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Abstract—Multiple-input multiple-output (MIMO) radar ex-
hibits several advantages with respect to the traditional radar
array systems in terms of flexibility and performance. However,
MIMO radar poses new challenges for both hardware design and
digital processing. In particular, achieving high azimuth resolution
requires a large number of transmit and receive antennas. In ad-
dition, digital processing is performed on samples of the received
signal, from each transmitter to each receiver, at its Nyquist rate,
which can be prohibitively large when high resolution is needed.
Overcoming the rate bottleneck, sub-Nyquist sampling methods
have been proposed that break the link between radar signal band-
width and sampling rate. In this paper, we extend these meth-
ods to MIMO configurations and propose a sub-Nyquist MIMO
radar (SUMMeR) system that performs both time and spatial
compression. We present a range-azimuth-Doppler recovery algo-
rithm from sub-Nyquist samples obtained from a reduced number
of transmitters and receivers, that exploits the sparsity of the re-
covered targets’ parameters. This allows us to achieve reduction
in the number of deployed antennas and the number of samples
per receiver, without degrading the time and spatial resolutions.
Simulations illustrate the detection performance of SUMMeR for
different compression levels and shows that both time and spatial
resolution are preserved, with respect to classic Nyquist MIMO
configurations. We also examine the impact of design parameters,
such as antennas’ locations and carrier frequencies, on the detec-
tion performance, and provide guidelines for their choice.

Index Terms—MIMO radar, Compressed sensing.

I. INTRODUCTION

MULTIPLE input multiple output (MIMO) [1] radar,
which presents significant potential for advancing

state-of-the-art modern radar in terms of flexibility and per-
formance, poses new theoretical and practical challenges. This
radar architecture combines multiple antenna elements both
at the transmitter and receiver where each transmitter radiates
a different waveform. Two main MIMO radar architectures
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are collocated MIMO [2] in which the elements are close to
each other, and multistatic MIMO [3] where they are widely
separated. In this work, we focus on collocated MIMO.

Collocated MIMO radar systems exploit the waveform diver-
sity, based on mutual orthogonality of the transmitted signals
[4]. This generates a virtual array induced by the phase differ-
ences between transmit and receive antennas. Such systems thus
achieve higher resolution than their phased-array counterparts
with the same number of elements and transmissions, contribut-
ing to MIMO’s popularity. This increased performance comes
at the price of higher complexity in the transmitters and re-
ceivers design. MIMO radar systems belong to the family of
array radars, which allow to recover simultaneously the targets
range, Doppler and azimuth. This three-dimensional recovery
results in high digital processing complexity. One of the main
challenges of MIMO radar is thus coping with complicated sys-
tems in terms of cost, high computational load and complex
implementation.

Assuming a sparse target scene, where the ranges, Dopplers
and azimuths lie on a predefined grid, the authors in [5], [6]
investigate compressed sensing (CS) [7] recovery for MIMO
architectures. CS reconstruction is traditionally proposed to re-
duce the number of measurements required for the recovery of a
sparse signal in some domain. However, in the works above, this
framework is not used to reduce the spatial or time complex-
ity, namely the number of antennas and samples, but is rather
focused on mathematical guarantees of CS recovery in the pres-
ence of noise. To that end, the authors use a dictionary that
accounts for every combination of azimuth, range and Doppler
frequency on the grid and the targets’ parameters are recovered
by matching the received signal with dictionary atoms. The pro-
cessing efficiency is thus penalized by a very large dictionary
that contains every parameter combination.

Several recent works have considered applying CS to MIMO
radar to reduce the number of antennas or the number of samples
per receiver without degrading resolution. The partial problem
of azimuth recovery of targets all in the same range-Doppler bin
is investigated in [8]. There, spatial compression is performed,
where the number of antennas is reduced while preserving the
azimuth resolution. Beamforming is applied on the time domain
samples obtained from the thinned array at the Nyquist rate and
the azimuths are recovered using CS techniques. In [9]–[12], a
time compression approach is adopted where the Nyquist sam-
ples are compressed in each antenna before being forwarded to
the central unit. While [9], [10] exploit sparsity and use CS re-
covery methods, [11], [12] apply matrix completion techniques
to recover the missing samples, prior to azimuth-Doppler [11]
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or range-azimuth-Doppler [12] reconstruction. However, the au-
thors do not address sampling and processing rate reduction
since the compression is performed in the digital domain, af-
ter sampling, and the missing samples are reconstructed before
recovering the target’s parameters. In all the above works, the
recovery is performed in the time domain on acquired or recov-
ered Nyquist rate samples for each antenna.

To reduce the sampling rate while preserving the range reso-
lution, the authors in [13] consider frequency domain recovery.
Similar ideas have also been used in the context of ultrasound
imaging [14], [15]. The work in [13] demonstrates low-rate
range-Doppler recovery in the context of radar with a single
antenna, including sub-Nyquist acquisition and low-rate digi-
tal processing. Low-rate data acquisition is based on the ideas
of Xampling [16], [17], which consist of an ADC performing
analog prefiltering of the signal before taking point-wise sam-
ples. Here, the samples are a sub-set of digitally transformed
Fourier coefficients of the received signal, that contain the in-
formation needed to recover the desired signal parameters using
CS algorithms [7]. A practical analog front-end implementing
such a sampling scheme in the context of radar is presented in
[18]. To recover the targets range-Doppler from the sub-Nyquist
samples, the authors introduce Doppler focusing, which is a
coherent superposition of time shifted and modulated pulses.
For any Doppler frequency, the received signals from different
pulses are combined so that targets with corresponding Doppler
frequencies come together in phase. This method improves
the signal to noise ratio (SNR) by a factor of the number of
pulses.

The work of [13] exploits the Xampling framework to break
the link between radar signal bandwidth and sampling rate,
which defines the time or range resolution. Here, we present the
sub-Nyquist MIMO radar (SUMMeR) system, that extends this
concept in the context of MIMO radar to break the link between
the aperture and the number of antennas, which defines the spa-
tial or azimuth resolution. We consider azimuth-range-Doppler
recovery and apply the concept of Xampling both in space (an-
tennas deployment) and in time (sampling scheme) in order
to simultaneously reduce the required number of antennas and
samples per receiver, without degrading the time and spatial res-
olution. In particular, we perform spatial and time compression
while keeping the same resolution induced by Nyquist rate sam-
ples obtained from a full virtual array with low computational
cost.

To this end, we express the “Xamples”, or compressed sam-
ples, both in time and space, in terms of the targets unknown
parameters, namely range, azimuth and Doppler, and show how
these can be recovered efficiently from the sub-Nyquist samples.
We first focus on range-azimuth recovery and then extend our
approach to range-azimuth-Doppler. In both cases, we present
necessary conditions on the minimal number of samples and an-
tennas for perfect recovery in noiseless settings. We then derive
reconstruction algorithms by extending the orthogonal match-
ing pursuit (OMP) algorithm [7] to simultaneous sparse matrix
recovery in order to solve a system of CS matrix equations. Fi-
nally, we show how our SUMMeR system can be enhanced so
that the spatial compression does not reduce detection perfor-

mance, while increasing the maximum unambiguous Doppler.
To do so, we utilize the free frequency bands resulting from
spatial compression for additional transmissions, thus forming
a virtual pulse repetition frequency (PRF).

Our approach is advantageous even in the traditional Nyquist
regime both in time and space. In MIMO radar, two of the most
popular techniques to ensure waveform orthogonality are code
division multiple access (CDMA) and frequency division multi-
ple access (FDMA), where CDMA is typically preferred. This is
due to two essential drawbacks of FDMA: range-azimuth cou-
pling [19]–[21] and limited range resolution to a single wave-
form’s bandwidth [22], [23]. In this work, we adopt the FDMA
framework and show that our processing overcomes these two
drawbacks. This approach, in contrast to CDMA, allows to legit-
imately assume narrowband waveforms, which is key to azimuth
resolution thus reconciling the trade-off between azimuth and
range resolution. This topic is addressed in more detail in [24].

The main contributions of SUMMeR are as follows:
1) Low rate sampling and digital processing - the unknown

target parameters are recovered from sub-Nyquist samples
obtained using Xampling. Both sampling and digital pro-
cessing are performed at a low rate.

2) Reduced number of antennas - beamforming is per-
formed on the Xamples obtained from a reduced number
of transmit and receive antennas while keeping a fixed
aperture.

3) Scaling with problem size - we separate the three dimen-
sions (range, azimuth and Doppler) by adapting OMP to
matrix form, with several matrix system equations. This
avoids the use of a large CS dictionary, where each column
corresponds to a range-azimuth-Doppler hypothesis.

4) Maximal bandwidth exploitation - the enhanced version
of SUMMeR exploits the frequency bands left vacant by
spatial compression for additional transmissions, with im-
proved maximum unambiguous Doppler while preserving
the total bandwidth.

5) Enhanced range-azimuth resolution capabilities -
FDMA waveforms simultaneously allow for narrowband
single transmissions for high azimuth resolution and large
total bandwidth to achieve high range resolution.

Our simulation results illustrate range-azimuth-Doppler re-
covery from low rate samples. In particular, we compare the de-
tection performance of SUMMeR for different time and spatial
compression levels with classic MIMO processing of Nyquist
samples acquired on a full virtual array. We demonstrate that,
under no compression, our FDMA processing achieves the de-
tection performance of classic CDMA, even when wideband
effects are neglected for the latter, giving it an advantage. We
then demonstrate that our enhanced version of SUMMeR gains
back the performance lost due to spatial compression. We fur-
ther investigate the impact of several design parameters such
as antennas’ locations and transmissions’ carrier frequencies on
the detection performance and provide guidelines for their se-
lection. Finally, we propose a heuristic grid refinement method
that allows to cope with the case where the grid assumption on
the delays, azimuths and Doppler frequencies, required in CS
techniques, is not valid.
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Fig. 1. Illustration of MIMO arrays. (a) Standard array. (b) Corresponding
receiver virtual array.

This paper is organized as follows. In Section II, we review
classic MIMO pulse-Doppler radar systems and processing. The
SUMMeR system is described in Section III. Section IV in-
troduces our sub-Nyquist sampling scheme and azimuth-range
recovery algorithm, extended to range-azimuth-Doppler recov-
ery in Section V. Numerical experiments are presented in
Section VI.

II. CLASSIC MIMO RADAR

We begin by describing the classic MIMO radar architecture,
in terms of array structure and waveforms, and the correspond-
ing processing.

A. MIMO Architecture

The traditional approach to collocated MIMO adopts a virtual
ULA structure [25], where R receivers, spaced by λ

2 and T trans-
mitters, spaced by Rλ

2 (or vice versa), form two ULAs. Here, λ is
the signal wavelength. Coherent processing of the resulting TR
channels generates a virtual array equivalent to a phased array
with TRλ

2 -spaced receivers and normalized aperture Z = T R
2 .

This standard array structure and the corresponding virtual array
are illustrated in Fig. 1 for R = 3 and T = 5. The blue circles
represent the receivers and the red squares are the transmitters.

Each transmitting antenna sends P pulses, such that the mth
transmitted signal is given by

sm (t) =
P −1∑

p=0

hm (t − pτ)ej2πfc t , 0 ≤ t ≤ Pτ, (1)

where hm (t), 0 ≤ m ≤ T − 1 are narrowband and orthogonal
pulses with bandwidth Bh , modulated with carrier frequency fc .
The coherent processing interval (CPI) is equal to Pτ , where
τ denotes the pulse repetition interval (PRI). For convenience,
we assume that fcτ is an integer, so that the delay e−j2πfc τ p is
canceled in the modulation for 0 ≤ p ≤ P − 1 [26]. The pulse
time support is denoted by Tp , with 0 < Tp < τ .

MIMO radar architectures impose several requirements on
the transmitted waveform family. Besides traditional demands
from radar waveforms such as low sidelobes, MIMO transmit
antennas rely on orthogonal waveforms. In addition, to avoid
cross talk between the T signals and form TR channels, the
orthogonality condition should be invariant to time shifts, that is∫∞
−∞ si(t)s∗j (t − τ0)dt = δ(i − j), for i, j ∈ [0, T − 1] and for

all τ0 . This property implies that the orthogonal signals cannot
overlap in frequency [27], leading to FDMA. Alternatively, time
invariant orthogonality can be approximately achieved using
CDMA.

Both FDMA and CDMA follow the general model [28]:

hm (t) =
Nc∑

u=1

wmuej2πfm u tv(t − uδt), (2)

where each pulse is decomposed into Nc time slots with du-
ration δt . Here, v(t) denotes the elementary waveform, wmu

represents the code and fmu the frequency for the mth trans-
mission and uth time slot. The general expression (2) allows to
analyze at the same time different waveform families. In particu-
lar, in CDMA, orthogonality is achieved by the code {wmu}Nc

u=1
and fmu = 0 for all 1 ≤ u ≤ Nc . In FDMA, Nc = 1, wmu = 1
and δt = 0. The center frequencies fmu = fm are chosen in
[−T Bh

2 , T Bh

2 ] so that the intervals [fm − Bh

2 , fm + Bh

2 ] do
not overlap. For simplicity of notation, {hm (t)}T −1

m=0 can be
considered as frequency-shifted versions of a low-pass pulse
v(t) = h0(t) whose Fourier transform H0(ω) has bandwidth
Bh , such that

Hm (ω) = H0 (ω − 2πfm ) . (3)

We adopt a unified notation for the total bandwidth Btot = TBh

for FDMA and Btot = Bh for CDMA.
Consider L non-fluctuating point-targets, according to the

Swerling-0 model [29]. It should be noted that the radar cross
section (RCS) may vary with frequency for distributed targets.
Unfortunately, when using coherent processing, the reflections
from scatterers may interfere constructively or destructively de-
pending on the signal frequency and the phases of the RCS for
the individual scatterers [29], [30]. In this work, we adopt the
point-target assumption and perform coherent processing. Ex-
tended targets can be modeled as the sum of point scatterers
spread over the appropriate resolution bins [31].

Each target is identified by its parameters: RCS α̃l , distance
between the target and the array origin or range Rl , velocity
vl and azimuth angle relative to the array θl . Our goal is to
recover the targets’ delay τl = 2Rl

c , azimuth sine ϑl = sin(θl)
and Doppler shift fD

l = 2vl

c fc from the received signals. In
the sequel, the terms range and delay are used interchangeably,
as well as azimuth angle and sine, and velocity and Doppler
frequency, respectively.

B. Received Signal

The transmitted pulses are reflected by the targets and col-
lected at the receive antennas. The following assumptions are
adopted on the array structure and targets’ location and motion,
leading to a simplified expression for the received signal.

A1 Collocated array - target RCS α̃l and θl are constant
over the array (see [32] for more details).

A2 Far targets - target-radar distance is large compared to
the distance change during the CPI, which allows for
constant α̃l ,

vlPτ � cτl

2
. (4)
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Fig. 2. MIMO array configuration.

A3 Slow targets - low target velocity allows for constant τl

during the CPI,

2vlPτ

c
� 1

Btot
, (5)

and constant Doppler phase during pulse time Tp ,

fD
l Tp � 1. (6)

A4 Low acceleration - target velocity vl remains approxi-
mately constant during the CPI, allowing for constant
Doppler shift fD

l ,

v̇lP τ � c

2fcPτ
. (7)

A5 Narrowband waveform - small aperture allows τl to be
constant over the channels,

2Zλ

c
� 1

Btot
. (8)

Under assumptions A1, A2 and A4, the received signal x̃q (t)
at the qth antenna is a sum of time-delayed, scaled replicas of
the transmitted signals:

x̃q (t) =
T −1∑

m=0

L∑

l=1

α̃lsm

(
c − vl

c + vl

(
t − Rl,mq

c − vl

))
, (9)

where Rl,mq = 2Rl − (Rlm + Rlq ), with Rlm = λξm ϑl and
Rlq = λζqϑl accounting for the array geometry, as illustrated in
Fig. 2. The noise term is ignored for convenience. The received
signal expression can be further simplified using the above as-
sumptions as we now show.

We start with the envelope hm (t) and consider the pth frame
and the lth target. From c ± vl ≈ c and neglecting the term 2vl t

c
using A3 (5), we obtain

hm

(
c − vl

c + vl

(
t − Rl,mq

c − vl

)
− pτ

)
= hm (t − pτ − τl,mq ).

(10)
Here, τl,mq = τl − ηmqϑl where τl = 2Rl

c is the target delay
and ηmq = (ξm + ζq )λ

c follows from the respective locations
between transmitter and receiver. We then add the modulation
term of sm (t). Again using c ± vl ≈ c, the remaining term is

given by

hm (t − pτ − τl,mq )ej2π (fc −f D
l )(t−τl , m q ) . (11)

After demodulation to baseband and using A3 (6), we further
simplify (11) to

hm (t − pτ − τl,mq )e−j2πfc τl ej2πfc ηm q ϑl e−j2πf D
l pτ . (12)

The three phase terms in (12) correspond to the target delay,
azimuth and Doppler frequency, respectively. Finally applying
A5 on hm (t), the delay term ηmqϑl , that stems from the array
geometry, is neglected in the envelope, which becomes

hm (t − pτ − τl). (13)

Substituting (13) into (12), the received signal at the qth an-
tenna after demodulation to baseband is given by

xq (t) =
P −1∑

p=0

T −1∑

m=0

L∑

l=1

αlhm (t − pτ − τl) ej2πfc ηm q ϑl e−j2πf D
l pτ,

(14)
where αl = α̃le

−j2πfc τl . In CDMA, the narrowband assumption
on the waveforms hm (t) limits the total bandwidth Btot = Bh ,
leading to a trade-off between time and spatial resolution [27].
In the next section, we show that in FDMA, this assumption can
be relaxed with respect to the single bandwidth Bh , rather than
Btot = TBh .

C. Azimuth-Delay-Doppler Recovery

Classic collocated MIMO radar processing traditionally in-
cludes the following stages:

1) Sampling: at each receiver, the signal xq (t) is sampled at
its Nyquist rate Btot.

2) Matched filter: the sampled signal is convolved with a
sampled version of hm (t), for 0 ≤ m ≤ T − 1. The time
resolution attained in this step is 1/Bh .

3) Beamforming: correlations between the observation vec-
tors from the previous step and steering vectors corre-
sponding to each azimuth on the grid defined by the array
aperture are computed. The spatial resolution attained in
this step is 2/TR.

4) Doppler detection: correlations between the resulting
vectors and Doppler vectors, with Doppler frequencies
lying on the grid defined by the number of pulses, are
computed. The Doppler resolution is 1/Pτ .

5) Peak detection: a heuristic detection process is performed
on the resulting range-azimuth-Doppler map. For exam-
ple, the detection can follow a threshold approach [33] or
select the L strongest points of the map, if the number of
targets L is known.

In standard processing, the range resolution is thus governed
by the signal bandwidth Bh . The azimuth resolution depends
on the array aperture and is given by 2

T R . Therefore, higher res-
olution in range and azimuth requires higher sampling rate and
more antennas. The total number of samples to process, NTRP ,
where N = τBh , may then grow prohibitively high. In order to
break the link between time resolution and sampling rate on the
one hand, and spatial resolution and number of antennas on the
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Fig. 3. Illustration of MIMO arrays. (a) Standard array. (b) Thinned array.

other hand, we propose to apply the Xampling framework [16]
to both time (sampling scheme) and space (antennas deploy-
ment). Our goal can therefore be expressed more precisely as
the estimation of the targets range, azimuth and velocities, i.e.
τl , ϑl and fD

l in (14), while reducing the number of samples,
transmit and receive antennas.

In this work, we adopt the FDMA approach, in order to ex-
ploit the narrowband property of the transmitted waveforms.
Classic FDMA presents two main drawbacks. First, due to the
linear relationship between the carrier frequency and the index
of antenna element, a strong range-azimuth coupling occurs
[19]–[21]. The second drawback of FDMA is that the range res-
olution is limited to a single waveform’s bandwidth, namely
Bh , rather than the overall transmit bandwidth Btot = TBh

[22], [23]. Here, we overcome these two drawbacks. First, to
resolve the coupling issue, we randomly distribute the antennas,
while keeping the carrier frequencies on a grid with spacing
Bh . Second, by coherently processing the channels, we achieve
a range resolution of Btot = TBh . This way, we exploit the
overall received bandwidth that governs the range resolution,
while maintaining the narrowband assumption for each channel,
which is key to azimuth resolution. Our approach, presented in
Sections IV and V, is applicable to both Nyquist and sub-Nyquist
regimes, in time and space. Further discussion on FDMA versus
CDMA in MIMO radar can be found in [24].

III. SUMMER SYSTEM MODEL

The SUMMeR system implements compression in both space
and time, reducing the number of antennas as well as the number
of samples acquired by each receiver, while preserving range and
azimuth resolution. We begin by describing spatial compression.
Time compression is introduced in Section IV.

Consider a collocated MIMO radar system with M < T
transmit antennas and Q < R receive antennas, whose loca-
tions are chosen uniformly at random within the aperture of
the virtual array described above, that is {ξm}M −1

m=0 ∼ U [0, Z]
and {ζq}Q−1

q=0 ∼ U [0, Z], respectively. Note that, in principle, the
antenna locations can be chosen on the ULAs’ grid. However,
this configuration is less robust to range-azimuth ambiguity and
leads to coupling between these parameters in the presence of
noise, as shown in [24]. In Section IV, we derive lower bounds
on the number of antennas M and Q. The spatially thinned array
structure is illustrated in Fig. 3, for Q = 2 and M = 3.

Since we adopt a FDMA framework, spatial compression,
which in particular reduces the number of transmit antennas, re-
moves the corresponding transmitting frequency bands as well.

Fig. 4. FDMA transmissions. (a) Standard. (b) Spatial compression.

The transmitted signals are illustrated in Fig. 4 in the frequency
domain. Fig. 4(a) and (b) show a standard FDMA transmission
for T = 5 and the resulting signal after spatial compression for
M = 3.

Our processing, described in Sections IV and V, allows to
soften the strict neglect of the delay term in the transition from
(12) to (13). We only remove ηmqϑl from the envelope h0(t),
which stems from the array geometry. Then, (13) becomes

hm (t − pτ − τl)ej2πfm ηm q ϑl . (15)

Here, the restrictive assumption A5 (8) is relaxed to 2Zλ
c � 1

Bh
.

We recall that in CDMA, (8) leads to a trade-off between az-
imuth and range resolution, by requiring either small aperture or
small total bandwidth Btot, respectively. Here, using the FDMA
framework and less rigid approximation (15), we need only the
single bandwidth Bh to be narrow, rather than the total band-
width Btot, eliminating the trade-off between range and azimuth
resolution. The received signal at the qth antenna after demod-
ulation to baseband is in turn given by

xq (t) =
P −1∑

p=0

M −1∑

m=0

L∑

l=1

αlhm (t − pτ − τl) ej2πβm q ϑl e−j2πf D
l pτ,

(16)
where βmq = (ζq + ξm )(fm

λ
c + 1). It will be convenient to ex-

press xq (t) as a sum of single frames

xq (t) =
P −1∑

p=0

xp
q (t), (17)

where

xp
q (t) =

M −1∑

m=0

L∑

l=1

αlhm (t − τl − pτ)ej2πβm q ϑl e−j2πf D
l pτ .

(18)
Our goal is to estimate the targets range, azimuth and velocity,

i.e. to estimate τl , ϑl and fD
l from low rate samples of xq (t),

and a small number M and Q of antennas.

IV. SUB-NYQUIST RANGE-AZIMUTH RECOVERY

To introduce our sampling and processing, we begin by con-
sidering the special case of P = 1, namely a single pulse is
transmitted by each transmit antenna. We first describe how
the range-azimuth map can be recovered from Xamples in time
and space. We then derive necessary conditions on the num-
ber of channels and samples per receiver to allow for perfect
range-azimuth recovery in noiseless settings. Subsequently, in
Section V, we treat the general case where a train of P > 1
pulses is transmitted by each antenna, and present a joint range-
azimuth-Doppler recovery algorithm from Xamples, as well as
recovery conditions.
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A. Xampling in Time and Space

We begin by deriving an expression for the Fourier coeffi-
cients of the received signal, and show how the unknown pa-
rameters, namely τl and ϑl , are embodied in these coefficients.
We then briefly explain how the Fourier coefficients may be
obtained from low rate samples of the signal.

The received signal xq (t) at the qth antenna is limited to
t ∈ [0, τ ] and thus can be represented by its Fourier series

xq (t) =
∑

k∈Z

cq [k]ej2πkt/τ , t ∈ [0, τ ] , (19)

where, for −N T
2 ≤ k ≤ N T

2 − 1, with N = τBh ,

cq [k] =
1
τ

∫ τ

0
xq (t)e−j2πkt/τ dt

=
1
τ

M −1∑

m=0

L∑

l=1

αle
j2πβm q ϑl e−j 2 π

τ kτl Hm

(
2π

τ
k

)
. (20)

In order to obtain the Fourier coefficients cq [k] in (20) from
low-rate samples of the received signal xq (t), we use the sub-
Nyquist sampling scheme presented in [13], [18]. For each re-
ceived transmission, Xampling allows one to obtain an arbitrary
set κ, comprised of K = |κ| frequency components from K
point-wise samples of the received signal after appropriate ana-
log preprocessing. Therefore, MK Fourier coefficients are ac-
quired at each receiver from MK samples, with K coefficients
per frequency band or transmission.

Once the Fourier coefficients cq [k], for k ∈ κ, are acquired,
we separate them into channels for each transmitter, by exploit-
ing the fact that they do not overlap in frequency. Applying a
matched filter, we have

c̃q ,m [k] = cq [k]H∗
m

(
2π

τ
k

)

=
1
τ

∣∣∣∣Hm

(
2π

τ
k

)∣∣∣∣
2 L∑

l=1

αle
j2πβm q ϑl e−j 2 π

τ kτl . (21)

Let ym,q [k] = τ
|H0 ( 2 π

τ k)|2 c̃q ,m [k + fm τ ] be the normalized and

aligned Fourier coefficients of the channel between the mth
transmitter and qth receiver. Then,

ym,q [k] =
L∑

l=1

αle
j2πβm q ϑl e−j 2 π

τ kτl e−j2πfm τl , (22)

for k ∈ κ. Our goal is then to recover the targets’ parameters τl

and ϑl from ym,q [k].

B. Range-Azimuth Recovery Conditions

We now derive the minimal number of channels MQ and
samples per receiver MK required for perfect range-azimuth
recovery from (22) in a noiseless environment. Theorem 1 con-
siders continuous settings while in Theorem 2, we assume that
the delays and azimuths are confined to the Nyquist grid.

Theorem 1: The minimal number of channels required for
perfect recovery of L targets in noiseless settings is MQ ≥ 2L
with a minimal number of MK ≥ 2L samples per receiver.

Proof: Since there are no constraints on the delays or az-
imuths, let us examine the worst case where all targets have
identical azimuth ϑl = ϑ0 . Equation (22) then becomes

ym,q [k] = ej2πβm q ϑ0

L∑

l=1

αle
−j 2 π

τ (k+fm τ )τl . (23)

For each channel, that is combination of the mth transmit-
ter and qth receiver, we normalize (23) as zm,q [k] = ym,q [k]/
ej2πβm q ϑ0 , yielding

zm,q [k] =
L∑

l=1

αle
−j 2 π

τ (k+fm τ )τl . (24)

Since fm are chosen so that the frequency intervals [fm −
Bh

2 , fm + Bh

2 ] do not overlap, there are MK distinct values
of k + fm τ , for k ∈ κ and 0 ≤ m ≤ M − 1. If it were possible
to solve (24) with less than MK samples, then we could use this
to solve the one-dimensional problem of 2L delay-amplitude re-
covery with less than 2L samples, in contradiction with [34].
Therefore, it holds that MK ≥ 2L.

Consider now the worst case where all targets have the same
delay τl = τ0 . We obtain

ym,q [k] = e−j 2 π
τ kτ0 e−j2πfm τ0

L∑

l=1

αle
j2πβm q ϑl , (25)

and after normalization,

z̃m ,q [k] =
1

e−j 2 π
τ (k+fm τ )τ0

ym,q [k] =
L∑

l=1

αle
j2πβm q ϑl . (26)

Here, the number of distinct values of βmq is at most MQ. The
upper bound can be achieved by an appropriate choice of ξm

and ζq , for 0 ≤ m ≤ M − 1 and 0 ≤ q ≤ Q − 1. Applying the
same considerations, we infer that MQ ≥ 2L. �

As in traditional MIMO, suppose we now limit ourselves to
the Nyquist grid with respect to the total bandwidth TBh so that
τl = τ

T N sl , where sl is an integer satisfying 0 ≤ sl ≤ TN − 1
and ϑl = −1 + 2

T R rl , where rl is an integer in the range 0 ≤
rl ≤ TR − 1. Let Ym be the K × Q matrix with qth column
given by ym,q [k], k ∈ κ. We can then write Ym as

Ym = AmX (Bm )T . (27)

Here, Am denotes the K × TN matrix whose (k, n)th element

is e−j 2 π
T N κk ne

−j2π f m
B h

n
T with κk the kth element in κ, Bm is the

Q × TR matrix with (q, p)th element ej2πβm q (−1+ 2
T R p) . The

matrix X is a TN × TR sparse matrix that contains the val-
ues αl at the L indices (sl , rl). Our goal is to recover X from
the measurement matrices Ym , 0 ≤ m ≤ M − 1. The time and
spatial resolution induced by X are τ

T N = 1
T Bh

, and 2
T R , re-

spectively, as in classic CDMA processing.
Define

A = [A0T

A1T · · · A(M −1)T

]T , (28)

and

B = [B0T

B1T · · · B(M −1)T

]T . (29)
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To better grasp the structure of A and B, consider the Nyquist
regime, with carriers fm lying on the grid fm = (m − T −1

2 )Bh .

In this case, the (k, n)th element of Am is e−j 2 π
T N (k+mN − T N

2 )n

and A is the TN × TN Fourier matrix up to row permutation.
Similarly, assuming that the antenna elements lie on the virtual
array illustrated in Fig. 1, we have βmq = 1

2 (q + mR), where
we used fm

λ
c � 1 to simplify the expression. Then, the (q, p)th

element of Bm is ej 2 π
T R (q+mR)(p− T R

2 ) and B is the TR × TR
Fourier matrix up to column permutation.

The matrices A and B are sometimes referred to as dictionar-
ies, whose columns correspond to the range and azimuth grid
points, respectively. Here, due to the reduction in the number
of antennas and samples per receiver, the number of rows of
A and B, namely MK and MQ, respectively, is decreased. In
terms of samples, reducing the number of transmitters decreases
the number of measurement matrices Ym , reducing the number
of receivers removes the corresponding columns of all matrices
Ym and reducing the number of samples per channel removes
rows of Ym .

Theorem 2 presents necessary conditions on the minimal
number of samples MK and number of channels MQ for per-
fect recovery of X from (27) under the grid assumption.

Theorem 2: The minimal number of channels required for
perfect recovery of X with L targets in noiseless settings is
MQ ≥ 2L with a minimal number of MK ≥ 2L samples per
receiver.

We note that we obtain the same recovery conditions as in the
continuous case of Theorem 1.

Proof: The observation model (27) for 0 ≤ m ≤ M − 1 can
be equivalently written in vector form using the Kronecker prod-
uct as

vec(Y)�

⎡

⎢⎢⎢⎣

vec(Y0)
vec(Y1)

...
vec(YM −1)

⎤

⎥⎥⎥⎦=

⎡

⎢⎢⎢⎣

B0 ⊗ A0

B1 ⊗ A1

...
BM −1 ⊗ AM −1

⎤

⎥⎥⎥⎦ vec(X).

(30)
Here vec(X) is a column vector that vectorizes the matrix X by
stacking its columns and ⊗ denotes the Kronecker product. It
follows that vec(X) is L-sparse. Denote

C =

⎡

⎢⎢⎢⎣

B0 ⊗ A0

B1 ⊗ A1

...
BM −1 ⊗ AM −1

⎤

⎥⎥⎥⎦ . (31)

In order to recover vec(X) from vec(Y), we require [7]

spark (C) > 2L, (32)

where spark(C) is the smallest number of columns of C that
are linearly dependent [7], [17].

We now state the following lemma whose proof is presented
in Appendix A.

Lemma 1: Let Am ∈ CK,N and Bm ∈ CQ,R , for 0 ≤ m ≤
M − 1 with K ≤ N and Q ≤ R. Denote A = [A0T

A1T · · ·

A(M −1)T
]T and B = [B0T

B1T · · · B(M −1)T
]T . Then,

spark(C) = min{spark(A), spark(B)}, (33)

where C is defined in (31).
From Lemma 1, (32) holds iff

spark (A) > 2L and spark (B) > 2L. (34)

Here A is of size MK × TN and B is of size MQ × TR. This
in turn leads to both MK ≥ 2L and MQ ≥ 2L. �

Obviously, the design parameters fm , ξm , ζq , |κ| should be
chosen so that (34) is satisfied. In the simulations, these param-
eters are first chosen at random. Deterministic guidelines for
their choice are then discussed in Section IV-D and in [24].

C. Range-Azimuth Recovery

To recover the sparse matrix X from the set of equations (27),
for all 0 ≤ m ≤ M − 1, where the targets’ range and azimuth
lie on the Nyquist grid, we would like to solve the following
optimization problem

min ||X||0 s.t. AmX (Bm )T = Ym , 0 ≤ m ≤ M − 1.
(35)

To this end, we extend the matrix OMP from [35] to solve (35),
as shown in Algorithm 1. In the algorithm description, vec(Y)
is defined in (30), dt(l) = [(d0

t (l))
T · · · (dM −1

t (l))T ]T where
dm

t (l) = vec(am
Λ t (l,1)(b

m
Λ t (l,2))

T ) with Λt(l, i) the (l, i)th el-
ement in the index set Λt at the tth iteration, and Dt =
[dt(1) · · · dt(t)]. Here, am

j denotes the jth column of the ma-
trix Am and it follows that bm

j denotes the jth column of the
matrix Bm ; B̄ is the conjugate of B. Once X is recovered, the
delays and azimuths are estimated as

τ̂l =
τ

TN
ΛL (l, 1), (36)

ϑ̂l = −1 +
2

TR
ΛL (l, 2). (37)

Other CS recovery algorithms, such as FISTA [36]–[38], can
also be extended to solve (35).

We conclude this subsection by briefly stating the main as-
pects in which our FDMA based processing differs from the clas-
sic CDMA approach introduced in Section II. A more extensive
discussion can be found in [24]. First, the single spatial channel
processing, which is equivalent to the matched filter in step (2),
is limited to a range resolution of 1/Bh whereas in CDMA we
achieve resolution of 1/Btot. In addition, in FDMA, the trans-
mit steering vector is also range-dependent as a consequence of
the frequency diversity, so that the range also depends on the
channels, whereas in CDMA, it is decoupled from the chan-
nels domain. Therefore, our processing involves range-azimuth
beamforming while the classic approach for CDMA uses beam-
forming on the azimuth domain only as in step (3). The range
dependency on the channels in FDMA is exploited to enhance
the poor range resolution of the single spatial channel 1/Bh to
1/TBh = 1/Btot. These steps are summarized in Table I. Note
that the processing is not divided into these two steps, which are
provided for better understanding of the hidden connections in
our problem. Specifically, the projection performed in step 2 of



4322 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 16, AUGUST 15, 2018

TABLE I
JOINT RANGE-AZIMUTH FDMA PROCESSING

Algorithm 1: SUMMeR for simultaneous sparse matrix
recovery.

Input: Observation matrices Ym , measurement matrices
Am , Bm , for all 0 ≤ m ≤ M − 1

Output: Index set Λ containing the locations of the non
zero indices of X, estimate for sparse matrix X̂

1: Initialization: residual Rm
0 = Ym , index set Λ0 = ∅,

t = 1
2: Project residual onto measurement matrices:

Ψ = AH RB̄

where A and B are defined in (28) and (29),
respectively, and R = diag([R0

t−1 · · · RM −1
t−1 ]) is

block diagonal
3: Find the two indices λt = [λt(1) λt(2)] such that

[λt(1) λt(2)] = arg maxi,j |Ψi,j |
4: Augment index set Λt = Λt

⋃{λt}
5: Find the new signal estimate

α̂ = [α̂1 · · · α̂t ]T = (DT
t Dt)−1DT

t vec(Y)

6: Compute new residual

Rm
t = Rm

0 −
t∑

l=1

αlam
Λ t (l,1)

(
bm

Λ t (l,2)

)T

7: If t < L, increment t and return to step 2, otherwise stop
8: Estimated support set Λ̂ = ΛL

9: Estimated matrix X̂: (ΛL (l, 1),ΛL (l, 2))-th component
of X̂ is given by α̂l for l = 1, . . . , L while rest of the
elements are zero

the algorithm combines single spatial channel processing with
range-azimuth beamforming.

D. Choice of Parameters

We now provide further insight into the choice of antennas’
locations, Fourier coefficients and carrier frequencies which
are embodied in (22) in the first, second and third terms,

Fig. 5. Range-azimuth map in noiseless settings for antennas located on a
conventional ULA and carrier frequencies selected on a grid, with L = 1 targets.
The highest peak with the red circle corresponds to the true target. The other
peaks result from range-azimuth coupling.

Fig. 6. Range-azimuth map in noiseless settings along range axis for choice
of Fourier coefficients based on low coherence (left) and typical random choice
(right), assuming K = 50, M = Q = 20 and L = 1. The red dotted line indi-
cates the peak sidelobe level for this target in the range domain.

respectively. Then, we investigate the impact of these choices
on the side lobes in the range and azimuth domains.

In [24], the impact of the joint choice of antennas location
and carriers on range-azimuth coupling is explored. It is shown
that under the ULA structure with transmit carriers on the grid, a
strong range-azimuth coupling (Fig. 5) occurs. While the noise-
less sufficient condition derived here in (32) still holds and the
targets azimuth and range can be recovered, their detection in
noisy conditions is impaired. As shown in [24], to overcome
the ambiguity issue, either the antenna locations or the carrier
frequencies, or both, should not lie on a specific grid. It was
heuristically found that a configuration with random antennas’
locations with carriers on a grid provides better results than
random carriers with a ULA structure.

To minimize the sidelobe level in the range and azimuth do-
mains, we define the matrices C1 ,C2 ,C3 corresponding to the
first, second and third terms in (22) with respect to the Nyquist
grid. The matrix C2 , which corresponds to the time domain (sin-
gle spatial channel step in Table I), is a K × N matrix with each
column corresponding to a range grid point discretized accord-
ing to the poor range resolution of 1/Bh and large unambiguous
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Fig. 7. Range-azimuth map in noiseless settings along range axis for choice
of antennas’ locations based on low coherence (left) and typical random choice
(right), assuming K = 50, M = Q = 20 and L = 1. The red dotted line indi-
cates the peak sidelobe level for this target in the range domain.

range τ , such that C2
kn = e−j 2 π

N κk n . The matrices C1 and C3

are related to the channel domain (range-azimuth beamforming
step in Table I). The columns of the MQ × TR matrix C1 cor-
respond to azimuth grid points, so that C1

ip = ej2πβi (−1+ 2
T R p) ,

and C3 is a MQ × T matrix, whose columns correspond to
range grid points discretized according to the higher range res-
olution 1/TBh and small unambiguous range 1/Bh , result-

ing in C3
in = e

−j2π
f i
B h

n
T . Since both C1 and C3 relate to the

channel domain, we construct a combined matrix for range-
azimuth beamforming in which each column corresponds to a
pair of range-azimuth grid points which are resolved simulta-
neously. C13 = (1T ⊗ C1) � (C3 ⊗ 1T ), where � denotes the
Hadamard product.

We consider the coherence defined as the maximum absolute
value of cross-correlation between the columns of a matrix,
namely

m(k) = maxi =j

∣∣∣(ck
i )

H
ck

j

∣∣∣ ,

for k = 2 and k = 13. The design parameters are then chosen
to minimize the coherence through trials of random selections.
Specifically, the Fourier coefficients are chosen to minimize
m(2) while the carrier frequencies and antennas’ location are si-
multaneously selected to minimize m(13) . Our criteria is partic-
ularly important when the time and/or spatial reduction factors
are high since the sidelobes are slightly raised due to the small
number of elements and time samples.

V. SUB-NYQUIST RANGE-AZIMUTH-DOPPLER RECOVERY

In Section IV, we introduced Xampling in time and space for
range-azimuth recovery. We now return to our original range-
azimuth-Doppler recovery problem. We begin by explaining
how Xampling can be extended to the multi pulse signal (16).
We then derive the minimal number of channels, samples per
receiver and pulses per transmitter for perfect recovery in noise-
less settings. Finally, we present our range-azimuth-Doppler
recovery algorithm based on the concept of Doppler focusing
introduced in [13].

Similarly to the derivations of Section IV, the pth frame of the
received signal at the qth antenna, namely xp

q (t), is represented
by its Fourier series

xp
q (t) =

∑
k∈Z

cp
q [k]e−j2πkt/τ , t ∈ [pτ, (p + 1)τ ] , (38)

where, for −N T
2 ≤ k ≤ N T

2 − 1, with N = τBh ,

cp
q [k] =

1
τ

M −1∑

m=0

L∑

l=1

αle
j2πβm q ϑl e−j 2 π

τ kτl e−j2πf D
l pτ Hm

(
2π

τ
k

)
.

(39)
After separation to channels by matched filtering, the normal-
ized and aligned Fourier coefficients yp

m,q [k] = τ
|H0 ( 2 π

τ k)|2 c̃p
q ,m

[k + fm τ ], with c̃p
q ,m [k] = cp

q [k]H∗
m ( 2π

τ k), are given by

yp
m,q [k] =

L∑

l=1

αle
j2πβm q ϑl e−j 2 π

τ kτl e−j2πfm τl e−j2πf D
l pτ ,

(40)
for k ∈ κ. The Fourier coefficients yp

m,q [k] of the frames of
each channel (40) are identical to (22) except for the additional
Doppler term e−j2πf D

l pτ .

A. Range-Azimuth-Doppler Recovery Conditions

Theorems 3 and 4 below consider the minimal number of
channels and samples per receiver required for perfect range-
azimuth-Doppler recovery. Again, we consider both continuous
and discrete settings, where in the latter, we assume that the
delays, azimuths and Doppler frequencies lie on the Nyquist
grid.

Theorem 3: The minimal number of channels required for
perfect recovery of L targets in noiseless settings is MQ ≥ 2L
with a minimal number of MK ≥ 2L samples per receiver and
P ≥ 2L pulses per transmitter.

Proof: Repeating the proof of Theorem 1 for the worst cases
where all targets have the same azimuth and Doppler frequency,
we infer that MK ≥ 2L. Similarly, the case where they all
have the same delay and Doppler frequency yields MQ ≥ 2L.
Consider now the situation where all targets have the same delay
τl = τ0 and azimuth ϑl = ϑ0 , which constitues a worst case as
well. Then,

yp
m,q [k] = e−j 2 π

τ 0
kτl e−j2πfm τ0 ej2πβm q ϑ0

L∑

l=1

αle
−j2πf D

l pτ .

(41)
For each channel, we normalize (41) as

zp
m,q [k] =

yp
m,q [k]

e−j 2 π
τ 0

kτl e−j2πfm τ0 ej2πβm q ϑ0

=
L∑

l=1

αle
−j2πf D

l pτ .

(42)
Applying the same considerations as in the proof of Theorem 1,
we conclude that P ≥ 2L. �

As in Section IV, we next assume that the time delays, az-
imuths and Doppler frequencies are aligned to a grid. In par-
ticular, τl = τ

T N sl , ϑl = −1 + 2
T R rl and fD

l = − 1
2τ + 1

P τ ul ,
where sl , rl and ul are integers satisfying 0 ≤ sl ≤ TN − 1,
0 ≤ rl ≤ TR − 1 and 0 ≤ ul ≤ P − 1, respectively. Let Zm



4324 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 16, AUGUST 15, 2018

be the KQ × P matrix with qth column given by the vertical
concatenation of yp

m,q [k], k ∈ κ, for 0 ≤ q ≤ Q − 1. We can
then write Zm as

Zm = (Bm ⊗ Am )XDFT . (43)

Here, the K × TN matrix Am and the Q × TR matrix Bm

are defined in Section IV and F denotes the P × P Fourier
matrix up to column permutation. The matrix XD is a T 2NR ×
P sparse matrix that contains the values αl at the L indices
(rlTN + sl , ul).

Our goal now is to recover XD from the measurement ma-
trices Zm , 0 ≤ m ≤ M − 1. The time, spatial and frequency
resolution stipulated by XD are 1

T Bh
, 2

T R and 1
P τ respectively.

Theorem 4 presents necessary conditions on the minimal num-
ber of channels MQ, samples per receiver MK and pulses per
transmitter P for perfect recovery of XD from (43) under the
grid assumption.

Theorem 4: The minimal number of channels required for
perfect recovery of XD with L targets in noiseless settings is
MQ ≥ 2L with a minimal number of MK ≥ 2L samples per
receiver and P ≥ 2L pulses per transmitter.

Proof: The observation model (43) can be equivalently writ-
ten as

Zm F̄ = P (Bm ⊗ Am )XD , (44)

or in vector form,

vec(ZF̄) �

⎡

⎢⎢⎢⎣

vec(Z0F̄)
vec(Z1F̄)

...
vec(ZM −1F̄)

⎤

⎥⎥⎥⎦ = PCD vec(XD ), (45)

where

CD =

⎡

⎢⎢⎢⎣

IP ⊗ B0 ⊗ A0

IP ⊗ B1 ⊗ A1

...
IP ⊗ BM −1 ⊗ AM −1

⎤

⎥⎥⎥⎦ , (46)

and IP denotes the P × P identity matrix. In order to re-
cover the L-sparse vector vec(XD ) from vec(Z), we require
spark(CD ) > 2L [7].

Applying Lemma 1 twice, we obtain

spark(CD ) = min{spark(A), spark(B), spark(̃IP )}, (47)

where ĨP is the MP × P matrix which vertically concatenates
M times the matrix IP . Obviously, spark(̃IP ) = spark(IP ).
Therefore, (32) holds iff

spark (A) > 2L, spark (B) > 2L and spark (IP ) > 2L,
(48)

which in turn leads to MK ≥ 2L, MQ ≥ 2L and P ≥2L. �
From Theorems 2 and 4, the minimal number of channels

to recover 2L targets is MQ = 2L. To minimize the total
number of antennas M + Q, we choose M,Q ∈ N, such that√

2L − 1 ≤ M,Q ≤ √
2L + 1 and MQ ≥ 2L. The number of

samples per channel must be at least K ≥ 2L/M with P ≥ 2L
pulses. Obviously, these numbers are lower bounds and should
be increased in the presence of noise.

Fig. 8. FDMA MIMO prototype and user interface [41].

B. Range-Azimuth-Doppler Recovery

To recover jointly the range, azimuth and Doppler frequen-
cies of the targets, we apply the concept of Doppler focusing
from [13] to our setting. Once the Fourier coefficients (40) are
acquired and processed, we perform Doppler focusing for a
specific frequency ν, that is

Φν
m,q [k] =

P −1∑

p=0

yp
m,q [k]ej2πνpτ

=
L∑

l=1

αle
j2πβm q ϑl e−j 2 π

τ (k+fm τ )τl

P −1∑

p=0

ej2π (ν−f D
l )pτ ,

(49)

for k ∈ κ. Following the same argument as in [13], it holds that

P −1∑

p=0

ej2π (ν−f D
l )pτ ∼=

{
P |ν − fD

l | < 1
2P τ ,

0 otherwise.
(50)

Therefore, for each focused frequency ν, (49) reduces to (22)
and the resulting CS problem to solve is exactly (27), for 0 ≤
m ≤ M − 1.

Doppler focusing performed on the Xamples is the frequency
domain equivalent of classic Doppler processing involving the
Doppler filter bank [33], performed in the time domain. Doppler
focusing achieves a resolution of 1/Pτ following the classic
property of the ambiguity function of a coherent train of pulses
[39]. In addition, Doppler focusing increases the SNR by a factor
of P , as can be seen in (50).

Algorithm 2 extends Algorithm 1 to solve (43) using Doppler
focusing. Note that step 1 can be performed using the fast
Fourier transform (FFT). In the algorithm description, vec(Z)
is defined similarly to vec(Y) in (30), et(l) = [(e0

t (l))
T · · ·

(eM −1
t (l))T ]T where em

t (l) = vec((Bm ⊗Am)Λ t(l,2)T N+Λ t(l,1)
(Fm

Λ t (l,3))
T ) with Λt(l, i) the (l, i)th element in the index set

Λt at the tth iteration, and Et = [et(1) · · · et(t)]. Once XD is
recovered, the delays and azimuths are given by (36) and (37),
respectively and the Dopplers are estimated as

f̂D
l = − 1

2τ
+

1
Pτ

ΛL (l, 3). (51)

Fig. 8 demonstrates a hardware prototype realizing the FDMA
MIMO processing presented here. Further details can be found
in [40] and [41].
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Algorithm 2: SUMMeR for simultaneous sparse 3D recov-
ery with focusing.

Input: Observation matrices Zm , measurement matrices
Am , Bm , for all 0 ≤ m ≤ M − 1

Output: Index set Λ containing the locations of the
non zero indices of XD , estimate for sparse matrix X̂D

1: Perform Doppler focusing for 0 ≤ i ≤ K − 1, 0 ≤ j
≤ Q − 1 and 0 ≤ ν ≤ P − 1:

Φ(m,ν )
i,j = (Zm F̄)i+jK,ν

2: Initialization: residual R(m,ν )
0 = Φ(m,ν ) , index set

Λ0 = ∅, t = 1
3: Project residual onto measurement matrices for

0 ≤ ν ≤ P − 1:

Ψν = AH Rν B̄,

where A and B are defined in (28) and (29),
respectively, and Rν = diag([R(0,ν )

t−1 · · · R(M −1,ν )
t−1 ])

is block diagonal
1: Find the three indices λt = [λt(1)λt(2)λt(3)] such that

[λt(1) λt(2) λt(3)] = arg maxi,j,ν

∣∣Ψν
i,j

∣∣

5: Augment index set Λt = Λt

⋃{λt}
6: Find the new signal estimate

α̂ = [α̂1 · · · α̂t ]T = (ET
t Et)−1ET

t vec(Z)

7: Compute new residual

R(m,ν )
t = R(m,ν )

0 −
t∑

l=1

αlam
Λ t (l,1)

(
bm

Λ t (l,2)

)T(
fΛ t (l,3)

)T fν

8: If t < L, increment t and return to step 3, otherwise stop
9: Estimated support set Λ̂ = ΛL

10: Estimated matrix X̂D : the (ΛL (l, 2)TN + ΛL (l, 1),ΛL

(l, 3))-th component of X̂D is given by α̂l for l = 1,
. . . , L while the remaining elements are zero

C. Multi-Carrier SUMMeR

The frequency bands, within the total bandwidth, left va-
cant by the spatial compression can be exploited to increase
the system’s detection performance and unambiguous Doppler
coverage without expanding the total bandwidth of Btot = TBh ,
thus preserving assumption A3 (5). We refer to this approach as
multi-carrier SUMMeR.

In multi-carrier SUMMeR the vacant frequency bands due to
the spatial compression are utilized to add more pulses within
the PRI as illustrated in Fig. 9. Denote by γ = T/M the com-
pression ratio of the number of transmitters. In multi-carrier
SUMMeR, every transmit antenna sends γ pulses in each PRI.
The pulses belong to different frequency bands and are therefore
mutually orthogonal, such that the total number of user bands
is MγBh = TBh . The ith pulse of the pth PRI is transmitted at
time i τ

γ + pτ , for 0 ≤ i < γ and 0 ≤ p ≤ P − 1. The samples
are then acquired and processed as described above. Besides
increasing the detection performance as we show in simulations

Fig. 9. In multi-carrier SUMMeR the free frequency bands are utilized for
additional transmissions.

in Section VI, this method multiplies the unambiguous Doppler
coverage by a factor of γ owing to the formed virtual PRF. Note,
that the Doppler resolution is unchanged since the CPI, equal to
Pτ , is unchanged. Keeping the CPI constant allows to preserve
the stationary condition on the targets, that is assumptions A2,
A3 (5) and A4 are still valid.

VI. SIMULATIONS

In this section, we present some numerical experiments illus-
trating both our range-azimuth and range-azimuth-Doppler re-
covery approaches. We compare our method with classic MIMO
processing and examine the impact of the choice of several de-
sign parameters on the detection performance.

A. Preliminaries

Throughout the experiments, the standard MIMO system is
based on a virtual array, as depicted in Fig. 3(a), which would
be generated by T = 20 transmit antennas and R = 20 receive
antennas, yielding an aperture λZ = 6 m. The SUMMeR sys-
tem is composed of M < T transmitters and Q < R receivers,
with locations generated uniformly at random over the vir-
tual array, as shown in Fig. 3(b). We use FDMA waveforms
hm (t) such that fm = (im − T −1

2 )Bh , where im are integers
chosen uniformly at random in [0, T ), and with the following
parameters: PRI τ = 100μsec, bandwidth Bh = 5 MHz and
carrier fc = 10 GHz. We consider targets from the Swerling-0
model with identical amplitudes and random phases. The re-
ceived signals are corrupted with uncorrelated additive Gaus-
sian noise (AWGN) with power spectral density N0 . The SNR is
defined as

SNR =
1

Tp

∫ Tp

0 |h0(t)|2dt

N0Bh
. (52)

We consider a hit-or-miss criterion as the performance met-
ric. A “hit” is defined as a range-azimuth estimate which is
identical to the true target position up to one Nyquist bin (grid
point) defined as 1/TBh and 2/TR for the range and azimuth,
respectively. In pulse-Doppler settings, a “hit” is proclaimed
if, in addition, the recovered Doppler is identical to the true
frequency up to one Nyquist bin of size 1/Pτ .

B. Numerical Results

1) SUMMeR: We first consider a sparse target scene with
L = 7 targets including a couple of targets with close ranges
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Fig. 10. Range-azimuth recovery for L = 7 targets and SNR = 0 dB (left),
range-azimuth-Doppler recovery for L = 6 targets and SNR = −10 dB (right).

Fig. 11. Range-azimuth-Doppler recovery performance with time compres-
sion.

and another couple close in azimuth, both up to one grid point.
We use M = 10 transmit antennas and Q = 10 receive an-
tennas and employ K = 250 samples per channel instead of
N = Bhτ = 500, which corresponds to only 12.5% of the total
number of Nyquist rate samples from the original array. The
SNR is set to 0 dB. Fig. 10 (left pane) shows the sparse target
scene on a range-azimuth map, where each real target is dis-
played with its estimated location. In the right pane, we demon-
strate range-azimuth-Doppler recovery and show the location
and velocity of L = 6 targets, including a couple of targets with
close ranges, a couple with close azimuths and another couple
with close velocities. Here, the range and azimuth are converted
to 2-dimensional x and y locations. The SNR is set to −10 dB.

Next, we investigate the performance of our azimuth-range-
Doppler recovery scheme with respect to SNR for different
numbers of samples K per channel. We use the same array as
described above, with spatial compression of 25%, where each
transmitter sends P = 10 pulses. We consider L = 10 targets
whose locations are generated uniformly at random. Each ex-
periment is repeated over 100 realizations. Fig. 11 presents the
range-azimuth-Doppler recovery performance with respect to

Fig. 12. Range-azimuth-Doppler recovery performance with spatial compres-
sion.

SNR. The configuration with K = 500 corresponds to samples
obtained at the Nyquist rate. The configuration with K = 125
results in 1 : 4 time compression along with half the number
of transmitters and receivers, yielding only 6.25% of the total
number of Nyquist rate samples from the original array. From
Fig. 11, it can be seen that the spatial compression yields a
shift of 3 dB corresponding to half power reduction between
successive graphs.

In Fig. 12 we consider the effect of spatial compression, using
the configuration described above with fixed time compression
of 50%, namely K = 250 samples per channel. We present
the range-azimuth-Doppler recovery performance for different
values of M and Q with respect to SNR. The configuration with
M = Q = 10, yields a spatial compression of 25% with respect
to the original array, and we indeed observe a 6 dB shift between
the two graphs. For a system with fixed power the transmitting
elements reduction will not affect the radiated energy which in
turn leads to just a 3 dB SNR loss.

We further demonstrate the gain in SNR with increased num-
ber of pulses. We consider both spatial and time compression
with M = Q = 10 and K = 250 and investigate two scenar-
ios. In the first scenario, only P = 1 pulse is sent by each
transmitter and we perform range-azimuth recovery. Here, a
hit refers only to range-azimuth estimation. In the second sce-
nario, each transmitter sends P = 10 pulses and we perform
range-azimuth-Doppler recovery. In this setting, a hit refers to
range-azimuth-Doppler estimation. Fig. 13 shows the hit rate for
both scenarios. We clearly observe a 10 dB shift, corresponding
to the SNR gain with P = 10 pulses in comparison with P = 1.

2) Comparison of SUMMeR and Classic Processing: We
now compare our proposed range-azimuth recovery approach
to the classic MIMO processing presented in Section II. For
the classic method, we use bandlimited Gaussian pulses with
bandwidth Bh = 100 MHz that are equivalent to the CDMA
approach, and we neglect the wideband effects only for CDMA,
giving it an advantage. Here, the SNR is defined with respect
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Fig. 13. SNR gain with number of pulses.

Fig. 14. Range-azimuth recovery performance of our proposed method vs.
classic processing (spatial, or azimuth, resolution).

to the CDMA classic processing for the two methods to be
comparable, namely

SNR =
M
Tp

∫ Tp

0 |h0(t)|2dt

N0Btot
. (53)

In the first experiment, we consider L = 2 close targets in the
spatial domain, up to one azimuth grid point. In each simulation,
the pair of targets is generated at random. We consider two
regimes: the first does not involve any compression, namely
M = T = 20, Q = R = 20 and K = N = 500, while in the
second, spatial compression is considered with M = Q = 10.
Fig. 14 presents the range-azimuth recovery performance with
respect to SNR for both approaches and both regimes.

In the second experiment, we choose L = 2 close targets in
the time domain, namely up to one delay grid point. Again,
we consider two regimes: the first with no compression and
the second with time compression, specifically K = 250. In

Fig. 15. Range-azimuth recovery performance of our proposed method vs.
classic processing (time, or range, resolution).

our system, since the time resolution is determined by the to-
tal bandwidth, which depends on both transmitters and single
bandwidth, we consider only M = 10 in the second regime for
our method, while M = T = 20 for the classic approach. This
way, we show that neither time nor spatial compression de-
grades the delay resolution. Fig. 15 presents the corresponding
range-azimuth recovery performance.

We first observe that without compression both our FDMA
approach and the conventional CDMA method are equivalent
in terms of performance. Here, the wideband effects were ne-
glected only for the classic CDMA method, which is thus given
an advantage. In our settings, the delay ηmqϑl due to the array
geometry cannot be neglected, as in classic CDMA, since the
array aperture λZ = 6 m is only 4 times the range resolution
1/TBh(1.25 m) so that (8) does not hold. Therefore, simulat-
ing wideband effects on the CDMA waveforms as well would
further reduce the performance of conventional CDMA with
respect to our proposed FDMA approach. In the case of 25%
spatial compression in Fig. 14, the azimuth resolution of the
classic approach is divided by 4, whereas the resolution of our
approach remains unchanged. Therefore, even at high SNRs,
two close targets in the spatial domain cannot be resolved since
one can mask the other. Note that in low SNR, the classic pro-
cessing seems to yield higher performance than ours. This stems
from the fact that if the two close targets are in phase, then they
can produce constructive signals and the classic approach will
in fact detect the sum of both. A similar analysis may be carried
out in the time domain with respect to the delay resolution in
Fig. 15.

3) Multi-Carrier SUMMeR: We now illustrate the increased
detection performance achieved by the multi-carrier SUMMeR
method. We consider two regimes: the first does not involve
any compression, while in the second, spatial compression is
used with M = Q = 10. In the classic and SUMMeR system,
P = 10 pulses are transmitted by each transmit antenna. In
multi-carrier SUMMeR, we have γ = 2, leading to 2P = 20
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Fig. 16. Multi-carrier SUMMeR with spatial compression vs. classic process-
ing and SUMMeR.

pulses per transmitter. For all configurations, we consider L = 5
targets. In Fig. 16, we observe that the multi-carrier approach
with spatial compression achieves the same performance as the
original SUMMeR and the classic processing with no compres-
sion. While using the SNR definition of (53), the number of
transmitters does not affect the detection performance, since we
have a system with fixed power. The reduction of the number
of receivers decreases the performance by 3 dB, which is com-
pensated for by the extra transmitted pulses. This shows that
the same detection performance can be achieved by keeping
the total transmission bandwidth while reducing the number of
antennas. In fact, if the transmitters’ reduction factor is greater
than the receivers’, then the detection performance of the multi-
carrier SUMMeR system will be higher than that achieved by
conventional processing without any compression.

4) Off-Grid Targets: Since in real scenarios, target delays
and azimuths are not necessarily aligned to a grid, a finer grid
can be used around detection points on the coarse grid to reduce
quantization error. This technique, which we refer to as a dy-
namic grid, simply adds a step after support detection in each
iteration (step 4 in Algorithm 1), that refines the grid around the
detected azimuth, range and Doppler frequency. In particular,
we define delay and azimuth matrices with respect to a fine grid
over the detected range and azimuth bins and project the residual
onto these matrices. The indices corresponding to the maximum
of the new residual are then added to the support. In this experi-
ment, we consider L = 10 off-grid targets with time and spatial
compression. The accuracy performance improvement is illus-
trated in Figs. 17 and 18. Fig. 17 shows the maximal peak devi-
ation ρ = maxl |αl − α̂l |, where the max is performed over the
recovered targets. The dynamic grid step performed on off-grid
targets allows to achieve the accuracy performance of targets on
the grid which is also shown for reference. The remaining error
results from mismodeling. Similarly, Fig. 18 presents the av-
erage range and azimuth deviations normalized to a resolution
bin ΔR = 1/L

∑L
l=1 |rl − r̂l | and Δθ = 1/L

∑L
l=1 |θl − θ̂l |,

respectively. Note that for both dynamic and static approaches,

Fig. 17. Maximal peak deviation for L = 10 targets on the grid and off the
grid, with and without the dynamic grid step, with time and spatial compression,
K = 250, M = Q = 10.

Fig. 18. Average range (left) and azimuth (right) deviation for L = 10 off
grid targets, with and without the dynamic grid step, with time and spatial
compression, K = 250, M = Q = 10.

the original grid is first expanded by a factor of 2 to alleviate
the straddle loss effects [33]. The dynamic grid step can also be
extended to range-azimuth-Doppler recovery.

VII. CONCLUSION

In this work, we presented the SUMMeR system, a sub-
Nyquist MIMO radar sampling and recovery method, which
exploits the concept of Xampling and Doppler focusing. This
system breaks both the links between sampling rate and time
resolution, and number of antennas and spatial resolution. We
derived necessary conditions for range, azimuth and Doppler
recovery, both with and without grid assumptions, that translate
into minimal numbers of channels and samples per receiver for
perfect recovery in noiseless settings. We next investigated the
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impact of design parameters, such as antennas’ locations, carrier
frequencies and chosen Fourier coefficients, on the detection
performance. While the CS approach adopted assumes that the
targets parameters lie on a grid, we proposed a dynamic grid
technique that allows to treat off-grid targets without decreasing
the detection accuracy.

We compared our method with the classic Nyquist MIMO
processing and showed that both the time and spatial resolution
of our approach is preserved under time and spatial compression,
in contrast to the traditional method. Furthermore, we proposed
an enhanced version of SUMMeR, that exploits the frequency
bands left vacant due to spatial compression, to recover the lost
detection performance from this compression. Our processing
provides a solution to FDMA’s main drawbacks, range-azimuth
coupling and range resolution limited to a single waveform’s
bandwidth, achieving the same performance as CDMA with
enhanced range-azimuth resolution capabilities. Therefore, for
high resolution applications our FDMA processing can outper-
form CDMA.

APPENDIX

PROOF LEMMA 1

For convenience, we first repeat the lemma and then prove it.
Lemma 1: Let Am ∈ CK,N and Bm ∈ CQ,R , for 0 ≤ m ≤

M − 1 with K ≤ N and Q ≤ R. Denote A = [A0T
A1T · · ·

A(M −1)T
]T and B = [B0T

B1T · · · B(M −1)T
]T . Let

C =

⎡

⎢⎢⎢⎣

B0 ⊗ A0

B1 ⊗ A1

...
BM −1 ⊗ AM −1

⎤

⎥⎥⎥⎦ . (54)

Then,

spark(C) = min{spark(A), spark(B)}. (55)

Proof: The MKQ × NR matrix C can be expressed more
explicitly as

C =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0
11A

0 · · · b0
1RA0

...
. . .

...
b0
Q1A

0 · · · b0
QRA0

...
...

...
bM −1
11 AM −1 · · · bM −1

1R AM −1

...
. . .

...
bM −1
Q1 AM −1 · · · bM −1

QR AM −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (56)

We first show that spark(C) ≤ min{spark(A), spark(B)}.
By definition of spark(A), there exists a vector xA ∈
CN with ||xA ||0 = spark(A) such that AxA = 0. Equiv-
alently, AmxA = 0, for all 0 ≤ m ≤ M − 1. Let yA =
[xT

A 0 · · · 0]T ∈ CRN . Then, it holds that CyA = 0 with
||yA ||0 = ||xA ||0 = spark(A). Thus, spark(C) ≤ spark(A).

We now use the fact that there exists permutation matrices
Π1 and Π2 such that Bm ⊗ Am = Π1(Am ⊗ Bm )Π2 [42],
for all 0 ≤ m ≤ M − 1. By definition of spark(B), there is a
vector xB ∈ CR with ||xB ||0 = spark(B) such that BxB = 0.

Let ỹB = [xT
B 0 · · · 0]T ∈ CN R and yB = Π−1

2 ỹB . Rewriting
C as

C =

⎡

⎢⎢⎢⎣

Π1
(
A0 ⊗ B0

)
Π2

Π1
(
A1 ⊗ B1

)
Π2

...
Π1
(
AM −1 ⊗ BM −1

)
Π2

⎤

⎥⎥⎥⎦ , (57)

we have CyB = 0 with ||yB ||0 = ||xB ||0 = spark(B). There-
fore, spark(C) ≤ spark(B).

We now show that spark(C) ≥ min{spark(A), spark(B)}.
Assume first that spark(A) ≥ spark(B). Then, we need to show
that spark(C) ≥ spark(B). Indeed, every column of C has the
form

cwj
=

⎡

⎢⎢⎢⎣

b0
vj

⊗ a0
uj

b1
vj

⊗ a1
uj

...
bM −1

vj
⊗ aM −1

uj

⎤

⎥⎥⎥⎦ , (58)

for 0 ≤ wj ≤ NR − 1, 0 ≤ uj ≤ N − 1, and 0 ≤ vj ≤ R − 1.
Suppose by contradiction that

spark(C) = � < spark(B). (59)

In particular, this implies that any set of � columns of B is
linearly independent, while there exist scalars λ1 , . . . , λ� not all
0 and indices u1 , . . . , u� and v1 , . . . , v� where vi = vj for all
i = j such that

�∑

j=1

λjcwj
=

�∑

j=1

⎡

⎢⎢⎢⎢⎢⎢⎣

(
λjb0

vj

)
⊗ a0

uj(
λjb1

vj

)
⊗ a1

uj

...(
λjbM −1

vj

)
⊗ aM −1

uj

⎤

⎥⎥⎥⎥⎥⎥⎦
= 0. (60)

In (60), each index uj can appear multiple times. Without loss
of generality, we assume that the indices uj are numbered in
increasing order, so that

u1 = · · · = uk1︸ ︷︷ ︸
g1

< · · · < ukt−1 +1 = · · · = ukt︸ ︷︷ ︸
gt

, (61)

with 1 ≤ t ≤ �. Therefore, we have

t∑

i=1

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
ki∑

j=ki−1 +1
λjb0

vj

)
⊗ a0

gi

(
ki∑

j=ki−1 +1
λjb1

vj

)
⊗ a1

gi

...(
ki∑

j=ki−1 +1
λjbM −1

vj

)
⊗ aM −1

gi

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0, (62)
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where k0 = 0 and kt = �. Since spark(A) > �, the vectors ag1 ,
. . . ,ag�

are linearly independent. It follows that

ki∑

j=ki−1 +1

λj

⎡

⎢⎢⎢⎢⎣

b0
vj

b1
vj

...
bM −1

vj

⎤

⎥⎥⎥⎥⎦
= 0, (63)

for 1 ≤ i ≤ t. Since the sum in (63) is over at most � columns
of B, this contradicts the assumption that spark(B) > �.

Finally, assume spark(B) ≥ spark(A). We then need to show
that spark(C) ≥ spark(A). This can be proved similarly to the
previous case by writing the columns of C as

cwj
=

⎡

⎢⎢⎢⎢⎢⎢⎣

Π1

(
b0

vj
⊗ a0

uj

)

Π1

(
b1

vj
⊗ a1

uj

)

...

Π1

(
bM −1

vj
⊗ aM −1

uj

)

⎤

⎥⎥⎥⎥⎥⎥⎦
, (64)

for 0 ≤ wj ≤ NR − 1, 0 ≤ uj ≤ N − 1, 0 ≤ vj ≤ R − 1 and
where Π1 is an appropriate permutation matrix. �
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