DRF of a continuous-time stationary Gaussian process,
possibly non-bandlimited, can be attained by encoding its
samples obtained at asymptotically high rates. In contrast
to [14], here we consider a non-stationary source signal
and are interested in the optimal source coding performance
under a fixed sampling rate, rather than the distortion in the
limit of infinitesimally dense sampling grids. Closely related
works are [15]–[17], which consider either the combined
problem of lossy compression and sampling or other forms of
dimensionality reduction. Our combined sampling and source
coding setting also falls under the fixed sampling scenario
with an informed encoder and decoder of [18]. The work [19]
considers a problem of sampling a multi-dimensional Wiener
process with limited resources, although without a constraint
on the number of bits in representing the samples. A specific
scenario of sampling the Wiener process under a communica-
tion constraint is considered in [20], to which our function
D( fs , R) provides performance lower bounds. Unlike the
results described above, the combined sampling and source
coding setting of Fig. 1 allows us to derive the optimal tradeoff
between distortion, bitrate, and sampling rate under any dig-
ital representation of these samples. We previously explored
such tradeoffs for second-order Gaussian stationary processes
[21]–[23] and for sparse signals [24].

It is well known that in indirect source coding settings
such as in Fig. 1, the minimal distortion is attained via

an EC strategy [10, Ch. 3.5], [11], [25]. The CE setting
of [26] was proposed in order to study the performance in
cases where estimation before compression is impossible due
to lack of computation resources, missing information for
performing this estimation such as the sampling rate in our
setting, or simply an ad-hoc system design that is unaware of
the indirect source. CE performance was recently explored in a
compressed-sensing framework when the sampling matrix is
unavailable at the encoder [27]. In contrast, in our setting,
the source signal is not ergodic and the relation between
the source signal and its observations is described by a
deterministic pointwise sampling, hence the results of [26]
and [27] do not apply. A discrete-time version of our setting
is considered in [28].

The rest of this paper is organized as follows: In Section II
we define a combined sampling and source coding problem
for the Wiener process. In Section III we provide preliminary
results that are based on known source coding results with
respect to the Wiener process. We characterize the minimal
distortion in the combined sampling and source coding prob-
lem of Fig. 1 in Section IV. The distortion under the CE
approach is derived in Section V. Concluding remarks are
provided in Section VI.

II. PROBLEM FORMULATION

Let W(·) = {Wt , t ≥ 0} be a continuous-time Gaussian
process with zero mean, autocovariance function

KW (t, s) � E [Wt Ws] = σ 2 min{t, s}, t, s ≥ 0,

and W0 = 0 almost surely. The standard definition of the
Wiener process also requires that each realization of W(·) has
almost surely continuous paths [4]. In our setting, however,
only the weaker assumption of almost surely Riemann inte-
grability of the paths is required so that this path can be
approximated in discrete-time in the L2 sense.

We consider the system depicted in Fig. 1 to describe the
random waveform W(0:T ) � {Wt , t ∈ [0, T ]} using a code of
rate R bits per unit time. Unlike in the regular source coding
problem for the Wiener process considered in [6], we assume
that W(0:T ) is first uniformly sampled at frequency fs . Set
Ts � 1/ fs and let

NT � �T/Ts�
to be the number of samples obtained by sampling the Wiener
process over [0, T ] at rate fs . Denote the vector of samples by

W̄ NT �
�
Wn/ fs , n ∈ N ∩ [0, fs T ]�. (1)

Above and throughout the paper, we use capital letters to
denote random processes, random vectors and random vec-
tors, and lower case letters to denote their realization. The
superscript of a random vector denotes its dimension.

The encoder in Fig. 1 is a deterministic function

f : R
NT →

�
1, . . . , 2�T R��

that maps a real vector w̄NT ∈ R
NT to an index out of

2�T R� possible indices. The decoder, upon receiving the index
f (w̄NT ) ∈ {1, . . . , 2�T R�}, provides a reconstructed waveform
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ŵ(0:T ) = �
ŵt , t ∈ [0, T ]�. Without loss of generality we

assume that the decoder output is a member of the space of
square Lebesgue integrable functions L2[0, T ].

The optimal performance theoretically achievable (OPTA)
in terms of the distortion in estimating W(·) from its samples
is defined as

D( fs , R) = lim inf
T →∞ DOPTA

T (R) (2)

where

DOPTA
T (R) = inf

enc−dec

1

T

� T

0
E

�
Wt − Ŵt

�2
dt,

and the infimum is taken over all encoders and decoders to and
from a set of at most T R elements. We note that since W0 = 0,
replacing the limit infimum in (2) with the infimum over T
leads to the trivial solution D( fs , R) = 0. Our definition of
OPTA avoids this degenerate case.

Without loss of generality, the OPTA can be written as

D( fs , R) = lim inf
T →∞ inf

f
mmse

�
W(0:T )| f (W̄ NT )

�
, (3)

where

mmse
�

W(0:T )| f (W̄ NT )
�

�
� T

0
E

�
Wt − E

	
Wt | f (W̄ N

T )

�2

dt

is the MMSE in estimating W(0:T ) from f (W̄ NT ). That is,
compared to the definition of D( fs , R) in (3), we eliminate
the dependency on the decoder by assuming that this provides
the MMSE estimate of W(0:T ) given the output of the encoder.

The main goal of this paper is to derive an expression
for D( fs , R) in closed form, as well as to characterize
mmse

�
W(0:T )| f (W̄ NT )

�
under an encoder f that follows the

CE approach. Before doing so, we explore, in the next section,
the connection between these two distortions to the DRF of
the Wiener processes derived in [6] without sampling, and
to the MMSE in sampling the Wiener process without a bitrate
constraint.

III. PRELIMINARIES

In this section we review known results on the optimal MSE
attainable in encoding the continuous and discrete-time Wiener
processes, and derive connections between these results and
the combined sampling and source coding problem of Fig. 1.
In particular, we show how these results lead to upper and
lower bounds on D( fs , R). The notation and preliminary
results provided in this section are used throughout the paper.

A. The Distortion-Rate Function of the Wiener Process

It is shown in [6] that the OPTA in encoding the Wiener
process is given by Shannon’s DRF of this process:

DW (R) = 2σ 2

π2 ln 2
R−1 ≈ 0.292σ 2 R−1. (4)

That is, the minimal expected distortion attainable in recov-
ering a Wiener path from its encoded version is inversely
proportional to the number of bits per unit time in this
encoding. Compared to the combined sampling and source
coding problem described in Fig. 1 where the source code

is constrained to be a function of its uniform samples, (4)
represents the OPTA when the source code is any functional
of the Wiener path.

The achievability of (4) is based on the following procedure:
divide the interval [0, T ] into L identical sub-intervals, each
of length T 
 = T/L. For each l = 0, . . . L − 1, expand the
lth section of the path W(0:T ) according to the KL expansion
of the Wiener process over the interval [0, T 
]. The kth KL
coefficient in this expansion is given by

X̄ (l)
k � 1

T 


� T 


0
φk(t)

�
Wt−lT 
 − WlT 


�
dt, k ∈ N, (5)

where φk(t) is the kth KL eigenfunction of the Fredholm
integral equation of the second kind [29] over the interval
[0, T 
] with Kernel KW (t, s). For each k ∈ N, the sequence
(X (1)

k , . . . , X (L−1)
k ) consists of L i.i.d. Gaussian random vari-

ables with variance equal to the kth KL eigenvalue. We encode
this sequence using a single code of 2Rl T codewords that
is optimal with respect to their scalar Gaussian distribu-
tion, where Rl is determined using Kolmogorov’s waterfilling
formula [30]. The reconstruction waveform is obtained by
using the decoded KL coefficients and the KL eigenfunctions.
Finally, in order to avoid unbounded distortion due to inac-
curate block starting locations in reconstruction, Berger [6]
suggested to encode the sequence of block starting locations
{WlT 
, l = 0, . . . , L − 1} using a separate bitstream obtained
via a delta modulator [31].

It was shown in [6, Sec. IV] that by taking T and L to
infinity such that L/T goes to zero, the bitrate required to
encode {WlT 
, l = 0, . . . , L − 1} is negligible, hence it can be
provided to the decoder without increasing the overall bitrate.
As a result, the scheme above attains distortion as close to
DW (R) as desired while keeping the bitrate at most R.

As explained in the introduction, it is extremely challenging
to realize the integration in (5) without first sampling the
analog Wiener path. Instead, here we consider source coding
schemes for W(·) which assume that only the samples are
available at the encoder, rather than the entire continuous-
time path. The samples of W(·) define a discrete-time Wiener
process. In what follows we consider the optimal performance
in encoding this process according to an MSE criterion subject
to a bitrate constraint.

B. The Distortion-Rate Function of the
Discrete-Time Wiener Process

The autocovariance function of the discrete-time process
W̄[·] = �

Wn/ fs , n = 0, 1, . . .
�

obtained by sampling W(·) at
rate fs , is given by

E
�
W̄n W̄k

� = E
�
WnTs WkTs

� = σ 2

fs
min {n, k}.

The process W̄[·] is called a discrete-time Wiener process with
intensity σ 2/ fs (a.k.a. a Gaussian random walk). A closed
form expression for its DRF was also derived in [6], and can
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be written as follows:

D(R̄θ ) = σ 2

fs

� 1

0
min

�
SW̄ (φ), θ

�
dφ,

R̄θ = 1

2

� 1

0
log+ 

SW̄ (φ)/θ
�

dφ, (6)

where R̄ is the amount of bits per sample1 of the code and

SW̄ (φ) � 1

4 sin2 (πφ/2)
(7)

is the asymptotic density of the eigenvalues of the matrix
with entries min{n, k}, n, k = 0, . . . , N − 1, as N goes to
infinity. Expression (7) gives the distortion as a function of
the rate, or the rate as a function of the distortion, through
a joint dependency on the parameter θ . Such a parametric
representation is said to be of a waterfilling form, since
only the part of SW̄ (φ) below the water level parameter θ
contributes to the distortion.

Keeping the bitrate R = fs R̄ fixed and increasing fs , we
see that the asymptotic behavior of the DRF of W̄[·] as fs

goes to infinity is given by (6) when R̄ goes to zero or,
equivalently, when θ goes to infinity. The latter can be obtained
by expanding both expressions in (6) according to θ−1 which,
after eliminating θ , leads to

DW̄ (R̄) ∼ σ 2

fs

�
2

π2 ln 2R̄
+ R̄ ln 2

12
+ O(R̄−2)

�

= 2σ 2

π2 ln 2
R−1 + σ 2 ln 2

12

R

f 2
s

+ O( f −3
s ). (8)

Note that the first term in (8) is the DRF of the continuous-
time Wiener process (4). Thus, we have proven the following:

Proposition 1: Let W̄[·] be the process obtained by uni-
formly sampling the Wiener process W(·) at sampling rate fs .
Then

lim
fs→∞ DW̄ (R/ fs) = DW (R).

In fact, DW̄ (R/ fs ) is monotonically increasing in fs so that

sup
fs>0

DW̄ (R/ fs) = DW (R). (9)

Proposition 1 provides an intuitive explanation for a fact
observed in [6]: the DRF of a discrete-time Wiener process
at high distortion behaves as the DRF of a continuous-time
Wiener process. Proposition 1 shows that this fact is simply
the result of evaluating the DRF of the discrete-time Wiener
process W̄[·] at high sampling rates, while holding the bitrate
R fixed. Due to the high sampling rate, the number of bits
per sample R̄ = R/ fs goes to zero and the DRF of the
discrete-time Wiener process is evaluated at the large distortion
(low bit) limit. The fact that DW̄ (R/ fs) is monotonically
increasing in fs implies that the path of the sampled Wiener
process becomes harder to describe as the frequency at which
those samples are obtained increases.

1These units of measurements are consistent with our previous notations:
the DRF of a source is evaluated as the number of bits per source symbol
available for the code.

Fig. 3. Sample paths of a Wiener process W(·), its discrete-time samples
W̄[·], and it conditional expectation given these samples W̃(·).

Since the paths of the Wiener process are Riemann inte-
grable, the L2 distance between any reasonable reconstruction
technique (e.g., linear interpolation) of W(0:T ) from W̄ NT

converges to zero as fs goes to infinity. Therefore, in addition
to convergence of their respective DRFs as expressed in Propo-
sition 1, the path of the optimal reconstruction of W̄ NT from
its encoded version converges to the path of the reconstruction
of W(0:T ) from its encoded version in the L2 sense. It follows
that a distortion arbitrarily close to DW (R) can be obtained
by the following procedure:

(i) Choose T large enough such that the distortion under
Berger’s achievability scheme for W(0:T ) is close to
DW (R).

(ii) Take fs large enough such that DW (R) is close to
DW̄ (R/ fs).

(iii) Encode W̄ NT using a code that attains distortion close
to DW̄ (R/ fs).

(iv) Estimate W(0:T ) from the encoded version of W̄ NT .

Since this procedure falls under the system of Fig. 1, we nec-
essarily have lim inf fs→∞ D( fs , R) ≤ DW (R), and hence

lim
fs→∞ D( fs , R) = DW (R). (10)

Following the characterization of D( fs , R) in Section IV
below, we show that the convergence in (10) is inversely
quadratic in fs .

We now consider the other extreme in the combined sam-
pling and source coding of Fig. 1: finite sampling rate and
infinite bitrate.

C. Minimal MSE Under Sampling

A trivial lower bound on D( fs , R) is obtained by relaxing
the bitrate constraint in Fig. 1 by letting R go to infinity. Under
this relaxation, the function D( fs , R) reduces to the MMSE
in estimating the Wiener process from its samples, denoted
as mmse

�
W(·)|W̄[·]

�
. For t > 0, denote by t+ and t− the

two points on the grid ZTs closest to t , namely, t− = �t fs�Ts

and t+ = t fs�Ts . Because of the Markov property of W(·),
the MMSE in estimating Wt from the process W̄[·] is given by
linear interpolation between these two points:

W̃t � E

Wt |W̄[·]

� = E

Wt |Wt+, Wt−

�

= t+ − t

Ts
Wt− + t − t−

Ts
Wt+, (11)
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See Fig. 3 for an illustration of the path of the processes W(·),
W̄[·] and W̃(·).

The instantaneous estimation error Bt � Wt − W̃t defines a
Brownian bridge on any interval whose endpoints are on the
grid ZTs . The autocovariance function of B(·) is given by

K B(t, s)

= E [Bt Bs]

= σ 2

Ts

�
(t+ − t ∨ s)(t ∧ s − t−) nTs ≤ t, s ≤ (n + 1)Ts,

0 otherwise,

(12)

where t ∨ s and t ∧ s denote the maximum and minimum of
{t, s}, respectively. We conclude that

mmse
�
Wt |W̄[·]

� = mmse
�
Wt |W̄NT , W̄NT +1

� = K B(t, t),

and the average MMSE in estimating W(·) from W̄[·] equals

mmse
�
W(·)|W̄[·]

� = lim
T →∞

1

T

� T

0
mmse

�
Wt |W̄[·]

�
dt

= 1

Ts

� (n+1)Ts

nTs

K B(t, t)dt = σ 2Ts

6
= σ 2

6 fs
.

(13)

For future use, we introduce the notation

mmse( fs) � mmse
�
W(·)|W̄[·]

� = σ 2

6 fs
.

From properties of the optimal MSE estimator, it follows
that for any T > 0,

mmse
�

W(0:T )| f (W̄ NT )
�

(14)

= mmse
�
W(0:T )|W̄

� + mmse
�

W̃(0:T )| f (W̄ NT )
�
. (15)

Since the optimization in (3) is only over the term
mmse

�
W̃(0:T )| f (W̄ NT )

�
, (15) implies that encoding W̄ NT to

best describe W(0:T ) is equivalent to encoding W̄ NT to best
describe W̃(0:T ). As a result, we conclude that the optimal
encoding strategy for the system in Fig. 1 is estimate-and-
compress: The encoder first estimates W(0:T ) from the samples
W̄ NT , and then applies an optimal source code to compress the
estimate W̃(0:T ) subject to the bitrate constraint. Furthermore,
it follows that the OPTA can be written as

D( fs , R) = mmse( fs) + DW̃ (R), (16)

where DW̃ (R) is the OPTA in encoding the continuous-time
process W̃(·) of (11) at rate R. In other words, (16) reduces the
problem of deriving D( fs , R) to that of deriving the OPTA
in encoding at rate R the MMSE estimation of W(·) from
its uniform rate fs samples. This decomposition of the OPTA
can be seen as a special case of a more general result dicussed
in [11]. The relationships among the various processes and the
distortion functions introduced thus far are illustrated in the
diagram of Fig. 4.

Before considering the OPTA with respect to W̃(·), which
we defer to Section IV, we explore the relation between
D( fs , R) to the distortion in estimating the samples W̃[·] from

Fig. 4. Relations among the processes W(·), W̄[·], W̃(·) and their asso-
ciated distortion functions. Each reconstruction operation is associated with
a distortion quantity. In this paper we show that DW̃ (R) ≤ DW̄ (R/ fs ) ≤
DW (R) ≤ D( fs , R) ≤ DCE( fs , R) ≤ mmse( fs) + DW̄ (R/ fs), where
D( fs, R) = mmse( fs) + DW̃ (R).

an arbitrary finite bit representation of these samples. This
relation provides a first upper estimate for D( fs , R), and will
be used in Section V below to characterize the performance
under the CE approach.

D. MSE in Discrete- and Continuous-Time

Consider an arbitrary finite bit representation f (W̄ NT ) ∈
{1, . . . , 2�T R�} of the samples W̄ NT in the system of Fig. 1.
The two distortion functions associated with this represen-
tation are (1) the MMSE in estimating W(0:T ), and (2) the
MMSE in estimating W̄ NT . The following lemma connects
these two distortions, and will be particularly useful in char-
acterizing the distortion under CE in Section V below.

Lemma 2: Fix T , fs , R, and an encoder f : R
NT →�

1, . . . , 2NT R
�
. Let �n � W̄n−E


W̄n | f (W̄ NT )

�
. The minimal

MSE in estimating W(0:T ) from f (W̄ NT ) satisfies

mmse
�

W(0:T )| f (W̄ NT )
�

≥ mmse(W(0:T )|W̄ NT )

+ 2

3

1

NT

NT −1�

n=1

E�2
n + 1

3

1

NT

NT�

n=1

E�n�n+1, (17)

and

mmse
�

W(0:T )| f (W̄ NT )
�

≤ mmse(W(0:T )|W̄ NT )

+2

3

1

NT + 1

NT +1�

n=1

E�2
n + 1

3(NT + 1)

NT�

n=1

E�n�n+1. (18)

Proof: See Appendix B
Lemma 2 shows that for any finite bit representation of the

samples, the expected MSE in recovering the samples

mmse
�

W̄ NT | f
�

W̄ NT
��

� 1

NT

NT�

n=1

E�2
n

and the MSE in recovering the continuous-time Wiener
process cannot be too far from each other. An interesting
corollary of Lemma 2 arises if we consider a sequence of
encoders { f̄N }N∈N such that, together with the optimal MSE
estimation of W̄ NT from the output of these encoders, define
a good rate-distortion code for W̄[·] [32], [33]. The term good
rate-distortion code refers to the fact that the distortion attained
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by encoding and decoding approaches the DRF of W̄[·], namely

lim
N→∞ mmse

�
W̄[·]| f̄N (W̄ N )

�
= DW̄ (R/ fs). (19)

The existence of such a sequence follows from the source
coding theorem with respect to W̄[·] proved in [6], and leads
to the following upper bound on D( fs , R):

Corollary 3: For any R > 0 and fs > 0, let

DU ( fs , Rθ ) = mmse( fs) + DW̄ (Rθ / fs)

= σ 2

6 fs
+ σ 2

fs

� 1

0
min

�
SW̄ (φ), θ

�
dφ, (20)

where SW̄ (φ) is given in (7) and

Rθ = fs

2

� 1

0
log+ 

SW̄ (φ)/θ
�

dφ.

The OPTA in estimating a path of the Wiener process from
any rate-R encoding of its uniform samples at rate fs satisfies

D( fs , R) ≤ DU ( fs , R).

Proof: See Appendix B
By considering DU ( fs , R) in the two extreme cases of the

ratio of bitrate to sampling rate, as given below, we obtain
estimates for the convergence rates of D( fs , R) to DW (R) and
mmse( fs) in the large sampling rate and bitrate asymptotic,
respectively.

1) Low Sampling Rate: When R ≥ fs , (20) reduces to

DU ( fs , R) = mmse( fs) + σ 2

fs
2−2R/ fs . (21)

In this regime we have

D( fs ,R)−mmse( fs)≤ DU ( fs ,R)−mmse( fs)= σ 2

fs
2−2R/ fs .

In particular, we conclude that for any fs > 0,

lim
R→∞ D( fs , R) = DW (R). (22)

2) High Sampling Rate: When fs is high compared to R,
(8) implies

DU ( fs , R) = σ 2

6 fs
+ 2σ 2

π2 ln 2
R−1 + O( f −2

s ), (23)

and therefore

D( fs , R) − DW (R) ≤ DU ( fs , R) − DW (R) = O( f −1
s ).

In Section IV we will see that the upper bound DU ( fs , R) is
loose except in trivial cases, and in particular that D( fs , R)−
DW (R) is O( f −2

s ). Furthermore, in Section V we derive
a closed form expression for the distortion attained by a
particular good sequence of encoders with respect to W̄[·]. This
distortion is shown to be strictly smaller than DU ( fs , R) and
strictly larger than D( fs , R).

So far we considered elementary properties of D( fs , R).
We concluded that D( fs , R) is bounded from below by
mmse( fs) = σ 2/(6 fs) and by DW (R) of (4), and from
above by DU ( fs , R) of (20). We also showed that D( fs , R)
converges to these expressions as fs or R go to infinity, respec-
tively. In the next section we provide an information theoretic
characterization of D( fs , R), and use this characterization to
derive it in closed form.

IV. THE FUNDAMENTAL

DISTORTION-SAMPLING-BITRATE LIMIT

We now derive a closed form expression for the function
D( fs , R) that describes the OPTA in recovering the Wiener
process from an encoded version of its samples. This deriva-
tion is obtained by first proving a source coding theorem for
the combined sampling and source coding problem of Fig. 1,
and then evaluating the information expression resulting from
this theorem.

A. A Combined Sampling and Source Coding Theorem

For N ∈ N, denote by P(W̄ N , R, T ) the set of all prob-
ability distributions PW̄ N ,Ŵ(0:T )

over R
N × L2[0, T ] whose

mutual information I
�

W̄ N ; Ŵ(0:T )

�
exists and is limited to

T R bits, and the marginal PW̄ N coincides with the distribution
of the discrete-time Wiener process W̄[·] over n = 0, . . . , N .
The mutual information of a joint distribution PW̄ N ,Ŵ(0:T )

is
defined in the standard manner as the supremum of expected
information over all finite partitions of R

N and L2 into a finite
number of sets measurable with respect to PW̄ N and PŴ(0:T )

,
respectively [34].

For T > 0 and R > 0, define the function

DT (R) = inf
1

T

� T

0
E

�
Wt − Ŵt

�2
dt,

where the infimum is over joint distributions PW̄ NT ,Ŵ(0:T )
∈

P �
W̄ NT , R, T

�
.

The OPTA in the combined sampling and source coding
setting of Fig. 1 is given as follows:

Theorem 4: For any R > 0 and fs > 0,

D( fs , R) = lim sup
T →∞

DT (R). (24)

Proof: For any T > 0, define the following distortion
measure on R

NT × L2[0, T ]:

d̄
�
w̄NT ; ŵ(0:T )

�
� E

�
1

T

� T

0
(Wt − ŵt )

2dt| W̄ NT = w̄NT

�
,

(25)

where ŵ(0:T ) is an element of L2[0, T ], and the relation
between W(0:T ) and W̄ NT is the same as in (1). In words, d̄ is
the averaged quadratic distortion between the reconstruction
waveform ŵ(0:T ) and all possible realizations of the random
waveform W(0:T ) whose values at the points 0, Ts, . . . , NT Ts

are given by w̄NT . By properties of conditional expectation
we have

E

	
d̄

�
W̄ NT ; Ŵ(0:T )

�

= 1

T

� T

0
E

�
Wt − Ŵt

�2
dt .

From the source coding theorem for i.i.d. random variables
over arbitrary alphabets with a single-letter distortion mea-
sure [35], it follows that the OPTA in encoding W̄ NT is
obtained by minimizing over all joint probability distributions
of W̄ NT and Ŵ(0:T ) such that their mutual information is
limited to T R bits. In the context of our problem, this
source coding theorem implies an information representation
for the OPTA under sampling at rate fs of an information
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source consisting of multiple independent realizations of the
waveform W(0:T ). Since we are interested in describing a
single realization of W(0:T ) with T arbitrarily large, what is
required is an argument that allows us to separate the path
of W(·) into multiple sections (blocks), and consider the joint
encoding thereof as multiple realizations over a fixed-length
finite interval.

When the continuous source is ergodic or, more generally,
asymptotic mean stationary, such an argument is achieved
by mixing properties of the probability space [36]. In our
case, however, W(·) is not asymptotic mean stationary since
its variance diverges, so a different approach is required for
separating the waveform into multiple i.i.d. sections in order
to encode W(·) over blocks. Such an approach was proposed
by Berger [6]: use a separate bitstream to encode the endpoints
of all length-T intervals. This task is equivalent to encoding
a discrete-time Wiener process of variance Tσ 2. It follows
from [37, eq. (39)] that the distortion δ in an encoding of the
latter using a delta modulator with R̄ = RT bits is smaller
than a constant times σ 2/R̄. For any finite R, this number
can be made arbitrarily small by taking the blocklength T
large enough. That is, the endpoints W̄NT , W̄2NT , . . . , can
be described with high accuracy using an arbitrarily small
number of bits per unit time. Since the increments of W(·)
are independent, its statistics conditioned on the sequence
of endpoints is the same as of multiple i.i.d. realizations of
W(0:T ), and Theorem 4 follows from the first part of the
proof.

The representation (16) implies that D( fs , R) can be found
by evaluating DW̃ (R). An information theoretic expression for
the latter follows from Theorem 4, as given in the following
corollary.

Corollary 5: Fix R > 0 and fs > 0. Then

DW̃ (R) = lim sup
T →∞

inf
PW̃(0:T ),Ŵ(0:T )

1

T

� T

0
E

�
W̃t − Ŵt

�2
, (26)

where the infimum is taken over all joint distributions
PW̃(0:T ),Ŵ(0:T )

over L2[0, T ] × L2[0, T ] whose mutual informa-
tion exists and does not exceed T R bits, and whose marginal
PW̃(0:T )

coincides with the distribution of W̃(·) of (11).
Proof: From the properties of optimal MSE estimation,

DT (R) of Theorem 4 can be written as

DT (R) = mmse(W(0:T )|W̄ NT ) + inf
1

T

� T

0
E

�
W̃t −Ŵt

�2
dt,

(27)

with optimization over the set P �
W̄ NT , R, T

�
. Since the

mutual information is invariant to invertible transformations
of the random vector W̄ NT [38, Th. 1.4] and since W̃(0:T ) is
obtained from W̄ NT by such a transformation, the optimization
in (27) can be replaced by an optimization over joint dis-
tributions PW̃(0:T ),Ŵ(0:T )

over L2[0, T ] × L2[0, T ] with mutual
information not exceeding T R bits, and whose marginal
PW̃(0:T )

coincides with the distribution of W̃(·) reduced to the
interval [0, T ]. Corollary 5 now follows from (16) and since
D( fs , R) = lim supT →∞ DT (R) by Theorem 4.

Fig. 5. The autocovariance function of the process W̃(·) for a fixed t ∈ (0, T ).

Next, we derive DW̃ (R) and D( fs , R) in closed form by
solving the optimization problem in (26) and evaluating its
limit as T → ∞.

B. The DRF of W̃(·)
We use the KL expansion of W̃(·) to evaluate DW̃ (R).

We have

Wt = W̃t + Bt , t ≥ 0,

where B(·) and W(·) are independent processes. The covariance
function of W̃(·) is given by

KW̃ (t, s) = KW (t, s) − K B(t, s). (28)

The function KW̃ (t, s) is illustrated for a fixed t ∈ (0, T )
in Fig. 5. Corollary 5 implies that DW̃ (R) is given as the
limit in T of the second term in (27). Because W̃(·) is a
Gaussian process, this term is obtained by waterfilling over the
eigenvalues in its KL transform [10]. These KL eigenvalues
{λk, k = 1, 2, . . .} and their corresponding eigenfunctions
{φk, k = 1, 2, . . .} satisfy the Fredholm integral equation of
the second kind [29]:

λkφk(t) =
� T

0
KW̃ (t, s)φk(s)ds. (29)

Since W̃(0:T ) is a linear combination of at most NT elements,
its kernel defined by its autocovariance function is of rank at
most NT . We show in Appendix A that NT of the eigenvalues
of KW̃ (t, s) satisfying (29) are given by

λk = σ 2T 2
s

6

�
2 cos(kπ) − sin

�
(2k−1)(N−1)π

2N

��

�
cos(kπ) + sin

�
(2k−1)(N−1)π

2N

�� ,

k = 1, . . . , NT , (30)

and thus are the only eigenvalues of (29). We also show in
Appendix A that as T goes to infinity with the ratio f �
k/T ≈ k fs/NT kept constant for 0 < f < fs , the density of
these eigenvalues converges to the function

T 2
s

�
SW̄

�
π f

2 fs

�
− 1

6

�
, 0 < f < fs , (31)

where SW̄ (φ) is given in (7). Existence of this limiting
eigenvalue density implies the following result:
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Theorem 6: The DRF of the process W̃(·), obtained by lin-
early interpolating the samples of a Wiener process at sampling
rate fs , is given by the following parametric expression:

DW̃ (Rθ ) = σ 2

fs

� 1

0
min

�
θ, SW̄ (φ) − 1

6

�
dφ, (32a)

Rθ = fs

2

� 1

0
log+

��
SW̄ (φ) − 1

6

�
/θ

�
dφ, (32b)

where SW̄ (φ) is the limiting density of the eigenvalues in the
KL expansion of W̄[·] given by (7).

Proof: The density function (31) satisfies the conditions of
[10, Th. 4.5.4] (note that the stationarity property of the source
is only needed in [10, Th. 4.5.4] to establish the existence of a
density function, which in our case is given explicitly by (31)).
This theorem implies that the waterfilling expression over the
eigenvalues {λk}NT

k=1 converges, as T goes to infinity, to the
waterfilling expression over the density SW̃ ( f ).

We remark that as fs goes to infinity, DW̃ (R) converges
to DW (R) as can be seen by eliminating θ from (32) in a
similar way as in (8). In fact, this convergence already follows
from the information representation of DW̃ (R) and DW (R)
in Corollary 5 and [6, Sec. IV], respectively, even without
obtaining DW̃ (R) in closed form. Indeed, the kernel KW̃ (t, s)
converges to the kernel KW (t, s) in the L2[0, T ] × L2[0, T ]
sense. As a result, the corresponding sequence of compact
integral operators defined by (29) converges, in the strong
operator norm, to the operator defined by KW (t, s), showing
that the eigenvalues (30) converge to the eigenvalues of the
KL expansion for the Wiener process uniformly in T . This
convergence of the eigenvalues implies convergence of DW̃ (R)
to DW (R), since both can be defined in terms of a uniformly
bounded function of the eigenvalues of KW̃ (t, s) and KW (t, s),
respectively. Similar results were derived for cyclostationary
Gaussian stationary processes in [39].

From a practical point of view, it is important to emphasize
that although W̃(·) is a continuous-time process, its KL coeffi-
cients can be obtained directly from the discrete-time samples
W̄[·] and without performing any analog integration as opposed
to the KL coefficients of W(·) in (5). Indeed, assuming for
simplicity that T fs is an integer, any integrable function g(t)
satisfies

� T

0
g(u)W̃udu =

fs T −1�

n=0

�
W̄n X̄n + W̄n+1Ȳn

�
, (33)

where

X̄n = 1

Ts

� (n+1)Ts

nTs

g(u) ((n + 1)Ts − u) du,

Ȳn = 1

Ts

� (n+1)Ts

nTs

g(u) (u − nTs) du. (34)

By taking g(t) to be the kth eigenfunction in the KL decom-
position of W̃(·) as given in Appendix A, we see that the
kth KL coefficient of W̃(·) over [0, T ] can be expressed as
a linear function of the samples W̄ NT . This last fact implies
that, in contrast to the achivable scheme in [6], a source code
which is based on the KL transform of W̃(·) may be applied

Fig. 6. Left: the function �D(R̄) of (37). Right: waterfilling interpretation of
the parametric equation (37) describing �D(R̄).

directly to a linear transformation of W̄ NT and does not require
analog integration as in (5).

We also note that the coefficients of this transformation, i.e.,
Xn and Yn , n = 1, . . . , NT of (34), depend on fs . Therefore,
the transformation the encoder applies to its input depends
on the sampling rate or, equivalently, the duration T of the
interval over which the NT samples were obtained.

C. The DRF of the Wiener Process Given Its Samples

We are now ready to derive a closed-form expression for
D( fs , R).

Theorem 7: The indirect DRF of the Wiener process W(·)
given its uniform samples at rate fs and bitrate R is given by
the following parametric form:

D(Rθ ) = σ 2

6 fs
+ σ 2

fs

� 1

0
min

�
θ, SW̄ (φ) − 1

6

�
dφ, (35a)

Rθ = fs

2

� 1

0
log+

��
SW̄ (φ) − 1

6

�
/θ

�
dφ. (35b)

Proof: Expression (35) follows directly from (13), (16),
and Theorem 6.

An alternative representation to (35a) is

D( fs , R) = σ 2

6 fs
+ σ 2

fs

�D(R̄), (36)

where R̄ = R/ fs and �D(R̄) is given by

�D(Rθ ) =
� 1

0
min

�
θ, SW̄ (φ) − 1

6

�
dφ, (37a)

R̄θ = 1

2

� 1

0
log+

��
SW̄ (φ) − 1

6

�
/θ

�
dφ. (37b)

The function �D(R̄) is dimensionless and only depends on the
number of bits per sample R̄. Figure 6 illustrates �D(R̄) and a
waterfilling interpretation of (37).

It follows from Theorem 7 that D( fs , R) is monotonically
decreasing in fs and converges to DW (R) as fs goes to
infinity. We remark that monotonicity of D( fs , R) in fs is
not evident in view of [21, Exm. VI.2], where it is shown that
the DRF of an arbitrary Gaussian stationary process given its
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Fig. 7. The indirect DRF D( fs , R) of the Wiener process given its uniform samples and the compress-and-estimate upper bound DCE( fs, R), both as a
function of: (left) R, with fs = 1 samples per unit time, and (right) fs , with R = 1 bits per unit time. Also shown are the DRF of the Wiener process
DW (R), the DRF of the discrete-time Wiener process DW̄ (R/ fs ), and the minimal MSE in estimating the Wiener process from its samples mmse( fs).
In both figures all axes have logarithmic scales and the inset shows the difference DCE( fs , R) − D( fs , R).

samples may not be monotone in the sampling rate. Figure 7
illustrates expression (35) along with other distortion functions
defined in this paper, and confirms the anticipated behavior
of D( fs , R) as fs or R goes to infinity that is predicted in
(10) and (22). We next study expression (35) for D( fs , R) in
the two regimes of low and high sampling rate fs compared to
the bitrate R, corresponding to high and low bits per sample
R̄, respectively.

1) Low Sampling Rates: As shown in Fig. 6, the minimal
value of SW̄ (φ)−1/6, the integrand in (35), is 1/12. Whenever

R

fs
≥ 1 + log(

√
3 + 2)

2
≈ 1.45, (38)

θ is smaller than 1/12, in which case we can eliminate θ from
(35) and obtain

D( fs , R) = σ 2

fs

�
1

6
+ 2 + √

3

6
2−2R/ fs

�

. (39)

2) High Sampling Rates: When R � fs , θ is large
compared to SW̄ (φ) − 1/6, and the integral in (32b) is non-
zero only for small values of φ. Using the Taylor expansion
of sin−2(x), we obtain

D( fs , R) = 2σ 2

π2 ln 2
R−1 + σ 2 ln 2

18

R

f 2
s

+ O
�

f −4
s

�
. (40)

From (40) we have that, as anticipated in (10) and (20),
D( fs , R) converges to DW (R) as fs goes to infinity. However,
this rate of convergence is inversely quadratic in fs , rather than
the inverse linear convergence rate implied by the upper bound
DU ( fs , R) from Corollary 3.

The behavior of D( fs , R) in the two cases above quantifies
the intuitive fact that the distortion is dominated by the
minimal MSE distortion mmse( fs) for high values of bits
per sample R̄, and by the lossy compression distortion DW̃ (R)

for low values of R̄. The transition between the two regimes
occurs when the MMSE term in (36) equals the term DW̃ (R)

associated with lossy compression distortion, i.e., at some R̄0
satisfying �D(R̄0) = 1/6, which can be found to be R̄0 ≈ 0.98.

The excess distortion in encoding the Wiener process at
bitrate R due to a rate fs sampling constraint is described by
the ratio

ρsmp(R̄) � D( fs , R)

DW (R)
= π2 ln 2

2

�
1

6
+ �D(R̄)

�
R̄. (41)

Similarly, the excess distortion in sampling the Wiener process
at rate fs due to a bitrate R quantization or lossy compression
constraint on the samples is described by the ratio

ρqnt(R̄) � D( fs , R)

mmse( fs)
= 1 + 6�D(R̄). (42)

Both ρsmp(R̄) and ρqnt(R̄) are only a function of R̄, implying
that the performance loss due either to sampling or lossy
compression are fully characterized by the average number
of bits per sample consumed by the digital representation.
As an example, given any source code for the samples of the
Wiener process allocating R̄ = 1 bits per sample on average,
the distortion in recovering the process is at least

ρsmp(1)DW (R) ≈ 1.18 DW (R),

or

ρqnt(1)mmse( fs) ≈ 2.07mmse( fs).

These numbers reflect 18% loss compared to the optimal
encoding without a sampling constraint, and 107% loss com-
pared to recovering the process from its samples without
quantizing them.

In the next section we study the distortion in recovering
the Wiener process using a good sequence of encoders for the
discrete-time process W̄[·], rather than an optimal sequence
designed to attain DW̃ (R).
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V. COMPRESS-AND-ESTIMATE

In Subsection III-C we concluded that the OPTA in the
combined sampling and source coding problem is obtained via
an EC source coding strategy: First estimate W(0:T ) from the
samples W̄ NT resulting in W̃(0:T ), and then compress W̃(0:T )

using an optimal source code adjusted to its distribution. In this
section we consider an alternative coding strategy: First encode
the vector of samples W̄ NT using an optimal source code, such
that the expected MSE in recovering W̄ NT from its encoded
version converges to its DRF DW̄ (R̄) of (6). Next, estimate
W(0:T ) from the the encoded representation of the samples
using this code. We denote this scheme as compress-and-
estimate (CE). See Fig. 2 for a block diagram of EC and CE.

In this section we provide a precise characterization of the
distortion under CE in the case where the encoding of the
samples is performed according to the scheme outlined in [6]
for attaining the DRF of the discrete-time Wiener process
W̄[·]. Specifically, we derive a distortion expression we denote
as DCE( fs , R), and show that this distortion is achievable
using a sequence of codes whose bitrate converges to R
from above. We also show that when the bitrate is at most
R, the distortion under this coding scheme is bounded from
below by DCE( fs , R). Finally, by comparing DCE( fs , R) to
D( fs , R), we conclude that the maximal ratio between the two
is no greater than 1.027, indicating a maximal performance
penalty of 2.7% in using CE over the optimal source coding
scheme.

A. CE Encoding and Decoding

Let { f̄N }N∈N be a sequence of encoders indexed by their
blocklength N ∈ N. Assume that the encoder f̄N operates
according to the random coding scheme outlined in [6] for
achieving the DRF of the discrete-time Wiener process W̄[·].
For completeness and further discussion, we now provide a
detailed description of the encoder.

We describe the joint encoding of L blocks of samples
obtained over the time lag T L, so that each block contains
roughly NT = �T fs� samples. Denote by 
W̄ the covariance
matrix of the vector W̄ NT and consider the unitary matrix U
that satisfies


W̄ = UT �U,

where � is diagonal with the eigenvalues of 
W̄ on its
diagonal. These eigenvalues are given by [6, eq. (2)]

λn = σ 2/ fs

4 sin2
�

2n−1
2N+1

π
2

� , n = 1, . . . , NT ,

where their respective eigenvectors u1, . . . , uNT are the
columns of U. Given the NT L samples of W(0:T L), we consider
the NT length L sequences B(1), . . . , B(NT ), defined by

B(n)
l � uT

n W̄ (l) =
NT�

k=1

uk,n W̄ (l)
k , l = 1, . . . , L,

n = 1, . . . , NT , (43)

where W̄ (l) � W̄ lNT
(l−1)NT

− W̄(l−1)NT . In words, B(l)
n is the nth

coefficient in the KL decomposition of the lth NT -length block

Fig. 8. Description of encoding W̄ L NT using the encoder f̄N L : divide the
vector W̄ L N into the length N blocks W̄ (1), . . . , W̄ (L) defined in (43). For
n = 1, . . . , N , form the vector B(n) consisting of the nth coefficient in the
KL transform of each of the L blocks. Each such vector is encoded using a
random Gaussian codebook of rate L R̄n bits; R̄n = 0 for N > nmax.

of W̄ L NT , where this block is initialized so that W̄ (l)
0 = 0. See

Fig. 8 for an illustration of the relation between B(n) and W̄ (l).
Given a bitrate budget R, a bitrate slackness parameter

ρ > 0 and a blocklength NT , we construct a codebook as fol-
lows: for each n = 1, . . . , NT , we draw 2�(R̄n+ρ)L� codewords
to describe B(n). Each codeword is obtained by L independent
draws from the scalar normal distribution with zero mean and
variance [λn − θ ]+. Here R̄n and θ are determined by

R̄ = 1

NT

NT�

n=1

R̄n,

where

R̄n = 1

2
log+ λn

θ
,

and R̄ � R/ fs is the number of bits per symbol. To each code-
word b̂(l) we associate a unique index in ∈ �

1, . . . , 2�Rn L��.
We denote this codeword ensemble by Cn , and reveal it to the
encoder and decoder. Note that Cn is trivial whenever λn ≤ θ ,
since then Rn = 0. Therefore, in practice, we only need to
consider the encoding of B(1), . . . , B(nmax) where nmax is the
largest integer such that λn > θ .

The encoding of a realization w̄L NT of W̄ L NT is as follows:
First divide w̄L NT into L blocks of length NT each which
we denote as w̄(1), . . . , w̄(L). Then obtain the NT length-L
sequences b(1), . . . b(NT ) from these blocks using (43). For
each n = 1, . . . , NT , we associate the index in corresponding
to the codeword b̂(n)(in) of smallest Euclidean distance from
b(n) in Cn . The encoder outputs the indices (i1, . . . , iNT ).
In parallel to the representation of the block W̄ LT using
(i1, . . . , iNT ), in order to control the error due to uncertainty in
block starting locations, the encoder sends a separate bitstream
obtained using a delta modulator applied to the sequence of
block starting points. As explained in [6, Sec. IV], the bitrate
required for this representation goes to zero as T goes to
infinity, and hence the total rate of the code we described
is R + o(1) where o(1) goes to zero as both L and T/L go
to infinity.

We note that encoding using { f̄N }N∈N corresponds to the
achievability scheme outlined in [6, Sec. IV] for attaining the
DRF of the discrete-time Wiener process W̄[·]. That is, for any
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δ > 0 and ρ > 0, there exists N large enough such that

mmse
�

W̄ N | f̄N

�
W̄ N

��
− δ < DW̄ (R̄). (44)

In our case, however, we are interested in recovering W(·)
rather than W̄[·], and hence the decoding in CE also involves
the estimation of W(0:T ) given the sequence consisting of
decoded codewords. We now analyze the distortion with
respect to W(·) attained by using the sequence of encoders
{ f̄N }N∈N defined above.

B. Distortion Analysis

In order to characterize the distortion attained by estimating
the Wiener process from the encoding of its samples using f̄N ,
we define

DCE( fs , Rθ ) = σ 2

6 fs
+ σ 2

fs

� 1

0
min

�
θ, SW̄ (φ)

� SW̄ (φ) − 1
6

SW̄ (φ)
dφ

(45a)

Rθ = fs

2

� 1

0
log+ 

SW̄ (φ)/θ
�

dφ. (45b)

Theorem 8: Fix sampling rate fs > 0 and bitrate R ≥ 0.

(1i) There exist sequences {Rn}n∈N and {Tn}n∈N with
Rn → R and Tn → ∞, such that, assuming f̄NT

operates at rate Rn ,

lim
n→∞ mmse

�
W Tn | f̄�Tn fs�

�
W̄ �Tn fs�

��
= DCE( fs , R).

(ii) For any � > 0, there exists T0 such that, for any T > T0
and encoder f̄NT ,

mmse
�

W(0:T )| f̄NT

�
W̄ NT

��
≥ DCE( fs , R).

Proof: See Appendix B.
Theorem 8 states that when the samples of the Wiener

process are encoded using a minimum distance encoder with
respect to a random codebook drawn from the distortion-rate
achieving distribution, the resulting distortion is asymptotically
given by DCE( fs , R) of (45). In particular, since { f̄N }N∈N

defines a good sequence of codes with respect to W̄[·],
Theorem 8 tightens the upper bound of Corollary 3. Indeed,
for any R > 0 and fs > 0 we have

DCE( fs , R) < DU ( fs , R).

The expression DCE( fs , R) is illustrated in Fig. 7. We now
analyze it in the two regimes of high and low sampling rate
compared to the bitrate.

1) Low Sampling Rate: When R ≥ fs , (45) reduces to

DCE( fs , R)= σ 2

6 fs
+ 2

3
DW̄ (R/ fs )= σ 2

6 fs
+ 2

3 fs
2−2R/ fs . (46)

Comparing (46) with the optimal distortion in (40), we have

DCE( fs , R) − D( fs , R) = σ 2

fs

2 − √
3

6
2−2 R/ fs ,

whenever R/ fs ≥
�

1 + log(
√

3 + 2)
�

/2.

Fig. 9. The ratio DCE( fs , R)/D( fs , R) versus R̄ = R/ fs describing the
performance loss in using CE compared to the optimal source coding scheme.

2) High Sampling Rate: Using the Taylor expansion of
sin−2(x), for fs � R we obtain

DCE( fs , R) = DW (R) + 7

36

R ln 2

f 2
s

+ O( f −4
s ),

from which we conclude that, similarly to D( fs , R),
DCE( fs , R) converges to DW (R) at a rate inversely quadratic
in fs .

As in the case of D( fs , R), the excess distortion ratios
DCE( fs , R)/DW (R) and DCE( fs , R)/mmse( fs) are both
only functions of the number of bits per sample R̄ =
R/ fs . Therefore, the ratio between DCE( fs , R) and D( fs , R),
describing the performance loss in using CE compared to the
optimal scheme, also depends only on R̄. As illustrated in
Fig. 9, this ratio is bounded from above by 1.027, indicating a
maximal performance loss of only 2.7% in using CE compared
to the optimal source coding scheme.

C. Discussion: Sub-Optimality of CE

In order to gain some insight into the difference between
the performance of CE compared to the optimal source coding
scheme, it is useful to focus on the term

1

NT

NT −1�

n=0

E�n�n+1 (47)

in the upper and lower bounds of Lemma 2. For simplicity,
consider the regime R ≥ fs in which we have

DCE( fs , R) = mmse( fs) + 2

3
DW̄ ( fs/R). (48)

By evaluating (18) in the limit as T approaches infinity
under the CE encoders { f̄N }N∈N and comparing it with (48),
it follows that (47) goes to zero under CE. We now argue that,
as opposed to CE, under the optimal encoder the term (47) is
negative. For this purpose, we illustrate in Fig. 10 two areas,
each of which is associated with a different encoder: the EC
encoder strives to minimize the difference between W̃(0:T ) and

its reconstruction ˆ̃W(0:T ) (integrated square of shaded red area).
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Fig. 10. The error in estimating W̄[·] and W̃(·) corresponds to the blue
and red areas, respectively. Negatively correlated �n and �n+1 are preferred
for minimizing the distortion with respect to W̃(·), while the distortion with
respect to W̄[·] is indifferent to this correlation.

The CE encoder strives to minimize the difference between
W̄ NT and its reconstruction ˆ̄W NT (integrated square of shaded
blue area). An inspection of these error terms reveals that
the CE encoder is indifferent to the sign of �n , whereas
the distortion associated with the shaded red area is smaller
whenever �n and �n+1 alternate their signs (compare the red
areas in the intervals [Ts, 2Ts] and [2Ts, 3Ts], corresponding
to such sign alternation and no sign alternation, respectively).
Therefore, an EC codebook favors a sign alternation from �n

to �n+1, implying that (47) is negative under EC.

VI. CONCLUSIONS

We considered the estimation of the path of a continuous-
time Wiener process from a bitrate-limited version of its
uniform samples. We derived a closed form expression for the
minimal distortion in this setting as a function of the sampling
rate and the bitrate limitation on the encoded version of these
samples. This expression allows us to determine the excess
distortion in encoding the Wiener process under a uniform
sampling constraint compared to its Shannon distortion-rate
function, or, alternatively, the excess distortion in sampling
the Wiener process under a quantization constraint compared
to the MMSE from infinite precision samples.

In addition to the optimal encoding of the samples, we also
considered a CE coding approach in which the Wiener process
is estimated from an encoded version of its samples, whereas
this encoding employs a code that minimizes the distortion
with respect to the samples rather than the continuous-time
process. We provided a closed form expression for the perfor-
mance under this approach, and showed that the performance
loss under this sub-optimal approach is smaller than 2.7%
compared to the optimal source coding technique. Suboptimal-
ity of the CE approach can be seen as the price of ignoring
the continuous-time origin of the samples at the encoder.

APPENDIX A

In this appendix we prove that the eigenvalues of the KL
integral (29) are given by (30).

Equation (29) can be written as

λ

σ 2 φ(t) =
� t−

0
sφ(s)ds

+
� t+

t−

�
t − t−

Ts
s + t− t+ − t

Ts

�
φ(s)ds

+ t
� T

t+
φk(s)ds. (49)

Differentiating the last expression leads to

λ

σ 2 φ
(t) =
� t+

t−
s − t−

Ts
φ(s)ds +

� T

t+
φk(s)ds, (50)

which implies

λ

σ 2 φ

(t) = 0. (51)

We conclude that the solution to (49) is a piece-wise linear
function on intervals of the form [nT s, (n + 1)Ts) for n =
0, . . . , N , where N = T/Ts (since the DRF is obtained by
evaluating the solution as T goes to infinity, and since this
limit exists, there is no loss in generality by assuming T/Ts

is an integer), namely

φk(t) = t+ − t

Ts
ak(t

−) + t − t−

Ts
bk(t

−), k = 1, 2, . . . .

Equations (49) and (50) impose the following condition on the
coefficients ak(t−) and bk(t−), for t ∈ [0, Ts N]:

λ

Tsσ 2

�
bk(t

−) − ak(t
−)

�

= 1

6Ts

�
ak(t

−) + bk(t
−)

� + 1

2

� T

t+

�
ak(s

−) + bk(s
−)

�
ds.

By imposing the initial conditions in (49) and (50), it fol-
lows that the eigenfunctions in the KL transform are of the
form

φk(t) = �
Ak

�
t+ − t

Ts
sin

�
2k − 1

2T
π t−

�

+ t − t−

Ts
sin

�
2k − 1

2T
π t+

��
, k = 1, . . . , N,

where Ak is a normalization constant. The correspond-
ing eigenvalues can be found by evaluating (50), which
leads to

λk = σ 2 T 2
s

6

�
2 cos(kπ)−sin

�
(2 k−1)(N−1)π

2N

��

�
cos(kπ)+sin

�
(2 k−1)(N−1)π

2 N

�� , k =1, . . . , N.

APPENDIX B

In this appendix we provide the proofs of Lemma 2,
Corollary 3, and Theorem 8.
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A. Proof of Lemma 2

Fix T and fs . Set R̄ = R/ fs , N = �T fs� and M = f (W̄ N ).
We have

mmse
�
W(0:T )|M

�=mmse
�
W(0:T )|W̄ N

�
+mmse

�
W̃(0:T )|M

�
,

(52)

hence we only focus on the term mmse
�

W̃(0:T )|M
�

. Denote

ˆ̄Wn = E

W̄n |M�

. Then

E

	
W̃t | ˆ̄W N



= t+ − t

Ts
E

	
Wt−| ˆ̄W N



+ t − t−

Ts
E

	
Wt+| ˆ̄W N




= t+ − t

Ts

ˆ̄W fs t− + t − t−

Ts

ˆ̄W fs t+ . (53)

Now,

mmse
�

W̃ NTs | ˆ̄W N
�

= 1

NTs

� NTs

0
E

�
W̃t − E

	
W̃t | ˆ̄W N


�2
dt

= 1

NTs

N−1�

n=0

� (n+1)Ts

nTs

E

�
W̃t − E

	
W̃t | ˆ̄W N


�2
dt

(a)= 1

NTs

N−1�

n=0

� (n+1)Ts

nTs

E

�
W̃t − t − nTs

Ts

ˆ̄Wn+1 . . .

− Ts(n + 1) − t

Ts

ˆ̄Wn

�2

dt (54)

(b)= 1

NT 3
s

N−1�

n=0

� (n+1)Ts

nTs

E((t−nTs)�n+1+((n+1)Ts−t)�n)
2dt,

(55)

where (a) follows from (53), and (b) follows since

W̃t = t − t−

Ts
Wt+ + t+ − t

Ts
Wt−

= t − t−

Ts
W̄ fs t+ + t+ − t

Ts
W̄ fs t−,

and by introducing the notation

�n � W̄n − ˆ̄Wn = W̄n − E

W̄n |M�

.

Evaluating the integral in (55) we obtain

mmse(W̃ NTs |M)

= 1

N

N−1�

n=0

�
1

3
E�2

n+1 + 1

3
E�2

n + 1

3
E�n+1�n

�

= 2

3

1

N

N−1�

n=1

E�2
n + 1

3N

N−1�

n=0

E�n�n+1 + 1

3
E�2

N

≥ 2

3

1

N

N−1�

n=1

E�2
n + 1

3N

N−1�

n=0

E�n�n+1,

where we used the fact that E�0 = 0 because W0 = 0 with
probability one. Similarly, we have

mmse(W̃ (N+1)Ts |M)

= 2

3

1

N + 1

N�

n=0

E�2
n + 1

3(N + 1)

N�

n=0

E�n�n+1 + 1

3
E�2

N+1

≤ 2

3

1

N + 1

N+1�

n=1

E�2
n + 1

3(N + 1)

N�

n=1

E�n�n+1.

The bounds (17) and (18) follow from the last two inequalities
and the fact that

mmse(W̃ NTs|M)≤mmse(W̃(0:T )|M)≤mmse(W̃ (N+1)Ts |M).

B. Proof of Corollary 3

Set N = �T fs� and R̄ = R/ fs . By bounding E�n+1�n in
(18) from above by (E�2

n + E�2
n+1)/2, we obtain

1

N + 1

N�

n=1

E�n�n+1

= 1

N + 1

N�

n=0

E�n�n+1

≤ 1

N + 1

N�

n=0

�
E�2

n

2
+ E�2

n+1

2

�

= 1

N + 1

N�

n=1

E�2
n + 1

2

1

N + 1
E�2

N+1 ≤ 1

N + 1

N+1�

n=1

E�2
n .

It follows from (18) that

D( fs , R) ≤ mmse
�

W(0:T )| f̄ (W̄ N )
�

≤ mmse(W(0:T )|W̄ N )

+ 2

3

1

N + 1

N+1�

n=1

E�2
n + 1

3

1

N + 1

N+1�

n=1

E�2
n

= 1

N + 1

N+1�

n=1

E�2
n = mmse(W̄ N+1 | f̄

�
W̄ N

�
.

Under the sequence of encoders
�

f̄N , N ∈ N
�

in the limit
T → ∞, we have that mmse

�
W̄ N | f̄N

�
W̄ N

��
, and therefore

mmse(W̄ N+1| f̄N
�
W̄ N

�
, converges to DW̄ (R̄). In this limit

we also have that mmse(W(0:T )|W̄ N ) converges to 1/(6 fs),
so that

D( fs , R) ≤ 1

6 fs
+ DW̄ (R̄).

C. Proof of Theorem 8

For L ∈ N and T > 0 we consider the encoding of the
vector of samples W̄ LT using the encoders { f̄N }N∈N and the
estimation of W(0:LT ) from this encoding. Throughout the
proof we make use of various simplifications for the notation
in the paper, as per the following list:

• The distortion D is normalized by σ 2/ fs and, conse-
quently, assume that any length NT vector W̄ (l) and its
reconstruction ˆ̄W (l) are normalized by

�
σ 2/ fs .
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• N � NT � �T fs�.
• f̄ � f̄N where the blocklength N is understood from the

context.

We first consider properties of the joint distribution that
attains the DRF of the vector W̄ N . For a prescribed R̄, let θ
be such that

R̄ = 1

2

N�

k=1

log+ [λk/θ ].

Consider the eigenvalue decomposition of the matrix 
W̄ :


W̄ = UT �U,

where U is unitary and � is diagonal. The elements
λ1, . . . , λN on the diagonal of � are given by [6, eq. (2)]

λk = 1

4 sin2
�

2k−1
2N+1

π
2

� , k = 1, 2, . . . , N.

The columns of U are the eigenvectors in the KL transform of
W̄ N corresponding to the eigenvalues λ1, . . . , λN , which are
given by [6]

uk,n = Ak sin

�
2k − 1

2N + 1
πn

�
,

and where Ak is a normalization coefficient satisfying

Ak = 1

N

N−1�

n=0

sin2
�

2k − 1

2N + 1
πn

�
= 1, k = 1, 2, . . . , N.

Given an encoder

g : {1, . . . , 2L R̄1} × · · · × {1, . . . , 2L R̄NT } → L2[0, LT ], (56)

we denote

Ŵ(0:LT ) = g
�

f
�

W̄ L NT
��

,

and

�n � Wn − ˆ̄Wn, n = 1, . . . , L N,

where ˆ̄Wn = Ŵn/ fs .
In order to prove (i), it is enough to show that for any ρ > 0.

ε > 0 and δ > 0, there exists T and L large enough and a
decoder g such that L/T < ε, and, if W̄ L N is encoded using
fL NT , then

1

T

� T

0
E

�
Wt − [g

�
f
�

W̄ LT
��

]t

�2
dt < DCE( fs , R) + δ.

(The condition L/T < � is required to guarantee that the
bitrate consumed by the delta modulator is arbitrarily small).
In order to prove (ii), we show that for any L, and a function
g of the form (56), there exists T0 such that

1

T

� T

0
E

�
Wt − g

�
f
�

W̄ LT
���2

dt ≥ DCE( fs , R),

whenever ρ = 0 and T ≥ T0.

We first prove the following claims:

I. Under the sequence of encoders { f̄ },

1

N L

L N�

n=1

E�n�n+1

= 1

N

N�

n=1

N�

k=1

un,kun+1,k
1

L

L�

l=1

E

��
B(k)

l − B̂(k)
l

�2
�
.

(57)

II. For any N ∈ N and R̄ > 0,

lim
N→∞

1

N

N−1�

n=1

N�

k=1

uk,nuk,n+1 min {λk, θ}

= DW̄ (R̄) − 1

2
G(R̄) (58)

where

G(R̄θ ) =
� 1

0

min
�

SW̄ (φ), θ
�

SW̄ (φ)
dφ.

III. For any fs and R,

DCE( fs , R)= 1

6 fs
+ 2

3
DW̄ (R̄)+ 1

3

�
DW̄ (R̄)− 1

2
G(R̄)

�
.

Proof of Claim I: For l = 1, . . . , L denote Y (l) = UW̄ (l)

and Ŷ (l) = U ˆ̄W (l). Note that B(n)
l = Y (l)

n and, since B(n) and
B̂(n) are independent from B(k) and B̂(k) for k �= n, we have
that

E

�
Y (l)

n − Ŷ (l)
n

� �
Y (l)

k − Ŷ (l)
k

�
= 0,

for k �= n. Next,

1

N L

L N�

n=1

E�n�n+1

= 1

L N

N−1�

n=1

L�

l=1

E

�
W̄ (l)

n − ˆ̄W (l)
n

� �
W̄ (l)

n+1 − ˆ̄W (l)
n+1

�

= 1

N

N−1�

n=1

1

L

L�

l=1

E

�
N�

k=1

un,k

�
Y (l)

k − Ŷ (l)
k

�

×
N�

p=1

un+1,p

�
Y (l)

p − Ŷ (l)
p

�
⎤

⎦

= 1

N

N−1�

n=1

1

L

L�

l=1

N�

k=1

un,kun+1,kE

��
Y (l)

k − Ŷ (l)
k

�2
�

= 1

N

N−1�

n=1

N�

k=1

un,kun+1,k
1

L

L�

l=1

E

��
B(k)

l − B̂(k)
l

�2
�
. (59)
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Proof of Claim II: We have

1

N

N−1�

n=1

uk,nuk,n+1

= A2
k

N

N−1�

n=1

sin

�
2k − 1

2N + 1
nπ

�
sin

�
2k − 1

2N + 1
(n + 1)π

�

= A2
k

2N

N−1�

n=1

�
cos

�
2k − 1

2N + 1
π

�
− cos

�
2k − 1

2N + 1
π(2n + 1)

��

= A2
k

2
cos

�
2k − 1

2N + 1
π

�
+ o(1) (60)

where the last transition is since
N−1�

n=1

cos

�
2k − 1

2N + 1
π(2n + 1)

�

is bounded in N . From (60) we obtain:

1

N

N−1�

n=1

E�n�n+1

= 1

N

N−1�

n=1

N�

k=1

uk,nuk,n min {θ, λk}

= 1

N

N�

k=1

(N A2
k ) min {θ, λk} 1

N

N−1�

n=1
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= 1

2N
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k=1

min {θ, λk} (N A2
k)

�
cos

�
2k − 1

2N + 1
π

�
+ O(1)

�
.

(61)

We now take the limit N → ∞ as k/N → φ, so the spectrum
of 
W̄ converges to SW̄ (φ). Moreover, since

A−2
k =

N�

l=1

(uk,l )
2 =

N�

l=1

sin2
�

2k − 1

2N + 1
πl

�

=
N�

l=1

�
1

2
− 1

2
cos

�
2

2k − 1

2N + 1
πl

��
,

we have N A2
k → 2. Therefore, after multiplying by σ 2/ fs to

obtain the un-normalized distortion, (61) converges to

σ 2

fs

� 1

0
min

�
SW̄ (φ), θ

�
cos(πφ)dφ

= DW̄ (R̄) − 2
σ 2

fs

� 1

0
min

�
SW̄ (φ), θ

�
sin2(πφ/2)dφ

= DW̄ (R̄) − σ 2

2 fs

� 1

0

min
�

SW̄ (φ), θ
�

SW̄ (φ)
dφ

= DW̄ (R̄) − 1

2
G(R̄).

Proof of Claim III: We have

DW̄ (R̄) − 1

6
G(R̄) =

� 1

0
min{SW̄ (φ), θ}

�
1 − 1

6SW̄ (φ)

�
dφ,

so

DCE( fs , R) = 1

6 fs
+ DW̄ (R̄) − 1

6
G(R̄).

We now use Claims I-III to prove (i) and (ii) in Theorem 8.
To show (ii), we fix R̄ = R/ fs and consider the converse for
the source coding theorem for encoding the L-dimensional
vector source B(k), consisting of i.i.d. Gaussian random vari-
ables of variance λk , using L R̄k bits. This converse implies
that for any decoder g of the form (56),

1

L

L�

l=1

E

��
B(k)

l − B̂(k)
l

�2
�

≥ λk2−2R̄k = min{θ, λk}.

Therefore, using claim I,

1

N L

L N�

n=1

E�n�n+1 ≥ 1

N

N�

n=1

N�

k=1

un,kun+1,kλk min{θ, λk}.

In addition, we use the converse for the source coding theorem
for the discrete-time Wiener process W̄[·] from [6] to obtain

mmse
�

W̄ L N | f̄
�

W̄ L N
��

≥ DW̄ (R̄). (62)

It follows from II that for any � > 0, there exists T0 large
enough such that, for any T > T0,

1

N L

L N�

n=1

E�n�n+1 + �/3 > DW̄ (R̄) − 1

2
G(R̄),

mmse
�

W̄ L N | f̄
�

W̄ L N
��

+ �/3 > DW̄ (R̄),

and

mmse(W(0:LT )|W̄ LT ) + ε/3 ≥ 1

6 fs
.

Finally, from (17) we obtain

mmse
�

W(0:LT )| f̄
�

W̄ L N
��

≥ mmse(W(0:LT )|W̄ L N )

+ 2

3
mmse

�
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�
W̄ L N

��

>
1

6 fs
+ 2

3
DW̄ (R̄) + 1

3

�
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2
G(R̄)

�
− ε.

Since L is arbitrary and using III, we conclude that for any
ε > 0, there exists T0 such that

mmse
�

W(0:T )| f̄
�

W̄ N
��

+ ε ≥ DCE( fs , R).

In order to prove (i), fix ρ, ε, δ > 0, and consider a
decoder g that, upon receiving (i1, . . . , inmax), first computes
the inverse transform UT b̂(in) for each index in and concate-
nates the resulting vectors to obtain ˆ̄W L NT . In order to estimate
W(0:T L), the decoder uses an interpolation similar to (11):

Ŵt � t+ − t

Ts

ˆ̄Wt− + t − t−

Ts

ˆ̄Wt+, t ∈ [0, T L]. (63)
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To analyze the distortion resulting from using this decoder,
consider first the L dimensional vector B(k) using R̄k + ρ
codewords drawn i.i.d. from N (0, [λk − θ ]+), where

R̄k =
�

1
2 log[λk/θ ], k ≤ kmax

0 k > kmax.

For any T > 0 there exists L0 that is independent of T , such
that for any k = 1, . . . , kmax and L > L0,

1

L

L�

l=1

E

�
B(k)

l − B̂(k)
l

�2 − ε/3 ≤ λk2−2Ri = θ. (64)

Substituting (64) in (59), we conclude that for L ≥ L0,

1

N L

L N�

n=1

E�n�n+1 − ε/3 ≤ 1

N

N�

n=1

N�

k=1

un,kun+1,k min{λk, θ}.

Next, let T0 be such that for all T > T0,
�
�
�mmse

�
W L0T |W̄ L0 N

�
− mmse( fs)

�
�
� < ε/3.

Using the achievability side of the source coding theorem
with respect to W̄[·] from [6], we may choose T > T0 and
L = √

T > L0 such that

mmse
�

W̄ L N | f̄
�

W̄ L N
��

< DW̄ (R̄) + ε/3,

and therefore

mmse
�

W(0:LT )| f̄
�

W̄ L N
��

≤ DCE( fs , R) + ε.
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