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Abstract— Representing a continuous-time signal by a set of
samples is a classical problem in signal processing. We study
this problem under the additional constraint that the samples
are quantized or compressed in a lossy manner under a limited
bitrate budget. To this end, we consider a combined sampling and
source coding problem in which an analog stationary Gaussian
signal is reconstructed from its encoded samples. These samples
are obtained by a set of bounded linear functionals of the
continuous-time path, with a limitation on the average number
of samples per unit time given in this setting. We provide
a full characterization of the minimal distortion in terms of
the sampling frequency, the bitrate, and the signal’s spectrum.
Assuming that the signal’s energy is not uniformly distributed
over its spectral support, we show that for each compression
bitrate there exists a critical sampling frequency smaller than
the Nyquist rate, such that the distortion in signal reconstruction
when sampling at this frequency is minimal. Our results can
be seen as an extension of the classical sampling theorem for
bandlimited random processes in the sense that they describe the
minimal amount of excess distortion in the reconstruction due
to lossy compression of the samples and provide the minimal
sampling frequency required in order to achieve this distortion.
Finally, we compare the fundamental limits in the combined
source coding and sampling problem to the performance of pulse
code modulation, where each sample is quantized by a scalar
quantizer using a fixed number of bits.

Index Terms— Sampling, analog to digital, source coding,
lossy compression, sub-Nyquist sampling, nonuniform sampling,
Gaussian processes.

I. INTRODUCTION

THE minimal sampling rate required for perfect recon-
struction of a bandlimited continuous-time process from
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Fig. 1. Analog-to-digital compression (ADX) and reconstruction setting.
Our goal is to derive the minimal distortion between the signal and its
reconstruction from a lossy compressed version of its samples, where R is
the compression bitrate and fs is the sampling rate.

its samples is given by the celebrated works of Whittaker,
Kotelnikov, Shannon and Landau [4]. These results, however,
focus only on performance associated with sampling rates;
they do not incorporate other sampling parameters, in particu-
lar the quantization precision of the samples. This work aims
to develop a theory of sampling and associated fundamental
performance bounds that incorporates both sampling rate as
well as quantization precision.

The Shannon-Kotelnikov-Whittaker sampling theorem
states that sampling a signal at its Nyquist rate is a sufficient
condition for exact recreation of the signal from its samples.
However, quoting Shannon [5]:

…“we are not interested in exact transmission when
we have a continuous [amplitude] source [signal],
but only in transmission to within a certain [distor-
tion] tolerance…”.

It is in fact impossible to obtain an exact digital representation
of any continuous amplitude signal due to the finite precision
of the samples. Hence, any digital representation of an analog
signal is prone to some error, regardless of the sampling
rate. This raises the question as to whether the condition of
Nyquist rate sampling can be relaxed when we are interested
in converting an analog signal to bits at a given bitrate (bits per
unit time), such that the associated point on the distortion-rate
function (DRF) of the signal is achieved.

The DRF describes the minimal distortion for any digital
representation of a given signal under a fixed number of bits
per unit time. While this implies that the DRF provides a
theoretical limit on the distortion as a result of analog to
digital (A/D) conversion, in fact, A/D conversion involves both
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Fig. 2. Minimal distortion versus sampling rate. DX (R) is the information
DRF describing the minimal distortion using lossy compression at bitrate R.
D�(R, fs) is the minimal distortion using sampling at frequency fs followed
by lossy compression at bitrate R, and mmse( fs) is the minimal distortion
under sub-Nyquist sampling with infinite bit precision.

sampling a signal as well as converting those samples to bits,
which entails some form of source coding, typically quanti-
zation. In some situations, it is possible to achieve the DRF
of a continuous-time signal by mapping it into an equivalent
discrete-time representation based on sampling at or above
its Nyquist rate [6]. However, A/D technology limitations can
preclude sampling signals at their Nyquist rate, particularly
for wideband signals or under energy constraints [7], [8].
In such scenarios, the data available for source encoding
is a sub-Nyquist sampled discrete-time representation of the
signal [4], [8]. Our goal in this work is to consider the minimal
distortion in recovering an analog signal from its samples
with lossy compression of the samples at a prescribed bitrate,
a setting which we call analog-to-digital compression (ADX)
and is illustrated in Fig. 1. We are interested in particular in
the optimal sampling rate to achieve this minimal distortion
for a given lossy compression rate of the samples.

The distortion in ADX can be analyzed by considering the
combined sampling and source coding setting studied in [9].
In this setting, the analog source signal is a Gaussian stationary
process. This process, or a noisy version of it, is sampled at
rate fs , after which the samples are encoded using a code of
rate R bits per unit time (R/ fs bits per sample on average).
In the special case of scalar uniform sampling, zero noise,
and assuming that fs is above the Nyquist rate of the source
signal, the encoder in Fig. 1 can estimate the signal with
vanishing distortion prior to encoding it. As a result, in this
case the distortion associated with sampling is zero, and the
minimal ADX distortion is described by the DRF of the analog
source signal. In this paper we ask the following question:
given a source coding rate constraint R (for example, as a
result of quantizing each sample using R/ fs bits), do we still
need to sample at the Nyquist rate in order to achieve the
DRF or is a lower sampling rate sufficient? By answering
this question, we establish in this work a critical sampling
rate fR , which is in general lower than the Nyquist rate, such
that sampling at this rate achieves the distortion-rate bound
at bitrate R. This is illustrated in Fig. 2, where we see that
sampling below the Nyquist rate is possible without additional
distortion over that given by the DRF associated with Nyquist
rate sampling.

Our results also imply that a picture similar to Fig. 2 holds
even if we replace the uniform sampler by any bounded linear
sampler. That is, each sample is obtained by a bounded linear

functional applied to the continuous-time analog path, and we
limit the average number of such samples obtained over a
finite time interval to be at most fs . In this case, the min-
imal fs allowing zero sampling distortion under unlimited
bitrate is the spectral occupancy or the Landau rate of the
signal [10], [11], i.e., the Lebesgue measure of the support
of it spectrum. We show that under a bitrate constraint R,
the critical sampling rate fR is always below the Landau rate
for signals whose power is not uniformly distributed over their
spectral support.

Our ADX setting also extends the expression for the
fundamental distortion limit derived in [9] under uniform
sampling to the class of all bounded linear samplers, and
provides the optimal tradeoff between distortion, bitrate
and sampling rate under a wide range of sampling mod-
els that are used in theory and practice. These include:
filter-bank sampling, nonuniform sampling, multi-coset sam-
pling [8], [11], and truncated wavelet transforms [4], [12].
In particular, the fundamental distortion limit we derive holds
even if the process obtained by sampling the original signal
does not have a known information theoretic distortion-rate
characterization. For example, our results apply to sampling
procedures resulting in non-ergodic processes.

When the signal is contaminated by noise before or dur-
ing the sampling operation, there in no hope to achieve
the DRF even with an unlimited sampling budget. Instead,
the minimal distortion is described by the indirect DRF of the
signal given its noisy version [13] [14, Sec. 4.5.4]. In this case,
our results imply that the critical sampling rate fR achieving
the indirect DRF at bitrate R depends both on R and the noise,
and can be attained in a similar manner as in the noise free
setting.

Finally, we note that our ADX framework and characteriza-
tion of the fundamental distortion limit hold even for signals
that are not necessarily bandlimited, such as Gauss-Markov
and autoregressive processes. For such a signal, the sampling
distortion is non-zero for any finite sampling rate. Neverthe-
less, for each bitrate R, there exists a finite fR such that the
minimal ADX distortion in sampling at or above fR equals
the DRF of the signal. Consequently, fR goes to infinity as R
goes to infinity, and the asymptotic ratio R/ fR is the minimal
number of bits per sample one must provide in order to make
the ADX distortion vanish at the same rate as the sampling
distortion.

In order to intuitively understand why optimal lossy com-
pression performance can be attained by sampling below the
Nyquist rate, one may consider the lossy compression of a
signal represented by a sequence of independent Gaussian
random variables. This representation is quite general since
most signals of interest can be represented using their inde-
pendent coefficients under some orthogonal basis transfor-
mation [15]. In order to compress such a sequence in an
optimal manner subject to a minimum mean squared error
(MSE) criterion in reconstruction, a random source code is
obtained using the water-filling formula of Kolmogorov [16].
This formula implies that signal components with variances
smaller than some threshold that depends on the bitrate
are set to zero. As we explain in detail in Section II,
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the ratio between the number of coefficients exceeding this
threshold and the original support of the distribution of
the sequence can be seen as the optimal sampling rate
required to attain the minimal distortion subject to the bit
constraint.

For an analog stationary signal, its Fourier basis decompo-
sition provides a canonical orthogonal representation. Hence,
the main challenge in attaining the optimal lossy compression
at bitrate R by sampling at rate fR is in “aligning” the
distribution of the sampled signal in the Fourier domain with
the optimal lossy compression attaining distribution. When
fs is below fR , the optimal alignment is described by a
function D�( fs , R) defined by a water-filling formula over
fs spectral bands of maximal energy (or maximal SNR in
the noisy version). As we show, this “alignmnet” is attain-
able by uniform multi-branch sampling using appropriate LTI
pre-sampling operations. Together with a matching converse
theorem with respect to D�( fs , R) under any bounded linear
sampler, we conclude that D�( fs , R) fully characterizes the
distortion in ADX. In particular, our results imply that the class
of multi-branch LTI uniform sampling is optimal, in the sense
that the distortion attained by any bounded linear sampler can
be attained by a multi-branch uniform sampler with a sufficient
number of sampling branches.

We also examine the distortion-rate performance of a very
simple and sub-optimal A/D scheme known as pulse-code
modulation (PCM). This scheme consists of a scalar quantizer
with a fixed number of bits per sample as an encoder and
a linear non-causal decoder. We analyze this A/D scheme
under a fixed bitrate budget, and show that there exists a
distortion minimizing sampling rate that optimally trades off
distortion due to sampling and due to quantization precision.
This optimal sampling rate is at or below the Nyquist rate,
and experiences a similar dependency on the bitrate as the
critical ADX rate fR . Our results also imply that, as opposed
to the behavior of the optimal ADX distortion D�( fs , R),
oversampling a bandlimited signal in PCM has a detrimental
effect on the distortion.

To put our work into context, we now briefly review some
of the well-known sampling theories and their relation to our
results. The celebrated Shannon-Kotelnikov-Wittaker sampling
theorem asserts that a bandlimited deterministic signal x(·)
with finite L2 norm can be perfectly reconstructed from its
uniform samples at frequency fs > fNyq, where fNyq is
the bandwidth of the signal. This statement can be refined
when the exact support supp Sx of the Fourier transform
of x(·) is known: x(·) can be obtained as the limit in
L2 of linear combinations of the samples x (Z/ fs) iff for
all k �= n ∈ Z, (supp Sx + fsk) ∩ (supp Sx + fsn) = ∅,
where a reconstruction formula is also available [17]. Lloyd
[18] provided an equivalent result for stationary stochas-
tic processes, where the Fourier transform is replaced by
the power spectral density (PSD). When sampling at the
Nyquist rate is not possible, the minimal MSE (MMSE) in
estimating a Gaussian stationary process from its uniform
samples can be expressed in terms of its PSD [19]–[21]. This
MMSE in the case of multi-branch sampling was derived
in [9, Sec. IV].

In general, the estimation of any regular Gaussian stationary
process from its partial observations can be translated into
the problem of projections into Hilbert spaces generated by
complex exponentials [22], [23]. In particular, when the PSD
is supported over a compact set S ⊂ R, then the closed linear
span (CLS) of exponentials with support over S is isomorphic,
by the Fourier transform operator, to the Paley-Wiener space
Pw(S) of functions with Fourier transform supported in S.
In this space, optimal reconstruction of signals from their
samples is possible when the samples define a frame [10], [24].
Beurling and Carleson [25] and Landau [26] showed that a
sufficient and necessary condition for a discrete set of time
samples to define a frame in Pw(S) is that its Beurling
density (also called uniform density) exceeds the Lebesgue
measure μ(S) of S. In our setting μ(S) is the spectral
occupancy of the signal, which we also refer to as its Landau
rate and denote it by fLnd. For the optimization of the sampling
times see [27]–[29] and the references therein. We also refer
to [4] and [30]–[32] [4], [30]–[32] for additional background
on sampling theory and generalized sampling techniques.

On the other side of the ADX setting is the distortion in
lossy compression at a limited bitrate R. The optimal trade-
off between the average quadratic distortion and bitrate in the
description of a Gaussian stationary process X (·) is given
by its quadratic DRF, denoted here by DX (R). This DRF
was initially derived by Pinsker [16], and then extended by
Dubroshin and Tsybakov [13] to the case where the process is
contaminated by Gaussian noise. Both the noisy case explored
by Dubroshin and Tsybakov and the ADX characterized in this
work fall within the indirect or remote source coding setting
[14, Sec. 4.5.4], in which the encoder has no direct access to
the signal it tries to describe. Indirect source coding problems
were also considered in [33]–[35].

The interplay between bit resolution in source coding and
sampling rates arise in numerous settings. For sampling rates
above the Nyquist rate, non trivial trade-offs between the over-
sampling rate and bitrate, under different encoding scenarios,
can be found in [6] and [37]–[40]. In order to explore the trade-
off between lossy compression and sub-Nyquist sampling
rates, a combined sampling and source coding problem was
recently introduced in [9] assuming uniform sampling. The
ADX can be seen as an extension of the setting in [9] to any
bounded linear sampling technique, and the determination of
the minimal sampling rate fR attaining the optimal source
coding performance. Finally, in the context of compressed
sensing (CS) [40], the optimal trade-off between the sampling
rate and bitrate is explored in the high bitrate asymptotic
in [41] and for a finite bitrate in [42]. We note that our results
are not directly relevant to CS since we focus on sampling
continuous-time Gaussian signals that are not sparse in any
basis. Nevertheless, the discrete-time counterpart of our results
may be applied to CS to obtain a lower bound on the distortion
when the signal’s support is given as side information, or an
upper bound on the distortion when the samples of the signal
are encoded using a Gaussian codebook [43].

The rest of the paper is organized as follows: in Section II
we provide intuition for the dependency between sampling and
lossy compression in representing finite dimensional random



6016 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 9, SEPTEMBER 2018

vectors. In Section III we define the ADX problem and the
class of bounded linear samplers we treat. Our main results
are given in Section IV. In Section V we consider scalar
quantization encoding and compare its performance to the
minimal ADX distortion. Concluding remarks are provided
in Section VI.

II. LOSSY COMPRESSION OF FINITE

DIMENSIONAL SIGNALS

As an introduction to the ADX setup, it is instructive
to consider a simpler setting involving the sampling and
lossy compression of signals represented as finite dimensional
random real vectors.

Let Xn = (X1, . . . , Xn) be an n-dimensional Gaussian
random vector with covariance matrix �Xn , and let Y m =
(Y1, . . . , Ym) be a projected version of Xn defined by

Y m = H Xn, (1)

where H ∈ R
m×n is a deterministic matrix and m < n.

This projection of Xn into a lower dimensional space is the
counterpart for the sampling operation in the ADX setting of
Fig. 1. We consider the normalized MMSE estimate of Xn

from a representation of Y m using a limited number of bits.
Without constraining the number of bits, the distortion in

this estimation is given by

mmse(Xn |Y m) � 1

n
trace

(
�Xn − �Xn |Y m

)
, (2)

where �Xn |Y m is the conditional covariance matrix of Xn

given Y m . When Y m is encoded using a code of no more than
n R bits, the minimal distortion cannot be smaller than the
indirect DRF of Xn given Y m , denoted by DXn |Y m (R). This
function is given by the following parametric expression [13]:

DXn |Y m (Rθ ) = trace (�Xn ) −
m∑

i=1

[
λi
(
�Xn |Y m

)− θ
]+

,

Rθ = 1

2

m∑

i=1

log+ [λi
(
�Xn |Y m

)
/θ
]

(3)

where x+ � max{x, 0}, log+[x] � [log(x)]+, and λi
(
�Xn |Y m

)

is the i th eigenvalue of �Xn |Y m .
It follows from (2) that Xn can be recovered from Y m with

zero MMSE if and only if

λi (�Xn ) = λi
(
�Xn |Y m

)
, ∀i ∈ {1, . . . , n}. (4)

When this condition is satisfied, (3) takes on the form

DXn (Rθ ) =
n∑

i=1

min {λi (�Xn ) , θ} ,

Rθ = 1

2

n∑

i=1

log+ [λi (�Xn ) /θ ] (5)

which is Kolmogorov’s reverse water-filling expression for the
DRF of the vector Gaussian source Xn [16], i.e., the minimal
distortion in encoding Xn using codes of rate R bits per
source realization. The key insight is that the requirements
for equality between (3) and (5) are not as strict as (4): all

Fig. 3. Optimal sampling occurs whenever DXn (R) = DXn |Y m (R). This
condition is satisfied even when m < n, as long as there is equality among
the eigenvalues of �Xn and �Xn |Y m which are larger than the water-level
parameter θ .

that is needed is equality among those eigenvalues that affect
the value of (5). In particular, assume that for a point (R, D)
on DXn (R), only λn(�Xn ), . . . λn−m+1(�Xn ) are larger than θ ,
where the eigenvalues are organized in ascending order. Then
we can choose the rows of H to be the m left eigenvectors
corresponding to λn(�Xn ), . . . λn−m+1(�Xn ). With this choice
of H , the m largest eigenvalues of �Xn |Y m are identical to the
m largest eigenvalues of �Xn , and (5) is equal to (3).

Since the rank of the sampling matrix is now m < n,
we effectively performed sampling below the “Nyquist rate”
of Xn without degrading the performance dictated by its DRF.
One way to understand this phenomena is an alignment
between the range of the sampling matrix H and the subspace
over which Xn is represented, according to Kolmogorov’s
expression (5). When this expression implies that not all
degrees of freedom are utilized by the optimal distortion-
rate code, sub-sampling does not incur further performance
loss provided the sampling matrix is aligned with the optimal
code. This situation is illustrated in Fig. 3. Taking fewer rows
than the actual rank of �Xn is the finite-dimensional analog
of sub-Nyquist sampling in the infinite-dimensional setting of
continuous-time signals.

In the rest of this paper we explore the counterpart of the
phenomena described above in the richer setting of continuous-
time stationary processes that may or may not be bandlimited,
and whose samples may be corrupted by additive noise. The
precise problem description is given in the following section.

III. PROBLEM FORMULATION AND PRELIMINARIES

A. ADX Setting

The ADX system is described in Fig. 4. We assume that
X (·) = {X (t) , t ∈ R} is a zero-mean real Gaussian stationary
process with a known PSD SX ( f ):

E [X (t)X (s)] =
∫ ∞

−∞
SX ( f )e2π j (t−s) f d f, t, s ∈ R. (6)

In particular, SX ( f ) is in L1(R) and the variance of X (·) is
given by

σ 2
X =

∫ ∞

−∞
SX ( f )d f.
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Fig. 4. ADX via a combined sampling and source coding setting with
additive noise prior to sampling. We consider the distortion in recovering X (·)
over [−T/2, T/2] from a representation of its NT samples using 	T R
 bits,
where NT is the number of samples in [−T/2, T/2] and NT /T is bounded
asymptotically by fs .

The noise is another zero-mean real Gaussian stationary
process ε (·) = {ε (t) , t ∈ R} independent of X (·) with
PSD Sε( f ) and finite variance. We assume that the spectral
measures of X (·) and ε(·) are absolutely continuous with
respect to the Lebesgue measure, so that their distribution is
fully characterized by their PSDs.

The sampler S belongs to the class of bounded linear
samplers to be defined in the sequel. This sampler receives
the process

Xε(·) � X (·) + ε(·),
i.e., the noisy version of X (·), as its input. For a finite time
horizon T > 0, the sampler S produces a finite number NT

of samples

YT �
(
Y1, . . . , YNT

) = ST (Xε(·)) .

The assumption that the variance of the noise is finite excludes,
for example, ε(·) from being a white noise signal. This
assumption is necessary to define sampling of Xε(·) in a
meaningful way, as we explain below.

The encoder

fNT : R
NT →

{
1, . . . , 2	T R
} , (7)

receives the vector YT and outputs an index in
{
1, . . . , 2	T R
}.

The decoder,

gNT :
{

1, . . . , 2	T R
}→ R
[−T/2,T/2], (8)

upon receiving this index from the encoder, produces a recon-
struction waveform X̂T (·). The goal of the joint operation of
the encoder and the decoder is to minimize the average MSE

1

T

∫ T/2

−T/2
E
(
X (t) − X̂T (t)

)2
dt . (9)

Given a particular bounded linear sampler S, and a bitrate R,
we are interested in characterizing the function

DT (S, R) � inf
1

T

∫ T/2

−T/2
E
(
X (t) − X̂T (t)

)2
, (10)

where the infimum is over all encoders and decoders of the
form (7) and (8). We also consider the asymptotic version
of (10):

D(S, R) � lim inf
T →∞ DT (S, R). (11)

Before describing the class of bounded linear samplers,
we remark on some of the properties of the ADX setting:

• Information loss in ADX is due to noise, sampling, and
encoding. We do not consider limitations on the decoder
that may exist in practice, such as memory or complexity.

• The additive noise ε(·) may be seen as an external
interference in transmitting X (·) or as noise associated
with the sampling operation. With obvious adjustments,
our setting can also handle a discrete-time noise vector
with a stationary distribution added post sampling. For
example, discrete-time white noise can be obtained from
our setting by taking ε(·) to be a flat spectrum noise with
bandwidth equal to the sampling rate.

• For a finite time horizon T , the decoder is only required
to recover X (·) over the interval [−T/2, T/2]. However,
as follows from the description of the sampler below,
each sample may depend on a realization of Xε(·) over
the entire time-horizon (past and future). It is possible
to restrict the sampler to be a function of X (·) only
over [−T/2, T/2] provided the conditional distribution
of X (·) given its samples converges to an asymptotic
distribution as T goes to infinity. Our asymptotic analysis
below remains valid under this restriction due to the
stationary distribution of X (·). Our setting also prohibits
the sampler to depend on T ; This restriction precludes
adaptive sampling schemes such as in [44].

• Since X (·) is a stationary process, we can replace the
interval [−T/2, T/2] by any other interval of length T
without affecting the main results.

• As opposed to common situations in source coding of
stationary processes (e.g., [45, Lemma 10.6.2]), the liminf
in (11) cannot be replaced by a simple infimum or a
limit. One explanation for this difference is that, as we
show below, the coding scheme that attains D( fs , R)
essentially describes the estimator of X (·) from the
samples YT , and the distribution of this estimator is not
stationary in general.

B. Bounded Linear Sampling of Random Signals

We now describe the class of bounded linear samplers we
use in the ADX setting of Fig. 4. Assume first that the input
to the sampler is a deterministic signal x(·) in a class of
signals X . Each sample Yn can then be seen as the result
of applying a functional φn on x(·). In accordance with
physical considerations of realizable systems, we require that
the space of signals X is embedded in the Hilbert space of real
functions of finite energy L2, and that the functional defining
the nth sample is linear and bounded. In other words, each
sample is defined by an element of the dual space X � of X .
For this reason, we assume that X and X � are standard
spaces of test functions and distributions, respectively [46],
so that every distribution φ ∈ X � has a Fourier transform
in the Gelfand-Shilov sense [47]. Consequently, the bilinear
operation 〈φ, x〉 between φ ∈ X � and x ∈ X satisfies the
Plancherel identity

〈φ, x〉 =
∫ ∞

−∞
F x( f ) (Fφ( f ))∗ d f, (12)
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where F is the Fourier transform and ∗ denotes complex
conjugation. To summarize, for each T > 0 and assuming an
appropriate class of input signals X , the output of the sampler
is defined by a set of NT elements of X �. We denote the
samplers constructed in this manner as the class of bounded
linear samplers.

Next, we consider bounded linear sampling of the ran-
dom process Xε(·). Since the spectral measure of Xε(·) is
absolutely continuous with respect to the Lebesgue measure μ,
we have

E [Xε(t)Xε(s)] = ∫∞
−∞ wt ( f )w∗

s ( f )SXε ( f )d f, (13)

where we denoted wt ( f ) � e2π i f t . It follows from (13) that
the mapping Xε(t) → wt is an isometry, and as in [22],
we extend this isometry to an isomorphism between the
following Hilbert spaces: (1) the Hilbert space generated by
the CLS of the process Xε(·) with norm ‖Xε(t)‖2 = E[X2

ε (t)],
and (2) the space W (SXε ) which is the CLS of {wt , t ∈ R}
with an L2 norm weighted by SXε ( f ). This isomorphism
allows us to define bounded linear sampling of Xε(·) by
describing its operation on W (SXε ). Specifically, we iden-
tify X with the elements of W (SXε ) and set X � to be a
space of distributions such that, for any φ ∈ X �, its Fourier
transform φ̂ satisfies

∫ ∞

−∞
|φ̂( f )|2SX ( f )d f < ∞. (14)

For such φn ∈ X �, we define the sample

Yn =
∫ ∞

−∞
Xε(τ )φ∗

n (τ )dτ

to be the inverse image of 〈φn, wt 〉( f ) under Xε(t) → wt .
Although in most situations this inverse image cannot be found
explicitly, we are only interested in the joint statistics of Yn

and X (t), which is completely determined by

E [Yn X (t)] =
∫ ∞

−∞
〈φn, wt 〉( f )e−2π i f t SXε ( f )dt . (15)

In particular, condition (14) guarantees that the integral in (15)
exists.

Example 1 (Pointwise Evaluation of Bandlimited Signals):
Assume that φn is the Dirac distribution at tn corresponding
to pointwise evaluation at t = tn , so that (14) holds and
〈φn, wt 〉 = wtn , whose inverse image is Xε(tn). If in addition
SXε ( f ) is supported on an open set U ∈ R, then the
element of W (SXε ) can be identified with the Paley-Wiener
space of complex valued functions whose Fourier transform
is supported on U . In this case, for most applications it
is enough to take X = W (SXε ) with its Hilbert space
topology so that X � = X . For example, pointwise evaluation
at t = tn for x ∈ W (SXε )) is obtained by the inner
product of x with F−1(1U ( f )e2π i f tn ), which is a member
of W (SXε ).

In contrast to the scenario described in Example 1, we do
not restrict ourselves to bandlimited signals at the sampler
input. Thus, our setting supports any PSD SXε ( f ) and corre-
sponding set of functionals X � such that (14) holds.

Fig. 5. Bounded linear sampler with a pre-sampling transformation with
kernel K H and a sampling set �.

Without loss of generality, it follows from the Schwartz
kernel theorem [48] applied to X × X � that the sequence of
functionals defining the samples can be described in terms of
a bilinear kernel K H (t, s) on R × R and a discrete sampling
set � ⊂ R, as illustrated in Fig. 5. That is, the nth sample is
given by

yn �
∫ ∞

−∞
Xε(s)K H (tn, s)ds.

In order to control the number of samples taken at every time
horizon, we assume that � is uniformly discrete in the sense
that there exists δ > 0 such that |t − s| > δ for every non
identical t, s ∈ �. For a time horizon T , we denote

�T � � ∩ [−T/2, T/2],
and define yT to be the finite dimensional vector obtained by
sampling xε(·) at times t1, . . . , tn ∈ �T .

The assumption that � is uniformly discrete ensures that
for any T , the density of �T ,

dT (�) � card (�T )

T
,

if finite, and so is the limit

d+(�) � lim sup
T →∞

dT (�).

We denote d+(�) as the upper symmetric density of �.
Whenever it exists, we define the limit

d(�) = lim
T →∞ d(�T ) = lim

T →∞
card (� ∩ [−T/2, T/2])

T
,

as the symmetric density of �.

C. Multi-Branch LTI Uniform Sampling

An important special case of bounded linear sampling is
described by the sampler in Fig. 6. This sampler has L sam-
pling branches, where the lth branch consists of a linear time
invariant (LTI) pre-sampling filter with transfer function Hl( f )
followed by a uniform sampler at rate fs/L. Consequently,
the nth sample produced by the lth branch is given by

Yl,n =
∫ ∞

−∞
hl(nL/ fs − τ )Xε(τ ).

We define

Yn = (Y1,n, . . . , YL ,n)

as the nth output of all branches. For a finite time horizon T ,
the output of the sampler is

YT � {Yn, |n| < 	T fs/L
/2} ,
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Fig. 6. Multi-branch linear time-invariant (MB-LTI) sampler.

so that YT incorporates at most NT = 	T fs
 samples from
the process at the input to the sampler.

The class of samplers obtained in this manner is called
multi-branch LTI uniform samplers (MB-LTI), where we
denote a single sampler from this class by S fs (H1, . . . , HL).
In order to see that a MB-LTI is a bounded linear sampler,
note that its nth sample can be defined by the functional
φn = φkL+l , k = 0, . . . , N/L, l = 1, . . . , L,
∫ ∞

−∞
Xε(τ )φn(τ )dτ =

∫ ∞

−∞
Xε(τ )hl(kL/ fs − τ )dτ.

A MB-LTI sampler belongs to the class of shift-invariant
samplers [4], for which their output:

Y∞ � ∪T >0YNT , (16)

is invariant to time shifts by integer multiples of L/ fs in the
input to the sampler Xε(·).

D. Properties of Optimal Encoding and Connection to
Classical Results

We now explore basic properties of the functions DT (S, R)
and D(S, R) of (10) and (11) describing the minimal distor-
tion in ADX. By doing so, we review previous results in sam-
pling and source coding theory and explain their connection
to our setting.

Denote by X̃T (·) the process that is obtained by MMSE
estimation of X (·) from the vector of samples YT . Namely

X̃T (t) � E [X (t)|YT ] , t ∈ R. (17)

From properties of the conditional expectation, for any encoder
fNT we have

1

T

∫ T/2

−T/2
E (X (t) − E [X (t)|YT ])2 dt

= mmseT (S) + mmse
(
X̃T | fNT (YT )

)
, (18)

where X̂T (·) = gNT

(
fNT (YT )

)
,

mmseT (S) � 1

T

∫ T/2

−T/2
E
(
X (t) − X̃T (t)

)2
dt, (19)

is the distortion associated only with sampling and noise, and

mmse
(
X̃T | fNT (YT )

)
� 1

T

∫ T/2

−T/2
E
(
X̃T (t)

− E
[
X̃T (t)| fNT (YT )

])2
dt

is the distortion associated with the lossy compression proce-
dure, and depends on the sampler only through X̃T (·).

It follows from (18) that there is no loss in performance if
the encoder tries to describe the process X̃T (·) subject to the
bitrate constraint, rather than the process X (·). In addition,
optimal decoding is obtained by outputting the conditional
expectation of X̃T (·) given fNT (YT ). These observations,
which hold in general in indirect source coding situations [14],
were used in [13] to derive the indirect DRF of a pair of
stationary Gaussian processes, and later in [34] to derive
indirect DRF expressions in other settings. An extension of the
principle presented in this decomposition to arbitrary distortion
measures is discussed in [33].

The decomposition (18) is also related to the behavior of
D(S, R) under the two extreme cases illustrated in Fig. 2:

1) Unconstrained Bitrate: As the bitrate R goes to infinity,
the MSE as a result of lossy compression goes to zero.
Consequently, (18) implies that

lim
R→∞ D(S, R) = inf

R>0
D(S, R) = mmse(S),

where mmse(S) = lim infT →∞ mmseT (S).
As the sampling operation is linear and the signals are

Gaussian, the optimal MSE estimator of X (t) from YT is a
linear function of YT . We therefore have

E (X (t) − E[X (t)|YT ])2 = inf
a∈RNT

E

⎛

⎝X (t) −
∑

tn∈�T

anYn

⎞

⎠

2

.

(20)

Under a MB-LTI sampler, an expression for (20) in the limit
as T goes to infinity can be derived in closed form [20], [49],
leading to a closed form expression for mmse(S). Although
it is infeasible to obtain mmseT (S) in a closed form for an
arbitrary bounded linear sampler, it is sometimes possible to
derive conditions on the density of λ such that mmseT (S)
converges to zero or to a MSE that is only due to noise.
For example, assuming zero noise, K H (t, s) = δ(t − s) the
identity operator, and supp SX is a finite union of bounded
intervals, the condition on (20), and hence on mmseT (S),
to converge to zero is related to a classical problem in sampling
theory studied by Beurling and Carleson [25] and Landau [26].
In order to see this relation, use (13) to translate the interpola-
tion problem of (20) to the Hilbert space W (SX ). Interpolation
in W (SX ) with vanishing MSE is equivalent to the same
operation in the Paley-Wiener space of analytic functions
whose Fourier transform vanishes outside supp SX . Zero error
in this interpolation is known to hold whenever the non-
harmonic Fourier basis

{
e2π itn , tn ∈ �

}
defines a frame in

this Paley-Wiener space, i.e., there exists a universal constant
A > 0 such that the L2 norm of each function in this space
is bounded by A times the energy of the samples of this
function. Landau [26] showed that a necessary condition for
this property is that the number of points in � that fall within
any interval of length T is at least fLndT , perhaps minus a
constant that is logarithmic in T . Since Landau’s condition on
the density of � implies d+(�) ≥ fLnd, for d+(�) < fLnd
we necessarily have mmse(S) > 0.
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2) Unconstrained Sampling: The other lower bound
in Fig. 2 describes the case when there is no loss in the
sampling operation, so that the distortion is only due to lossy
compression and noise. This situation occurs when the process
X |Xε(·) � {E [X (t)|Xε(·)] , t ∈ R}, whose spectral density is

SX |Xε ( f ) = S2
X ( f )

SX ( f ) + Sε( f )
, (21)

can be recovered from YT with zero MSE as T → ∞.
Note that X |Xε(·) is a Gaussian stationary process obtained
by estimating X (·) using the non-causal Wiener filter. The
resulting MSE in this estimation is

mmse(X |Xε) � σ 2
X −

∫ ∞

−∞
SX |Xε ( f )d f.

Since no limitation is imposed on the encoder in Fig. 4 except
the bitrate, the encoder can estimate X |Xε(·) from YT and
encode it at bitrate R as in standard source coding. When
T → ∞, the distortion in this procedure is given by [13]

DX |Xε (Rθ ) = mmse(X |Xε) +
∫ ∞

−∞
min

{
SX |Xε ( f ), θ

}
d f,

(22a)

Rθ = 1

2

∫ ∞

−∞
log+ [SX |Xε ( f )/θ

]
d f. (22b)

In the special case when ε(·) ≡ 0, (22) reduces to Pinsker’s
formula [16] for the DRF of X (·):

DX (Rθ ) =
∫ ∞

−∞
min {SX ( f ), θ} d f, (23a)

Rθ = 1

2

∫ ∞

−∞
log+ [SX ( f )/θ ] d f. (23b)

Note that (23) is the continuous-time counterpart of (3).
When the minimal ADX distortion DT (S, R) approaches

DX |Xε (R), or DX (R) in the non-noisy case, as T → ∞,
we say that the conditions for optimal sampling in ADX are
met. Namely, optimal sampling occurs whenever

D(S, R) = DX |Xε (R). (24)

For example, (24) holds under MB-LTI sampling with a single
sampling branch, provided fs ≥ fNyq and the passband of
the pre-sampling filter H ( f ) contains supp SX (which equals
to supp SX |Xε ). More generally, it is possible to chose the
pre-sampling filters of a MB-LTI sampler such that optimal
sampling occurs for any fs ≥ fLnd [9, Sec. IV], [4], where
fLnd is the Landau rate of X (·) (or its spectral occupancy).
In these cases, we also have that mmseT (S) of (19) converges
to mmse(X |Xε), which is a sufficient condition for (24) to
hold. As we shall see in the next section, this condition is not
necessary, and optimal sampling can be attained by sampling
below the Nyquist or Landau rates.

IV. THE FUNDAMENTAL DISTORTION LIMIT

We now provide the general definition of D�( fs , R), explore
its basic properties, and use it to fully characterize the
ADX distortion.

Fig. 7. Water-filling interpretation of the fundamental distortion limit
D�( fs , R). The distortion is the sum of the sampling distortion (mmse�( fs))
and the lossy compression distortion. The set F�

fs
defining D�( fs , R) is the

support of the preserved spectrum.

A. Expression for ADX Distortion

We now define the function D�( fs , R), and later show that
it describes the fundamental distortion in ADX.

Definition 1: For a sampling rate fs and Gaussian signals
X (·) and ε(·), let F�

fs
be a set of Lebesgue measure μ not

exceeding fs that maximizes
∫

F
SX |Xε ( f )d f =

∫

F

S2
X ( f )

SX ( f ) + Sε( f )
d f, (25)

over all sets F with μ(F) ≤ fs . Define

D�( fs , Rθ ) � σ 2
X −

∫

F�
fs

[
SX |Xε ( f ) − θ

]+
( f )d f, (26)

where θ is determined by

Rθ = 1

2

∫

F�
fs

log+ [SX |Xε ( f )/θ
]

d f.

We also define the function mmse�( fs) describing the
sampling distortion in ADX as

mmse�( fs) = σ 2
X −

∫

F�
fs

SX |Xε ( f )d f, (27)

and note that

D�( fs, R) = mmse�( fs) +
∫

F�
fs

min
{

SX |Xε ( f ), θ
}

d f.

Graphical interpretations of D�( fs , R) and mmse�( fs) are
provided in Fig. 7. Compared to the classical water-filling
formulas (23) and (22), the waterfilling in (26) is only over
the part of the spectrum that is included in F�

fs
, whereas

the complement of this part is associated with the sampling
distortion mmse�( fs).

The main results of this paper are a positive and negative
coding statement in the ADX setting with respect to the
function D�( fs , R), as per the following theorems:

Theorem 1 (Achievability): For any fs and ε > 0, there
exists a MB-LTI sampler S with sampling rate fs , such that,
for any bitrate R, the distortion in ADX attained by sampling
Xε(·) using S over a large enough time interval T , and
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encoding these samples using 	T R
 bits, does not exceed
D�( fs , R) + ε.

Theorem 2 (Converse): Let S = (K H ,�) be a bounded
linear sampler such that card(�T ) ≤ T fs for every T > 0.
Then for any representation of the samples YT using at most
T R bits, the MSE (9) in recovering X (·) is bounded from
below by D�( fs , R). Furthermore, if d+(�) ≤ fs , then

D(S, R) ≥ D�( fs , R).

The proofs of Theorems 1 and 2 can be found in
Appendices VI and VI, respectively. A sketch of these proofs
is as follows. To prove Theorem 1, we use the expression
for the ADX distortion under an MB-LTI sampler with
L samplers derived in [9]. We then show that for any δ > 0,
there exists L large enough such that L filters H1, . . . , HL can
be chosen to have disjoint supports whose union approximates
F�

fs
in the sense that the difference between D(S, R) and

D�( fs , R) is less than δ. The converse in Theorem 2 is first
established for a MB-LTI sampler using an arbitrary number of
sampling branches L. We then consider the distortion attained
by a general linear bounded sampler S = (�, K H ) over a
finite time horizon T . We bound this distortion from below by
the distortion in recovering X (·) over [−T/2, T/2] using an
encoding based on samples taken over a periodic extension of
the sampling set. We then show that the samples obtained over
this extension are equivalent to sampling the process using a
specific MB-LTI sampler, so that the bound from the first part
of the proof is valid for an arbitrary linear bounded sampler.

Before exploring additional properties of D�( fs , R), it is
instructive to consider its behavior under various examples of
the PSDs SX ( f ) and Sε( f ).

Example 2 (Rectangular PSD): Let X(·) be the process
with PSD

S( f ) = σ 2
X

1| f |<W ( f )

2W
. (28)

Assume that ε(·) is a flat spectrum noise within the band
[−W, W ] such that γ � S( f )/Sε( f ) is the SNR at the
spectral component f . Under these conditions,

SX |Xε ( f ) = γ

1 + γ
S( f ),

and the set F�
fs

that maximizes (25) can be chosen as any
subset of [−W, W ] with Lebesgue measure fs . For simplicity
we pick

F�
fs = { f : | f | < fs/2} , (29)

and conclude that

D�( fs , R) = σ 2
X

⎧
⎨

⎩

1 − fs

[
γ

2W (1+γ ) , θ
]+

fs < 2W,

1 − 2W min
[

1
2W (1+γ )

]+
fs ≥ 2W,

where θ is determined by

R = 1

2

⎧
⎪⎪⎨

⎪⎪⎩

fs

(
log

σ 2
X γ

2W (1+γ ) − log θ

)
fs < 2W,

2W

(
log

σ 2
X γ

2W (1+γ ) − log θ

)
fs ≥ 2W.

Since θ can be isolated from the last expression, we obtain

D�( fs , R) = σ 2
X

{
1 − fs

2W
γ

1+γ (1 − 2−2R/ fs ) fs < 2W,
1

1+γ + γ
1+γ 2−R/W fs ≥ 2W.

(30)

We note that in the case fs ≥ 2W , (30) equals the DRF
of X(·) given X(·) + Xε(·) that is obtained from (22).
Therefore only sampling at or above the Nyquist rate
fNyq = 2W implies D�( fs , R) = DX |Xε (R).

Example 3 (Triangular PSD): Let X�(·) be the process
with PSD

S�( f ) � σ 2
X

[1 − | f/W |]+
W

, (31)

for some W > 0, and assume that ε(·) ≡ 0. Then

F�
fs

= { f : | f | < fs/2} ,

and

D�( fs , R) = σ 2
X

⎧
⎪⎨

⎪⎩

(
1 − fs

2W

)2 + θ fs fs ≤ fR,
(

1 − fR
2W

)2 + θ fR fs > fR ,
(32)

where fR � 2W (1 − θW ), and θ is given by

R = 1

2

⎧
⎪⎨

⎪⎩

∫ fs
2

− fs
2

[
log S�( f ) − log θ

]
fs ≤ fR

∫ f R
2

− fR
2

log S�( f ) − fR log θ fs > fR .

Note that in Example 3, the function D�( fs , R) in (32)
is independent of fs for the case fs ≥ fR , and equals
to the DRF of X�(·) given by Pinsker’s expression (23).
Consequently, for X�(·), the DRF is attained by sampling
above fR that is smaller than 2W , which is the Nyquist rate
of X�(·). Since the DRF is the minimal distortion subject
only to the bitrate constraint regardless of the sampling mech-
anism, we conclude that the optimal distortion performance
is attained by sampling below the Nyquist rate in this case.
In the following subsection, we extend this observation to
arbitrary PSDs.

B. Optimal Sampling Rate

We now consider the minimal sampling rate that
leads to optimal sampling in ADX. We first note the
following proposition, that follows from the definition
of D�( fs , R).

Proposition 3 (Optimal Sampling Rate): For each point
(R, D) on the graph of DX |Xε (R) associated with a water-
level θ via (22), define

Fθ �
{

f : SX |Xε ( f ) > θ
}
,

and set fR = μ(Fθ ). Then for all fs ≥ fR ,

D�( fs , R) = DX |Xε (R).

The proof of Proposition 3 is given in Appendix C. To gain
some intuition into the results, consider the special case of zero
noise and a unimodal SX ( f ) as illustrated in Fig. 8: fix a point
(R, D) on the distortion rate curve of X (·) obtained from (23).
The set Fθ = { f ∈ R : SX ( f ) > θ} is the support of the
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Fig. 8. An illustration of Proposition 3 for a unimodal PSD and zero noise: the distortion is the sum of the term mmse�( fs) (red) and the lossy compression
distortion (blue) in each water-filling scheme. The functions D�( fs , R) and mmse�( fs) are illustrated versus fs at the bottom for two fixed values of the
bitrate R. Also shown is the DRF of X (·) at these values that is attained at the sub-Nyquist sampling rates marked by fR . The marked points on the curve
of D�( fs , R) with R = 1 correspond to the different water-filling scenarios (b)–(d).

non-shaded area in Fig. 8(a). We define the sampling rate
fR to be the Lebesgue measure of Fθ . Figure 8(b) shows the
function D�( fs , R) for fs < fR , where the overall distortion
is the sum of the term mmse�( fs) given by the partially
shaded area, and the water-filling term given by the blue area.
Figures 8 (c) and (d) show the function D�( fs , R) for fs = fR

and fs > fR , respectively. The assertion of Proposition 3 is
that the sum of the red area and the blue area stays the same
for any fs ≥ fR . It can also be seen from Fig. 8 that fR

increases with the source coding rate R and coincides with
fNyq as R → ∞. The bottom-right of Fig. 8 shows D�( fs , R)
as a function of fs for two fixed values of R.

We emphasize that the critical frequency fR arising from
Proposition 3 depends only on the PSD and on the operating
point on the DRF curve of X (·) given Xε(·), which can be
parametrized by either D, R or the water-level θ using (22).
In fact, by inverting the function D�( fs , R) with respect to R,
we obtain the following result.

Theorem 4 (Rate-Distortion Lower Bound): Given
Gaussian stationary processes X (·) and ε(·), sampling rate fs

and a target distortion D > mmse�( fs), define

R�( fs , D) �
{

1
2

∫
F�

fs
log+

(
fs SX |Xε ( f )

D−mmse�( fs)

)
d f, fs < fR,

RX |Xε (D), fs ≥ fR,

(33)

where

RX |Xε (Dθ ) = 1

2

∫ ∞

−∞
log+ [SX |Xε ( f )/θ

]
d f,

is the indirect rate-distortion function of X (·) given Xε(·),
fR = μ

({
f : SX |Xε ( f ) > θ

})
, and θ is determined by

D = mmse(X |Xε) +
∫ ∞

−∞
min

{
SX |Xε ( f ), θ

}
d f.

Then:

(i) The number of bits per unit time required to attain ADX
distortion at most D is at least R�( fs , D).

(ii) For any ε > 0 and ρ > 0, there exists T large enough
and a MB-LTI sampler S at rate fs such that

DT (S, R�( fs , D) + ρ) < D + ε.

Proof: Theorem 4 is a restatement of Theorems 2 and 1
that is obtained using Proposition 3 and by inverting the role
of the distortion and the bitrate. �

C. Discussion

Theorem 1 together with Proposition 3 extend the conditions
for the equality (24), which, as argued in Subsection III-D,
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holds for fs ≥ fLnd, to all sampling rates above fR . This
fR depends on the bitrate R and is smaller than fLnd provided
the signal power is not uniformly distributed over its spectral
support (unlike S( f ) of Example 2).

As R goes to infinity, the water-level θ goes to zero,
the set Fθ coincides with the support of SX |Xε ( f ) and
SX ( f ), and D�( fs , R) converges to mmse�( fs). In particular,
fR = μ(Fθ ) converges to the spectral occupancy fLnd of X (·).
In this limit, Proposition 3 then implies that mmse�( fs) =
mmse(X |Xε) for all fs ≥ fLnd. When the noise is zero,
this last fact agrees with the Landau’s necessary condition for
stable sampling in the Paley-Wiener space [26].

The discussion in Section II on the finite-dimensional
counterpart of ADX suggests the following intuition for our
result assuming ε(·) ≡ 0: Pinsker’s water-filling expres-
sion (23) implies that for a Gaussian stationary signal whose
power is not uniformly distributed over its spectral occu-
pancy, the distortion-rate function DX (R) is achieved by
communicating only those bands with the highest energy. This
means that fewer degrees of freedom are used in the signal’s
representation. Proposition 3 says that this reduction in degrees
of freedom can be translated to a lower required sampling rate
in order to achieve DX (R). The counterpart of this phenomena
in the finite dimensional case is the condition for equality
between (3) and (5) as discussed in Section II.

D. Examples

In the following examples the exact dependency of fR on R
and D is determined for various PSDs, and illustrated in Fig. 9.

Example 4 (Continuation of Example 2): Consider the
PSDs S( f ) and Sε( f ) = S( f )/γ as in Example 2. In this
case we have that Fθ = [−W, W ] for all fs , so that fR = 2W .
Therefore, in this example, D�( fs , R) = DX |Xε (R) only for
fs larger than the Nyquist rate of X( f ). This observation
agrees with the expression for D�( fs , R) in (30).

Example 5 (Continuation of Example 3): Consider the sit-
uation of Example 3 with zero noise and PSD S�( f ). For a
point (R, D) ∈ [0,∞)×[0, σ 2

X ] on the distortion-rate curve of
X�(·), we have that Fθ = W [−1 + Wθ, 1 − Wθ ] and hence
fR = 2W (1−Wθ). Indeed, this value for fR agrees with (32),
since for fs ≥ fR the function D�( fs, R) is independent of fs

and equals the DRF of X�(·).
The exact relation between R and fR is given by

R = 1

2

∫ fR
2

− fR
2

log

(
1 − | f/W |

1 − fR
2W

)

d f

= W log
1

1 − fR
2 ln 2

− fR

2W
. (34)

Expressing fR as a function of the distortion D leads to fR =
2W
√

1 − D/σ 2
X .

Example 6 (Effect of Noise on fR): Consider again X�(·)
from Examples 3 and 5, but with ε(·) a flat spectrum Gaussian
noise with intensity σ 2

ε , i.e., Sε( f ) = σ 2
ε 1[−W,W ]. The relation

Fig. 9. The critical sampling rate fR as a function of the bitrate R for
the PSDs given in the small frames at the top of the figure and zero noise
(ε(·) ≡ 0). Here S( f ), S�( f ) and Sω( f ) have the same bandwidth while
the support of S�( f ) is unbounded.

between R and fR is given by:

R =
∫ fR

2

− fR
2

log

[
(1 − f

W )2

1 − f
W + Wσ 2

ε

]

d f

− fR log

[
(1 − fR

2W )2

1 − fR
2 W + Wσ 2

ε

]

= 2W log
1

1 − fR
2W

− W (1 + σ 2
ε W ) log

1

1 − f R
2W (1+σ 2

ε W )

− fR

2 ln 2
.

The expression above decreases as the intensity of the noise
σ 2

ε increases. Since fR increases with R, it follows that
fR decreases in σ 2

ε , as can be seen in Fig. 10 where fR is
plotted versus the SNR σ 2

X /σ 2
ε for two fixed values of R.

The dependency between the critical sampling rate fR and the
SNR observed in Example 6 can be generalized to any signal
PSD experiencing a uniform increase in the SNR: increase
in SNR decreases mmse(X |Xε) and leads to the use of more
spectral bands in the indirect source coding scheme that attains
DX |Xε (R). As a result, more spectral bands of SX |Xε ( f ) must
be utilized in order for D�( fs , R) to approach DX |Xε (R).

Next, we explore applications of the fundamental
ADX distortion limit in the sampling and lossy compression
of signals that are not bandlimited.

E. Sampling Non-Bandlimited Signals

Let X (·) be a stationary Gaussian signal that is not bandlim-
ited in the sense that its Landau rate is infinite. For simplicity
of discussion, we assume in this subsection that the noise
ε(·) is zero, hence the distortion is only due to sampling and
lossy compression. Even under the zero noise assumption,
it follows from [26] that it is impossible to recover such a
signal with zero MSE from its samples obtained over any
discrete set. Nevertheless, it follows from Proposition 3 that
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Fig. 10. The critical rate f R as a function of the SNR σ 2
X /σ 2

ε for an input
signal with PSD S�( f ) corrupted by a flat spectrum Gaussian noise for two
fixed values of R. The dashed lines correspond to the value of f R without
noise.

for a point (R, D) on the DRF DX (R) of X (·), there exists
a critical sampling rate fR such that D�( fR , R) = DX (R).
In other words, the minimal distortion subject to the bitrate
constrain R is attainable at a finite sampling rate fR . Note,
however, that unlike in the bandlimited case, fR goes to
infinity as R goes to infinity, hence in order to represent a
signal that is not bandlimited in bits with vanishing distortion,
both fs and R must go to infinity.

For a bandlimited signal the ratio R/ fR is unbounded as
R goes to infinity. This ratio is the maximal average number
of bits per sample in an optimal digital representation of
the signal from its samples with bitrate R. Consequently,
the challenge in obtaining an optimal digital representation of
a bandlimited signal with vanishing distortion is the design of
a high-resolution quantizer to represent each sample obtained
at the Landau rate. In contrast, for some non-bandlimited
signals whose spectrum vanishes slow enough, the ratio R/ fR

converges to a constant. As a result, the challenge in encoding
such signals is incorporating information across a large num-
ber of samples and represent this information using a limited
number of bits.

An example for a non-bandlimited signal, its critical sam-
pling rate fR , and the asymptotic behavior of R/ fR is as
follows:

Example 7 (Gauss-Markov Process): Assume zero noise
(ε(·) ≡ 0) and consider the Gauss-Markov process X�(·)
whose PSD is

S�( f ) = 1/ f0

(π f/ f0)2 + 1
, (35)

for some f0 > 0. Note that the MMSE in recovering X�(·)
from its uniform samples at rate fs equals the area bounded
by the tails of its PSD:

mmse�( fs) = 2
∫ ∞

fs/2
S�( f )d f = 1 − 2

π
arctan

(
π fs

2 f0

)
.

(36)

For a point (R, D) on the distortion-rate curve of X�(·) and its

corresponding θ , we have fR = 2 f0
π

√
1

θ f0
− 1. Namely, sam-

pling at this rate allows the encoding of X�(·) with minimal
reconstruction distortion subject to the bitrate constraint R.
Consequently, the distortion cannot be further reduced by
sampling above this rate. The exact relation between R and
fR is given by

R = 1

ln 2

⎛

⎝ fR − 2 f0

arctan
(

π f R
2 f0

)

π

⎞

⎠, (37)

and is illustrated in Fig. 9. The high bitrate asymptotic of (37)
implies R/ fR → 1/ ln 2. Therefore, for R sufficiently large,
1/ ln 2 ≈ 1.44 is the maximal number of bits that can be
used in encoding each sample of X�(·) in order to attain
its DRF. If the number of bits per sample goes above this value,
then the distortion is dominated by the sampling distortion as
not enough samples are acquired for each bit in the digital
representation. More generally, for any fixed number of bits
per sample R̄ = R/ fs , the excess distortion due to sampling
in the limit of high bitrate is given by

lim
R→∞

D�(R/R̄, R)

DX�(R)
=
{

1+2−2(R̄−1/ ln 2)

2 R̄ ln 2 R̄ > 1/ ln 2,

1 R̄ ≤ 1/ ln 2.

(38)

Note that a limit of the form (38) equals one for any bandlim-
ited signal and for signals whose spectrum vanish fast enough,
e.g., SX ( f ) = e−| f |.

V. PULSE-CODE MODULATION

So far we considered the conversion of analog signals to bits
using bounded linear sampling and under optimal encoding of
these samples to bits, subject only to the bitrate constraint R.
In particular, we did not impose any limitations on the
complexity or delay of the encoder and decoder aside from
the bitrate at the encoder’s output. Indeed, the achievablity of
D�( fs , R) in Theorem 1 is obtained as the time horizon T
grows to infinity, whereas the number of states assumed by
the encoder and decoder grows exponentially in T .

In this section we are interested in imposing additional
constraints on the restricted-bitrate representation of the sam-
ples and the recovery of X (·) beyond those associated with
the achievable scheme of Theorem 1. Specifically, we now
assume that the samples are obtained using a single sampling
branch, the encoder maps each sample Yn to its finite-bit
representation Ŷn at time n using a scalar quantizer with a
fixed number of bits q , and the decoder recovers X (·) using
a linear procedure. This form of encoding is known as pulse-
code modulation (PCM) [50], [51]; we refer to [52, Sec I.A]
for a historical overview. In order to focus on the effect of
this sub-optimal encoding and decoding on the distortion-rate
performance, we assume that no noise is added to X (·) prior
to sampling. The extension of the distortion analysis below to
the case in which such a noise is present is straightforward.
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Fig. 11. Pulse-code modulation and reconstruction system.

A. PCM A/D Conversion and Reconstruction Setup

We consider the system described in Fig. 11, where the
input X (·) is assumed to be a wide-sense stationary stochastic
process with PSD SX ( f ), not necessarily Gaussian. This
process is sampled using a pre-sampling filter H ( f ) followed
by a uniform sampler with sampling rate fs . This is a special
case of the multi-branch LTI uniform sampler of Fig. 6 with
L = 1 and H1( f ) = H ( f ). The sample Y [n] at time n/ fs is
mapped to a quantization level Ŷ [n] using a procedure denoted
as fixed-length scalar quantization [52]: we consider a set of
M real numbers ŷ1, . . . , ŷM called reconstruction levels. Each
reconstruction level is assigned a digital number of length
q � �log M�, where q is the bit resolution of the quantizer.
Upon receiving the input Y [n], the quantizer outputs the near-
est reconstruction level to Y [n] among the set of reconstruction
levels, what we denote Ŷ [n]. Using this notation, the bitrate
of the digital representation, namely, the number of bits per
unit time required to represent the process Ŷ [·], is R = q fs .

Denote by η[n] the quantization error, i.e.,

Ŷ [n] = Y [n] + η[n], n ∈ Z. (39)

The variance of η[n] depends on the square of the size of the
quantization regions induced by the quantizer, i.e., the Voronoi
sets associated with the reconstruction levels. The number of
these sets increases exponentially in the bit resolution q and
so does the radius of each set, provided all radii decrease
uniformly [53]. As a result, the variance of η[n] behaves as

σ 2
η = c02−2q , (40)

for some c0 > 0. The constant c0 depends on other statistical
assumptions on the input to the quantizer. For example, if the
amplitude of the input signal is bounded within the interval
(−Am/2, Am/2), then we may choose uniformly spaced quan-
tization levels resulting in c0 = Am/12. If the input to the
quantizer is Gaussian with variance σ 2

in and the quantization
rule is chosen according to the ideal point density allocation
of the Lloyd algorithm [54], then [52, eq. (10)]

c0 = π
√

3

2
σ 2

in . (41)

The non-linear relation between Y [n] and Ŷ [n] complicates
the analysis. To simplify the problem, we adopt a common
assumption in the signal processing literature (e.g. [55], [56]):

Fig. 12. Sampling and quantization system model.

(A) The process η[·] is zero mean, white (uncorrelated
entries), and is uncorrelated with Y [·].

There exists a vast literature on conditions under which
assumption (A) provides a good approximation to the sys-
tem behavior. For example, in [53] it was shown that two
consecutive samples η[n] and η[n + 1] are approximately
uncorrelated if the distribution of Y [·] is smooth enough,
where this holds even if the sizes of the quantization regions
are on the order of the variance of Y [·] [57]. This prop-
erty justifies the assumption that the process η[·] is white.
Bennett [58] showed that η[·] and Y [·] are approximately
uncorrelated provided the PSD of Y [·] is smooth, the quanti-
zation regions are uniform and the quantizer resolution q is
high. Since in our setting the quantizer resolution may also be
relatively low when fs approaches R, our analysis under (A)
does not lead to an exact description of the performance
limit under scalar quantization. Nevertheless, under (A) the
distortion due to quantization decreases exponentially as a
function of the quantizer bit precision and is proportional to
the variance of the input signal. These two properties, which
hold also under an exact analysis of the error due to scalar
quantization with entropy coding [52], are the dominant factors
in the MMSE analysis below.

B. Distortion Analysis

Under (A), the relation between the input and the output of
the quantizer can be represented in the z domain by

Ŷ (z) = Y (z) + η(z). (42)

This leads to the following relation between the correspond-
ing PSDs:

SŶ

(
e2π iφ

)
= SY

(
e2π iφ

)
+ Sη

(
e2π iφ

)

= fs

∑

k∈Z

SX ( f − fsk) |H ( f − fsk)|2 + σ 2
η .

(43)

The block diagram of a generic system that realizes the input-
output relation (42) is given in Fig. 12, where, in accordance
with (A), η[·] is a white noise independent of X (·). In what
follows, we derive an expression for the linear MMSE in
estimating X (·) from Ŷ [·] according to the relation (43) and an
optimal choice of the pre-sampling filter H ( f ), that minimizes
this MSE.

The goal of the linear decoder is to provide a reconstruction
signal X̂(·) that minimizes

lim
T →∞

1

2T

∫ T

−T
E

(
X (t) − X̂(t)

)2
(44)



6026 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 9, SEPTEMBER 2018

over all possible reconstruction signals of the form

X̂(t) =
∑

n∈Z

w(t, n)Ŷ [n], (45)

where w(t, n) is square summable in n for every t ∈ R.
Note that this decoder is non-causal in the sense that the
estimate of the source sample X (t) is obtained from the entire
history of the quantized signal Ŷ [·]. Since all signals in Fig. 12
are assumed stationary, an expression for the minimal value
of (44) subject to the constraint (45) can be found using
standard linear estimation techniques, leading to the following
proposition:

Proposition 5: Consider the system in Fig. 12. The minimal
time-averaged MSE (44) in linear estimation of X (·) from
Ŷ [·] is given by

DPCM �= σ 2
X

− 1

fs

∫ fs
2

− fs
2

∑
k∈Z

S2
X ( f − fsk) |H ( f − fsk)|2

∑
k∈Z

SX ( f − fsk) |H ( f − fsk)|2 + σ 2
η / fs

d f.

(46)

Proof: See Appendix D. �
The effect of quantization noise is expressed in (46) by an
additive noise with a constant PSD over the digital domain.

Using Hölder’s inequality and monotonicity of the function
x → x

x+1 , the integrand in (46) can be bounded for each f
in the integration interval (− fs/2, fs/2) by

(S�( f ))2

S�( f ) + σ 2
η / fs

, (47)

where

S�( f ) = sup
k∈Z

SX ( f − fsk) |H ( f − fsk)|2 . (48)

Since SX ( f ) is an L1 function, the supremum in (48) is finite
for all f ∈ (− fs/2, fs/2) except for perhaps a set of Lebesgue
measure zero. It follows that a lower bound on DPCM is
obtained by replacing the integrand in (46) with S�( f ).

Under the assumption that SX ( f ) is unimodal in the sense
that it is symmetric and non-increasing for f > 0, for each
f ∈ [− fs/2, fs/2] the supremum in (48) is obtained for
k = 0. This implies that (47) is achievable if the pre-sampling
filter is a low-pass filter with cut-off frequency fs/2, namely

H ( f ) =
{

1, | f | ≤ fs/2,

0, otherwise.
(49)

This choice of H ( f ) in (46) leads to

DPCM = mmse�( fs) +
∫ fs

2

− fs
2

SX ( f )

1 + snr( f )
d f, (50)

where mmse�( fs) is given by (27) and

snr( f ) � fs SX ( f )/σ 2
η , − fs

2
≤ f ≤ fs

2
. (51)

Henceforth, we will consider only processes with unimodal
PSD, so that the MMSE under optimal pre-sampling filtering
is given by (50).

C. PCM Distortion Under a Fixed Bitrate

From (51) we see that when the variance of the quantization
noise is independent of fs , than SNR in the system in Fig. 12
increases linearly in fs . The MMSE of X (·) given Ŷ [·] then
decreases by a factor of 1/ fs when fs is large. However, when
the bitrate R = q fs is fixed, the relation between σ 2

η and fs

is given by

σ 2
η = c02−2q = c02−2R/ fs . (52)

Substituting (52) into (50) and (52), we obtain the following
proposition:

Proposition 6: The MMSE in estimating X (·) from Ŷ [·]
assuming (A) and R = q fs satisfies

DPCM( fs , R) = mmse�( fs) +
∫ fs

2

− fs
2

SX ( f )

1 + snr( f )
d f (53)

where

snr( f ) = snr fs ,R( f ) = fs
22R/ fs

c0
SX ( f ) (54)

and mmse�( fs) is given by (27).
We denote the two terms in the RHS of (53) as the sampling

distortion and the quantization distortion, respectively. Note
that when R → ∞ the quantization error vanishes and the
distortion in PCM is only due to sampling. Since we assumed
unimodal PSD, the sampling distortion vanishes only for
fs ≥ fNyq.

Figure 14 shows DPCM( fs , R) as a function of fs for a
given R and various PSDs compared to their corresponding
optimal ADX distortions D�( fs , R) of (26). In Fig. 14 and
in other figures throughout, we take c0 as in (41) which
corresponds to an optimal point density of the Gaussian
distribution whose variance is proportional to the signal at the
input to the quantizer. The variance of the latter is given by

σ 2
in =

∫ ∞

−∞
SX ( f ) |H ( f )|2 d f = σ 2

X − mmse�( fs).

While σ 2
in depends on the sampling rate fs , it can be shown

to have a negligible effect on DPCM( fs , R) for sampling rates
close to fNyq, which is our main area of interest. We there-
fore ignore this dependency and continue our discussion
assuming σ 2

in = σ 2
X .

D. The Optimal Sampling Rate

The quantization error in (53) is an increasing function of
fs (mainly due to the decrease in the exponent, but also due to
the increase in σ 2

in), whereas the sampling error mmse�
X ( fs)

decreases in fs . This situation is illustrated in Fig. 13. The
sampling rate f �

s that minimizes DPCM( fs, R) is obtained at
an equilibrium point where the derivatives of both terms are
of equal magnitudes. Figure 14 shows that f �

s depends on
the particular shape of the input signal’s PSD. If the signal is
bandlimited, then we have the following result.

Corollary 7: For a bandlimited X (·), f �
s that minimizes

DPCM( fs, R) is at or below the Nyquist rate.
Proof: Since snr fs ,R( f ) is an increasing function of fs

in the interval 0 ≤ fs ≤ R, and since mmse�( fs) = 0 for
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Fig. 13. Spectral representation of the distortion in PCM (53): (a) sam-
pling below the Nyquist rate introduces sampling distortion mmse�( fs).
(b) As fs increases, mmse�( fs) decreases and vanishes when fs ≥ fNyq,
but the contribution of the in-band quantization noise increases due to lower
bit-precision of each sample.

Fig. 14. PCM Distortion DPCM( fs , R) as a function of fs for a fixed R and
various PSDs, which are given in the small frames. The dashed curves are
the corresponding minimal ADX distortions D( fs , R). The symbols � and �
indicate the distortion at rates f �

s and f R , respectively.

fs ≥ fNyq, for all fs > fNyq we have that DPCM( fNyq, R) ≤
DPCM( fs , R). Therefore, the minimizing sampling rate cannot
be greater than fNyq. �

How far f �
s is below fNyq is determined by the deriva-

tive of mmse�( fs), which equals −2SX ( fs/2). For example,
in the case of S( f ) of Examples 2 and 4, the derivative of
−2SX ( fs/2) for fs < fNyq = 2W is −σ 2

X . The derivative of
the second term in (53) is smaller than σ 2

X for most choices
of system parameters.1 It follows that 0 is in the sub-gradient
of DPCM( fs , R) at fs = 2W , and thus f �

s = 2W , i.e., Nyquist
rate sampling is optimal when the energy of the signal is
uniformly distributed over its bandwidth. We now consider
the other PSDs illustrated in Fig. 14.

Example 8 (Triangular PSD): Let S�( f ) be the PSD of
Examples 3 and 5. For any fs ≤ fNyq = 2W , we have

mmse�( fs) = σ 2
X

(
1 − fs

2W

)2

.

1This holds whenever
(

20.5R/W − 1
)2

>
c0
σ2

X
.

Since the derivative of mmse�( fs), which is −2S�( fs/2),
changes continuously from 0 to −2σ 2

X/W as fs varies from
2W to 0, we have 0 < f �

s < 2W . The exact value of f �
s

depends on R and the ratio σ 2
X /c0. It converges to 2W as the

value of any of these two increases.
Example 9 (PSD of Unbounded Support): Consider the

PSD S�( f ) of the Gauss-Markov process X�(·) in Example 7.
Since X�( f ) is not bandlimited, Corollary 7 does not hold.
Nevertheless, as can be seen in Fig. 14, there exists an
optimal sampling rate f �

s that balances the two trends as
explained in Subsection V-D.

E. Discussion

Under a fixed bitrate constraint, oversampling no longer
reduces the MMSE since increasing the sampling rate forces a
reduction in the quantizer resolution and increases the magni-
tude of the quantization noise. As illustrated in Fig. 13, for any
fs below the Nyquist rate the bandwidths of both the signal
and the quantization noise occupy the entire digital frequency
domain, whereas the magnitude of the noise decreases as more
bits are used in quantizing each sample.

It follows that f �
s cannot be larger than the Nyquist rate

(Corollary 7), and is strictly smaller than Nyquist when
the energy of X (·) is not uniformly distributed over its
bandwidth. In this case, some distortion due to sampling is
preferred in order to increase the quantizer resolution. In other
words, restricted to scalar quantization, the optimal rate R
code is achieved by sub-Nyquist sampling. This behavior of
DPC M ( fs , R) is similar to the behavior of the minimal ADX
distortion D�( fs , R), as both provide an optimal sampling
rate which balances sampling distortion and lossy compres-
sion distortion. On the other hand, oversampling introduces
redundancy into the PCM representation, and yields a worse
distortion-rate code than with fs = f �

s . In this aspect the
behavior of DPC M ( fs , R) is different than D�( fs , R) that
represents the information theoretic bound, since the latter
does not penalize oversampling as the optimal ADX encoder
has the freedom to discard redundant samples when needed.

The similarity between f �
s and fR as a function of R is

due to the fact that the optimal representation is obtained by
discarding the same part of the signal under both the optimal
lossy compression scheme or PCM. The observation that
f �
s ≤ fR in Examples 5 and 9 is explained by the dimin-

ishing effect of reducing the sampling rate on the overall
error. That is, since DPCM( f �

s , R) ≥ DX (R), the optimal
lossy compression scheme is more sensitive to changes in
the sampling rate than the sub-optimal implementation of
A/D conversion via PCM.

VI. CONCLUSIONS

We considered an analog-to-digital compression (ADX)
setting in which an analog signal is converted to bits by
compressing its samples at a finite bitrate R, where these
samples are obtained by any continuous linear sampling
technique. We have shown that for any Gaussian stationary
signal and any given bitrate R, there exists a critical sampling
rate denoted fR , such that the minimal distortion subject
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only to the bitrate constraint and the noise can be achieved
by sampling at or above fR . In particular, under nonuni-
form sampling, the minimal distortion subject to a bitrate
constraint is attained only if the density of the sampling
set exceeds fR . The critical sampling rate fR is strictly
smaller than the Nyquist or Landau rates for processes whose
power is not uniformly distributed over their spectral sup-
port. As the bitrate R increases, fR increases as well and
converges to the Nyquist or Landau rates as R goes to
infinity. Furthermore, our results imply that such a finite
critical sampling rate exists even for non-bandlimited signals,
hence such signals can be converted to bits by sampling
them at rate fR without additional loss in information due to
sampling.

The results in this paper also imply that with an optimized
linear sampling technique, sampling below the Nyquist rate
and above fR does not degrade performance in the case
where lossy compression of the samples is introduced. Since
lossy compression due to quantization is an inherent part of
any analog to digital conversion scheme, our work suggests
that sampling below the Nyquist rate is optimal in terms of
minimizing distortion in practice for most systems.

We also considered the case of a more restricted encoder
and decoder which corresponds to pulse-code modulation
(PCM) sampling and quantization. That is, instead of a vector
quantizer whose block-length goes to infinity, PCM uses a
zero-memory zero-delay quantizer. Under a fixed bitrate at
the output of this quantizer, there exists a trade-off between
bit-precision and sampling rate. We examined the behavior of
this trade-off under an approximation on the scalar quantizer
using additive white noise. We have shown through various
examples that the optimal sampling rate in PCM experiences
a similar behavior as the critical rate fR , which is the minimal
sampling rate under optimal source encoding-decoding of the
samples.

There are a few important future research directions that
arise from this work. While we restricted ourselves to bounded
linear samplers, it is important to understand whether the
distortion at a given sampling rate can be improved by consid-
ering non-linear sampling techniques. Indeed, such improve-
ment is seen in the setting of [41], where a finite dimensional
sampling system with a Gaussian input is considered. In addi-
tion, reduction of the optimal sampling rate under the bitrate
constraint from the Nyquist rate to fR can be understood as the
result of a reduction in degrees of freedom in the compressed
signal representation compared to the original source. It is
interesting to understand whether a similar principle holds
under non-Gaussian signal models (e.g., sparse signals), so that
the sampling rate under a bitrate restriction can be reduced
without incurring additional distortion. Finally, under sub-
optimal encoding such as in PCM, it is important to character-
ize the conditions on the encoder under which oversampling
has a detrimental effect on the distortion.

APPENDIX A
PROOF OF THEOREM 1

For the MB-LTI sampler, the set Y∞ of (16) is invariant
under time shifts by an integer multiple of 1/ fs of the input

Xε(·). Hence, for any n ∈ Z, the distribution of X (t) and
X (t+n/ fs) conditioned on the sigma algebra generated by Y∞
are identical. It follows that the process X̃T (·) of (17) has an
asymptotic distribution as T → ∞ that is cyclostationary with
period 1/ fs [59] (also known as 1/ fs-ergodic [60]). Denote by

X̃(t) = E [X (t)|Y∞] , t ∈ R,

the process obeying the asymptotic distribution law of X̃T (·)
when T → ∞. It follows from (18) that with S a MB-LTI
sampler, the asymptotic ADX distortion is given by

D(S, R) = mmse(S) + DX̃ (R),

where

mmse(S) = limT →∞ 1
T

∫ T/2
−T/2

(
X (t) − X̃(t)

)2
dt,

and DX̃ (R) is the DRF of the process X̃(·).
We note that X̃(·) can be derived in a closed form using a

procedure that extends the Wiener filter, see [21], [49], [61].
Since cyclostationary processes are in particular asymptotic
mean stationary processes [62], it follows from [45] that the
DRF of X̃(·) equals its information (a.k.a. Shannon’s) DRF,
i.e., the infimum over conditional probability distributions with
mutual information rate not exceeding R. A closed form
expression for this information DRF was derived in [9] in
terms of the pre-sampling filters H1( f ), . . . , HL( f ) and the
PSDs SX ( f ) and Sε( f ). Under the special case where the
supports of H1( f ), . . . , HL( f ) are disjoint, this expression
from [9] reduces to

D(S, R) = mmse (S) +
L∑

l=1

∫ fs
2

− fs
2

min
{

S̃l( f ), θ
}

d f (55a)

Rθ = 1

2

L∑

l=1

∫ fs
2

− fs
2

log+ [S̃l( f )/θ
]

d f, (55b)

where

S̃l( f ) �
∑

n∈Z
S2

X ( f − fsn)1supp Hl ( f − fsn)
∑

n∈Z

[
SXε ( f − fsn)

] ,

and

mmse (S) = σ 2
X −

L∑

l=1

∫ fs
2

− fs
2

S̃l( f )d f.

Next, let F�
fs

be a set of Lebesgue measure at most fs that
maximizes (25). We now show that F�

fs
can be approximated

by L intervals of measure at most fs/L. Let ε > 0. Consider
the measure μSX defined by

μS(A) =
∫

A

S2
X ( f )

SXε ( f )
d f

for all Lebesgue measurable set A.
Since SX ( f ) is L1(R), we can choose a set G ⊂ F�

fs
such that SX ( f ) is bounded on G and such that μS(G) >
μS(F�) − ε/3. The measure μS is absolutely continuous
with respect to the Lebesgue measure and hence is a regular
measure [63]. Therefore, there exists M intervals I1, . . . , IM

such that ∪M
i=1 Ii ⊂ G and μS(∪M

i=1 Ii ) > μS(G) − ε/3 >
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μS(F�
fs
) − 2ε/3. We can assume that I1, . . . , IM are disjoint;

otherwise we use I ′
1 = I1, I ′

2 = I2 \ I ′
1, I ′

3 = I3 \ (I ′
1 ∪ I ′

2),
and so forth. Therefore,

∑M
i=1 μ(Ii ) ≤ fs . For δ > 0, let

Li = 	Mμ(Ii )/δ
 and L = ∑M
i=1 Li . We now define L pre-

sampling filters as follows: for each i = 1, . . . , M , consider
Li disjoint intervals Ii,1, . . . , Ii, j of length r = δ/M that
are sub-intervals of Ii . Since μ(Ii ) ≥ Lir , such Li intervals
exist and we set Ai = Ii \ ∪Li

j=1 Ii, j . That is, Ai is the part
of the interval Ii that is not covered by these Li intervals.
In particular, μ(Ai) ≤ r . Finally, set the support of each
filter Hi, j to be Ii, j . Note that

μ(
∑

i, j

supp Hi, j ) =
M∑

i=1

Lir ≤ r
M∑

i=1

Mμ(Ii )/δ ≤ fs .

This way we have defined L = L1 + . . .+ L M filters, each of
passband of width r ≤ fs/L. It remains to show that

∑

i, j

μS(supp Hi, j ) =
∑

i, j

∫

supp Hi, j

S2
X ( f )

SXε ( f )
d f

>

∫

F�
fs

S2
X ( f )

SXε ( f )
d f − ε.

Denote by ms the essential supremum of SX ( f ) on G and
note that SX |Xε ( f ) ≤ ms on G as well. We have

μS(Ai ) =
∫

Ai

SX |Xε ( f )d f ≤ msμ(Ai) ≤ msr.

It follows that

μS(
∑

i, j

supp Hi, j )

=
M∑

i=1

Li∑

j=1

μS(Ii, j ) =
M∑

i=1

μS(Ii ) −
M∑

i=1

μS(Ai )

≥ μS(G) − ε/3 − Mmsr ≥ μS(F�
fs ) − 2ε/3 − Mmsδ.

Taking δ = ε/(3 Mms) leads to the desired result.
To summarize, we constructed L interval F1, . . . , FL , each

of measure at most fs/L, such that

L∑

l=1

∫

Fl

SX |Xε ( f )d f + δ >

∫

F�
fs

SX |Xε ( f )d f.

We now use use the following Proposition, proof of which
can be found in [64, Proposition 3.4]:

Proposition 8: Fix R > 0 and set A ⊂ R. For an integrable
function f over A, define

D( f ) = −
∫

A
[ f (x) − θ ]+ dx

R = 1

2

∫

A
log+ [ f (x)/θ ] dx .

Let f and g be two integrable functions such that
∫

A
f (x)dx ≤

∫

A
g(x)dx .

Then D(g) ≤ D( f ).
We use Proposition 8 with A = F� ∪ F1 ∪ . . . ∪ FL ,

f (x) = 1F�(x)SX |Xε (x),

and

g(x) = 1∪L
l=1 Fl

(x)
(
SX |Xε ( f ) + δ

)
.

Note that D�( fs , R) is a water-filling expression of the form
(26) over f (x) and A. Denote by Dδ the function defined
by a water-filling expression over g(x). Since g(x) ≥ f (x),
it follows from Proposition 8 that

Dδ ≤ D�( fs, R).

Since Dδ is continuous in δ and since limδ→0 Dδ = D(S, R),
for ε > 0 there exists L and δ such that D(S, R) + ε > Dδ ≥
D�( fs , R).

APPENDIX B
PROOF OF THEOREM 2

We first show that D(S, R) ≥ D�( fs , R) for any bounded
linear sampler S = (K H ,�), with d+(�) ≤ fs . Consider the
following cases of the sampler S in ADX:

(i) S is a MB-LTI uniform sampler of sampling rate fs .
(ii) S = (K H ,�) is a bounded linear sampler such that � is

periodic with uniform density fs .
(iii) S = (K H ,�) is any bounded linear sampler such that

d+(�) ≤ fs .

We show that case (iii) follows from (ii) which follows
from (i).

A. Case (i)

Let S be an MB-LTI sampler with L sampling branches and
fix a sampling rate fs . For a given L, fs , SX ( f ) and Sε( f ),
consider a set of L filter H1, . . . , HL that minimizes D(S, R).
If follows from [9, Th. 21] that the support of each Hl in such
a set is a bounded aliasing-free set for sampling at rate fs/L.
That is, for any f1, f2 ∈ supp Hl , f1 �= fs modulo the
grid Z fs/L. Since we are interested in bounding D(S, R) and
hence DT (S, R) from below, we can assume without loss of
generality that the support of H1, . . . , HL satisfies the aliasing
free condition. With this assumption, a closed form expression
for D(S, R) follows from [9, Th. 21]

D(S, R) = σ 2
X −

L∑

l=1

∫

supp Hl

min
[
SX |Xε ( f ) − θ

]+
d f (56a)

Rθ = 1

2

L∑

l=1

∫

supp Hl

log+ [SX |Xε ( f )/θ
]

d f. (56b)

Furthermore, it follows from [9, Proposition 2] that the
Lebesgue measure of H �

l is at most fs/L. Therefore,
the Lebesgue measure of the union of supp H1, . . . , supp HL is
at most fs . Since Propositon 8 implies that a water-filling
expression of the form (56a) is non-increasing in the function
SX |Xε ( f ), it follows that (56a) is bounded from below by

D� = σ 2
X −

∫

F�

[
SX |Xε ( f ) − θ

]+
d f

R = 1

2

∫

F�
log+ [SX |Xε ( f )/θ

]
d f,

which, by definition, equals D�( fs, R).
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B. Case (ii)

Assume that the sampling set � is periodic with period T0,
i.e. it satisfies � = � + T0. Assume moreover that K H (t +
T0k, τ ) = K H (t, τ ) for all k ∈ Z, i.e. K H (t, τ ) is periodic
in t with period T0. Denote by L the number of points in �
in the interval [−T0/2, T0/2]. Due to periodicity, 	L/T0
 ≤
d(�T ) ≤ �L/T0� and so the symmetric density of � exists
and equals L/T0. Denote by t0, . . . , tL−1 the L members of
�T0 = � ∩ [−T0/2, T0/2], where without loss of generality
we can assume that ±T0/2 /∈ �. Continue to enumerate the
members of � that are larger than tL−1 in the positive direction
by tL , tL+1, . . ., and the elements of � smaller than t0 in the
negative direction by t−1, t−2, . . .. By the periodicity of �,
tl+Lk = tl + T0k for all l = 0, . . . , L − 1 and k ∈ Z. For
n = l + kL, and tn < T/2, each sample Yn in the vector of
samples YT satisfies

Yn =
∫ ∞

−∞
K H (tl+Lk, s)Xε(s)ds

=
∫ ∞

−∞
K H (tl + T0k, s)Xε(s)ds

=
∫ ∞

−∞
K H (tl , s)Xε(s)ds = hl(s − tl)Xε(s)d f,

where, for l = 0, . . . , L−1, we denoted hl(s) � K H (tl , s+tl ).
We define the vector valued process Y[·] = {Y[k], k ∈ Z} by

Y[k] = (YLk, YLk+1, . . . , YLk+L−1) , k ∈ Z.

That is, the kth sample of Y[·] is a vector in R
L consists of L

consecutive samples of Xε(·). Note that Y [·] is independent of
the time horizon T . Since each hl(s) defines an LTI system,
it follows that sampling with the periodic set � and the
pre-processing system K H is equivalent to sampling using
L uniform sampling branches each of sampling rate 1/T0.
From case (i) of the proof, it follows that D(S, R) ≥
D�(L/T0, R) = D�(d(�), R).

C. Case (iii)

We now consider the general case of S = (�, K H )
an arbitrary bounded linear sampler. For a sequence
{Tn, n = 1, 2, . . .} such that limn→∞ Tn = ∞, denote

dn � dTn (�) = � ∩ [−Tn/2, Tn/2]
Tn

,

and let YTn be the vector of dn samples obtained by sampling
Xε(·) using S over the interval [−Tn/2, Tn/2]. In addition,
define the set �̃n to be the periodic extension of �Tn , i.e,

�̃n � �Tn + TnZ.

Therefore, �̃n is a periodic sampling set with period Tn and,
consequently, symmetric density dn . We also extend K H (t, s)
periodically as

K̃n (t, s) � K H ([t], τ )

where here and henceforth [t] denotes t modulo the grid TnZ

(i.e. t = [t] + kTn where k ∈ Z and 0 ≤ [t] < Tn). Let
S̃n � (�̃n, K̃n). We have

DTn (S, R)
(a)≤ DTn (S̃n, R)

(b)≥ D(S̃n , R)
(c)≥ D�(dn, R), (57)

where: (a) is becasue YTn is a subset of the samples obtained
by sampling with S̃n , (b) follows since the distribution of the
estimator of X (·) from the samples obtained by a MB-LTI
sampler is cyclostationary, hence enlarging the time horizon
T can only reduce distortion [45], and (c) is obtained from
part (ii) of the proof.

Since D�( fs , R) is continuous and non-increasing in fs ,
we have

lim
n→∞ D�(dn, R) ≥ D�(d+(�), R).

Therefore, since any unbounded sequence of time horizons
{Tn} satisfies (57), we conclude that

lim inf
T →∞ DT (S, R) = D(S, R) ≥ D�(d+(�), R).

The finite time horizon statement of Theorem 2 is obtained
using a similar procedure as steps (i)-(iii) above with the
following changes: in (i), we consider DT (S, R) and note
that since S is a MB-LTI sampler, the distribution of X (·)
given Y∞ is cyclostationary so DT (S, R) ≥ D(S, R). As a
result, the bound in step (ii) also bound DT (S, R) from
below. Finally, in step (iii), we denote dT = dT (�) and
consider a periodic extended sampler S̃T � (�̃T , K̃T ) where
�̃T � �T + T Z and K̃T (t, s) � K H ([t], τ ). We have

DT (S, R)
(a)≤ DT (S̃T , R)

(b)≥ D(S̃T , R)
(c)≥ D�(dT , R)

(d)≥ D�( fs , R). (58)

where (a) - (c) follow from the same arguments as in (57),
and (d) is because dT ≤ fs .

APPENDIX C
PROOF OF PROPOSITION 3

Let (R, D) be a point on the curve
(
R, DX |Xε (R)

)
. For θ

such that

R = 1

2

∫ ∞

−∞
log+ [SX |Xε ( f )/θ

]
d f,

denote Fθ �
{

f ∈ R : SX |Xε ( f ) > θ
}
, so that fR = μ(Fθ ),

R = 1

2

∫

Fθ

log
SX |Xε ( f )

θ
d f,

and

D = σ 2
X −

∫

Fθ

(
SX |Xε ( f ) − θ

)
d f. (59)

Let F� ⊂ R be such that

D�( fR , R) = σ 2
X −

∫

F�

[
SX |Xε ( f )d f − θ

]+
, (60)

and

R = 1

2

∫

F�
log+[SX |Xε ( f )/θ ]d f.

From the definition of D�( fs, R), it follows that
∫

F�
SX |Xε ( f )d f ≥

∫

Fθ

SX |Xε ( f )d f. (61)
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Since the distortion expressions (59) and (60) are non-
increasing in

∫
F� SX |Xε ( f )d f and

∫
Fθ

SX |Xε ( f )d f , respec-
tively, it follows from (61) that D�( fR, R) ≤ DX |Xε (R).
In order to prove the reverse inequality, note that for any
bounded linear sampler S and R we have

D(S, R) ≥ DX |Xε (R).

However, it follows from Theorem 1 that D�( fs, R) is achiev-
able, and hence D�( fs , R) ≥ DX |Xε (R). Evidently, this same
inequality can be derived directly from the definition of
D�( fs , R) in (26) and the expression for DX |Xε (R) in (22)
(that is, without using Theorem 1).

APPENDIX D
PROOF OF PROPOSITION 5

For 0 ≤ � ≤ 1 define

X�[n] � X ((n + �)Ts) , n ∈ Z,

where Ts � f −1
s . Also define X̂�[n] to be the optimal MSE

estimator of X�[n] from Ŷ [·], that is

X̂�[n] = E

[
X�[n]|Ŷ [·]

]
, n ∈ Z.

The MSE in (44) can be written as

mmseX |Ŷ

= lim
N→∞

1

2N + 1

∫ N+1

−N
E

(
X (t) − X̂(t)

)2
dt

= lim
N→∞

1

2N + 1

N∑

n=−N

×
∫ 1

0
E

(
X ((n + �)Ts) − X̂ ((n + �)Ts)

)2
d�

= lim
N→∞

1

2N + 1

N∑

n=−N

∫ 1

0
E

(
X�[n] − X̂�[n]

)2
d�

=
∫ 1

0
E

(
X�[n] − X̂�[n]

)2
d�. (62)

Note that SX�

(
e2π iφ

) = SY
(
e2π iφ

)
and X�[·] and Ŷ [·] are

jointly stationary with cross-PSD

SX�Ŷ

(
e2π iφ

)
= SX�

(
e2π iφ

)

= fs

∑

k∈Z

SX ( fs(k − φ)) e2π i�(k−φ).

Denote by SX�|Ŷ
(
e2π iφ

)
the PSD of the estimator obtained

by the discrete Wiener filter for estimating X�[·] from Ŷ [·].
We have

SX�|Ŷ
(

e2π iφ
)

=
SX�Ŷ

(
e2π iφ

)
S∗

X�Ŷ

(
e2π iφ

)

SŶ

(
e2π iφ

)

=
∑

n,k

f 2
s SXa ( fs(k − φ)) S∗

Xa
( fs(n − φ)) e2π i�(k−n)

SY
(
e2π iφ

)+ Sη

(
e2π iφ

) , (63)

where SXa ( f ) = SX ( f )H ∗( f ) is the cross-PSD of X (·) and
the signal at the output of the filter H ( f ). The estimation error
in Wiener filtering is given by

E

(
X�[n] − X̂�[n]

)2

=
∫ 1

2

− 1
2

SX�

(
e2π iφ

)
dφ −

∫ 1
2

− 1
2

SX�|Ŷ
(

e2π iφ
)

dφ

= σ 2
X −

∫ 1
2

− 1
2

SX�|Ŷ
(

e2π iφ
)

dφ. (64)

Equations (62), (63) and (64) lead to

DPC M ( fs , q, H )

=
∫ 1

0
E

(
X�[n] − X̂�[n]

)2
d�

= σ 2
X −

∫ 1
2

− 1
2

∫ 1

0
SX�|Ŷ

(
e2π iφ

)
dφ

a= σ 2
X −

∫ 1
2

− 1
2

fs
∑

k∈Z

∣
∣SXa

∣
∣2 ( fs(k − φ))

SY
(
e2π iφ

)+ Sη

(
e2π iφ

) dφ, (65)

where (a) follows from (63) and the orthogonality of the
functions

{
e2πxk, k ∈ Z

}
over 0 ≤ x ≤ 1. Equation (50) is

obtained from (65) by changing the integration variable from
φ to f = φ fs .

The optimal MMSE linear estimator of X (t) from Ŷ has
the property that the estimation error is uncorrelated with any
sample from Ŷ [·], namely,

E

[(

X (t) −
∑

n

w[n]Ŷ [n]
)

Ŷ [k]
]

= 0

for all k ∈ Z. This implies that
∫ ∞

−∞
RX (t − u − k/ fs)h(u)du =

∑

n

w[n]RŶ [n − k]. (66)

Taking the discrete time Fourier transform of both sides with
respect to k in (66) leads to

fs

∑

m

SX ( fs(φ − k)) e−2π it fs (φ−k) H ∗ ( fs(φ − k))

= W
(

e2π iφ
)

SŶ

(
e2π iφ

)
,

or

W
(

e2π iφ
)

= fs
∑

m SX ( fs(φ − k)) e−2π it fs (φ−k) H ∗ ( fs(φ − k))

SŶ

(
e2π iφ

) .

Note that the last expression equals the discrete-time Fourier
transform of the function w̃(t − n/ fs) (with respect to n),
where the impulse response of w̃(t) is given by

W ( f ) = H ∗( f )SX ( f )
∑

k∈Z
|H ( f )|2 SX ( f − fsk) + σ 2

η / fs
, (67)

completing the proof. �
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