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Sparse Doppler Sensing Based on Nested Arrays
Regev Cohen , Graduate Student Member, IEEE, and Yonina C. Eldar , Fellow, IEEE

Abstract— Spectral Doppler ultrasound imaging allows visu-
alizing blood flow by estimating its velocity distribution over
time. Duplex ultrasound is a modality in which an ultrasound
system is used for displaying simultaneously both B-mode images
and spectral Doppler data. In B-mode imaging, short wideband
pulses are used to achieve sufficient spatial image resolution.
In contrast, for Doppler imaging, narrowband pulses are pre-
ferred in order to attain increased spectral resolution. Thus,
the acquisition time must be shared between the two sequences.
In this work, we propose a nonuniform slow-time transmission
scheme for spectral Doppler, based on nested arrays, which
reduces the number of pulses needed for accurate spectrum
recovery. We derive the minimal number of Doppler emissions
needed, using this approach, for perfect reconstruction of the
blood spectrum in a noise-free environment. Next, we provide
two spectrum recovery techniques which achieve this minimal
number. The first method performs efficient recovery based on
the fast Fourier transform. The second allows for continuous
recovery of the Doppler frequencies, thus avoiding off-grid error
leakage, at the expense of increased complexity. The performance
of the techniques is evaluated using realistic Field II simulations
as well as in vivo measurements, producing accurate spectrograms
of the blood velocities using a significantly reduced number of
transmissions. The time gained, where no Doppler pulses are
sent, can be used to enable the display of both blood velocities
and high quality B-mode images at a high frame rate.

Index Terms— Blood doppler, blood velocity estimation,
medical ultrasound, nested arrays, spectral estimation.

I. INTRODUCTION

SPECTRAL Doppler in medical ultrasound is a noninvasive
imaging modality commonly used for quantitative estima-

tion of blood velocity. The data for velocity estimation are
acquired by insonifying the medium with a train of narrow-
band ultrasound pulses along a desired direction at a constant
pulse repetition frequency (PRF). The backscattered signals
are then sampled and focused along the chosen direction using
dynamic focusing. Assembling the samples associated with a
specific depth of interest from all received signals forms the
so-called slow-time signal with a center frequency proportional
to the axial blood velocity.

For a single blood cell with axial velocity vz , the slow-time
signal has a center frequency equal to [1]

fD = −2vz

c
f0 (1)
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where f0 is the center frequency of the transmitted signal and c
is the speed of sound. In reality, there is a distribution of blood
scatterers within each resolution cell of the ultrasound system.
The blood velocity distribution is estimated by reconstructing
the power spectral density of the slow-time signal. Display-
ing spectral analysis results over time on a pulsed Doppler
spectrogram (also referred to as pulsed wave spectrogram),
visualizes the evolution of the blood velocity distribution as a
function of time. The time needed for each velocity estimation
is the coherent processing interval (CPI), which is equal to the
number of transmitted pulses P divided by the PRF. As the
number of transmitted pulses per unit time is limited by the
speed of sound and the desired depth being examined, there is
an inherent tradeoff between spectral and temporal resolution.

In modern commercial ultrasound systems, the spectrogram
is typically estimated using Welch’s method [2], [3]—a modi-
fied averaged periodogram based on the fast Fourier transform
(FFT). However, this approach suffers from high leakage due
to high sidelobes and/or low resolution. Since the resolution
in Doppler frequency is governed by P , it requires a large
number of consecutive transmissions to be used for each
velocity estimate.

In addition to Doppler measurements, simultaneous high-
frame-rate B-mode images are required to allow the physician
to navigate, select the region in which the blood velocity is
estimated and to examine anatomical structures surrounding
the vessel. However, two distinct pulses are used for the
two modes, B-mode and Doppler. In particular, for B-mode
imaging, short wideband pulses with high carrier frequency
are transmitted to increase resolution. However, for Doppler
imaging, narrowband pulses with low center frequency are
preferred in order to improve penetration depth and increase
the precision of the velocity estimate. Moreover, the B-mode
and Doppler pulses may be transmitted in different directions.
Consequently, the acquisition time must be shared between the
two imaging modalities.

In conventional imaging, an interleaved B-mode/Doppler
sequence is used where every B-mode transmission is followed
by a Doppler transmission. This halves the PRF, resulting in
a reduction of the maximal velocity that can be detected by
a factor of two, according to the Nyquist theorem. An alter-
native common approach is to regularly interrupt the Doppler
sequence for a block of B-mode transmissions. However, this
results in holes in the blood velocity spectrogram. These lim-
itations raise the need for developing improved techniques for
blood spectrum estimation using considerably fewer Doppler
transmissions.

To circumvent these problems, Kristoffersen and
Angelsen [4] proposed to fill in the Doppler gaps with
a synthetic signal, generated based on the Doppler signal
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measured immediately prior to the B-mode interrupt.
Klebaek et al. [5] proposed the use of neural networks for
predicting the evolution of the mean and variance of the
Doppler signal in the gaps. However, both methods are
based on the assumption that the blood flow is constant or
predictable, which is not true in the case of abrupt changes,
leading to inaccurate velocity estimation. A correlation-based
method for spectral estimation from sparse data sets was
proposed in [6], allowing for random Doppler transmission
schemes, but it exhibits aliasing when using few Doppler
emissions. This work was further investigated in [7], which
proposed a technique for reconstructing the missing Doppler
samples, due to B-mode transmissions, using filter banks. This
method, however, reduces the velocity range in proportion to
the number of missing Doppler samples.

Two data-adaptive velocity estimators for periodically
gapped data, called blood periodically gapped (BPG)-Capon
and BPG-amplitude and phase estimation, were suggested
in [8] and [9]. These methods are restricted to the case of
periodically gapped sampling of Doppler emissions and have
been shown to achieve a limited reduction of 34% in the
number of transmissions. For arbitrary Doppler subsampling
patterns, two iterative methods, termed BSLIM and blood
iterative adaptive approach (BIAA), were presented in [10]
and [11]. However, they exhibit high computational load and
require the use of regression filters for clutter removal, which
may degrade the quality of the spectrum estimate by producing
spurious frequency components [12].

Several works apply compress sensing (CS) [13] techniques
to spectral Doppler using random slow-time samples. Zobly
et al. apply basis pursuit in [14] and a multiple measurement
vector technique in [15] to recover the Doppler signal.
However, the authors do not state the domain (dictionary)
in which the signal is sparse. Furthermore, the resultant
spectrograms exhibit artifacts. Assuming the Doppler signal
is sparse under the Fourier transform or in the wave atom
domain [16], Richy et al. [17], [18] propose decomposing
the Doppler signal into several equal segments and applying
CS recovery on each segment. However, this work does not
consider the case of moderately or nonsparse signals. More-
over, the reduction in the number of Doppler transmissions is
limited to 60% using this method. An extension is presented
in [19], which proposed to reconstruct the Doppler signal
using block sparse Bayesian learning [20], [21]. However,
the authors assume that the Doppler samples are temporally
correlated and severe aliasing appears in their recovered
spectra at high subsampling rates. In addition, the average
computation time per segment using this technique is high,
making it impractical for real-time implementation.

In addition to the computational complexity and recovery
artifacts in the methods mentioned above, none of these works
present an analysis of the minimal number of Doppler emis-
sions ensuring adequate reconstruction of the blood spectrum,
using their techniques.

The main contribution of this paper is twofold. First,
adopting recent work on nested arrays [22], [23] in the
fields of multiple-input multiple-output (MIMO) radar systems
and direction of arrival (DOA) estimation, we present a

nonuniform transmission scheme for spectral Doppler. Our
theoretical approach does not assume the Doppler signal is
sparse or its entries are correlated, nor that the blood flow
is predictable. An analysis is performed, deriving the mini-
mal number of Doppler emissions required using the nested
approach. We show that the number of transmissions allowing
for perfect reconstruction of the spectrum in a noise-free
setting is proportional to the square root of the observation
window length. Second, we propose two spectrum recovery
techniques that achieve this minimal number of transmitted
pulses. The first method assumes the Doppler frequencies
lie on the Nyquist grid and recovers the spectrum using
FFT. This technique exhibits enhanced resolution compared
with Welch’s method, and similar low complexity, making
it suitable for real-time application. The second approach
performs continuous recovery, thus preventing spectral leakage
stemming from off-grid errors, at the expense of increased
complexity. The performance of the techniques is validated
using realistic Field II simulation data [24], [25] and in vivo
data, showing that blood velocities can be accurately estimated
from a reduced number of emissions.

The rest of the paper is organized as follows. In Section II,
we review the Doppler signal model and formulate our prob-
lem. Section III describes the autocorrelation of the Doppler
signal and introduces the proposed sparse slow-time sampling
scheme. We then derive the minimal number of Doppler trans-
missions required using this emission pattern. In Section IV,
we present discrete and continuous recovery techniques that
achieve this minimal number. Alternative sparse transmission
schemes are discussed in Section V. We evaluate the perfor-
mance of the proposed algorithms in Section VI and com-
pare them with existing state-of-the-art techniques. Finally,
Section VII concludes the paper.

Throughout the paper, we use the following notation.
Scalars are denoted by lowercase letters (a), vectors by
boldface lowercase letters (a), matrices by boldface capital
letters (A), and sets are given by calligraphic font (e.g., A).
The (i, j)th element of A is denoted by A(i, j), al is the
lth column of A and a(l) represents the lth element of a. The
notations (·)T , (·)∗, and (·)H indicate the transpose, conjugate,
and Hermitian operations, respectively. The vectorization of
a matrix A into a column stack is given by vec(A). For a
positive integer P , d|P implies that d is a divisor of P with
1 < d < P .

II. DOPPLER MODEL AND PROBLEM FORMULATION

A. Doppler Model

A standard ultrasound system in spectral Doppler mode
transmits a pulse train

st x(t) =
P−1�

p=0

h(t − pT ), 0 ≤ t ≤ PT (2)

consisting of P equally spaced pulses h(t). The pulse repeti-
tion interval is T , and its reciprocal fprf = 1/T is the PRF.
The entire span of the signal in (2) is called the CPI. The
pulse h(t) is a sinusoid defined as

h(t) = sin(2π f0t), 0 ≤ t ≤ Tmax (3)
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where f0 is the center frequency of the signal and Tmax < T is
the pulse duration, determined by the desired axial resolution.

Consider a single blood scatterer. The pulses reflect off the
scatterer and propagate back to the transducer. The noise-free
received signal can be modeled as

s(t) =
P−1�

p=0

α sin

�
2π f0

�
t − pT − 2dp

c

��
(4)

where p is the emission number, c is the sound wave prop-
agation speed, α is the amplitude related to blood scatterer
reflectivity, and dp is its depth at the time of the pth trans-
mission. For mathematical convenience, we express s(t) as a
sum of single frames

s(t) =
P−1�

p=0

sp(t) (5)

where

sp(t) = α sin

�
2π f0

�
t − pT − 2dp

c

��
. (6)

The blood scatterer movement along the beam direction
during P consecutive transmissions is given by

dp = d0 + v · pT, 0 ≤ p ≤ P − 1 (7)

where d0 is the initial depth of the blood scatterer and v is its
axial velocity. Substituting (7) into (6), we get

sp(t) = α sin

�
2π f0

�
t − pT − 2d0

c
− 2v

c
pT

��
. (8)

Each frame is then aligned s̃p(t) = sp(t + pT ) and sampled
at rate fs , determined by the desired spatial axial resolution.
This yields a 2-D discrete signal

s[k, p] = s̃p

�
k

fs

�
= α sin

�
2π f0

�
k

fs
− 2d0

c
− 2v

c
pT

��

(9)

where k is the sample index associated with depth.
The samples (9) form a 2-D measurement matrix S ∈

CK×P where S(k, p) = s[k, p]. For a fixed pulse number p,
the samples along the row dimension of S are referred to as
fast-time samples and are related to the pth pulse transmission.
Each fast-time sample corresponds to a different depth k of
the scanned medium. For a given k, the samples along the
column dimension of S are referred to as slow-time samples
and are associated with the same depth, one sample per pulse
emission.

Following (9), the analytical signal is generated to give the
in-phase and quadrature components

x[k, p] = s[k, p] + jHk{s[k, p]}
= α exp

�
2π j f0

�
k

fs
− 2d0

c
− 2v

c
pT

��
(10)

where Hk{·} is the discrete Hilbert transform in the fast-time
direction. Since f0/ fs is known, we demodulate the signal
x[k, p], resulting in

y[k, p] = α exp

�
−2π j f0

�
2d0

c
+ 2v

c
pT

��
. (11)

Define the complex amplitude α̃ = α exp(− j (4πd0/c) f0) and
denote the Doppler frequency by

f � −2v

c
f0. (12)

Then, we can represent the signal given in (11) as

y[k, p] = α̃ exp(2π j f pT ). (13)

Consider a specific depth k. The measured signal in (13)
can be viewed as a realization of a continuous-time wide-sense
stationary (WSS), comprises a zero-mean complex amplitude
and a time-invariant velocity

yk(t) = α̃ exp(2π j f t), (14)

which is sampled at time t = pT (0 ≤ p ≤ P − 1),
namely, at a sampling rate of fprf. Decreasing the sampling
interval T increases the maximal velocity that can be recovered
according to the Nyquist theorem; however, there is a tradeoff
since it limits the maximal depth being examined. In addition,
the spectral resolution is governed by P , motivating the desire
to increase the number of transmissions as long as they are
limited to be within the time in which the velocity is assumed
to be constant.

In the general case, each resolution cell of the ultrasound
imaging system contains a distribution of blood scatterers.
Consequently, the measured signal consists of several spectra
stemming from M > 1 unknown velocities. Taking the latter
into account, we extend the signal model written in (13) to

y[k, p] =
M�

m=1

αm exp(2π j fm pT ), 0 ≤ p ≤ P − 1. (15)

Therefore, the received signal is composed of M components
where the mth component is defined by two parameters: a
Doppler frequency fm that is proportional to an axial velocity
vm , and a complex random amplitude αm that is related to the
number of blood cells moving at an axial velocity vm and their
positions. The Doppler frequencies { fm}M

m=1 are assumed to lie
in the unambiguous frequency domain, i.e., | fm | ≤ (1/2T ) =
(1/2) fprf for all 1 ≤ m ≤ M .

Assembling the slow-time samples y[k, p] for P consecu-
tive transmissions into a vector, we obtain

y[k] = Aα (16)

where y[k] = [y[k, 0], y[k, 1], . . . , y[k, P − 1] ]T ∈ CP×1

is the slow-time vector, the vector α ∈ CM×1 consists of
M amplitudes {αm}M

m=1 and the matrix A ∈ CP×M is a
Vandermonde matrix, whose entries are given by A(p, m) =
exp(2π j fm pT ).

Based on the model (16), the goal is to recover the frequency
components { fm}M

m=1 which form the matrix A and to estimate
the variances {σ 2

m}M
m=1 of the random vector α, i.e., the power

spectrum.

B. Standard Processing

In standard Doppler processing [1], [2], the Doppler
frequencies are assumed to lie on the Nyquist grid,
i.e., fm T = im/P , where im is an integer in the range
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0 ≤ im ≤ P − 1. Using this assumption, (16) can be rewritten
with A = FH as

y[k] = FHα (17)

where F ∈ CP×P is the FFT matrix. This implies that α is a
vector of length P with M nonzero values {αm}M

m=1 at indices
{im}M

m=1. Consequently, the power spectrum, to be recovered,
is defined as a vector p ∈ R

P×1 with a nonzero value σ 2
m at

index im .
Assuming that we have enough snapshots of the slow-time

vector y[k], a conventional estimate of the power spectrum is
given by

p̂standard = 1

K

K�

k=1

|Fy[k]|2 (18)

where the squared magnitude is computed elementwise. In this
case, the spectral resolution is equal to 2π/PT , where P is
chosen large enough to attain sufficient resolution.

C. Problem Formulation

In this work, we wish to recover the power spectrum p with
improved spectral resolution while significantly reducing the
number of transmitted Doppler pulses.

For an observation window of size P , we propose a new
transmission strategy in which only N < P pulses are sent
with nonuniform time steps between them over the entire CPI.
We show that the power spectrum can be fully reconstructed
with a resolution of 2π/(2P − 1)T at the same complexity
of standard processing. Note that we do not recover the
slow-time signal but only its power spectrum. We prove
that N = 2

√
P − 1 is the minimal number of transmissions

enabling perfect reconstruction of the spectrum in a noise-free
environment using our approach, and present recovery tech-
niques that achieve this number.

Using our techniques, we allow periods of time where no
Doppler pulse is sent, which can be exploited for B-mode
transmission sequences. Consequently, the same CPI may be
used to achieve Doppler velocity estimates and high-quality
B-mode images at a high frame rate.

III. NESTED SLOW-TIME SAMPLING

In this section, we present a nonuniform Doppler trans-
mission scheme from which the blood spectrum may be
recovered with improved resolution, in comparison to standard
processing. We first extend the signal model (16) by deriving
an expression for the signal autocorrelation function.

A. Correlation Domain

Consider the model given by (16) and define the autocorre-
lation matrices Ry = E[yyH ] ∈ CP×P and Rα = E[ααH ] ∈
CM×M . Then

Ry = ARαAH . (19)

We further assume that the amplitudes are statistically uncor-
related with unknown variances such that

E
�
αmα∗

n

� = σ 2
mδ[n − m] (20)

where δ[·] is the Kronecker delta. Under this assumption,
the matrix Rα is a diagonal matrix with Rα(m, m) = σ 2

m .
Denoting the diagonal of Rα by p ∈ RM×1, it follows that

r � vec(Ry) = (A∗ � A)p (21)

where A∗ � A ∈ CP2×M and � denotes the Khatri–Rao
product defined as a columnwise Kronecker product between
two matrices with the same number of columns [26], [27].

For a Vandermonde matrix A defined as in (16), the matrix
A∗ � A has full column rank if M ≤ 2P − 1 [28]. Therefore,
assuming this condition holds, (21) can be solved uniquely,
i.e., we can recover the blood spectrum p. Moreover, this
condition allows to recover p while transmitting fewer Doppler
pulses, as we show in Section III-B.

B. Nested Transmission Scheme

We now present a Doppler transmission scheme based
on the concept of nested arrays [22], [29], [30], which has
recently been considered in the fields of MIMO radar and
DOA. A nested array is an array geometry obtained by
systematically nesting two uniform linear arrays (ULA), which
allows resolving O(N2) signal sources using only N physical
sensors when the second-order statistics of the received data
is used. We adopt this concept and modify it for Doppler
emissions with a fixed CPI (i.e., limited aperture).

Following the work in [22], we introduce two positive
integers N1 and N2 in the range 1 ≤ N1, N2 ≤ P such that

N2(N1 + 1) = P. (22)

We then choose the number of pulses to be N = N1 + N2.
Note that N = N1 + N2 ≤ P for any two positive integers
satisfying (22). In Section III-C, we will show how to choose
N1, N2 in order to minimize N .

Given N1 and N2, we define the following two sets:
SN1 = {1, 2, . . . , N1}
SN2 = {n(N1 + 1), n = 1, 2, . . . , N2}. (23)

Denote by SN the ordered set of the union of SN1 and SN2

SN = {SN1 ∪ SN2 } (24)

which is referred to as a nested array. By varying N1 and N2,
we generate different sets SN . Any set in this class is
a concatenation of two ULAs with increasing interelement
spacing. Note that for N1 = P − 1 and N2 = 1, we have
SN = {1, 2, . . . , P}, hence, the standard transmission pattern
is a special case of nested arrays.

Consider a nonuniform transmission pattern for spectral
Doppler imaging such that the nth pulse is sent at time pnT ,
where pn is the nth element of SN , as illustrated in Fig. 1.
In this case, (4) becomes

st x(t) =
N−1�

n=0

sin(2π f0(t − (pn − 1)T )), 0 ≤ t ≤ PT . (25)
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Fig. 1. Transmission Patterns. Different transmission patterns for an obser-
vation window of size P = 12. Circle: Doppler pulse emission. (a) Standard
transmission pattern. (b) Nested transmission pattern for N1 = N2 = 3.
(c) Nested transmission pattern for N1 = 2 and N2 = 4.

Following the processing on the received signals described in
Section II, the measured signal is written similar to (16) as

y[k, n] =
M�

m=1

αm exp(2π j fm(pn − 1)T ), 0 ≤ n ≤ N − 1.

(26)

In vector form, we have

yN [k] = AN α (27)

where yN [k] ∈ CN×1 is the nested slow-time (NEST) vector
composed of samples from N emissions, and AN ∈ CN×M is a
matrix whose entries are given by A(n, m) = exp(2π j fm(pn−
1)T ). Note that AN is constructed by choosing rows from the
Vandermonde matrix A, defined in (16), according to SN .

Denote the autocorrelation matrix RyN = E[yN yH
N ] ∈

RN×N . Similar to (19) and (21), we have

RyN = ANRαAH
N (28)

rN � vec(RyN ) = (A∗
N � AN )p � Ãp. (29)

In (29), the mth column of the matrix Ã ∈ C
N2×M has entries

exp
�
2π j fm(p1 − p2)

�
for p1, p2 ∈ SN , where p1 and p2 are

pulse locations in the nested array SN . Defining the difference
set of SN as

D = {pi − p j |pi , p j ∈ SN } (30)

the entries of Ã are given by Ã(d, m) = exp(2π j fm pd T )
where pd is the dth element of D. Note that in our definition
of D, we allow repetition of its elements.

The system of equations defined in (29) can be solved
uniquely if the matrix Ã has full column rank. Theo-
rem 1 states the necessary conditions for unique recovery. The
theorem relies on the following lemma.

Lemma 1: Let Du be the set of unique elements of D. Then,
Du consists of exactly 2N2(N1 +1)−1 distinct integers in the
continuous range from −N2(N1 + 1) + 1 to N2(N1 + 1) − 1.

Proof: See Appendix A. �
The number of degrees of freedom (DOF) of the nested set
SN is defined as the cardinality of the set Du . In our case,
according to Lemma 1, the cardinality is equal to |Du | =
2N2(N1 +1)−1. This number dictates the DOF of the system
defined in (29) as stated in the next theorem, which follows
directly from Lemma 1.

Theorem 1: Let AN ∈ CN×M be the matrix defined in (28)
with | fm | ≤ (1/2) fprf, 1 ≤ m ≤ M . Then, the matrix

Ã � (A∗
N � AN ) ∈ CN2×M has exactly 2P − 1 distinct rows.

It has full column rank if 2P > M .
Proof: Recall that the entries of Ã are given by Ã(d, m) =

exp(2π j fm pd). This implies that the dth row of Ã corresponds
to the dth element of the difference set D. Consequently,
the number of distinct rows of Ã is equivalent to the number
of unique elements of D, which from Lemma 1 is 2N2(N1 +
1)−1. Since N2(N1+1) = P , the matrix Ã has 2P −1 distinct
rows that correspond to a Vandermonde matrix. Hence, Ã is
full column rank if 2P > M . �

We can relate each element of the set Du to a different
time lag of the autocorrelation function of the slow-time
signal. Thus, Lemma 1, followed by Theorem 1, ensures
the recovery of all time lags of the autocorrelation function,
i.e., the proposed transmission scheme satisfies the condition
stated in [6]. This means that for 2P > M , we can retrieve
the power spectrum of the slow-time signal by exploiting its
stationarity property and the lack of correlation between the
amplitudes. As we prove below in Theorem 2, this may occur
even for N < P .

C. Minimal Sampling Rate

We next derive the minimal number of Doppler transmis-
sions that allow perfect spectrum recovery while using the
nested emission scheme introduced in Section III-B.

Given an observation window of size P , we seek integers
N1 and N2 which minimize the total number of Doppler
transmissions N while maintaining the overall CPI. This can
be cast as the following optimization problem:

min
N1,N2∈N+ N1 + N2

s.t. N2(N1 + 1) = P. (31)

Note that whenever P is a prime number, there is only one
feasible solution N1 = P − 1 and N2 = 1, leading to the
standard transmission scheme. Therefore, we treat the case
in which P is not prime and (31) becomes a combinatorial
optimization problem. A closed-form solution to this problem
is given by the following theorem.

Theorem 2: Given an observation window of size P , let D1
and D2 be the sets defined as follows:

D1 = {d|P : d ≤ √
P}, D2 = {d|P : d ≥ √

P}.
Then, the optimum values for N1 and N2 are given by

N1 = max(D1) − 1, N2 = min(D2)

N1 = min(D2) − 1, N2 = max(D1). (32)

Proof: See Appendix B. �
Theorem 2 states that in the general case, there are two

optimal solutions (see Fig. 2). However, we note that though
both solutions offer the same minimal number of transmis-
sions, they are not equivalent. A nested transmission scheme
for given N1 and N2 creates N2 − 1 gaps of size N1 where
no Doppler pulse is sent and can be used for B-mode.
Therefore, the choice of N1 and N2 has an influence on
the B-mode imaging, leading to a tradeoff depending on
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Fig. 2. Nested Array Variations. A summary of different variations of nested
arrays for an observation window of size P = 128. The two optimal solutions
are highlighted in red.

the specific application. For example, in coherent plane-wave
compounding [31], the size of the gap determines the number
of inclination angles (i.e., image quality) while the number of
gaps affects the image frame rate.

In the case where P is a perfect square, we get that
max(D1) = min(D2) = √

P , leading to the following
corollary.

Corollary 1: Assuming P is a perfect square, problem (31)
has a unique solution. The minimal number of Doppler
pulse emissions and the optimum values for N1 and N2 are
given by

N = 2
√

P − 1, N1 = √
P − 1, N2 = √

P . (33)

Theorem 2 along with Corollary 1 imply that when an
observation window with size P is required, the blood power
spectrum can be reconstructed from only �(

√
P) Doppler

pulse emissions. For example, given an observation window
with P = 256, perfect spectrum recovery can be achieved from
31 Doppler transmissions, which is only 12% of the number of
pulses sent in a standard transmission scheme. This reduction
in the number of transmissions is greater than any previously
proposed method.

IV. RECONSTRUCTION METHODS

We now consider two methods to reconstruct the blood
power spectrum from sub-Nyquist slow-time samples obtained
using the nested transmission scheme described in (29).
We begin by introducing practical considerations into our
framework.

First, we need to compute the autocorrelation matrix from
which the subsequent signal model is derived. We estimate it
by averaging samples over neighboring depths

R̂yN =
Q�

k=1

yN [k]yH
N [k] (34)

where Q is proportional to fs/ f0. Since the signal covariance
matrix is estimated from a finite number of snapshots Q,
the Khatri–Rao product in (29) is only an approximation.
Moreover, we consider additive noise to the measurements,
and thus, we modify (27) to

yN [k] = AN α + w[k] (35)

where w[k] ∈ CN×1 is zero mean white complex Gaussian
noise with unknown covariance matrix σ 2I, uncorrelated with
the blood scatterers amplitudes. In this case, (28) and (29)
become

R̂yN ≈ ANRαAH
N + σ 2IN×N (36)

rN = vec(R̂yN ) ≈ Ãp + σ 2vec(IN×N ). (37)

Next, due to the repetition of elements in D, we have
redundancy in the system of equations defined in (37), namely,
some of the rows of A are identical. To reduce the system of
equations and the effect of noise, we define for every d ∈ Du

the set Md that collects all the indices where d occurs in D
Md = {i |D(i) = d}. (38)

Then, we define a new vector z ∈ C(2P−1)×1 given by

z(id ) = 1

|Md |
�

i∈Md

rN (i) d ∈ Du (39)

where id denotes the index of d in Du , and |Md | is the
cardinality of Md , namely, the number of times d occurs in D.
Writing (39) in vector form, we have

z = Āp + σ 2ē (40)

where ē ∈ R
(2P−1)×1 is a vector of all zeros, except a 1

at the Pth position. The matrix Ā ∈ C(2P−1)×M has entries
Ā(d, m) = exp(2π j fm pd T ), where pd is the dth element
of Du . To solve (40), we present two techniques that recover
the blood spectrum p.

A. Discrete Recovery

Suppose, as in standard Doppler methods, we limit our-
selves to the Nyquist grid so that fm T = im/P̃ for every
1 ≤ m ≤ M , where im is an integer in the range 0 ≤ im ≤
P̃ −1 and P̃ = 2P −1. Note that our grid is twice as dense as
standard Doppler techniques so that our resolution is increased
by a factor of 2. In this case, Ā = FH ∈ C

P̃×P̃ where F is
the FFT matrix and we have

z = FH p + σ 2ē. (41)

By taking the Fourier transform of (41) scaled by P̃ and using
the fact that FFH = P̃I, we obtain

z̃ = 1

P̃
Fz = p + σ 2

P̃
1 (42)

where 1 ∈ R P̃×1 is a vector of all ones.
Finally, we adopt ideas from denoising schemes presented

in [32]–[34] and employ a soft thresholding operator �λ(x) �
max(x − λ, 0) on the spectral estimates, which decreases the
noise variance and the effect of spurious frequencies resulting
from the finite sample averaging. Thus, our estimate of the
blood spectrum is given by

p̂ = �λ(z̃) (43)

where λ ≥ 0 is determined empirically and can be tuned in
real time according to the clinician’s desire. The proposed
technique is outlined in Algorithm 1 and is referred to as
NEST.

Note that NEST differs from the estimator proposed in [6]
since NEST is based on the nested transmission scheme. As we
show later in Sections V and VI, there are different emission
schemes that satisfy the condition stated in [6], which lead
to different recovery results. Thus, the right choice of the
subsampling strategy may be crucial for successful recovery.
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Algorithm 1 NEST

Require: Nested samples {y[k]}Q
k=1, threshold λ ≥ 0.

1: Estimate R̂yN by (34).
2: Form rN = vec(R̂yN).
3: Compute z using (39).
4: Apply a Fourier transform: z̃ = 1

P̃
Fz with P̃ = 2P − 1.

5: Apply soft-thresholding: p = �λ

�
z̃
�
.

Output: p - Blood power spectrum.

Furthermore, NEST consists of an additional denoising step
given by soft thresholding, which leads to a better estimate of
the autocorrelation function.

Given N , the complexity of NEST is O(N2 Q + P log P).
For the minimal slow-time sampling rate N2 ∝ P , the com-
plexity is O(P Q + P log P), making NEST suitable for
real-time implementation on commercial systems.

The properties of the difference set Du are emphasized
in NEST. In particular, the fact that |Du | = 2P − 1
allows achieving spectral estimates with increased resolution
of 2π/(2P − 1)T , almost twice the resolution of standard
processing. Moreover, since the elements of Du are a filled
ULA, the matrix Ā reduces to a full FFT matrix, leading to
an efficient implementation.

B. Continuous Recovery

In reality, grid-based methods exhibit estimation errors since
the true Doppler frequencies are unlikely to lie on a prede-
fined grid, regardless of how finely it is defined [35], [36].
To address this issue, we next provide a continuous recov-
ery method that does not assume an underlying grid. This
technique is based on the work in [36] and [37] and depends
on the eigenspace of the covariance matrix. Following [38],
we construct a matrix 	R given by the following theorem, which
shares the same eigenspace as the covariance matrix.

Theorem 3: Let 	R be the following Toeplitz matrix:

	R �

⎛

⎜⎜⎜⎝

z(P) z(P − 1) . . . z(1)
z(P + 1) z(P) . . . z(2)

...
...

. . .
...

z(2P − 1) z(2P − 2) . . . z(P)

⎞

⎟⎟⎟⎠. (44)

For an infinite number of snapshots, the matrix 	R can be
expressed as

	R = ARαAH + σ 2IP×P

where A and Rα are defined in (16) and (19) respectively.
Proof: See [38]. �

Note that, in practice, we have a finite number of snapshots,
hence, the structure of 	R given by Theorem 3 holds only
approximately. Nevertheless, from Theorem 3, it follows that
in the absence of noise, the range space of 	R is identical to
that of A. This special structure can be exploited to recover the
Doppler frequencies by using subspace methods [39]. We now
briefly describe the estimation of signal parameters via rota-
tional invariance techniques (ESPRIT) algorithm [39], [40],
provided as a representative of subspace approaches.

Assuming M is known, let EM denote the matrix of size
P × M consisting of the eigenvectors corresponding to the M
largest eigenvalues of 	R. Since the matrices A and EM span
the same space, there exists an invertible M × M matrix T
such that

A = EM T. (45)

Let V1 be the P − 1 × M matrix consisting of the first P − 1
rows of A, and let V2 be the P − 1 × M matrix consisting of
the last P − 1 rows of A. Then, we have that

V2 = V1	 (46)

where 	 ∈ CM×M is a diagonal matrix with entries
	(m, m) = exp(2π j fm T ). In addition, let E1 and E2 be equal
to the first and last P −1 rows of EM , respectively. From (45),
we get

V1 = E1T

V2 = E2T. (47)

Combining (46) and (47) leads to the following relation
between the matrices E1 and E2 :

E2 = E1T	T−1. (48)

Assuming M ≤ P − 1, the matrix E1 is full column rank,
therefore, E†

1E1 = I where E†
1 is the pseudoinverse of E1.

Multiplying (48) on the left-hand side by E†
1 leads to

E†
1E2 = T	T−1. (49)

Following (49), we can recover the Doppler frequencies from
the eigenvalues of E†

1E2.
ESPRIT requires knowledge of the number of Doppler fre-

quencies M , which is typically unavailable to us. In practice,
one can estimate M using, for example, the minimum descrip-
tion length algorithm [40]. Here, we propose an alternative
based on low-rank approximation [37].

Let the eigen decomposition of 	R be given by

[E, d] = eig(	R) (50)

where E consists of the eigenvectors in its columns and d
is a vector consisting of the eigenvalues in a nonincreasing
order. To promote low rank of the matrix 	R, we perform soft
thresholding on d and estimate M as

M = ||�λ(d)||0 (51)

where λ ≥ 0 is chosen empirically and ||·||0 is the l0-seminorm
which counts the number of nonzero elements of the vector.
This operation acts as a denoising scheme and accounts for
the finite snapshot effect on the estimates. Given the estimate
of M , we define EM as the first M columns of E and perform
ESPRIT as described.

Once the Doppler frequencies are recovered, the Vander-
monde matrix Ā, defined in (40), is constructed. Assuming
2P > M , the matrix Ā has full column rank and the blood
spectrum vector p is then obtained by left inverting Ā

p̂ = Ā†z. (52)
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Algorithm 2 NESPRIT

Require: Nested samples {y[k]}Q
k=1, threshold λ ≥ 0.

1 : Estimate R̂yN by (34).
2 : Form rN = vec(R̂yN).
3 : Compute z using (39).
4 : Construct 	R according to (44).
5 : Decompose 	R : [E, d] = eig(	R).
6 : Estimate M = ||�λ(d)||0.
7 : Extract EM = [e1, . . . , eM ].
8 : Define E1 and E2 as in (47).
9 : Compute the eigenvalues of E†

1E2: β = eig(E†
1E2).

10: Estimate the Doppler frequencies f = � β
2πT .

11: Construct Ā defined in (40) using f .
12: Spectrum recovery: p = Ā†z.

Output: ( f , p) - Blood power spectrum.

The proposed recovery method is summarized in Algorithm 2
and is referred to as NEST Esprit (NESPRIT).

The NESPRIT algorithm can theoretically exhibit infinite
frequency precision in identifying the Doppler frequencies
when there is no noise. However, it has a large computa-
tional load. The complexity of NESPRIT is dominated by
the eigendecomposition of a P × P Hermitian matrix, which
requires O(P3) operations [41]. However, note that more
computationally efficient methods, presented in [42], may be
used to reduce the complexity of traditional ESPRIT.

C. Clutter Filtering and Apodization

One major challenge in spectral Doppler is clutter filter-
ing. Clutter signals stem from backscattered echoes from
vessel’s walls and surrounding tissues, stationary and non-
stationary, and are typically 40 to 60 dB stronger than
the flow signal [1], [43], [44]. Thus, clutter may obscure
blood velocities and must be removed for accurate velocity
estimation.

Conventionally, clutter removal is applied using high-pass
finite impulse response (FIR) filters or infinite impulse
response (IIR) filters. However, such filters assume uniformly
sampled data, which is not the case when using sparse Doppler
sequences. To overcome this, in [6] and [10], polynomial
regression filters were used for clutter rejection since they are
not restricted to uniform sampling. The downside of regression
filters is that they may lead to spurious frequencies in the
output spectrum [12], [45], compromising their reliability for
clinical use.

A crucial disadvantage of many sparse Doppler methods is
their inability to use FIR and IIR filters for clutter removal.
Fortunately, NEST and NESPRIT do not share this limitation,
since they recover the full uniform autocorrelation function,
allowing to perform filtering in the correlation domain as we
show next.

Consider a linear time invariant stable system with impulse
response h[n], driven by a WSS discrete process x[n]. Denot-
ing by y[n] the output of the system and by Ry[n] the

autocorrelation function of y[n], we have

y[n] = x[n] ∗ h[n]
Ry[n] = Rx [n] ∗ h[n] ∗ h[−n] (53)

where Rx [n] is the autocorrelation function of the input and
∗ denotes convolution. Following (53), any FIR or IIR filter
h[n] can be applied in the correlation domain by computing

z̃[n] = z[n] ∗ h[n] ∗ h[−n] (54)

where z[n] is given by (39). Thus, the fact that we recover
the full uniform autocorrelation function allows us to perform
clutter removal using any desired filter. In addition, specifically
for NESPRIT, which involves an eigenvalue decomposition,
eigen-based clutter filters [46] are directly applicable.

Similarly, any apodization function a[n], used for reducing
sidelobes, may be applied directly in the correlation domain
by computing

ẑ[n] = z[n] · Ra[n] (55)

where z[n] is given by (39) and Ra[n] is the autocorrelation
function of a[n].

V. ALTERNATIVE SPARSE ARRAYS

Up until now, we considered only nested arrays as an
approach for reducing the number of Doppler transmissions.
However, in the literature of array processing, there are alterna-
tive sparse array configurations that can match the performance
of their fully populated counterparts. In this section, we briefly
review several alternatives and discuss their properties in
comparison with nested arrays.

A. Super Nested

A modified version of nested arrays are the super nested
arrays [47]–[49]. Assuming N1 ≥ 4 and N2 ≥ 3, super
nested arrays are specified by the integer set SSN created by
concatenating six ULAs (see Fig. 3), defined by

SSN = X1 ∪ Y1 ∪ X2 ∪ Y2 ∪ Z1 ∪ Z2

X1 = {1 + 2l | 0 ≤ l ≤ A1}
Y1 = {(N1 + 1) − (1 + 2l) | 0 ≤ l ≤ B1}
X2 = {(N1 + 1) + (2 + 2l) | 0 ≤ l ≤ A2}
Y2 = {2(N1 + 1) − (2 + 2l) | 0 ≤ l ≤ B2}
Z1 = {l(N1 + 1) | 2 ≤ l ≤ N2}
Z2 = {N2(N1 + 1) − 1} (56)

with

(A1, B1, A2, B2)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(r, r − 1, r − 1, r − 2), N1 = 4r

(r, r − 1, r − 1, r − 1), N1 = 4r + 1

(r +1, r −1, r −1, r −2), N1 = 4r + 2

(r, r, r, r − 1), N1 = 4r + 3

where r is an integer.
These variants share the same properties as nested arrays

in terms of the number of Doppler transmissions and their
difference sets. In addition, they offer an advantage over
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Fig. 3. Alternative Transmission Patterns. Different transmission patterns
for various observation windows. (a) Super nested pattern for N1 = N2 = 3,
P = 12. (b) Third-order super nested pattern for N1 = N2 = 3, P = 12.
(c) Coprime scheme for N1 = 2, N2 = 5, P = 11. Two color circle: single
Doppler transmission that is mutual for both subarrays. (d) Three-level nested
array for N1 = N2 = 1, N3 = 3, P = 12. MATLAB code for generating
super nested arrays can be found in [50].

nested arrays of reduced mutual coupling [51], which, in our
case, translates to the effect of previous transmissions on the
received signal corresponding to the current emission. This
property may allow increasing the maximal depth examined.
However, super nested arrays exhibit complex geometry com-
pared to nested arrays. In particular, the Doppler gaps created
are not of the same size, and thus, using them for B-mode
imaging may be difficult in certain applications.

B. Coprime Array

This type of sparse array has been studied extensively in
the literature [52]–[58]. Let N1 < N2 be coprime integers,
i.e., their greatest common divisor (gcd) is 1. A coprime
array is composed of two ULAs with interelement spacing
N1 and N2

SN1 = {n1 N2, n1 = 0, 1, . . . , 2N1 − 1}
SN2 = {n2 N1, n2 = 0, 1, . . . , N2 − 1}
SCP = {SN1 ∪ SN2 }. (57)

By [54, Lemma 1], the difference set of SCP contains all
2N1 N2 + 1 contiguous integers from −N1 N2 to N1 N2. This
means that for an appropriate choice of N1 and N2 such
that N1 N2 = P − 1, we can recover all time lags of the
autocorrelation from −(P − 1) to P − 1 with a roughly equal
number of correlation pairs for all lags. In addition, a coprime
array has the property of reduced mutual coupling compared
to a nested array, while having a simpler geometry compared
to super nested arrays.

The main drawback of coprime arrays is that they require
sending Doppler pulses in times beyond the observation
window, as can be seen in Fig. 3. Therefore, the reflected
slow-time signal may not preserve its stationarity property,
which is a key assumption in Doppler processing. To over-
come this, we can limit ourselves to Doppler transmissions
sent within the observation window. However, in this case,
the difference set is not a filled ULA, i.e., not all time lags
are recovered. As a result, this will reduce the number of DOF,
namely, the number of velocities that are recoverable.

C. K-Level Nested Array

The nested array concept is based on concatenating two
ULAs. A K-Level nested array is an extension to K ULAs.
This array is parameterized by K , N1, N2, . . . , NK ∈ N+ and
defined as follows:

S1 = 1, 2, . . . , N1

Si =
⎧
⎨

⎩n
i−1�

j=1

(N j + 1), n = 1, 2, . . . , Ni

⎫
⎬

⎭ i = 2, 3, . . . , K

SKL =
K�

i=1

Si . (58)

The interelement spacing in the i th level is equal to Ni−1 + 1
times the spacing in the (i −1)th level, as illustrated in Fig. 3.

To determine the minimal number of transmissions using
this approach, we define a generalized version of problem (31)

min
K∈N+ min

N1,...,NK ∈N+

K�

i=1

Ni

s.t. Nk

K−1�

i=1

(Ni + 1) = P. (59)

The solution to (59) is given by the following theorem.
Theorem 4: Let P be the size of a given observation

window, represented by its prime factorization

P =
ω�

i=1

pqi
i

where ω is the number of distinct prime factors of P . Define
� = �ω

i=1 qi . The optimal number of nesting levels K and
the minimal number of transmissions are given by

K = �

N = 1 +
ω�

i=1

(pi − 1)qi

{Ni }�i=1 = {p1 − 1, . . . , p1 − 1� �� �
q1times

, . . . , pω − 1, . . . , pω − 1� �� �
qω−1 times

, pω}.

Proof: See Appendix C. �
A common choice for P is a power of 2. The optimal

K-level nested array, in this case, is given by the following
corollary.

Corollary 2: Consider an observation window of size P =
2n for some n ∈ N+. The optimal transmission pattern consists
of n + 1 emissions with exponential spacing, given by the set

Sopt = {1, 2, 4, . . . .2n}.
Nested arrays are associated with second-order statistics

while K-level nested arrays extend this notion to higher order
statistics. For example, four-level nested arrays are related to
differences in the difference set, i.e., fourth-order moments.
Thus, if we consider higher order statistics, then Theorem 4
implies that K-level nested arrays offer a significant reduction
in the number of Doppler transmissions over nested arrays.
However, using higher order statistics requires a large number
of snapshots, which may not be available.
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TABLE I

PARAMETERS FOR FEMORAL FLOW SIMULATION

VI. SIMULATIONS AND In Vivo RESULTS

We now demonstrate the blood spectrum reconstruction
from sparse slow-time samples. The NEST and NESPRIT
algorithms are evaluated using Field II [24], [25] simulations
with the Womersley model [59] for pulsating flow from the
femoral artery. The specific parameters for the Field II simu-
lation of the flow are summarized in Table I. The estimation of
the autocorrelation matrix was performed using Q = 33 regu-
larly spaced samples along the depth and involved subtraction
of the mean of the signal, thus removing the signal’s stationary
part. In addition, the thresholding parameter in NEST was
chosen as λ = α max(z̃), where α ∈ [0.2, 0.4] and z is given
by (42). In NESPRIT, we set it to λ = β max(d), where
β ∈ [0.3, 0.7] and d is given by (50).

A. MSE Versus SNR

First, we evaluate the performance of the proposed algo-
rithms by using a simplified signal simulated according to (13),
comprising a single Doppler frequency which does not lie on
the grid of standard processing. We consider an observation
window of size P = 8 and a nested transmission scheme
where N1 = 3, N2 = 2, and T = 1. Assuming a Doppler fre-
quency f = 3/15 = 0.2, we compare NEST, NESPRIT, and
Welch’s method by studying the mean squared error (MSE) of
their frequency estimates as a function of signal-to-noise ratio
(SNR). We define the MSE of an estimate f̂ as

MSE( f̂ ) = E[( f − f̂ )2] (60)

where E[·] is the expectation operator evaluated empirically
using 1000 Monte Carlo simulations.

Fig. 4 shows the MSE of the three methods as a function
of SNR for Q = 200 snapshots. Note how the performance
of the three methods improves considerably with increasing
SNR. In low-SNR regimes, NEST performs the worst while
the performance of NESPRIT and Welch’s method are com-
parable. However, while from a certain point both NEST and
NESPRIT recover the Doppler frequency perfectly, Welch’s
method still produces an error even in the high-SNR regime.
This is expected due to the limited Doppler resolution of
Welch’s method compared to NEST and NESPRIT.

B. Different Slow-Time Subsampling Levels

We now investigate the spectrum recovery of NEST and
NESPRIT using the proposed sparse transmission scheme
with different levels of slow-time subsampling, i.e., different
number of Doppler emissions:

Fig. 4. MSE versus SNR. MSE as a function of SNR (for a single Doppler
frequency) of NEST and NESPRIT methods applied for a nested transmission
scheme with N1 = 3, N2 = 2, and Q = 33.

1) N = 129 (≈ 50.3%): N1 = 127, N2 = 2.
2) N = 67 (≈ 26.1%): N1 = 63, N2 = 4.
3) N = 39 (≈ 15.2%): N1 = 31, N2 = 8.

Fig. 5 shows the spectrogram of traditional Welch’s
method and the ones obtained with the NEST (top) and
NESPRIT (bottom) using 50.3%, 26.1%, and 15.2% of pos-
sible Doppler transmissions. As can be seen, for all levels of
subsampling, both the proposed algorithms produce a clear
and accurate spectrogram. This allows the user the freedom to
vary N1 and N2 and, thus, determine the level of subsampling
dynamically.

C. Clutter Filter and Apodization

Next, we demonstrate the application of clutter filtering and
apodization using NEST and NESPRIT techniques. To that
end, a clutter signal was superimposed on the flow model being
40 dB stronger than the blood signal. We use a Butterworth
high-pass filter with normalized cutoff frequency 0.03 and
apodization with a Hamming window of length 256. Recall
that these actions are performed on the autocorrelation signal
given by (39).

Fig. 6 presents the spectrograms of NEST (top) and
NESPRIT (bottom) reconstructed from approximately 25%
of the Doppler emissions. On the left side, the resultant
unfiltered spectrograms are given. As shown in the figure,
only the frequency related to the clutter signal is visible, since
the clutter obscures the blood velocities entirely. Applying a
high-pass filter on the autocorrelation signal produces adequate
spectrograms (middle) where clearly the low frequencies are
filtered out. As expected, there are artifacts due to the fact
that the filtering is not ideal and part of the blood signal
is also filtered out along with the clutter. Using Hamming
apodization helps in reducing these artifacts, yielding cleaner
spectrograms (right).

These last results emphasize the importance of recover-
ing the slow-time autocorrelation which allows incorporating
any conventional clutter filter and apodization in NEST and
NESPRIT.

D. Alternative Sampling Patterns

Here, we examine other transmission schemes reviewed
in Section V. In Fig. 7, the spectrograms recovered by
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Fig. 5. Different Subsampling Levels. Spectrograms of the simulated femoral artery using different slow-time subsampling from 256 pulses (100%) down
to 39 pulses (≈15%). (a) Welch’s method—100%. (b) NEST—50.3%. (c) NEST—26.1%. (d) NEST—15.2%. (e) NESPRIT—50.3%. (f) NESPRIT—26.1%.
(g) NESPRIT—15.2%. All spectrograms are displayed with a dynamic range of 60 dB.

Fig. 6. Clutter Filtering and Apodization. Spectrograms of the simulated femoral artery with superimposed clutter signal. (a) NEST with no filter.
(b) NEST with high-pass filter. (c) NEST with high-pass filter and Hamming apodization. (d) NESPRIT with no filter. (e) NESPRIT with high-pass filter.
(f) NESPRIT with high-pass filter and Hamming apodization. All spectrograms reconstructed using only 67 transmissions (25%) and displayed with a dynamic
range of 60 dB.

NEST (top) and NESPRIT (bottom) are presented, where the
input vector was acquired in each setting according to a dif-
ferent transmit pattern—super nested (left), coprime (middle),
four-level nested (right). The parameters of each emission
scheme are presented in Table II. As shown in Fig. 7, for
coprime and four-level nested patterns, NEST and NESPRIT
failed to produce clear spectrograms and exhibit severe arti-
facts. This is expected since when using these transmit
schemes, the resulting autocorrelations have holes, leading

to aliasing which is dramatic, especially when the spectrum
consists of a wide range of frequencies. Note that for the
four-level nested scheme, NESPRIT failed to produce a visible
spectrogram and, hence, it is not shown. Moreover, the spec-
trograms resulting from the super nested pattern, although
clear, exhibit aliasing, which is surprising because the super
nested approach shares the nested pattern property of having
a full autocorrelation. This aliasing is probably due to the
fact that in super nested transmission, there is only one pair
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Fig. 7. Alternative Transmission Schemes. Spectrograms of the simulated femoral artery using alternative emission patterns. (a) Super nested scheme with
NEST recovery. (b) Coprime scheme with NEST recovery. (c) Four-Level Nested with NEST recovery. (d) Super nested scheme with NESPRIT. (e) Coprime
scheme with NESPRIT recovery. All spectrograms are displayed with a dynamic range of 60 dB.

Fig. 8. Performance Comparison for Minimal Rate. Spectrograms of the simulated femoral artery using only 31 pulses out of 256 (12%) according to the
sparse emission scheme. (a) Welch’s method. (b) BSLIM. (c) BIAA. (d) NEST. (e) NESPRIT. All spectrograms are displayed with a dynamic range of 60 dB.

TABLE II

PARAMETERS FOR DIFFERENT TRANSMIT PATTERNS

of transmissions separated in time by T , which may lead
to inaccurate estimation of lag one of the autocorrelation,
effectively reducing the PRF by a factor of 2.

E. Minimal Rate Performance

As a final simulation, we test the performance of both
NEST and NESPRIT for the minimal slow-time sampling
rate. According to the nested approach, for an observation

window of size P = 256, the minimal number of Doppler
transmissions is 2

√
P − 1 = 31, which is 12% of 256. Based

on this subsampling scheme, the proposed techniques are
compared with the conventional Welch’s method and with two
recently developed techniques BSLIM and BIAA, which can
handle arbitrary sampling schemes of the slow-time data. The
resulting spectrograms are shown in Fig. 8. As shown in the
figure, the blood spectrograms formed by NEST and NESPRIT
are sharp and clear, whereas in Welch’s method, BSLIM
and BIAA produce spectrograms with significant artifacts,
especially in regions of high velocities due to aliasing. These
last results prove that NEST and NESPRIT, based on the pro-
posed transmission scheme, are able to fully recover the blood
spectrum only from 12%. This along with the fact that NEST



COHEN AND ELDAR: SPARSE DOPPLER SENSING BASED ON NESTED ARRAYS 2361

Fig. 9. In vivo. Spectrograms of in vivo data of Carotid artery. Welch’s method using the fully sampled data (top), NEST (middle), and NESPRIT (bottom)
using 35 pulses out of 128 (∼ 27%) according the nested transmission pattern. All spectrograms are displayed with a dynamic range of 70 dB.

and NESPRIT present a closed-form solution, in contrast to
other competitive methods, indicates that NEST and NESPRIT
outperform the current state-of-the-art techniques.

F. In Vivo

We end by evaluating the performance of the proposed
methods on in vivo data obtained online.1 The data consists
of a Carotid artery of a healthy volunteer examined using a
B-K 8556 ultrasound scanner with a 3.2-MHz linear array
probe transducer in duplex mode. The sampling frequency was
8 kHz and the PRF was 3.5 kHz. An observation window of
P = 128 samples was chosen. The data were synthetically
undersampled according to the nested transmission scheme
with N1 = 31 and N2 = 4 for both NEST and NESPRIT,
leading to a total number of 35 emissions (∼27%). The
obtained spectrograms are shown in Fig. 9. As can be seen
from the figure, NEST and NESPRIT successfully recover the
Doppler frequencies from a small number of transmissions,
producing similar spectrograms to that obtained by Welch’s
method using the fully sampled data. These results validate
the effectiveness of the proposed methods and their potential
for clinical use.

VII. CONCLUSION

In this paper, we presented a sparse irregular transmission
scheme for medical spectral Doppler based on nested arrays.
Using this approach, we showed that in noiseless settings,
the blood spectrum can be recovered from only 2

√
P − 1

emissions, where P is the size of the observation window. Two
recovery algorithms, NEST and NESPRIT, which exploit the
proposed transmission pattern, were presented. NEST exhibits
low complexity and performs efficient reconstruction of the
blood spectrum with enhanced resolution. NESPRIT theo-
retically achieves infinite frequency precision in recovering

1The data were downloaded from ht.tp://bme.elektro.dtu.dk/31545/.

the blood velocities at the expense of computational load.
Moreover, any clutter filter and apodization function can be
easily incorporated into NEST and NESPRIT. Both algorithms
were evaluated and tested with Field II simulation data of
pulsating flow from the femoral artery. NEST and NESPRIT
were compared and shown to outperform the current state-of-
the-art methods by successfully recovering the blood spectrum
from only 12% of the Doppler transmissions. Finally, in vivo
results showed the ability of the proposed techniques to yield
valid spectrograms using far fewer emissions, proving their
potential for clinical use. This paves the way for duplex mode
imaging, displaying high-resolution blood spectrograms while
providing high-quality B-mode images at a high frame rate.

APPENDIX A
PROOF OF LEMMA 1

First, it easy to see that the maximal difference in absolute
values between elements of SN is N2(N1 + 1) − 1. Hence,
there is no integer k such that |k| > N2(N1 + 1) − 1 which
belongs to D or Du .

Given any integer k in the range −N2(N1 + 1) + 1 ≤ k ≤
N2(N1 + 1) − 1, we have that k ∈ Du if there exists pi and
p j which satisfy

k = pi − p j , pi , p j ∈ SN . (61)

Note that for a specific k, if there exists such pi , p j ∈ SN ,
i.e., k ∈ Du , then also −k ∈ Du since

−k = −(pi − p j ) = p j − pi . (62)

Therefore, we focus on proving (61) only for nonnegative
integers k in the range 0 ≤ k ≤ N2(N1 + 1) − 1.

Every integer k in the desired range can be decomposed as

k = m(N1 + 1) + r (63)

where m and r are the integers in the ranges 0 ≤ m ≤ N2 − 1
and 0 ≤ r ≤ N1, respectively. Denoting pi = (m +1)(N1 +1)
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and p j = N1 + 1 − r , we can rewrite (63) as

k = m(N1 + 1) + r

= (m + 1)(N1 + 1) + r − N1 − 1

= (m + 1)(N1 + 1) − (N1 + 1 − r)

= pi − p j . (64)

By definition, pi ∈ SN2 . When r = 0, p j ∈ SN2 ; otherwise
p j ∈ SN1 . Thus, pi , p j ∈ SN , and we conclude that k ∈ Du .

APPENDIX B
PROOF OF THEOREM 2

Denoting Ñ1 = N1 + 1, we recast (31) as follows:

min
Ñ1,N2∈N+

Ñ1≥2

Ñ1 + N2 − 1

s.t. N2 Ñ1 = P. (65)

From (65), it is easy to see that N2 = (P/Ñ1), where Ñ1 is a
divisor of P . Assuming Ñ1 ≤ N2, we have

Ñ1 = argmin
D1

d + P

d
(66)

where we neglect the constant term −1.
Next, we define a function f : [1,

√
P ] → R+ over a

continuous domain

f (x) = x + P

x
.

The function f (x) is continuous and differentiable over the
open interval (1,

√
P). Its derivative is given by

d f

dx
= 1 − P

x2 < 0

hence, f (x) is monotonically decreasing. Since D1 ⊂
[1,

√
P ], denoting Ñ1 = max(D1), we have

f (Ñ1) < f (d), d ∈ D1, d �= Ñ1.

Therefore, the optimal solution is given by N1 = max(D1)−1
and N2 = (P/Ñ1) = min(D2) accordingly. By interchanging
the roles of Ñ1 and N2, we get the solution for Ñ1 ≥ N2,
given by N1 = min(D2) − 1 and N2 = max(D1).

APPENDIX C
PROOF OF THEOREM 4

First, consider a given K-level nested array with L levels
and {Ni }L

i=1. Note that if NK = 1, then the resulting geometry
can be seen as a nested array with L − 1 levels and {Ñi }L−1

i=1
where

Ñi = Ni , i = 1, . . . , L − 2

ÑL−1 = NL−1 + 1.

Therefore, we assume that NK > 1 to avoid ambiguity.
For simplicity of analysis, we define

Zi �
�

Ni + 1, i = 1, 2, . . . , K − 1

NK , i = K .

An equivalent problem to (59) can be rewritten as

min
K∈N+ min

Z1,...,ZK ∈N+
Z1,...,ZK ≥2

K�

i=1

Zi − K + 1

s.t.
K�

i=1

Zi = P. (67)

Following (67), we wish to prove that K = � and the optimal
{Zi}�i=1 are given by the prime factors of P with repetitions
according to their multiplicities (up to rotation).

Assume by contradiction that the optimal solution sat-
isfies K �= �. The fundamental theorem of arithmetic
states that every positive integer has a single unique prime
factorization [60], hence, K ≤ �. Assume K < �, then there
exists Zi which is not prime, i.e., Zi can be decomposed into
the multiplication of two smaller integers Zi1 and Zi2, where
Zi1, Zi2 ≥ 2. This amounts to breaking the i th nested level
into two levels such that now there are K +1 levels of nesting.
Assuming that Zi1 ≤ Zi2 without loss of generality, we have

Zi1 + Zi2 ≤ 2Zi2 ≤ Zi1 Zi2. (68)

Hence, breaking up the i th nesting level into two levels
decreases the value of the objective function in contradiction
to the optimality of the solution.

Following the latter, we can go on splitting the nesting levels
until all Zi are prime numbers. This, along with the fact that
the prime factorization is unique, implies that the total number
of levels of nesting is K = � and the optimal {Zi }�i=1 are the
prime factors of P .
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