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Tradeoffs Between Convergence Speed and
Reconstruction Accuracy in Inverse Problems
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Abstract—Solving inverse problems with iterative algorithms is
popular, especially for large data. Due to time constraints, the num-
ber of possible iterations is usually limited, potentially affecting the
achievable accuracy. Given an error one is willing to tolerate, an
important question is whether it is possible to modify the original
iterations to obtain faster convergence to a minimizer achieving
the allowed error without increasing the computational cost of
each iteration considerably. Relying on recent recovery techniques
developed for settings in which the desired signal belongs to some
low-dimensional set, we show that using a coarse estimate of this set
may lead to faster convergence at the cost of an additional recon-
struction error related to the accuracy of the set approximation.
Our theory ties to recent advances in sparse recovery, compressed
sensing, and deep learning. Particularly, it may provide a possible
explanation to the successful approximation of the �1 -minimization
solution by neural networks with layers representing itera-
tions, as practiced in the learned iterative shrinkage-thresholding
algorithm.

Index Terms—Training, iterative methods, neural networks,
compressed sensing, optimization, approximate computing, gra-
dient methods, convergence of numerical methods, approximation
methods.

I. INTRODUCTION

CONSIDER the setting in which we want to recover a vector
x ∈ Rd from linear measurements

y = Mx + e, (1)
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where M ∈ Rm×d is the measurement matrix and e ∈ Rd is
additive noise. This setup appears in many fields including
statistics (e.g., regression), image processing (e.g., deblurring
and super-resolution), and medical imaging (e.g., CT and MRI),
to name just a few.

Often the recovery of x from y is an ill-posed problem. For
example, when M has fewer rows than columns (m < n), ren-
dering (1) an underdetermined linear system of equations. In
this case, it is impossible to recover x without introducing ad-
ditional assumptions on its structure. A popular strategy is to
assume that x resides in a low dimensional set K, e.g., sparse
vectors [1]–[4] or a Gaussian Mixture Model (GMM) [5]. The
natural by-product minimization problem then becomes

min
x

‖y − Mx‖2
2 s.t. x ∈ K. (2)

This can be reformulated in an unconstrained form as

min
x

‖y − Mx‖2
2 + λf(x), (3)

where λ is a regularization parameter and f(·) is a cost function
related to the set K. For example, if K =

{
x ∈ Rd : ‖x‖0 ≤ k

}

is the set of k-sparse vectors, then a natural choice is f(·) = ‖·‖0
or its convex relaxation f(·) = ‖·‖1 .

A popular technique for solving (2) and (3) is using iterative
programs such as proximal methods [6], [7] that include the
iterative shrinkage-thresholding algorithm (ISTA) [8]–[10] and
the alternating direction method of multipliers (ADMM) [11],
[12]. This strategy is particularly useful for large dimensions d.

Many applications impose time constraints, which limit the
number of computations that can be performed to recover x
from the measurements. One way to minimize time and compu-
tations is to reduce the number of iterations without increasing
the computational cost of each iteration. A different approach
is to use momentum methods [13] or random projections [14]–
[17] to accelerate convergence. Another alternative is to keep
the number of iterations fixed while reducing the cost of each it-
eration. For example, since the complexity of iterative methods
rely, among other things, on m, a common technique to save
computations is to sub-sample the measurements y, removing
“redundant information,” to an amount that still allows recon-
struction of x. A series of recent works [18]–[23] suggest that
by obtaining more measurements one can benefit from simple
efficient methods that cannot be applied with a smaller number
of measurements.

1053-587X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2830-0297


GIRYES et al.: TRADEOFFS BETWEEN CONVERGENCE SPEED AND RECONSTRUCTION ACCURACY IN INVERSE PROBLEMS 1677

In [18] the generalization properties of large-scale learning
systems have been studied showing a tradeoff between the num-
ber of measurements and the target approximation. The work in
[19] showed how it is possible to make the run-time of SVM
optimization decrease as the size of the training data increases.
In [20], it is shown that the problem of supervised learning of
halfspaces over 3-sparse vectors with trinary values {−1, 1, 0}
may be solved with efficient algorithms only if the number of
training examples exceeds a certain limit. Similar phenomena
are encountered in the context of sparse recovery, where efficient
algorithms are guaranteed to reconstruct the sparsest vector only
if the number of samples is larger than a certain quantity [3],
[24], [25]. In [22] it was shown that by having a larger number
of training examples it is possible to design more efficient op-
timization problems by projecting onto simpler sets. This idea
is further studied in [21] by changing the amount of smoothing
applied in convex optimization. In [23] the authors show that
more measurements may allow increasing the step-size in the
projected gradient algorithm (PGD) and thus accelerating its
convergence.

While these works studied a tradeoff between convergence
speed and the number of available measurements, this paper
takes a different route. Consider the case in which due to time
constraints we need to stop the iterations before we achieve the
desired reconstruction accuracy. For the original algorithm, this
can result in the recovery being very far from the optimum.
An important question is whether we can modify the original
iterations (e.g., those dictated by the shrinkage or ADMM tech-
niques), such that the method convergences to an improved so-
lution with fewer iterations without adding complexity to them.
This introduces a tradeoff between the recovery error we are
willing to tolerate and the computational cost. As we demon-
strate, this goes beyond the trivial relationship between the ap-
proximation error and the number of iterations that exists for
various iterative methods [8].

Such a tradeoff is experimentally demonstrated by the suc-
cess of learned ISTA (LISTA) [26] for sparse recovery with
f(·) = ‖·‖1 . This technique learns a neural network with only
several layers, where each layer is a modified version of the
ISTA iteration.1 It achieves virtually the same accuracy as the
original ISTA using one to two orders of magnitude less it-
erations. The acceleration of iterative algorithms with neural
networks is not unique only to the sparse recovery problem and
f(·) = ‖·‖1 . This behavior was demonstrated for other models
such as the analysis cosparse and low-rank matrix models [27],
Poisson noise [28], acceleration of Eulerian fluid simulation
[29], and feature learning [30]. However, a proper theoretical
justification to this phenomena is still lacking.

Contribution: In this work, we provide theoretical founda-
tions elucidating the tradeoff between the allowed minimization
error and the number of simple iterations used for solving in-
verse problems. We formally show that if we allow a certain
reconstruction error in the solution, then it is possible to change
iterative methods by modifying the linear operations applied in

1ISTA and its variants is one of the most powerful optimization techniques
for sparse coding.

them such that each iteration has the same complexity as be-
fore but the number of steps required to attain a certain error is
reduced.

Such a tradeoff seems natural when working with real data,
where both the data and the assumed models are noisy or ap-
proximate; searching for the exact solution of an optimization
problem, where all the variables are affected by measurement
or model noise may be an unnecessary use of valuable com-
putational resources. We formally prove this relation for itera-
tive projection algorithms. Interestingly, a related tradeoff exists
also in the context of sampling theory, where by allowing some
error in the reconstruction we may use fewer samples and/or
quantization levels [31]. We argue that the tradeoff we analyze
may explain the smaller number of iterations required in LISTA
compared to ISTA.

Parallel efforts to our work also provide justification for the
success of LISTA. In [32], the fast convergence of LISTA is
justified by connecting between the convergence speed and the
factorization of the Gram matrix of M. In [33], the convergence
speed of ISTA and LISTA is analyzed using the restricted isome-
try property (RIP) [2], showing that LISTA may reduce the RIP,
which leads to faster convergence. A relation between LISTA
and approximate message passing (AMP) strategies is drawn
in [34].

Our paper differs from previous contributions in three main
points: (i) it goes beyond the case of standard LISTA with
sparse signals and considers variants that apply to general low-
dimensional models; (ii) our theory relies on the concept of
inexact projections and their relation to the tradeoff between
convergence-speed and recovery accuracy, which differs signif-
icantly from other attempts to explain the success of LISTA; and
(iii) besides exploring LISTA, we provide acceleration strate-
gies to other programs such as model-based compressed sensing
[24] and sparse recovery with side-information.

Organization: This paper is organized as follows. In Section II
we present preliminary notation and definitions, and describe the
ISTA, LISTA and PGD techniques. Section III introduces a new
theory for PGD for non-convex cones. Section IV shows how
it is possible to tradeoff between convergence speed and recon-
struction accuracy by introducing the inexact projected gradient
descent (IPGD) method using spectral compressed sensing [35]
as a motivating example. The reconstruction error of IPGD is
analyzed as a function of the iterations in Section V. Section VI
discusses the relation between our theory and model-based com-
pressed sensing [36] and sparse recovery with side information
[37]–[40]. Section VII proposes a LISTA version of IPGD, the
learned IPGD (LIPGD), and demonstrates its usage in the task of
image super-resolution. Section VIII relates the approximation
of minimization problems studied here with neural networks
and deep learning, providing a theoretical foundation for the
success of LISTA and suggesting a “mixture-model” extension
of this technique. Section IX concludes the paper.

II. PRELIMINARIES AND BACKGROUND

Throughout this paper, we use the following notation. We
write ‖·‖ for the Euclidian norm for vectors and the spectral
norm for matrices, ‖·‖1 for the �1 norm that sums the absolute
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values of a vector and ‖·‖0 for the �0 pseudo-norm, which counts
the number of non-zero elements in a vector. The conjugate
transpose of M is denoted by M∗ and the orthogonal projection
onto the set K by PK. The original unknown vector is denoted
by x, the given measurements by y, the measurement matrix
by M and the system noise by e. The ith entry of a vector
v is denoted by v[i]. The sign function sgn(·) equals 1, −1
or 0 if its input is positive, negative or zero respectively. The
d-dimensional �2-ball of radius r is denoted by Bd

r . For balls of
radius 1, we omit the subscript and just write Bd .

A. Iterative Shrinkage-Thresholding Algorithm (ISTA)

A popular iterative technique for minimizing (3) is ISTA.
Each of its iterations is composed of a gradient step with step
size μ, obeying 1

μ ≥ ‖M‖ to ensure convergence [8], followed
by a proximal mapping Sf ,λ(·) of the function f , defined as

Sf ,λ(v) = argminz
1
2
‖z − v‖ + λf(z), (4)

where λ is a parameter of the mapping. The resulting ISTA
iteration can be written as

zt+1 = Sf ,μλ (zt + μM∗(y − Mzt)) , (5)

where zt is an estimate of x at iteration t. Note that the step size
μ multiplies the parameter of the proximal mapping.

The proximal mapping has a simple form for many func-
tions f . For example, when f(·) = ‖·‖1 , it is an element-wise
shrinkage function,

S�1 ,λ(v)[i] = sgn (v[i]) max(0, |v[i]| − λ). (6)

Therefore, the advantage of ISTA is that its iterations require
only the application of matrix multiplications and then a simple
non-linear function. Nonetheless, the main drawback of ISTA
is the large number of iterations that is typically required for
convergence.

Many acceleration techniques have been proposed to speed
up convergence of ISTA (see [8], [9], [41]–[48] as a partial list
of such works). A prominent strategy is LISTA, which has the
same structure as ISTA but with different linear operations in
(5). Empirically, it is observed that it is able to attain a solution
very close to that of ISTA with a significantly smaller fixed
number of iterations T . The LISTA iterations are given by2

zt+1 = Sf ,λ (Ay + Uzt) , (7)

where A, U and λ are learned from a set of training examples
by back-propagation with the objective being the �2-distance
between the final ISTA solution and the LISTA one (after T
iterations) [26]. Other minimization objectives may be used,
e.g., training LISTA to minimize (3) directly [27]. Notice that
LISTA has a structure of a recurrent neural network as can be
seen in Fig. 1.

While other acceleration techniques for ISTA have been pro-
posed together with a thorough theoretical analysis, the powerful
LISTA method has been introduced without mathematical jus-
tification for its success. In this work, we focus on the PGD

2We present the more general version [27] that can be used for any signal
model and not only for sparsity.

Fig. 1. The LISTA scheme.

algorithm, whose iterations are almost identical to the ones of
ISTA but with an orthogonal projection instead of a proximal
mapping. We propose an acceleration technique for it, which is
very similar to the one of LISTA, accompanied by a theoretical
analysis.

B. Projected Gradient Descent (PGD)

The PGD iteration is given by

zt+1 = PK (zt + μM∗(y − Mzt)) , (8)

where PK is an orthogonal projection onto a given set K. For
example, if K is the �1-ball then PK is simply soft thresholding
with a value that varies depending on the projected vector [49].
Note the similarity to the proximal mapping in ISTA with f
as the �1-norm, which is also the soft thresholding operation
but with a fixed threshold (6). This similarity is not unique to
the �1-norm case but happens also for other types of f such as
the �0 pseudo-norm and the nuclear norm. The step size μ is
assumed to be constant for the sake of simplicity, as in (5). In
both methods it may vary between iterations.

PGD is a generalization of the iterative hard thresholding
(IHT) algorithm, which was developed for K being the set of
sparse vectors [50]. This important method has been analyzed
in various works. For example, for standard sparsity in [50], for
sparsity patterns that belong to a certain model in [36], for a
general union of subspaces in [51], for nonlinear measurements
in [52], and more recently in [23] for a set of the form

K =
{
z ∈ Rd : f(z) ≤ R

}
.

The formulation (8) generalizes the special cases above. For
example, if f(·) = ‖·‖0 and R is the sparsity level then we have
the IHT method from [50]; when f counts the number of non-
zeros of only certain sparsity patterns, which are bounded by R,
we have the model-based IHT of [36]. PGD may also be applied
to non-linear inverse problems [23], [53].

Theorem 2.5 below provides convergence guarantees on PGD
(it is the noiseless version of Theorem 1.2 in [23]). Before
presenting the result, we introduce several properties of the set
K and some basic lemmas.

Definition 2.1 (Descent set and tangent cone): The descent
set of the function f at a point x is defined as

Df (x) =
{
h ∈ Rd : f(x + h) ≤ f(x)

}
. (9)
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The tangent cone Cf (x) at a point x is the conic hull of Df (x),
i.e., the smallest closed cone Cf (x) satisfying Df (x) ⊆ Cf (x).

For concise writing, below we denote Df (x) and Cf (x) as
D and C, respectively.

Lemma 2.2 (Lemma 6.2 in [23]): Let v ∈ Rd and C ⊂ Rd

be a closed cone. Then

‖PC (v)‖ = sup
u ∈C ∩Bd

u∗v. (10)

Lemma 2.3: If forx ∈ Rd ,K = {z ∈ Rd : f(z) ≤ f(x)} ⊂
Rd is a closed set, then for all v ∈ Rd ,

PK(x + v) − x = PK−{x}(v) = PD (v). (11)

Proof: From the definition of the descent cone we have
D =

{
h ∈ Rd :f(h + x) ≤ f(x)

}
= {z − x :f(z)≤f(x)} =

{z − x : z ∈ K} = K − {x}, where the second equality
follows from a simple change of variables, and the last ones
from the definitions of the set K and the Minkowski difference.
Therefore, projecting onto D is equivalent to a projection onto
K − {x}. �

Lemma 2.4 (Lemma 6.4 in [23]): Let D and C be a
nonempty and closed set and cone, respectively, such that 0 ∈ D
and D ⊆ C. Then for all v ∈ Rd

‖PD (v)‖ ≤ κf ‖PC (v)‖ , (12)

where κf = 1 if D is a convex set and κf = 2 otherwise.
We now introduce the convergence rate provided in [23] for

PGD. For brevity, we present only its noiseless version.
Theorem 2.5 (Noiseless version of Theorem 1.2 in [23]):

Let x ∈ Rd , f : Rd → R be a proper function,
K =

{
z ∈ Rd : f(z) ≤ f(x)

}
, C = Cf (x) the tangent

cone of the function f at point x, M ∈ Rm×d and y = Mx
a vector containing m linear measurements. Assume we are
using PGD with K to recover x from y. Then the estimate zt at
the tth iteration (initialized with z0 = 0) obeys

‖zt − x‖ ≤ (κf ρ(C))t ‖x‖ , (13)

where κf is defined in Lemma 2.4, and

ρ(C) = ρ(μ,M, f,x) = sup
u,v ∈C ∩Bd

u∗ (I − μM∗M)v, (14)

is the convergence rate of PGD.

C. Gaussian Mean Width

When M is a random matrix with i.i.d. Gaussian distributed
entries N (0, 1), it has been shown in [23] that the convergence
rate ρ(C) is tightly related to the dimensionality of the set
(model) x resides in. A very useful expression for measuring the
“intrinsic dimensionality” of sets is the (Gaussian) mean width.

Definition 2.6 (Gaussian mean width): The Gaussian mean
width of a set Υ is defined as

ω(Υ) = E[ sup
v ∈Υ ∩Bd

〈g,v〉],g ∼ N (0, I). (15)

Two variants of this measure are generally used. The cone
Gaussian mean width, ωC = ω(C), which measures the di-
mensionality of the tangent cone C = Cf (x); and the set
Gaussian mean width, ωK = ω(K −K), which is related di-
rectly to the set K through its Minkowski difference K −K =

{z − v : z,v ∈ K}. The cone Gaussian mean width relies on
both the set K (through f ) and a specific target point x, while
the set Gaussian mean width considers only K. On the other
hand, the dependence of ωC on K is indirect via the descent
set at the point x. There is a series of works, which developed
convergence and reconstruction guarantees for various methods
based on ωC [23], [54], [55], and others that rely on ωK [56],
[57]. The first (ωC ) is mainly employed in the case of convex
functions f , which are used to relax the non-convex set in which
x resides. In this setting, often D is convex and x ∈ K.

As an example of ωC consider the case in which K is the
�1-ball and x is a k-sparse vector. Then ωC � √

2k log(d/k).
If we add constraints on x such as having a tree structure, i.e.,
belonging to the set

K̂ = {z ∈ Rd : ‖z‖0 ≤ ‖x‖0 & z obeys a tree structure},
(16)

where an entry may be non-zero only if its parent node is non-
zero, then the value of ωC does not change. Although the defi-
nition of ωK is very similar to ωC , it yields different results. For
K the set of k-sparse vectors ωK = O(

√
k log(d/k)), while for

(16), ωK̂ = O(
√

k). The first result is similar to the expression
of ωC for the �1 ball with a k-sparse vector x, yet, the second
provides a better measure of the set K̂ in (16).

D. PGD Convergence Rate and the Cone Gaussian Mean
Width

In [23], it has been shown that the smaller ωC , the faster the
convergence. More specifically, if m is very close to ωC , then
we may apply PGD with a step-size μ = 1

(
√

d+
√

m )2 � 1
d and

have a convergence rate of (Theorem 2.4 in [23])

ρ(C) = 1 − O

(√
m − ωC

m + d

)
. (17)

If ωC is smaller than
√

m by a certain constant factor, then we
may apply PGD with a larger step size μ � 1

m , which leads to
improved convergence (Theorem 2.2 in [23])

ρ(K) = O

(
ωC√
m

)
. (18)

These relationships rely on the fact that with larger m the
eigenvalues of I − μMT M (after projection onto C, see (14))
are better positioned such that it is possible to improve conver-
gence by increasing μ.

Both (17) and (18) set a limit on the minimal value m
for which PGD iterations converge to x, namely m = O(ω2

C ).
This implies that m � 2k log(d/k) (bigger than approximately
2k log(d/k)) for K as the �1-ball and a k-sparse vector x. This
is known to be a tight condition. See more examples for this
relationship between ωC and m in [54].

The connections in (17) and (18) between ρ(C) and ωC are
not unique only to the case that M is a random Gaussian matrix.
Similar relationships hold for many other types of matrices [23].

III. PGD THEORY BASED ON THE PROJECTION SET

While Theorem 2.5 covers many sets K, there are interesting
examples that are not included in it such as the set of k-sparse
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vectors corresponding to f being the �0 pseudo-norm, which is
not a proper function. Even if we ignore this condition and try
to use the result of Theorem 2.5 in the case that M is a random
Gaussian matrix we face a problem. Using the relationship be-
tween ρ(C) and the Gaussian mean width ωC in (17) and (18),
and the fact that in this case ωC =

√
d, we get the condition

m > d. This demand on m is inferior to existing theory that in
this scenario guarantees convergence with m = O(k log(d/k)
[50].

One way to overcome this problem is by considering the
convex-hull of the set of k-sparse vectors with bounded �2
norm. In this case ωC = O(

√
k log(d/k)) [56]. However, as

mentioned above, guarantees for PGD exist for the k-sparse
case without a bound on the �2-norm.

A similar phenomenon also occurs with the set of sparse
vectors with a tree structure K̂ (see (16)), where again ωC =

√
d

implying m = O(d). Yet, from the work in [36], we know that
in this setting it is sufficient to choose m = O(k). Note that for
K̂, the set Gaussian mean width is ωK̂ =

√
k. If we would have

relied on it instead of on ωC in the bound for the required size
of m, it would have coincided with [36].

In order to address these deficiencies in the convergence rate,
we provide a variant of Theorem 2.5 that relies on the set K
directly through the Minkowski difference K −K in lieu of
C. For simplicity we present only the noiseless case but the
extension to the noisy setting can be performed using the strategy
in [23].

Theorem 3.1: Let x ∈ K, K ⊂ Rd be a closed cone, M ∈
Rm×d and y = Mx a vector containing m linear measurements.
Assume we are using PGD withK to recover x from y. Then the
estimate zt at the tth iteration (initialized with z0 = 0) obeys

‖zt − x‖ ≤ (κKρ(K))t ‖x‖ , (19)

where κK = 1 if K is convex and κK = 2 otherwise, and

ρ(K) = ρ(μ,M,K) = sup
u,v∈(K−K)∩Bd

u∗ (I − μM∗M)v,

(20)

is the convergence rate of PGD.
Proof: We repeat similar steps to the ones in the proof of

Theorem 1.2 in [23].
We start by noting that the PGD error at iteration t + 1 is,

‖zt+1 − x‖ = ‖PK (zt + μM∗(y − Mzt)) − x‖
= ‖PD ((I − μM∗M) (zt − x))‖ , (21)

where the last inequality is due to Lemma 2.3 and the fact
that y = Mx. Since K is a closed cone, also the Minkowski
difference K −K is a closed cone. Moreover, D ⊂ K −K as
x ∈ K. Thus, following Lemma 2.4 we have

‖zt+1 − x‖ ≤ κK ‖PK−K ((I − μM∗M) (zt − x))‖
≤ sup

v ∈Rd s.t.
‖PK(v)−x‖≤‖zt −x‖

κK ‖PK−K ((I − μM∗M) (PK(v) − x))‖

≤ sup
v ∈Rd s.t.

‖PD (v−x)‖≤‖zt −x‖

κK ‖PK−K ((I − μM∗M) (PD (v − x)))‖,

(22)

where the second inequality is due to the fact that zt is of the
form PK(v) for some vector v, and the last inequality follows
from Lemma 2.3.

Noticing that the constraint ‖PD (v − x)‖ ≤ ‖zt − x‖ is
equivalent to v − x ∈ D ∩ Bd

‖zt −x‖ (where Bd
‖zt −x‖ is the �2-

ball of radius ‖zt − x‖) and using the relation D ⊂ K −K leads
to

‖zt+1 − x‖
≤ sup

v ∈ (K−K)∩Bd

κK ‖PK−K ((I − μM∗M)v)‖ ‖zt − x‖

≤ sup
v ,u ∈ (K−K)∩Bd

κK ‖u∗ ((I − μM∗M)v)‖ ‖zt − x‖ , (23)

where the last inequality follows from Lemma 2.2. Using the
definition of ρ(K) and applying the inequality in (23) recursively
leads to the desired result. �

When M is a random Gaussian matrix, the relationships in
(17) and (18) hold with ρ(K) and ωK replacing ρ(C) and ωC

respectively. This implies that we need m = O(ω2
K) for con-

vergence. This result is in line with the conditions on m that
appear in previous works for k-sparse vectors [50], for which
ωK = O(

√
k log(d/k)), and for sparse vectors with tree struc-

ture [36], where ωK = O(
√

k).
As discussed in Section II-C, the measure ωK is related di-

rectly to the set K (may be non-convex) in which x resides.
Thus, it provides a better measure for the complexity of K when
it is unbounded or has some specific structure as is the case for
sparsity with tree structure [57]. In such settings, Theorem 3.1
should be favored over Theorem 2.5.

Notice that if x ∈ K, then we have D ⊂ K −K. Thus, in the
settings that D is convex and x ∈ K, we have C = D ⊂ K −K
implying that ωC ≤ ωK; when M is random Gaussian, this also
implies ρ(C) ≤ ρ(K). Therefore, in this scenario Theorem 2.5
has an advantage over Theorem 3.1.

IV. INEXACT PROJECTED GRADIENT DESCENT (IPGD)

It may happen that the function f or the set K are too loose
for describing x. Instead, we may select a set K̂ that better
characterizes x and therefore leads to a smaller ω, resulting in
faster convergence. This improvement can be very significant;
smaller ω both improves the convergence rate and allows using
a larger step-size (see Section II-D).

For example, consider the case of a k-sparse vector x, whose
sparsity pattern obeys a tree structure. If we ignore the struc-
ture in x and choose f as the �0 or �1 norms, then the mean
widths are ωK = O(k log(d/k)) [56] and ωC � 2(k log(d/k))
[54] respectively. However, if we take this structure into ac-
count and use the set of k-sparse vectors with tree structure (see
(16)), then ωK̂ = O(k) [57]. As mentioned above, this improve-
ment may be significant especially when m is very close to
ωK. Such an approach was taken in the context of model-based
compressed sensing [36], where it is shown that faster conver-
gence is achieved by projecting onto the set of k-sparse vectors
with tree structure instead of the standard k-sparse set.

A related study [5] showed that it is enough to use a small
number of Gaussians to represent all the patches in natural
images instead of using a dictionary that spans a much larger
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union of subspaces. This work relied on Gaussian Mixture Mod-
els (GMM), whose mean width scales proportionally to the num-
ber of Gaussians used, which is significantly smaller than the
mean width of the sparse model.

A. Inexact Projection

A difficulty often encountered is that the projection onto K̂,
which may even be unknown, is more complex to implement
than the projection onto K. The latter can be easier to project
onto but provides a lower convergence rate.

Thus, in this work we introduce a technique that compromises
between the reconstruction error and convergence speed by us-
ing PGD with an inexact “projection” that projects onto a set
that is approximately as small as K̂ but yet is as computationally
efficient as the projection onto K. In this way, the computational
complexity of each projected gradient descent iteration remains
the same while the convergence rate becomes closer to that of
the more complex PGD with a projection onto K̂.

The “projection” we propose is composed of a simple operator
p (e.g., a linear or an element-wise function) and the projection
onto K, PK, such that it introduces only a slight distortion into
x. In particular, we require the following:

1) The projection condition for convex K: If K is convex,
then we require

‖x − PK (p(x))‖ ≤ ε ‖x‖ . (24)

Due to Lemma 2.3, this is equivalent to

‖PD (x − p(x))‖ ≤ ε ‖x‖ . (25)

From the fact that ‖PD (x − p(x))‖ ≤ ‖x − p(x)‖, it is suffi-
cient that

‖x − p(x)‖ ≤ ε ‖x‖ , (26)

to ensure (24). Examples for projections that satisfy condition
(24) are given hereafter in sections IV-B and VI-B.

2) The projection condition for non-convex K: In the case
that K is non-convex, we require

‖PK (pv − px) − PK (pv − x)‖ ≤ ε ‖x‖ ,∀v ∈ Rd . (27)

Due to Lemma 2.3 and a simple change of variables, (27) is
equivalent to

‖PD (pv − x + px) − PD (pv)‖ ≤ ε ‖x‖ ,∀v ∈ Rd , (28)

which by another simple change of variables is the same as

‖PD (pv − x) − PD (pv − px)‖ ≤ ε ‖x‖ ,∀v ∈ Rd . (29)

An example for a projection that satisfies condition (27) is pro-
vided in Section VI-A.

B. Inexact PGD

Plugging the inexact projection into the PGD step results in
the proposed inexact PGD (IPGD) iteration (compare to (8))

zt+1 = PK (p (zt) + μp (M∗(y − Mzt))) . (30)

To motivate this algorithm consider the problem of spectral
compressed sensing [35], in which one wants to recover a sparse

representation in a dictionary that has high local coherence. It
has been shown that if the non-zeros in the representation are far
from each other then it is easier to obtain good recovery [58].

Let M be a two times redundant DCT dictionary and x̃ be
a k-sparse vector, with sparsity k = 2, of dimension d = 128,
such that the minimal distance (with respect to the location in the
vector) between non-zero neighboring coefficients in it is greater
than 5 (indices) and the value in each non-zero coefficient is
generated from the normal distribution. We construct the vector
x by adding to x̃ random Gaussian values with zero mean and
variance σ2 = 0.05 at the neighboring coefficients of each non-
zero entry in x̃ with (location) distance 1 or 4 (two different
experiments).

As mentioned above, a better reconstruction is achieved by
estimating x̃ from Mx̃ than by estimating x from Mx due to
the highly correlated columns in M. A common practice to
improve the recovery in such a case is to force the recovery
algorithm to select a solution with separated coefficients. In our
context it is simply using the IPGD with a projection onto the
�1 ball and p(·) that keeps at most only one dominant entry
(in absolute value) in every neighborhood of size 5 in a given
representation by zeroing out the other values. The operator
p causes an error in the model (with ε � 0.05

√
2 � 0.1) and

therefore reaches a slightly higher final error than PGD with
projection onto the �1 ball. Compared to PGD, IPGD projects
onto a simpler set with a smaller Gaussian mean width, thus,
attaining faster convergence at the first iterations, where the
approximation error is still significantly larger than ε as can be
seen in Fig. 2(a). When the coherence is larger (as in the case
of added coefficients at distance 1), the advantage of IPGD over
PGD is more significant.

In some cases IPGD may even attain a lower final recovery
error compared to PGD. For example, consider the case of M
being a four times redundant DCT dictionary and x generated
as above but with k = 4. Due to the larger redundancy in the
dictionary, the coherence is larger in this case. Thus, the recov-
ery of x is harder. Here, PGD with a projection onto the �1 ball
converges slower and reaches a large error due to the high cor-
relations between the atoms. Using IPGD with the �1 ball and a
projection p(·) that keeps at most only one dominant entry (in
absolute value) in every neighborhood of size 5, leads both to
faster convergence and better final accuracy as can be seen in
Fig. 2(b).

V. IPGD CONVERGENCE ANALYSIS

We turn to analyze the performance of IPGD. For simplicity
of the discussion, we analyze the convergence of this technique
only for a linear operator p and the noiseless setting, i.e., e = 0.
The extension to other types of operators and the noisy case is
straightforward by arguments similar to those used in [23] for
treating the noise term and other classes of matrices.

We present two theorems on the convergence of IPGD. The
first result provides a bound in terms of ρ(C) (i.e., depends on
ωC if M is a random Gaussian matrix) for the case that D is
convex corresponding to κf = 1 in Theorem 2.5; the second
provides a bound in terms of ρ(K) (i.e., depends on ωK if M
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Fig. 2. Reconstruction error as a function of iterations for sparse recovery with a dictionary with high coherence between neighboring atoms. The sparse
representation in the dictionary is generated such that there are three correlated neighboring atoms close to each other with location distance 1 or 4. PGD is applied
with K being the �1 ball. IPGD is used with the same K and p being a non-linear function that for a given vector keeps at most only one dominant entry in every
neighborhood of fixed size (zeroing the smaller values). This shows that IPGD may accelerate convergence compared to PGD and in some cases (right figure) even
achieve lower recovery error.

is a random Gaussian matrix) when K is a closed cone but not
necessarily convex. The proofs of both theorems are deferred to
appendices A and B.

Theorem 5.1: Let x ∈ Rd , f : Rd → R be a proper function,
K =

{
z ∈ Rd : f(z) ≤ f(x)

}
, D = Df (x) and C = Cf (x)

the descent set and the tangent cone of the function f at point x
respectively, p(·) a linear operator satisfying (25), M ∈ Rm×d

and y = Mx a vector containing m linear measurements. As-
sume we are using IPGD with K and p to recover x from y
and that D is convex. Then the estimate zt at the tth iteration
(initialized with z0 = 0) obeys

‖zt − x‖ ≤
(

(ρp(C))t +
1 − (ρp(C))t

1 − ρp(C)
(2 + ρp(C))ε

)

‖x‖ ,

where

ρp(C) = ρ(μ,M, f, p,x)

= sup
u,v∈C∩Bd

p(u)∗ (I − μM∗M) p(v)

is the “effective convergence rate” of IPGD for small ε.
Theorem 5.2: Let x ∈ K, K ⊂ Rd be a closed cone, p(·)

a linear operator satisfying (27), M ∈ Rm×d and y = Mx a
vector containing m linear measurements. Assume we are using
IPGD with K and p to recover x from y. Then the estimate zt

at the tth iteration (initialized with z0 = 0) obeys

‖zt − x‖ ≤
(

(κKρp(K))t +
1 − (κKρp(K))t

1 − κKρp(K)
γ

)

‖x‖ ,

(31)

where κK and ρ(K) are defined in Theorem 3.1,

γ � (2ρ(K)κK + ρp(K)κK + 1)ε, (32)

and

ρp(K) = ρ(μ,M,K, p)

= sup
u,v∈(K−K)∩Bd

p(u)∗ (I − μM∗M) p(v) (33)

is the “effective convergence rate” of IPGD for small ε.
Theorems 5.1 and 5.2 imply that if ε is small enough (com-

pared to ρt
p , where t is the iteration number and ρp is defined

in (33)) then IPGD has an effective convergence rate of ρp =
ρp(C) when D is convex, and ρp = κKρp(K) in the case that K
is a closed cone but not necessarily convex. Note that if p = I
then ε = 0 and our results coincide with theorems 2.5 and 3.1.

As we shall see hereafter, for some operators p the rate ρp

may be significantly smaller than ρ(C) and ρ(K). The smaller
the set that p maps to, the smaller ρp becomes. At the same
time, when p maps to smaller sets it usually provides a “coarser
estimate” and thus the approximation error ε in (25) and (27)
increases. Thus, IPGD allows us to tradeoff approximation error
ε and improved convergence ρp .

The error term in theorems 5.1 and 5.2 at iteration t is com-
prised of two components. The first goes to zero as t increases
while the second increases with iterations and is on the order of
ε. The fewer iterations we perform the larger ε we may allow. An
alternative perspective is that the larger the reconstruction error
we can tolerate, the larger ε may be and thus we require fewer
iterations. Therefore, the projection p introduces a tradeoff. On
the one hand, it leads to an increase in the reconstruction error.
On the other hand, it simplifies the projected set, which leads to
faster convergence (to a solution with larger error).

The works in [59]–[61] use a similar concept of near-optimal
projection (compared to [36] that assumes only exact projec-
tions). The main difference between these contributions and
ours is that these papers focus on specific models, while we
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present a general framework that is not specific to a certain low-
dimensional prior. In addition, in these papers the projection is
performed to make it possible to recover a vector from a certain
low-dimensional set, while in this work the main purpose of
our inexact projections is to accelerate the convergence within
a limited number of iterations. For a larger number of iterations
these projections may not lead to a good reconstruction error.

VI. EXAMPLES

This section presents examples of IPGD with an operator p
that accelerates the convergence of PGD for a given set K.

A. Sparse Recovery With Tree Structure

To demonstrate our theory we consider a variant of the k-
sparse set with tree structure in (16) that has smaller weights
in the lower nodes of the tree. We generate a k-sparse vector
x ∈ R127 with k = 13 and a sparsity pattern that obeys a tree
structure. Moreover, we generate the non-zero entries in x in-
dependently from a Gaussian distribution with zero mean and
variance σ2 = 1 if they are at the first two levels of the tree and
σ2 = 0.22 for the rest.

The best way to recover x is by using a projection onto the
set K̂ in (16), which is the strategy proposed in the context
of model-based compressed sensing [36]. Yet, this projection
requires some additional computations at each iteration [36].
Our technique suggests to approximate it by a linear projection
onto the first levels of the tree (a simple operation) followed by
a projection onto K = {z : ‖z‖0 ≤ k}.

The more levels we add in the projection p, the smaller the
approximation error ε turns out to be. More specifically, it is
easy to show that ε in (27) is bounded by two times the energy
of the entries eliminated from x divided by the total energy of x,
i.e., by 2 ‖p(x)−x‖

‖x‖ . Clearly, the more layers we add the smaller ε
becomes. Yet, assuming that all nodes in each layer are selected
with equal probability, the probability of selecting a node at
layer l is equal to

∏l
i=1 0.5i−1 , where we take into account

the fact that a node can be selected only if all its forefathers
have been chosen. Thus, the upper layers have more significant
impact on the values of ε.

On the other hand, the convergence rate ρp (K) for a projection
with l layers is equivalent to the convergence rate for the set of
vectors of size 2l (denoted by Kl). Thus, we get that ρp(K) =
ρ(Kl), which is dependent on the Gaussian mean width ωKl

that
scales as max(kl, k log(2l/k)). Clearly, when we take all the
layers l = log(d) and we have ωKl

= ωK = O(k log(d/k)).
Figure 3(a) presents the signal reconstruction error

(‖x − zt‖2) as a function of the number of iterations for PGD
with the sets K (IHT [50]) and K̂ (model-based IHT [36])3

and for the proposed IPGD with p that projects onto a different
number of levels (1-5) of the tree. All algorithms use step size
μ = 1

(
√

d+
√

m )2 . It is interesting to note that if p projects only

onto the first layer, then the algorithm does not converge as the
resulting approximation error ε is too large. However, starting

3For demonstration purposes we plot only the cases where model-based IHT
converges to zero.

from the second layer, we get a faster convergence at the first
iterations with p that projects onto a smaller set, which yields a
smaller ρ. As the number of iterations increases, the more accu-
rate projections achieve a lower reconstruction error, where the
plateau attained is proportional to the approximation error of p
as predicted by our theory.

This tradeoff can be used to further accelerate the conver-
gence by changing the projection in IPGD over the iterations.
Thus, in the first iterations we enjoy the fast convergence of the
coarser projections and in the later ones we use more accurate
projections that allow achieving a lower plateau. The last line
in Fig. 3 demonstrates this strategy, where at the first iteration
p is set to be a projection onto the first two levels, and then
every four iterations another tree level is added to the projection
until it becomes a projection onto all the tree levels (in this case
IPGD coincides with PGD). Note that IPGD converges faster
than PGD also when the projection in it becomes onto all the
tree levels. This can be explained by the fact that typically con-
vergence of non-linear optimization techniques depends on the
initialization point [62].

While here we arbitrarily chose to add another level every
fixed number of iterations, in general, a control set can be used
for setting the number of iterations to be performed in each
training level. We demonstrate this strategy in Section VII.

Since PGD with K̂ does not introduce an error in its pro-
jection and projects onto a precise set, it achieves the smallest
recovery error throughout all iterations. Yet, as its projection is
computationally demanding, it converges slower than IPGD if
we take into account the run time of each iteration, as can been
seen in Fig. 3(b). This clearly demonstrates the advantage of
using simple projections with IPGD compared to accurate but
more complex projections with PGD.

B. Sparse Recovery With Side Information

Another possible strategy to improve reconstruction that re-
lates to our framework is using side information about the recov-
ered signal, e.g., from estimates of similar signals. This approach
was applied to improve the quality of MRI [40], [63], [64] and
CT scans [65], and also in the general context of sparse recovery
[37]–[40].

We demonstrate this approach, in combination with our pro-
posed framework, for the recovery of a sparse vector under the
discrete cosine transform (DCT), given information of its rep-
resentation under the Haar transform. Our sampling matrix is
M = AD∗, where A ∈ R700×1024 is a random matrix with i.i.d.
normally distributed entries, D∗ is the (unitary) DCT transform
(that is applied on the signal before multiplying the DCT coeffi-
cients with the random matrix A) and D is the DCT dictionary.
We use random patches of size 32 × 32, normalized to have unit
�2 norm, from the standard house image. Note that such a patch
is not exactly sparse either in the Haar or the DCT domains.
See Fig. 4 for an example of one patch of the house image.
Without considering the side information of the Haar transform,
one may recover x (a representation of a patch in the DCT basis)
by using PGD with the set K = {z : ‖z‖1 ≤ ‖x‖1}. Given x we
may recover the patch Dx.
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Fig. 3. Reconstruction error as a function of the iterations (left) and the running time (right) for recovering a sparse vector with tree structure. Since we initialize
all algorithms with the zero vector, the error at iteration/time zero is ‖x‖. Zoomed version of the first 10 iterations and first 1 ms appears in the bottom row. This
figure demonstrates the convergence rate of PGD with projections onto the sparse set and sparse tree set compared to IPGD with p that projects onto a certain
number of levels of the tree and IPGD with changing p that projects onto an increasing number of levels as the iterations proceed. Note that while PGD with a
projection onto a tree structure converges faster than IPGD as a function of the number of iterations (left figure), it converges slower than IPGD if we take into
account the actual run time of each iteration, as shown in the right figure, due to the higher complexity of the PGD projections.

Assume that someone gives us oracle side information on the
set of Haar columns corresponding to the largest coefficients
that contain 95% of the energy in a patch Dx. While there are
many ways to incorporate the side information in the recovery,
we show here how IPGD can be used for this purpose. Denoting
by Poracle

x,95% the linear projection onto this set of columns, one

may apply IPGD with p = DPoracle
x,95% D∗ and K. As ‖Dx‖ =

‖x‖ (since D is unitary), we have that ε = 0.05 in (24). Fig. 5
compares between PGD with K and IPGD with p and K. We
average over 100 different randomly selected sensing matrices
and patches.

The number of columns in Haar that contain 95% of the
energy is roughly d/2. Thus, the Gaussian mean width ωp(C)
in this case is roughly the width of the tangent cone of the
�1 norm at a k-sparse vector in the space of dimension d/2,

which is smaller than ω(C)�1 (x). Thus, ρp(C) is smaller than
ρ(C). Clearly, for less energy preserved in x (i.e., bigger ε) we
need less columns from Haar, which implies a smaller Gaussian
mean width and a faster convergence rate ρp(K). We have here
a tradeoff between the approximation error we may allow ε and
the convergence rate ρp(K) that improves as ε increases.

Since projections onto smaller sets lead to faster convergence
we suggest as in the previous example to apply PGD with an
oracle projection that uses less columns from the Haar basis
at the first iteration (i.e., has larger ε) and then adds columns
gradually throughout the iterations. The third (red) line in Fig. 5
demonstrates this option, where the first iterations use a projec-
tion onto the columns that contain 50% of the energy of x and
then every 5 iterations the next 50 columns correspoding to the
coefficients with the largest energy are added. We continue until
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Fig. 4. House Image (top left) and a random patch selected from it (top right)
with the sorted magnitude (in log scale) of the representation of this patch in
the DCT (bottom left) and Haar (bottom right) bases.

Fig. 5. Reconstruction error as a function of the iterations for sparse recovery
with side information. This demonstrates the convergence rate of (i) PGD with
a projection onto the �1 ball compared to (ii) IPGD with oracle side information
on the columns of the representation of x in the Haar basis; (iii) IPGD with
oracle side information that projects onto an increasing number of columns
from the Haar basis ordered according to their significance in representing x;
(iv) IPGD with a projection onto the first 512 columns of that Haar basis; and
(v) IPGD with a changing p that projects onto an increasing number of columns
from the Haar basis.

the columns span 95% of the energy of the signal. Thus, IPGD
with changing projections converges faster than IPGD with a
constant p = DPoracle

x,95% D∗ but reaches the same plateau.
Typically, oracle information on the coefficients of x in the

Haar basis is not accessible. Even though, it is still possible
to use common statistics of the data to accelerate convergence.

For example, in our case it is known that most of the energy
of the signal is concentrated in the low-resolution Haar filters.
Therefore, we propose to use IPGD with a projection p that
projects onto the first 512 columns of the Haar basis. As before,
it is possible to accelerate convergence by projecting first on a
smaller number of columns and then increasing the number as
the iterations proceed (in this case we add columns till IPGD
coincides with PGD). These two options are presented in the
fourth and fifth line of Fig. 5, respectively. Both of these options
provide faster convergence, where IPGD with a fixed projection
p incurs a higher error as it uses less accurate projections in
the last iterations compared to PGD and IPGD with changing
projections. The plateau of the latter is the same one of the
regular PGD (which is not attained in the graph due to its early
stop) but is achieved with a much smaller number of iterations.

VII. LEARNING THE PROJECTION – LEARNED IPGD (LIPGD)

In many scenarios, we may not know what type of simple
operator p causesPK(p(·)) to approximate K̂ in the best possible
way. Therefore, a useful strategy is to learn p for a given dataset.
Assuming a linear p, we may rewrite (30) as

zt+1 = PK (p (μM∗y) + p ((I − μM∗M) zt)) . (34)

Instead of learning p directly, we may learn two matrices
A and U, where the first replaces pμM∗ and the second
p (I − μM∗M). This results in the iterations

zt+1 = PK (Ay + Uzt) , (35)

which is very similar to those of LISTA in (7). The only differ-
ence between (35) and LISTA is the non-linear part, which is
an orthogonal projection in the first and a proximal mapping in
the second.

We apply this method to replace the sparse coding step in the
super-resolution algorithm proposed in [66], where a pair of low
and high resolution dictionaries is used to reconstruct the patches
of the high-resolution image from the low-resolution one. In
the code provided by the authors of [66], orthogonal matching
pursuit (OMP) [67] with sparsity 3 is used. The complexity of
this strategy corresponds to IHT with 3 iterations. The target
sparsity we use with IHT is higher (k = 40) as it was observed
to provide better reconstruction results. Note that in IHT, unlike
OMP, the number of iterations may be different than the sparsity
level. For optimal hyperparameter selection (such as choosing
the target sparsity level), we use the training set used for the
training of the dictionary in [66], which contains 91 images.

Since IHT does not converge with only 3 iterations, we apply
LIPGD to accelerate convergence. We use the same dictionary
dimension as in [66] (30 × 1000 and 81 × 1000 for the low and
high resolution dictionaries, respectively), and train an LIPGD
network to infer the sparse code of the image patches in the low-
resolution dictionary. Training of the weights is performed by
stochastic gradient descent with batch-size 1000 and Nesterov
momentum [42] for adaptively setting the learning rate. We train
the network using only the first 85 images in the training set,
keeping the last 6 as a validation set. We reduce the training
rate by a factor of 2 if the validation error stops decreasing. The
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TABLE I
PSNR OF SUPER-RESOLUTION BY BICUBIC INTERPOLATION AND A PAIR OF

DICTIONARIES WITH VARIOUS SPARSE CODING METHODS

initial learning rate is set to 0.001 and the Nesterov parameter
to 0.9. We use the sparse representations of the training data
calculated by IHT or LIPGD to generate the high-resolution
dictionary as in [66].

Table I summarizes the reconstruction results of regular bicu-
bic interpolation, the OMP-based super-resolution technique of
[66] (with 3 iterations) and its version with IHT and LIPGD (re-
placing OMP). It can be seen clearly that IHT leads to inferior
results compared to OMP since it does not converge in 3 itera-
tions. LIPGD improves over both IHT and OMP as the training
of the network allows it to provide good sparse approximation
with only 3 iterations. This demonstrates the efficiency of the
proposed LIPGD technique, which has the same computational
complexity of both OMP and IHT.

VIII. LEARNING THE PROJECTION – LISTA MIXTURE MODEL

Though the theory in this paper applies directly only to (35)
(with some constraints on A and U that stem from the con-
straints on p), the fast convergence of LISTA may be explained
by the resemblance of the two methods. The success of LISTA
may be interpreted as learning to approximate the set K̂ in an
indirect way by learning the linear operators A and U. In other
words, it can be viewed as a method for learning a linear opera-
tor that together with the proximal mapping Sf ,λ approximates
a more accurate proximal mapping of a true unknown function
f̂ that leads to much faster convergence.

With this understanding, we argue that using multiple inexact
projections may lead to faster convergence as each can approxi-
mate in a more accurate way different parts of the set K̂. In order
to show this, we propose a LISTA mixture model (MM), similar
to the Gaussian mixture model proposed in [5], in which we
train several LISTA networks, one for each part of the dataset.
Then, once we get a new vector, we apply all the networks on
it in parallel (and therefore with negligible impact on the la-
tency, which is very important in many applications) and chose
the one that attains the smallest value in the objective of the
minimization problem (3).

We test this strategy on the house image by extracting from
it patches of size 5 × 5, adding random Gaussian noise to each
of them with variance σ2 = 25 and then removing the DC and
normalizing each. We take 7/9 of the patches for training and

Fig. 6. The �1 loss as a function of the iterations of ISTA, LISTA and LISTA-
MM applied on patches from the house image. This demonstrates the faster
convergence of the proposed LISTA-MM compared to LISTA and the fast
convergence of LISTA compared to ISTA.

1/9 for validation and testing. We train LISTA to minimize
directly the objective (3) as in [27] and stop the optimization
after the error of the validation set increases. For the LISTA-MM
we use 6 LISTA networks such that we train the first one on the
whole data. We then remove 1/6 of the data whose objective
value in (3) is the closest to the one ISTA attains after 1000
iterations. We use this LISTA network as the initialization of
the next one that is trained on the rest of the data. We repeat this
process by removing in the same way the part of the data with
the smallest relative error and then train the next network. After
training 6 networks we cluster the data points by selecting for
each patch the network that leads to the smallest objective error
for it in (3) and fine tune each network for its corresponding
group of patches. We repeat this process 5 times. The objective
error of (3) as a function of the number of iterations/depth of
the networks is presented in Fig. 6. Indeed, it can be seen that
partitioning the data, which leads to a better approximation,
accelerates convergence.

Our proposed LISTA-MM strategy bears some resemblence
to the recently proposed rapid and accurate image super reso-
lution (RAISR) algorithm [68]. In this method, different filters
are trained for different types of patches in natural images. This
leads to improved quality in the attained up-scaled images with
only minor overhead in the computational cost, leading to a very
efficient super-resolution technique.

IX. CONCLUSION

In this work we suggested an approach to trade-off between
approximation error and convergence speed. This is accom-
plished by approximating complicated projections by inexact
ones that are computationally efficient. We provided theory for
the convergence of an iterative algorithm that uses such an ap-
proximate projection and showed that at the cost of an error in
the projection one may achieve faster convergence in the first
iterations. The larger the error the smaller the number of itera-
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tions that enjoy fast convergence. This suggests that if we have a
budget for only a small number of iterations (with a given com-
plexity), then it may be worthwhile to use inexact projections
which can result in a worse solution in the long term but make
better use of the given computational constraints. Moreover, we
showed that even when we can afford a larger number of iter-
ations, it may be worthwhile to use inexact projections in the
first iterations and then change to more accurate ones at latter
stages.

Our theory offers an explanation to the recent success of
neural networks for approximating the solution of certain mini-
mization problems. These networks achieve similar accuracy to
iterative techniques developed for such problems (e.g., ISTA for
�1 minimization) but with much smaller computational cost. We
demonstrate the usage of this method for the problem of image
super-resolution. In addition, our analysis provides a technique
for estimating the solution of these minimization problems by
using multiple networks but with fewer layers in each of them.

APPENDIX A
PROOF OF THEOREM 5.1

The proof of Theorem 5.1 relies on the following lemma.
Lemma A.1: Under the same conditions of Theorem 5.1

‖PC (p (I − μM∗M) (zt − x))‖
≤ ρp(C) ‖zt − x‖ + ε(1 + ρp(C)) ‖x‖ . (36)

Proof: Since zt = PK(pv) for a certain vector v, we have

‖PC (p (I − μM∗M) (zt − x))‖
≤ sup

v ∈Rd s.t.
‖PK( p v )−x‖≤‖z t −x ‖

‖PC (p (I − μM∗M) (PK(pv) − x))‖

= sup
v ∈Rd s.t.

‖PD ( p v−x )‖≤‖z t −x ‖

‖PC (p (I − μM∗M)PD (pv − x))‖ ,

(37)

where the last equality follows from Lemma 2.3. Using the
triangle inequality with (37) leads to

‖PC (p (I − μM∗M) (zt − x))‖
≤ sup

v ∈Rd s.t.
‖PD ( p v−x )‖≤‖z t −x ‖

‖PC (p (I − μM∗M)PD (pv − px))‖

+
∥
∥
∥
∥PC

(
p (I − μM∗M)

PD (x − px)
‖PD (x − px)‖

)∥
∥
∥
∥ ‖PD (px − x)‖.

(38)

We turn now to bound the first and second terms in the right-
hand-side (rhs) of (38). For the second term, note that since
PD (x − px) ∈ D, we have
∥
∥
∥
∥PC

(
p (I − μM∗M)

PD (x − px)
‖PD (x − px)‖

)∥
∥
∥
∥

≤ sup
v∈D∩Bd

‖PC (p (I − μM∗M)v)‖

≤ sup
v ,u∈C∩Bd

‖u∗p (I − μM∗M)v‖ ≤ ρ(K), (39)

where the second inequality follows from Lemma 2.2 and the
fact that D ⊂ C. In the last inequality we replace u∗p = (p∗u)∗

by ũ and take the supremum over it instead of overu. In addition,
‖PD (px − x)‖ ≤ ε from (25).

For the first term in the rhs of (38) we use the in-
verse triangle inequality ‖PD (pv − px)‖ − ‖PD (px − x)‖ ≤
‖PD (pv − x)‖ and (25). Combining the results leads to

‖PC (p (I − μM∗M) (zt − x))‖
≤ sup

v ∈Rd s.t.
‖PD ( p (v−x ) )‖≤‖z t −x ‖+ ε ‖x ‖

‖PC (p (I − μM∗M)PD (p(v − x)))‖

+ ερ(K) ‖x‖
= sup

u∈C ∩Bd , v ∈Rd

s.t. ‖PD ( p v )‖≤1

‖u∗p (I − μM∗M)PD (pv)‖ (‖zt − x‖+ε ‖x‖)

+ ερ(K) ‖x‖
= sup

u∈C∩Bd ,pv∈D∩Bd

‖(pu)∗ (I − μM∗M) pv‖

× (‖zt − x‖ + ε ‖x‖) + ερ(K) ‖x‖
≤ sup

v ,u∈C∩Bd

‖(pu)∗ (I − μM∗M) pv‖ (‖zt − x‖ + ε ‖x‖)

+ ερ(K) ‖x‖ , (40)

where the first equality follows from Lemma 2.2 and the second
from the definition of a projection onto a set. The last inequality
follows from the fact that {pv ∈ D ∩ Bd} ⊂ D ∩ Bd ⊂ C ∩
Bd . Reordering the terms and using the definition of ρp(C)
leads to the desired result. �

We turn now to the proof of Theorem 5.1
Proof: The IPGD error at iteration t + 1 is,

‖zt+1 − x‖ = ‖PK (p (zt + μM∗(y − Mzt))) − x‖ . (41)

Using Lemma 2.3 and the fact that y = Mx we have

‖zt+1 − x‖ = ‖PD (p (I − μM∗M) (zt − x) − x + px)‖
(a)
≤ ‖PD (p (I − μM∗M) (zt − x))‖ + ‖PD (x − px)‖
(b)
≤ ‖PC (p (I − μM∗M) (zt − x))‖ + ε ‖x‖ , (42)

where (a) follows from the convexity of D and the triangle
inequality; and (b) from (25) and Lemma 2.4. Using Lemma A.1
with (42) leads to

‖zt+1 − x‖ ≤ ρp(K) ‖zt − x‖ + ε(2 + ρp(K)) ‖x‖ . (43)

Applying the inequality in (43) recursively provides the desired
result. �

APPENDIX B
PROOF OF THEOREM 5.2

The proof Theorem 5.2 relies on the following lemma.
Lemma B.1: Under the same conditions of Theorem 5.2,

‖PK−K (p (I − μM∗M) (zt − x))‖
≤ ρp(K) ‖zt − x‖ + ε(2ρ(K) + ρp(K)) ‖x‖ . (44)
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Proof: Using Lemma 2.3 and the fact that zt = PK(pv) for
a certain vector v ∈ Rd and then the triangle inequality, leads to

‖PK−K (p (I − μM∗M) (zt − x))‖
≤ sup

v ∈Rd s.t.
‖PD ( p v−x )‖≤‖z t −x ‖

‖PK−K (p (I − μM∗M)PD (pv − x))‖

≤ sup
v ∈Rd s.t.

‖PD ( p v−x )‖≤‖z t −x ‖

‖PK−K (p (I − μM∗M)PD (pv − px))‖

+
∥
∥
∥
∥PK−K

(
p (I − μM∗M)

PD (pv − x) − PD (pv − px)
‖PD (pv − x) − PD (pv − px)‖

)∥
∥
∥
∥

· ‖PD (pv − x) − PD (pv − px)‖ . (45)

Using (29) and the same steps of the proof of Theorem 3.1,
we may bound the second term in the rhs of (45) by 2ερ(K) ‖x‖.
This leads to

‖PK−K (p (I − μM∗M) (zt − x))‖
≤ sup

v ∈Rd s.t.
‖PD ( p v−x )‖≤‖z t −x ‖

‖PK−K (p (I − μM∗M)PD (pv − px))‖

+ 2ερ(K) ‖x‖ . (46)

From the inverse triangle inequality together with (29), we have
that ‖PD (pv − x)‖ ≥ ‖PD (pv − px)‖ − ε ‖x‖. Thus,

‖PK−K (p (I − μM∗M) (zt − x))‖
≤ sup

v ∈Rd s.t.
‖PD ( p (v−x ) )‖≤‖z t −x ‖+ ε ‖x ‖

‖PK−K (p(I−μM∗M)PD (p(v−x)))‖

+ 2ερ(K) ‖x‖
≤ ρp(K) (‖zt − x‖ + ε ‖x‖) + 2ερ(K) ‖x‖ , (47)

where the last inequality follows from the same line of argu-
ment used for deriving (40) in Lemma A.1 (with K −K instead
of C). �

We now turn to the proof of Theorem 5.2.
Proof: Denoting ṽ = (I − μM∗M) (zt − x), the IPGD er-

ror at iteration t + 1 obeys

‖zt+1 − x‖ = ‖PD (pṽ − x + px)‖
(c)
≤ ‖PD (pṽ)‖ + ‖PD (pṽ − x + px) − PD (pṽ)‖
(d)
≤ κK ‖PK−K (pṽ)‖ + ε ‖x‖ , (48)

where (c) follows from the triangle inequality; and (d)
from (28) and Lemma 2.4. Using Lemma B.1 with (48),
we get

‖zt+1 − x‖
≤ ρp(K)κK ‖zt − x‖ + ε(2ρ(K)κK + ρp(K)κK + 1) ‖x‖ .

(49)

Applying (49) recursively leads to the desired result. �
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SIAM outstanding Paper Prize, the UFFC Outstanding Paper Award, the Signal
Processing Society Best Paper Award and the IET Circuits, Devices and Sys-
tems Premium Award, and was selected as one of the 50 most influential women
in Israel. She is a member of the Israel Academy of Sciences and Humanities
(elected 2017) and a EURASIP Fellow. She was a member of the Young Is-
rael Academy of Science and Humanities and the Israel Committee for Higher
Education. She is the Editor-in-Chief for Foundations and Trends in Signal
Processing, a member of the IEEE Sensor Array and Multichannel Technical
Committee and serves on several other IEEE committees. In the past, she was a
Signal Processing Society Distinguished Lecturer, member of the IEEE Signal
Processing Theory and Methods and Bio Imaging Signal Processing Technical
committees, and served as an Associate Editor for the IEEE TRANSACTIONS

ON SIGNAL PROCESSING, the EURASIP Journal of Signal Processing, the SIAM
Journal on Matrix Analysis and Applications, and the SIAM Journal on Imag-
ing Sciences. She was Cochair and Technical Cochair of several international
conferences and workshops.

Alex M. Bronstein (F’18) is a Professor with the
Department of Computer Science, Technion—Israel
Institute of Technology, Haifa, Israel. He is a rec-
ognized expert in the fields of three-dimensional vi-
sion, computational shape analysis, machine vision
and learning. He has coauthored a monograph, edited
several books and published over ten dozens of papers
in top journals and conference proceedings. Besides
his academic activities, he is an active inventor, tech-
nologist, and entrepreneur. He has cofounded three
startup companies where he served in various lead-

ing roles. After the acquisition of his company Invision by Intel Corporation,
he made a major contribution to Intel’s RealSense depth acquisition technology
that was designated Intel’s product of the year in 2014. He holds more than 40
patents and patent applications, many of which are used in consumer products
and services.

Guillermo Sapiro (F’14) was born in Montev-
ideo, Uruguay, on April 3, 1966. He received the
B.Sc. (summa cum laude), M.Sc., and Ph.D. de-
grees from the Department of Electrical Engineer-
ing, Technion—Israel Institute of Technology, Haifa,
Israel, in 1989, 1991, and 1993, respectively.

After the postdoctoral research at MIT, he became
Member of Technical Staff with the research facilities
of HP Labs in Palo Alto, CA, USA. He was with the
Department of Electrical and Computer Engineering,
University of Minnesota, where he held the position

of Distinguished McKnight University Professor and Vincentine Hermes-Luh
Chair in Department of Electrical and Computer Engineering. He is currently
the Edmund T. Pratt, Jr. School Professor with Duke University, Durham, NC,
USA. He works on theory and applications in computer vision, computer graph-
ics, medical imaging, image analysis, and machine learning. He has authored
and coauthored more than 400 papers in these areas and has written a book
published by Cambridge University Press, January 2001.

Prof. Sapiro was the recipient of the Gutwirth Scholarship for Special Ex-
cellence in Graduate Studies in 1991, the Ollendorff Fellowship for Excellence
in Vision and Image Understanding Work in 1992, the Rothschild Fellowship
for Post-Doctoral Studies in 1993, the Office of Naval Research Young Inves-
tigator Award in 1998, the Presidential Early Career Awards for Scientist and
Engineers in 1998, the National Science Foundation Career Award in 1999, and
the National Security Science and Engineering Faculty Fellowship in 2010. He
was the recipient of the test of time award at ICCV 2011. He is a Fellow of
SIAM. He was the founding Editor-in-Chief of the SIAM Journal on Imaging
Sciences.
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