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I. INTRODUCTION

The unhindered operation of a radar that shares its spec-
trum with communication (“comm,” hereafter) systems has
captured a great deal of attention within the operational
radar community in recent years [1]–[3]. The interest in
such spectrum sharing radars is largely due to electromag-
netic spectrum being a scarce resource and almost all ser-
vices having a need for a greater access to it. With the
allocation of available spectrum to newer comm technolo-
gies, the radio frequency (RF) interference in radar bands
is on the rise. Spectrum sharing radars aim to use the infor-
mation from coexisting wireless and navigation services to
manage this interference.

Recent research in spectrum sharing radars has focused
on S- and C-band, where the spectrum has seen increasing
cohabitation by long term-evolution (LTE) cellular/wireless
commercial comm systems. Many synergistic efforts by
major agencies are underway for efficient radio spectrum
utilization. The enhancing access to the radio spectrum
project by the national science foundation [3] brings to-
gether many different users for a flexible access to the elec-
tromagnetic spectrum. A significant recent development is
the announcement of the shared spectrum access for radar
and comm (SSPARC) program [2], [4] by the defense ad-
vanced research projects agency. This program is focused
on S-band military radars and views spectrum sharing as
a cooperative arrangement where the radar and comm ser-
vices actively exchange information and do not ignore each
other. It defines spectral coexistence as equipping exist-
ing radar systems with spectrum sharing capabilities and
spectral co-design as developing new systems that utilize
opportunistic access to the spectrum [5].

A variety of system architectures have been proposed
for spectrum sharing radars. Most put emphasis on op-
timizing the performance of either radar or comm while
ignoring the performance of the other. The radar-centric ar-
chitectures [6]–[8] usually assume fixed interference levels
from comm and design the system for high probability of
detection (Pd ). Similarly, the comm-centric systems (e.g.,
“CommRad” [9]) attempt to improve performance metrics
like the error vector magnitude and bit/symbol error rate
for interference from radar [10]. With the introduction of
the SSPARC program, joint radar–comm performance is
being investigated [11]–[13], with extensions to multiple
input multiple output (MIMO) radar–comm [14]. In nearly
all cases, real-time exchange of information between radar
and comm hardware has not yet been integrated into the
system architectures. Exceptions to this are automotive so-
lutions where the same waveform is used for both target
detection and comm [15], [16]. In a similar vein, our pro-
posed method, described below, incorporates handshaking
of spectral information between the two systems.

Conventional receiver processing techniques to remove
RF interference in radar employ notch filters at hostile fre-
quencies. If only a few frequencies are contaminated, then
this method does not introduce exceedingly large signal
distortion in radars that use wide bandwidths (e.g., FOliage
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PENetration (FOPEN) [17]). An early work by Gerlach
[18] suggests the use of step-frequency polyphase codes for
ultrawideband radar waveforms to obtain a thinned spec-
trum with nulls at interfering frequencies. Later design so-
lutions use convex optimization of radar performance met-
rics for given spectral constraints (see [19] and references
therein; [20], [21]). The objective functions in such (convex
and nonconvex) optimization procedures vary, where pre-
vious studies have considered signal-to-noise ratio (SNR)
[22], transmit energy in stopband [7], sidelobe levels [23],
a weighted sum of suppressed band spectral energy and
range sidelobes [24], [25], and information theoretic met-
rics [26], [27]. A recent line of research focuses on con-
strained quadratic program techniques to obtain a waveform
that fulfills more complex spectral constraints that take into
account disturbance from overlaid licensed emitters [22],
[28]. The radar is assumed to be aware of the radio environ-
ment map (REM) and optimization provides a coded trans-
mit waveform. In all the above-mentioned works, spectrum
sharing is achieved by notching out the radar waveform’s
bandwidth causing a decrease in the range resolution.

Our spectrum sharing solution departs from this base-
line. The approach we adopt follows the recently proposed
Xampling (“compressed sampling”) framework [29], [30],
a system architecture designed for sampling and processing
of analog inputs at rates far below Nyquist, whose under-
lying structure can be modeled as a union of subspaces
(UoS). The input signal belongs to a single subspace, a
priori unknown, out of multiple, possibly even infinitely
many, candidate subspaces. Xampling consists of two main
functions: low rate analog to digital conversion (ADC), in
which the input is compressed in the analog domain prior
to sampling with commercial devices, and low rate digital
signal processing, in which the input subspace is detected
prior to digital signal processing. The resulting sparse re-
covery is performed using compressed sensing (CS) [31]
techniques adapted to the analog setting. This concept has
been applied to both comm [32]–[35] and radar [36], [37],
among other applications.

Time-varying linear systems, which introduce both time
shifts (delays) and frequency shifts (Doppler shifts), such
as those arising in surveillance point-target radar systems,
fit nicely into the UoS model. Here, a sparse target scene is
assumed, allowing to reduce the sampling rate without sac-
rificing delay and Doppler resolution. The Xampling-based
system is composed of an ADC that filters the received sig-
nal to predetermined frequencies before taking pointwise
samples. These compressed samples, or “Xamples,” con-
tain the information needed to recover the desired signal
parameters. In [36] and [38], a multiple bandpass sampling
approach was adopted that used four groups of consecutive
coefficients.

Here, we capitalize on the simple observation that if
only narrow spectral bands are sampled and processed by
the receiver, then one can restrict the transmit signal to
these. The concept of transmitting only a few subbands that
the receiver processes is one way to formulate a cognitive
radar (CRr) [37]. The delay-Doppler recovery is then per-

formed as presented in [36]. The range resolution obtained
through this multiband signal spectrum fragmentation can
be the same as that of a wideband traditional radar. Further,
by concentrating all the available power in the transmitted
narrow bands rather than over a wide bandwidth, the CRr
increases SNR. In the CRr system, as detailed in [37], the
support of subbands varies with time to allow for dynamic
and flexible adaptation to the environment. Such a system
also enables the radar to disguise the transmitted signal as
an electronic counter measure or cope with crowded spec-
trum by using a smaller interference-free portion. In this
paper, we focus on this latter feature.

The CRr configuration is key to spectrum sharing since
the radar transceiver adapts its transmission to available
bands, achieving coexistence with comm signals. To detect
such vacant bands, a comm receiver is needed that performs
spectrum sensing over a large bandwidth. Such a task has
recently received tremendous interest in the comm commu-
nity, which faces a bottleneck in terms of spectrum avail-
ability. To increase the efficiency of spectrum managing,
dynamic opportunistic exploitation of temporarily vacant
spectral bands by secondary users has been considered, un-
der the name of cognitive radio (CRo) [39], [40]. In this
paper, we use a CRo receiver to detect the occupied comm
bands, so that our radar transmitter can exploit the spectral
holes. One of the main challenges of spectrum sensing in the
context of CRo is the sampling rate bottleneck. This issue
arises since CRos typically deal with wideband signals with
prohibitively high Nyquist rates. Sampling at this rate would
require very sophisticated and expensive ADCs, leading to
a torrent of samples. In this context, the Xampling frame-
work provides an analog preprocessing and sub-Nyquist
sampling front end, and subsequent low rate digital recov-
ery processing that exploits sparsity of the sensed signal in
the frequency domain [32], [41]–[44].

Here, we propose a waveform design and receiver pro-
cessing solution for spectral coexistence (as in SSPARC)
composed of a comm receiver and radar transceiver im-
plementing the Xampling concepts. The CRo comm re-
ceiver senses the spectrum from sub-Nyquist samples and
provides the radar with spectral occupancy information.
Equipped with this spectral map as well as a known REM
detailing typical interference with respect to frequency,
the CRr transmitter chooses narrow frequency subbands
that minimize interference for its transmission. The delay-
Doppler recovery is performed at the CRr receiver on these
subbands. The combined CRo–CRr system results in spec-
tral coexistence via the Xampling (SpeCX) framework,
which optimizes the radar’s performance without interfer-
ing with existing comm transmissions.

The main contribution of this paper is combining two
previously proposed concepts, CRo and CRr, to solve an
existing practical problem, comm–radar spectrum sharing.
Beyond simple combination, the CRo and CRr are adapted
to the specific comm–radar setting. First, the CRo process-
ing is modified to the spectrum sharing scenario of comm
signal detection in the presence of radar transmissions with
known support. In addition, we consider the radar transmit
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band selection problem conditioned on the comm detected
spectrum. The CRr detection criterion, previously presented
in terms of CS measures, is expressed here with respect to
a radar setting. Finally, we present a hardware prototype
for SpeCX that can perform real-time recovery of CRo and
CRr signals sharing a common spectrum. Our prototype
demonstrates recovery and spectrum sharing capabilities of
the CRr at SNRs as low as −5 dB.

This paper is organized as follows. Section II reviews
spectrum sharing research. Section III formulates the spec-
trum sharing problem and presents the comm and radar
signal models. Section IV introduces our CRo comm re-
ceiver that performs blind spectrum sensing. In Section V,
we describe the CRr transmitted band selection and corre-
sponding delay-Doppler recovery. Software and hardware
simulations are presented in Section VI.

II. SPECTRUM SHARING ACROSS IEEE RADAR BANDS

Spectral interference to radars has drastically increased
with mobile comm technology. In this section, we review
some of the main spectrum sharing applications. In the VHF
(30–300 MHz) and UHF (300–1000 MHz) bands, interfer-
ence comes from broadcast and TV services. A common
example is the FOPEN radar, where the receiver is con-
ventionally designed to notch out the interfering TV/radio
frequencies [45]. Recent introduction of the IEEE 802.11ah
protocol at 900 MHz for the Internet of Things, and
802.11af in 54–790 MHz for CRo technology makes
VHF/UHF bands too crowded for smooth radar operation
[46]. Some recent studies focus on designing passive sys-
tems that receive signals emitted by the new IEEE 802.22
standard devices which exploit the unused channels in the
VHF and UHF bands allocated to television on a nonin-
terfering and opportunistic basis. The primary objective of
such white space [47], [48], cognitive and symbiotic radars
[49] is to provide surveillance of critical infrastructure pa-
rameters by using radar technology.

From L-band (1–2 GHz) onward, radars begin to suf-
fer spectral intrusion from LTE. An example is the air
route surveillance radar used by Federal Aviation Admin-
istration sharing frequencies with wireless interoperability
microwave access (WiMAX) devices [50]. Military radio
services such as the joint tactical information distribution
system in the 969–1206 MHz band are also known to inter-
fere with L-band radars [51]. However, a majority of LTE
waveforms, e.g., 802.11b/g/n (2.4 GHz) wideband code di-
vision multiplexing access, WiMAX LTE, LTE global sys-
tem for mobile comm (GSM), enhanced data rates for GSM
evolution, coexist within the S-band (2–4 GHz). Therefore,
most of the spectrum sharing studies are concerned about
S-band radars. A recent work [52] explores spectral cohab-
itation of Wi-Fi networks and S-band surveillance radars.
LTE spectrum sharing is also being investigated for S-band
shipborne air traffic control radars [53].

Spectral coexistence systems for C-band (4–8 GHz)
are gradually gaining traction due to the latest 5-GHz band
allocation to 802.11a/ac very high throughput wireless LAN

technology. In particular, this is of significant concern to the
terminal weather doppler radar network, which is colocated
with U.S. airports [54]. In fact, a recent study [55] identifies
spectral interference threats from licensed transmitters to
many other existing weather radar networks at S-, C-, and
X-band.

At present, spectral crowding for surveillance or
weather radars at frequencies higher than X-band is not
under major investigation. However, in these bands, the
automotive radar community has been more active in in-
corporating spectral cohabitation with comm services. For
example, the work in [15] describes the “RadCom” sys-
tem that combines a traffic sensing K-band automotive
radar with a comm link to other vehicles. At V-band, an-
other interesting study by Kumari et al. [16] shows that the
802.11ad Wi-Fi (60 GHz) Golay complementary sequence
waveforms can also be used for radar remote sensing. Re-
cently, applications of spectrum sharing in intervehicular
comm and radar have also been proposed at W-band [56],
[57]. Furthermore, with current waveform proposals for the
5G networks, centimeter (Ka), and millimeter (V and W)
wavebands are expected to become dense in the future,
thus requiring innovation in shared access to the spectrum
[58]–[60]. In Section II, we formulate the spectrum sharing
problem, where comm and radar transmit over a common
bandwidth.

III. PROBLEM FORMULATION

Denote the set of all frequencies of the available com-
mon spectrum by F . The comm and radar systems oc-
cupy subsets FC and FR of F , respectively, such that
FC ∩ FR = ∅. Our goal is to design the radar waveform
and its support FR , conditional on the fact that the comm
occupies frequencies FC . We further assume that FC it-
self is unknown to the comm receiver, which has to first
detect these frequencies. The REM is assumed known to
the system as a measure of the typical spectral interfer-
ence with respect to frequency. Once FC is identified,
the comm receiver provides a spectral map of occupied
bands to the radar. Equipped with the detected spectral map
and known REM, the radar waveform generator selects the
available bands with least interference for its transmission
and notifies the radar receiver of its selection. The latter
processes only these spectral bands using Xampling-based
delay-Doppler recovery. The radar conveys the frequencies
FR to the comm receiver as well, so that it can ignore the
radar bands while sensing the spectrum. Using our recovery
methods, the CRr can achieve target detection and delay-
Doppler estimation performance similar to that of a radar
transmitting over the entire band F despite using only a
fraction of this bandwidth.

Our model is that of a “friendly” spectral coexistence
where active cooperation between radar and comm is re-
quired, as also envisaged by the SSPARC program. This is
different than the spectrum sharing techniques where two
systems operate independently of each other and attempt to
minimize interference in their respective spectra.
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Fig. 1. Multiband model with K = 6 bands. Each band does not exceed
the bandwidth B and is modulated by an unknown carrier frequency

|fi | ≤ fNyq/2, for i = 1, 2, 3.

A. Multiband Comm Signal

Let xC(t) be a real-valued continuous-time comm sig-
nal, supported on F = [−1/2TNyq, +1/2TNyq] and com-
posed of up to Nsig transmit waveforms such that

xC(t) =
Nsig∑

i=1

si(t). (1)

Formally, the Fourier transform of xC(t), defined by

XC(f ) = lim
T →∞

1√
T

∫ T/2

−T/2
xC(t)e−j2πf tdt (2)

is zero for every f /∈ F . We denote by fNyq = 1/TNyq the
Nyquist rate of x(t). The waveforms, respective carrier fre-
quencies and bandwidths are unknown. We only assume
that the single-sided bandwidth Bi

c for the ith transmis-
sion does not exceed an upper limit B, namely Bi

c ≤ B

for all 1 ≤ i ≤ Nsig. Such sparse wideband signals belong
to the so-called multiband signal model [32], [61]. Fig. 1
illustrates the two-sided spectrum of a multiband signal
with K = 2Nsig bands centered around unknown carrier
frequencies |fi | ≤ fNyq/2.

Let FC ⊂ F be the unknown support of xC(t), where

FC = {f ||f − fi | < Bi
c/2, for all 1 ≤ i ≤ Nsig}. (3)

The goal of the comm receiver is to retrieve FC while
sampling and processing xC(t) at low rates in order to reduce
system cost and resources.

B. Pulse Doppler Radar

Consider a standard pulse-Doppler radar that transmits
a pulse train

rTX
(t) =

P−1∑

p=0

h(t − pτ ), 0 ≤ t ≤ Pτ (4)

consisting of P uniformly spaced known pulses h(t). The
interpulse transmit delay τ is the pulse repetition interval
(PRI) (or “fast time”); its reciprocal being the pulse rep-
etition frequency (PRF). The entire duration of P pulses
in (4) is known as the coherent processing interval, pulse
dimension being the “slow time.”

Assume that the radar target scene consists of L non-
fluctuating point targets, according to the Swerling-0 target
model [62]. The transmit signal is reflected back by the L

targets and these echoes are received by the radar proces-
sor. The latter aims at recovering the following information
about any of the L targets from the received signal: the time
delay τl , which is linearly proportional to the range of the

target from the radar; Doppler frequency νl , proportional
to the radial velocity of the target with respect to the radar;
and complex amplitude αl , proportional to the target radar
cross section, atmospheric attenuation, and other propaga-
tion factors. The target locations are defined with respect
to the polar coordinate system of the radar and their range
and Doppler are assumed to lie in the unambiguous time–
frequency region, i.e., the time delays are no longer than
the PRI and Doppler frequencies are up to the PRF. The
received signal can then be written as

rRX
(t) =

P−1∑

p=0

L−1∑

l=0

αlh(t − τl − pτ )e−jνlpτ + w(t) (5)

for 0 ≤ t ≤ Pτ , where w(t) is a zero mean wide-sense sta-
tionary random signal with autocorrelation rw(s) = σ 2δ(s).
It will be convenient to express rRX

(t) as a sum of single
frames

rRX
(t) =

P−1∑

p=0

r
p

RX
(t) + w(t) (6)

where

r
p

RX
(t) =

L−1∑

l=0

αlh(t − τl − pτ )e−jνlpτ (7)

for pτ ≤ t ≤ (p + 1)τ is the return signal from the pth
pulse.

In a conventional pulse Doppler radar, the pulse
h(t) = hNyq(t) is a time-limited baseband function
whose continuous-time Fourier transform is HNyq(f ) =∫∞
−∞ hNyq(t)e−j2πf tdt . It is assumed that most of the sig-

nal’s energy lies within the frequencies ±Bh/2, where Bh

denotes the effective signal bandwidth, such that the fol-
lowing approximation holds:

HNyq(f ) ≈
∫ Bh/2

−Bh/2
hNyq(t)e−j2πf tdt. (8)

A classical radar signal processor samples each incom-
ing frame r

p

RX
(t) at the Nyquist rate Bh to yield the dig-

itized samples r
p

RX
[n], 0 ≤ n ≤ N − 1, where N = τBh.

The signal enhancement process employs a matched fil-
ter for the sampled frames r

p

RX
[n]. This is then followed

by Doppler processing where a P -point discrete Fourier
transform (DFT) is performed on slow time samples. By
stacking all the N DFT vectors together, a delay-Doppler
map is obtained for the target scene. Finally, the time delays
τl and Doppler shifts νl of the targets are located on this
map using, e.g., a constant false-alarm rate detector.

The bandwidth Bh of the transmitted pulses governs the
range resolution of the radar. Large bandwidth is necessary
to obtain high resolution, but such a spectral requirement is
at odds with the coexisting comm. We, therefore, propose
an alternative efficient spectral utilization method wherein
the radar transmits several narrow frequency bands instead
of a full-band radar signal. In particular, we propose exploit-
ing only a fraction of the bandwidth Bh for both transmis-
sion and reception of the radar signal, without degrading its
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range resolution. In our spectrum sharing solution, the radar
transmits a pulse h(t) supported over Nb disjoint frequency
bands, with bandwidths {Bi

r}Nb

i=1 centered around the re-
spective frequencies {f i

r }Nb

i=1, such that
∑Nb

i=1 Bi
r < Bh. The

number of bands Nb is known to the receiver and does not
change during the operation of the radar.

The location and extent of the bands Bi
r and f i

r are
determined by the radar transmitter through an optimization
procedure to identify the least contaminated bands (see
Section V-A). The resulting transmitted radar signal is

HR(f ) =
{

βiHNyq(f ), f ∈ F i
R, for 1 ≤ i ≤ Nb

0, otherwise
(9)

where F i
R = [f i

r − Bi
r/2, f i

r + Bi
r/2] is the set of frequen-

cies in the ith band.
The parameters βi > 1 are chosen such that the total

transmit power PT of the spectrum sharing radar remains
the same as that of the conventional radar
∫ Bh/2

−Bh/2
|HNyq(f )|2 df =

Nb∑

i=1

∫

F i
r

|HR(f )|2 df = PT .

(10)

In particular, if we choose βi = β for all 1 ≤ i ≤ Nb [63],
then

β =

√√√√
∫ Bh/2
−Bh/2 |HNyq(f )|2df
∫
FR

|HR(f )|2 df
(11)

where

FR =
Nb⋃

i=1

F i
R. (12)

IV. COGNITIVE RADIO

We assume that the comm signal is given by (1). When
the frequency support of xC(t) is known, sampling meth-
ods such as demodulation, undersampling ADCs, and in-
terleaved ADCs [30], [33] may be used to reduce the sam-
pling rate below Nyquist. When the frequency locations of
the transmissions are unknown, a classic processor samples
x(t) at its Nyquist rate fNyq, which can be prohibitively
high. To overcome the sampling rate bottleneck, several
blind sub-Nyquist sampling and recovery schemes have
been proposed that exploit the signal’s structure and in par-
ticular its sparsity in the frequency domain [32], [41]–[44].
It has been shown [61] that the minimal sampling rate for
perfect blind recovery in multiband settings is twice the
Landau rate [64], or twice the occupied bandwidth, namely
fmin = 2 KB = 4NsigB. This rate can be significantly lower
than Nyquist, by orders of magnitude.

In this paper, we focus on one such technique—the
modulated wideband converter (MWC)—that achieves the
lower sampling rate bound. The main advantage of
the MWC is that it overcomes practical issues presented
by other methods, allowing its hardware implementation.
We first describe the MWC sub-Nyquist sampling scheme
and then turn to signal recovery from low rate samples. We

Fig. 2. Spectrum slices of the input signal xC (f ) multiplied by the
coefficients ail of the sensing matrix A, resulting in the measurements

zi (f ) for the ith channel.

begin with a scenario where the radar is silent so that the
signal sensed by the comm receiver is xC(t) and then extend
our approach to include spectrum sensing in the presence
of a known radar signal.

A. Sub-Nyquist Sampling

The MWC [32] is composed of M parallel channels.
In each channel, an analog mixing front end, where xC(t)
is multiplied by a mixing function pi(t), aliases the spec-
trum, such that each band appears in baseband. The mix-
ing functions pi(t) are periodic with period Tp such that
fp = 1/Tp ≥ B and thus have the following Fourier ex-
pansion:

pi(t) =
∞∑

l=−∞
cile

j 2π
Tp

lt
. (13)

In each channel, the signal goes through a low-pass filter
(LPF) with cutoff frequency fs/2 and is sampled at the rate
fs ≥ fp, resulting in the samples zi[n]. Define

N = 2

⌈
fNyq + fs

2fp

⌉
(14)

and Fs = [−fs/2, fs/2]. Following the calculations in
[32], the relation between the known discrete-time Fourier
transform of the samples zi[n] and the unknown XC(f ) is
given by

z(f ) = AxC(f ), f ∈ Fs (15)

where z(f ) is a vector of length N with ith element zi(f ) =
Zi(ej2πf Ts ) and the unknown vector xC(f ) is given by

xCi(f ) = XC(f + (i − N/2�)fp), f ∈ Fs (16)

for 1 ≤ i ≤ N . This relation is illustrated in Fig. 2. The
M × N matrix A contains the known coefficients cil such
that

Ail = ci,−l = c∗
il . (17)
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Fig. 3. Schematic implementation of the MWC analog sampling front-end and digital signal recovery from low rate samples. The CRo inputs are the
comm signal xC (t) and radar support FR . The comm support output FC is shared with the radar transmitter.

The minimal number of channels to recover the K-
sparse vector xC(f ), for f ∈ Fs , dictated by CS results
[31], is M ≥ 2K with fs ≥ B per channel. The overall
sampling rate, given by

ftot = Mfs = M

N
fNyq (18)

with M < N , can thus be as low as fmin = 2KB � fNyq.
The number of branches M determines the total number

of hardware devices and thus governs the level of hardware
complexity. Reducing the number of channels is thus a
crucial challenge for practical implementation of a CRo re-
ceiver. The MWC architecture presents an interesting flex-
ibility property that permits trading channels for sampling
rate, allowing to drastically reduce the number of chan-
nels. Consider a configuration where fs = qfp, with odd q.
In this case, the ith physical channel provides q equations
overFp = [−fp/2, fp/2]. Conceptually, M physical chan-
nels sampling at rate fs = qfp are then equivalent to Mq

channels sampling at fs = fp. The output of each of the
M physical channels is digitally demodulated and filtered
to produce samples that would result from Mq equivalent
virtual branches. This happens in the so-called expander
module, directly after the sampling stage. The number of
channels is thus reduced at the expense of higher sampling
rate fs in each channel and additional digital processing. At
its brink, this strategy allows to collapse a system with M

channels to a single branch with sampling rate fs = Mfp

(further details can be found in [30], [32], and [65]).
The MWC analog mixing front end, shown in Fig. 3,

results in folding the spectrum to baseband with different
weights for each frequency interval. The goal is now to
recover xC(t), or alternatively xC(f ), from the low rate
samples. In the next section, we provide a reconstruction
algorithm that achieves the minimal rate of 2 KB.

B. Signal Recovery

It is interesting to note that (15), which is written in the
frequency domain, is valid in the time domain as well. We
can therefore reconstruct xC(f ) in the frequency domain,

or alternatively, recover xC[n] in the time domain using

z[n] = AxC[n]. (19)

The systems (15) and (19) are underdetermined due to
the sub-Nyquist setup and known as infinite measurement
vectors in the CS literature [30], [31]. With respect to these
two properties, the digital reconstruction algorithm encom-
passes the following three stages [30], [61] that we explain
in more detail below.

1) The continuous-to-finite (CTF) block constructs a finite
frame (or basis) from the samples.

2) The support recovery formulates an optimization prob-
lem whose solution’s support is identical to the support
SC of xC[n], which is the active slices.

3) The signal can then be digitally recovered by reducing
(19) to the support of xC[n].

The recovery of xC[n] for every n or xC(f ) for each
f independently is inefficient and not robust to noise. In-
stead, the support recovery paradigm from [61] exploits the
fact that the bands occupy continuous spectral intervals so
that xC(f ) are jointly sparse for f ∈ Fp, that is they have
the same spectral support SC . The CTF block [61] then
produces a finite system of equations, called multiple mea-
surement vectors (MMV) from the infinite number of linear
systems (15) or (19).

From (15) or (19), we have

Q = 	ZC	H (20)

where

Q =
∫

f ∈Fp

z(f )zH (f )df =
∞∑

n=∞
z[n]zH [n] (21)

is a M × M matrix and

ZC =
∫

f ∈Fp

xC(f )xH
C (f )df =

∞∑

n=−∞
xC[n]xH

C [n] (22)

is a N × N matrix. The matrix Q is then decomposed to
a frame V such that Q = VVH . Clearly, there are many
possible ways to select V. One possibility is to construct it
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by performing an eigendecomposition of Q and choosing V
as the matrix of eigenvectors corresponding to the nonzero
eigenvalues. The finite dimensional MMV system

V = AUC (23)

is then solved for the sparsest matrix UC with minimal
number of nonidentically zero rows using CS techniques
[30], [31]. The key observation of this strategy is that the
support of the unique sparsest solution of (23) is the same
as the support of our original set of equations (15) [61]. Re-
covering UC from (23) can be performed using any MMV
CS algorithm such as simultaneous orthogonal matching
pursuit and simultaneous iterative hard thresholding [31].

Note that xC(f ) is K-sparse for each specific frequency
f ∈ Fp, whereas xC[n] is 2K-sparse since each transmis-
sion can split between two bins, as shown in Fig. 2 for the
blue trapeze. After combining the frequencies, the matrix
UC is 2K-sparse (at most) as well. Therefore, the above-
mentioned algorithm referred to as SBR4 in [61] requires
a minimal sampling rate of 2fmin. In order to achieve the
minimal rate fmin, the SBR2 algorithm regains the factor of
two in the sampling rate at the expense of increased com-
plexity [61]. In a nutshell, SBR2 is a recursive algorithm
that alternates between the CTF described above and a bi-
section process. The bisection splits the original frequency
interval into two equal width intervals on which the CTF is
applied, until the level of sparsity of UC is less or equal to
K . As opposed to SBR4, which may be performed in both
time and frequency, SBR2 can obviously be applied only in
the frequency domain. We refer the reader to [61] for more
details.

Once the support SC is known, the slices of xC(t) are re-
covered either in the frequency or time domain by reducing
the system of equations (15) or (19), respectively, to SC . In
the time domain, we have

x̂SC

C [n] = A†
SC

z[n]

x̂Ci
[n] = 0 ∀i /∈ SC. (24)

Here, xSC

C [n] denotes the vector xC[n] reduced to its support,
ASC

is composed of the columns of A indexed by SC , and †
is the Moore–Penrose pseudoinverse. The occupied comm
support is then given by

FC = {f ||f − (i + N/2�)fp| ≤ fp

2
, for all i ∈ SC}.

(25)

A finer support can be estimated by performing energy
detection on the recovered bands x̂SC

C (f ) for f ∈ Fp. Last,
if needed, the Nyquist rate samples x[n] = x(nTNyq) are
reconstructed by summing the modulated and interpolated
sequences xC[n] to the Nyquist rate as

x[n] =
∑

i∈Sc

(x̂Ci
[n] ∗ hI [n])ej2πfpnTNyq (26)

where hI [n] is the digital interpolation filter. The MWC
sampling and recovery processes are illustrated in Fig. 3.

C. Comm Signal Recovery in the Presence of Radar
Transmission

In the previous section, we considered the scenario
where the radar is silent and only the comm signal xC(t) is
received. Here, we treat a more general setting in which the
received signal is given by

x(t) = xC(t) + xR(t) (27)

where xR(t) = rTX
(t) + rRX

(t) is the radar signal sensed
by the comm receiver, composed of the transmitted and
received radar signals defined in (4) and (5), respectively.
Following the derivations from the previous section, we can
write the sub-Nyquist samples in the Fourier domain as

z(f ) = A(xC(f ) + xR(f )), f ∈ Fs (28)

where

xRi(f ) = XR(f + (i − N/2�)fp), 1 ≤ i ≤ N, f ∈ Fs .

(29)

The equation solved by the CTF then becomes

V = A(UC + UR). (30)

The frequency support FR of xR(t), given by (12), is
known at the comm receiver. From FR , we derive the sup-
port SR of the radar slices xR(f ), which is identical to the
support of UR , such that

SR =
{
n

∣∣∣∣

∣∣∣∣n − f i
R

fp

− N/2�
∣∣∣∣ <

fs + Bi
R

2fp

}
(31)

for 1 ≤ i ≤ Nb. Our goal is then to recover the support
of UC from V, given the known support SR of UR . This
can be formulated as sparse recovery with partial support
knowledge, studied under the framework of modified CS
[66], [67]. From [66], the minimal number of channels
required for the exact reconstruction of the K-sparse matrix
UC is M ≥ 2K + |SR|.

The modified-CS framework has been used to adapt CS
recovery algorithms to exploit partial known support (PKS).
In particular, greedy algorithms, such as orthogonal match-
ing pursuit (OMP) and iterative hard thresholding (IHT)
have been modified to OMP with PKS (OMP-PKS) [68]
and IHT-PKS [69], respectively. In OMP-PKS, instead of
starting with an initial empty support set, one starts with SR

being the initial support set. The remainder of the algorithm
is then identical to OMP. In each iteration of IHT-PKS, the
estimator over the known support is kept and thresholding
is performed only over the complementary support. Algo-
rithm 1 summarizes the resulting sub-Nyquist comm signal
recovery in the presence of radar transmission, using OMP-
PKS for support recovery.

Performance improvement due to modified-CS is only
achieved when the prior knowledge of the signal’s par-
tial support is fairly accurate. In case it is partially er-
roneous, one may consider the sparse Bayesian learning
(SBL) framework that enables to automatically learn the
true support from partially erroneous information. Algo-
rithms such as MBP-DN [70], SA-SBL-SL [71], and CSA-
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Algorithm 1: Cognitive Radio Spectrum Sensing.
Input: Observation vector z(f ), f ∈ Fs , radar

support FR

Output: Comm signal support FC and slices estimate
x̂C[n]

1: Compute the support SR as in (31)
2: Compute Q from (21) and extract a frame V such

that Q = VVH using eigendecomposition
3: Compute the estimate

ÛSR

1 = A†
SR

V, Û1i
= 0, ∀i /∈ SR

4: Compute the residual

V1 = V − ASR
Û1

5: Find the total signal support SR

⋃
SC using OMP

from the second iteration with sampling matrix
A, residual V1 and support SR

6: Find the comm (and radar) slices estimate from

x̂SC

⋃
SR [n] = A†

SC

⋃
SR

z[n],

x̂i[n] = 0, ∀i /∈ SC

⋃
SR

7: Compute the comm signal support FC from (25)

SBL [72] are able to correct the erroneous prior knowledge
on the support FC and learn the clustering pattern of the
true signal.

V. COGNITIVE RADAR

Once the set FC is estimated, the objective of the
radar is to identify an appropriate transmit frequency set
FR ⊂ F \ FC such that the radar’s probability of detection
Pd is maximized. For a fixed probability of false alarm
Pfa, the Pd increases with higher signal-to-interference-
and-noise ratio (SINR) [73]. Hence, the frequency selection
process can, alternatively, choose to maximize the SINR or
minimize the spectral power in the undesired parts of the
spectrum. At the receiver of this spectrum sharing radar,
we employ the sub-Nyquist approach described in [36],
where the delay-Doppler map is recovered from the subset
of Fourier coefficients defined by FR .

A. Optimal Radar Transmit Bands

The REM is assumed to be known to the radar trans-
mitter in the form of typical interfering energy levels with
respect to frequency bands, represented by a vector y ∈ R

q ,
where q is the number of frequency bands with bandwidth
by � |F |/q. The radar measures the REM vector y (in dBm)
in passive mode by sweeping over F . In addition, the in-
formation available from the CRo indicates that the radar
waveform must avoid all the frequencies in the set FC .
Therefore, we further set y to be equal to ∞ in the bands that
coincide with FC . The goal is now to select subbands from
the set F \ FC with minimal interference energy. We thus
seek a block-sparse frequency vector w ∈ R

p with unknown
block lengths, where p is the number of discretized frequen-

cies, and whose support provides frequency bands with low
interference for the radar transmission. Each entry of w
represents a frequency subband of bandwidth bw � |F |/p.

To this end, we use the structured sparsity framework
from [74] that extends standard sparsity regularization to
structured sparsity. We adopt the one-dimensional graph
sparsity structure to represent frequencies. The p nodes are
the ordered entries of w, so that neighbor nodes are indexed
by adjacent frequency bands. Block sparsity is enforced by
encouraging the graph to contain connected regions, which,
in the context of our problem, correspond to low inference
frequency subbands for radar transmission. In contrast to
traditional block-sparsity approaches [31], this formulation
does not require a priori knowledge on the location of the
nonzero blocks. This is achieved by replacing the traditional
sparse recovery 
0 constraint by a more general term c(w),
referred to as the coding complexity, such that

c(w) = min
F

{c(F )|supp(w) ⊂ F } (32)

where F ⊂ {1, . . . , p} is a sparse subset of the index set
of the coefficients of w. That is, F is the set of chosen
frequencies. In particular, for graph sparsity, the choice of
c(F ) is simply

c(F ) = g log p + |F | (33)

where g is the number of connected regions, or blocks, of
F , namely radar subbands. This coding complexity, which
accounts for both the number of discretized frequencies
|F | and the number of connected regions g, favors blocks
within the graph.

The resulting optimization problem for finding the
block-sparse frequency vector w can then be expressed as

min
w

||yinv − Dw||22 + λc(w) (34)

where λ is a regularization parameter and c(w) is defined
in (32) with c(F ) in (33). Here, yinv contains elementwise
reciprocals of y, namely (yinv)i = 1/yi , so that small values
in yinv induce corresponding zero blocks in w, and D is a
q × p matrix that maps each discrete frequency in w to the
corresponding band in yinv. That is, the (i, j )th entry of D
is equal to 1 if the j th frequency in w belongs to the ith
band in y; otherwise, it is equal to 0. If we choose p = q,
then D = I is the q × q identity matrix.

Problem (34) can be solved using a structured greedy
algorithm, structured OMP (StructOMP), presented in [74]
and adapted to our setting in Algorithm 2. In [74], the al-
gorithm proceeds by greedily adding blocks one at a time
to reduce the loss, scaled by the cost of the added block.
Here, we consider single element blocks for simplicity but
larger blocks can be considered to increase the algorithm’s
effectiveness. In the original StructOMP [74], the stopping
criterion is based on additional a priori information on the
overall sparsity and number of nonzero blocks. We adopt
an alternative stopping criterion, based only on the num-
ber of blocks, which is known to be equal to Nb in our
problem. This leads to Nb bands in FR as dictated by the
hardware constraints. Besides the requirement on the num-
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Algorithm 2: Cognitive Radar Band Selection.
Input: REM vector y and subbands bandwidth

by = |F |/q, shared support F , comm support
FC , mapping matrix D, number of discretized
frequencies p, number of bands Nb

Output: Block-sparse vector w, radar support FR

1: Set yi = ∞, for all 1 ≤ i ≤ q such that [iby−
|F |/2, (i + 1)by − |F |/2]

⋂FC �= ∅ and
compute (yinv)i = 1/yi

2: Initialization F0 = ∅, w = 0, t = 1
3: Find the index λt so that λt = arg max φ(i), where

φ(i) = ||Pi(Dŵt−1 − yinv)||22
c(i
⋃

Ft−1) − c(Ft−1)

with Pi = Di(DT
i Di)†DT

i

4: Augment index set Ft = λt

⋃
Ft−1

5: Find the new estimate

ŵt |Ft
= D†

Ft
yinv, ŵt |FC

t
= 0

6: If the number of blocks, or connected regions,
g(w) > Nb, go to step 7. Otherwise, return to
step 3

7: Remove the last index λt so that Ft = Ft−1 and
ŵt = ŵt−1

8: Compute the radar support

FR =
⋃

j∈Ft

[jbw − |F |/2, (j + 1)bw − |F |/2]

with bw = |F |/p

ber of blocks to be Nb, the total bandwidth |FR| should be
large enough to fulfill (42), as explained in the next section.
In case the Nb bands are reached and the total bandwidth is
not satisfied, then the minimum size of the bands must be
changed and a new search should be initiated.

In the above, additional requirements of transmit power
constraints, range sidelobe levels, and minimum separation
between the bands may also be imposed and, if needed,
alternative block-SBL algorithms that require none (e.g.,
Cluss-MCMC [75], [76] and DGS [77]) or very little a pri-
ori knowledge (e.g., B-SBL [78], Cluster-SBL [79], and
PC-SBL [80]) can be used. These methods yield more ac-
curate solutions at the cost of execution time. Once the
support FR is identified, a suitable waveform code may be
designed using optimization procedures described by, e.g.,
[22] and [25].

B. Delay-Doppler Recovery

We now turn to the radar receiver design and describe
how a delay-Doppler map can be recovered from only Nb

transmitted narrow bands. The radar receiver first filters the
CRr subbands supported on FR given by (12) and computes
the Fourier coefficients of the received signal. The width of
the subbands is determined by the search process described
in the previous section. The maximum width is limited by
the passband response of the receive filters.

Fig. 4. Sum of exponents |g(ν|νl)| for P = 200, τ = 1 s and νl = 0.

Consider the Fourier series representation of the aligned
frames r

p

RX
(t + pτ ), with r

p

RX
(t) defined in (7)

cp[k] =
∫ τ

0
r

p

RX
(t + pτ )e−j2πkt/τ dt

= 1

τ
H [k]

L−1∑

l=0

αle
−j2πkτl/τ e−jνlpτ (35)

for k ∈ κ , where κ =
{
k =

⌊
f

fNyq
N
⌋∣∣∣ f ∈ FR

}
. From

(35), we see that the unknown parameters {αl, τl, νl}L−1
l=0

are embodied in the Fourier coefficients cp[k]. The goal is
then to recover these parameters from cp[k] for k ∈ κ and
0 ≤ p ≤ P − 1.

To that end, we adopt the Doppler focusing approach
from [36]. Consider the DFT of the coefficients cp[k] in the
slow time domain

�̃ν[k] =
P−1∑

p=0

cp[k]ejνpτ

= 1

τ
H [k]

L−1∑

l=0

αle
−j2πkτl/τ

P−1∑

p=0

ej (ν−νl )pτ . (36)

The key to Doppler focusing follows from the approxima-
tion

g(ν|νl) =
P−1∑

p=0

ej (ν−νl )pτ ≈
{

P |ν − νl| < π/Pτ

0 |ν − νl| ≥ π/Pτ
(37)

as illustrated in Fig. 4. Denote the normalized focused mea-
surements �ν[k] so that

�ν[k] = τ

PH[k]
�̃ν[k]. (38)

As in traditional pulse-Doppler radar, suppose we limit
ourselves to the Nyquist grid so that τl/τ = rl/N , where
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Algorithm 3: Cognitive Radar.
Input: Observation vectors cp[k], for all 0≤p≤p − 1

and k ∈ κ , probability of false alarm Pfa, noise
variance σ 2, transmitted power PT , total
transmitted bandwidth |FR|

Output: Estimated target parameters {α̂l, τ̂l, ν̂l}L−1
l=0

1: Create � from cp[k] using the fast Fourier
transform (FFT) (36), for k ∈ κ and ν = −1/(2τ )
+p/(Pτ ) for 0 ≤ p ≤ P − 1

2: Compute detection thresholds

ρ = PT

σ 2|FR| , γ = Q−1
χ2

2 (ρ)
(1 − N

√
1 − Pfa)

3: Initialization: residual R0 = �, index set �0 = ∅,
t = 1

4: Project residual onto measurement matrix:

	 = FH
κ Rt−1

5: Find the two indices λt = [λt (1) λt (2)] such that

[λt (1) λt (2)] = arg maxi,j

∣∣	i,j

∣∣

6: Compute the test statistic

� = (Fκ )λt (1)((Rt−1)λt (2))H ((Fκ )λt (1))H (Rt−1)λt (2)

σ 2

where (M)i denotes the ith column of M
7: If � > γ continue, otherwise go to step 12
8: Augment index set �t = �t

⋃{λt }
9: Find the new signal estimate

X̂t |�t
= (Fκ )†�t

�, X̂t |�C
t

= 0

10: Compute new residual

Rt = � − (Fκ )�t
X̂

11: Increment t and return to step 4
12: Estimated support set �̂ = �t

13: τ̂l = τ
N

�̂(l, 1), ν̂l = 1
Pτ

�̂(l, 2), α̂l = X̂�̂(l,1),�̂(l,2)

rl is an integer satisfying 0 ≤ rl ≤ N − 1. Then, (38) can
be approximately written in vector form as

�ν = Fκxν (39)

where �ν = [�ν[k0], . . . , �ν[kK−1]] , ki ∈ κ for 0 ≤ i ≤
K − 1, Fκ is composed of the K rows of the N × N Fourier
matrix indexed by κ , and xν is a L-sparse vector that con-
tains the values αl at the indices rl for the Doppler fre-
quencies νl in the “focus zone,” that is |ν − νl| < π/Pτ .
It is convenient to write (39) in matrix form, by vertically
concatenating the vectors �ν , for ν on the Nyquist grid,
namely ν = − 1

2τ
+ 1

Pτ
, into the K × P matrix �, as

� = FκX. (40)

The P equations (39) can be solved simultaneously using
Algorithm 3, where in each iteration, the maximal pro-
jection of the observation vectors onto the measurement
matrix are retained. The algorithm termination criterion

follows from the generalized likelihood ratio test (GLRT)
based framework presented in [81]. For each iteration, the
alternative and null hypotheses in the GLRT problem define
the presence or absence of a candidate target, respectively.
In the Algorithm, Qχ2

2 (ρ) denotes the right-tail probability
of the chi-square distribution function with two degrees of
freedom, �C is the complementary set of � and

ρ = PT

σ 2|FR| (41)

is the SNR with σ 2 the noise variance and PT defined in
(10).

The following theorem from [36] derives a necessary
condition on the minimal number of samples K and pulses
P for perfect recovery in a noiseless environment.

THEOREM 1 (SEE [36]): The minimal number of samples
required for perfect recovery of {αl, τl, νl} with L targets in
a noiseless environment is 4L2, with K ≥ 2L and P ≥ 2L.

Theorem 1 translates into requirements on the total
bandwidth of the transmitted bands, such that

Btot = N

Nb∑

i=1

⌈
Bi

r

Bh

⌉
≥ 2L. (42)

It is further shown in [36] that Doppler focusing in-
creases the per-target SNR by P times. This linear scaling
is similar to that obtained by using a matched filter. For the
specific case of time delay estimation, Mishra and Eldar
[63] compare the performance of conventional and CRrs
using the extended Ziv-Zakai lower bound (EZB). In a con-
ventional radar, the EZB for a single target delay estimate
τ̂0 is

EZBR(τ̂0) = σ 2
τ0

· 2Q

(√
SNR

2

)
+

�3/2

(
SNR

4

)

SNR · F
2 (43)

where Q(·) denotes the right-tail Gaussian probability func-
tion, �a(b) is the incomplete gamma function with param-
eter a and upper limit b, and F is the root-mean-square
(rms) bandwidth of the full-band signal. The correspond-
ing bound for a CRr is [63]

EZBCRr(τ̂0) = σ 2
τ0

· 2Q

⎛

⎝

√
S̃NR

2

⎞

⎠+
�3/2

(
S̃NR

4

)

∑Nb

i=1 SNRi · F 2
i

(44)

where SNRi and Fi are the in-band SNR and rms bandwidth
of the ith subband and S̃NR is the total SNR. As noted in
[63], since

∑Nb

i=1 Bi
r ⊂ Bh, we have S̃NR > SNR for a given

power PT . Therefore, the SNR threshold for asymptotic
performance of EZBCRr is lower than EZBR . As the noise
increases and power remains constant for both radars, the
asymptotic performance of EZBCRr is more tolerant to the
noise than EZBR .

The multiband design strategy, besides allowing a dy-
namic form of the transmitted signal spectrum over only
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Algorithm 4: Spectral Coexistence via Xampling
(SpeCX).
Input: Comm signal xC(t)
Output: Estimated target parameters {α̂l, τ̂l , ν̂l}L−1

l=0
1: Initialization: perform spectrum sensing at the

receiver on xC(t) using Algorithm 1 with SR = ∅
2: Choose the least noisy subbands for the radar

transmit spectrum with respect to detected FC

using Algorithm 2
3: Communicate the transmitted radar signal support

FR to the comm and radar receivers
4: Perform target delay and Doppler estimation

using Algorithm 3
5: Perform spectrum sensing at the comm receiver

on x(t) = xC(t) + xR(t) using Algorithm 1
6: If FC changes, then the radar transmitter goes

back to step 2

a small portion of the whole bandwidth to enable spec-
trum sharing, has two additional advantages. First, as we
show in hardware experiments (see Section VI.B), our CS
reconstruction achieves the same resolution as traditional
Nyquist processing over a significantly smaller bandwidth.
Second, since we only use narrow bands to transmit, the
entire power is concentrated in them. Therefore, the SNR
in the sampled bands is improved.

Our resulting spectrum sharing SpeCX framework is
summarized in Algorithm 4.

VI. SOFTWARE AND HARDWARE EXPERIMENTS

In this section, we present software and hardware simu-
lations to illustrate our SpeCX framework. Software exper-
iments illustrate the comm band detection performance of
the CRo and target detection by the CRr. Hardware simula-
tions demonstrate a practical implementation of the SpeCX
system.

A. Software Simulations

To test the radio receiver, we consider a comm sig-
nal composed of Nsig = 2 transmissions and a radar sig-
nal composed of Nb = 4 bands with known support. The
Nyquist rate is fNyq = 10 GHz. Each comm transmission
has a two-sided bandwidth Bi

c = 50 MHz and is modu-
lated with a carrier f i

c drawn uniformly at random be-
tween ±fNyq/2 = ±5 GHz. The CRo receiver is com-
posed of M = 25 analog channels, each sampling at rate
fs = 154 MHz and with K = 91 samples per channel. This
leads to N = 195 spectral bands. Fig. 5 shows the perfor-
mance of the detector for different values of the SNR, where
the probability of detection is computed as the ratio of the
correctly detected support. It can be seen that OMP-PKS,
which exploits the knowledge of the radar signal’s support,
outperforms traditional OMP, as expected. The figures also
present the performance of the comm receiver using OMP
while the radar is silent. It can be seen that at low SNRs,
the performance of OMP for both cases where the radar

Fig. 5. Detection performance of the comm receiver in the presence of
a radar signal with known support.

is present or absent is similar. In this regime, OMP-PKS
outperforms both due to the additional knowledge about
the radar support, whereas in the setting where the radar
is silent, these bands are noisy, impairing OMP’s perfor-
mance. At high SNRs, the performance of OMP with a
silent radar is the best. In this scenario, all bands that are
not occupied by comm signals are close to empty. When the
radar transmits, even though OMP-PKS has prior knowl-
edge about the radar support, the signal itself is unknown
as the received radar echoes from the targets are partially
unknown (see step 6 Algorithm 1), so that the detection
performance is a little lower than that of the silent radar
case.

For the radar receiver, we consider a transmission with
Nb = 4 spectral bands, each of bandwidth 81 kHz, yield-
ing a total bandwidth of 324 kHz. We consider 4 combi-
nations of transmit subbands with the frequency ranges,
in kilohertz, of ([1–81], [8–162], [1663–1743], [1744–
1824]), ([1–81], [582–662], [1663–1743], [1744–1824]),
([1–81], [82–162], [663–743], [1744–1824]), and ([1–81],
[82–162], [163–243], [1744–1824]). For comparison, we
simulate a wideband Nyquist pulse Doppler radar transmit-
ting over a bandwidth Bh = 1.62 MHz. The CRr thus trans-
mits over only 20% of the wideband. We consider P = 100
pulses with PRI τ = 10 μs. We use a hit-or-miss criterion as
performance metric. A “hit” is defined as a delay-Doppler
estimate circumscribed by an ellipse around the true tar-
get position in the time–frequency plane. We used ellipses
with axes equivalent to ±3 times the time and frequency
Nyquist bins, defined as 1/Bh and 1/P τ , respectively. Fig. 6
shows the hit rate performance of our recovery method for
the four different combinations of the transmitted spectral
subbands, which outperforms traditional wideband radar
transmission and processing. Obviously, transmitting over
adjacent bands ([1–324] kHz) yields poor results.

B. Hardware Demo

The SpeCX prototype, shown in Fig. 7, is composed of
a CRo receiver and a CRr transceiver. The CRo hardware
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Fig. 6. Hit rate of multiband versus wideband radar. For the multiband
configuration, the hit rate of four different combinations of transmit

bands chosen at random, each with bandwidth 81 kHz, is shown, as well
as that of four adjacent bands. The wideband radar transmits over a

bandwidth of Bh = 1.62 MHz.

Fig. 7. Shared spectrum prototype. The system is composed of a signal
generator, a CRo comm analog receiver including the MWC analog
front-end board and the FPGA mixing sequences generator, a comm

digital receiver, a CRr analog, and digital receiver.

realizes the system shown in Fig. 3. At the heart of the
system lies our proprietary MWC board [65] that imple-
ments the sub-Nyquist analog front-end receiver. The card
first splits the wideband signal into M = 4 hardware chan-
nels, with an expansion factor of q = 5, yielding Mq = 20
virtual channels after digital expansion. In each channel,
the signal is then mixed with a periodic sequence pi(t),
generated on a dedicated FPGA, with fp = 20 MHz. The
sequences are chosen as truncated versions of Gold Codes
[82], commonly used in telecommunication (CDMA) and
satellite navigation (GPS). These were heuristically found
to give good detection results in the MWC system [83],
primarily due to small bounded cross correlations within a
set. This is useful when multiple devices are broadcasting
in the same frequency range.

Next, the modulated signal passes through an analog
antialiasing LPF. Specifically, a Chebyshev LPF of seventh
order with a cutoff frequency (−3 dB) of 50 MHz was
chosen for the implementation. Finally, the low rate analog
signal is sampled by a National Instruments ADC operat-
ing at fs = (q + 1)fp = 120 MHz (with intended oversam-
pling), leading to a total sampling rate of 480 MHz. The

digital receiver is implemented on a National Instruments
PXIe-1065 computer with dc coupled ADC. Since the dig-
ital processing is performed at the low rate 120 MHz, very
low computational load is required in order to achieve real-
time recovery. MATLABand LabVIEW platforms are used
for the various digital recovery operations.

The prototype is fed with RF signals composed of up to
Nsig = 5 real comm transmissions, namely K = 10 spectral
bands with total bandwidth occupancy of up to 200 MHz
and varying support, with Nyquist rate of 6 GHz. Specifi-
cally, to test the system’s support recovery capabilities, an
RF input is generated using vector signal generators, each
producing a modulated data channel with individual band-
width of up to 20 MHz and carrier frequencies ranging from
250 MHz up to 3.1 GHz. The input transmissions then go
through an RF combiner, resulting in a dynamic multiband
input signal, that enables fast carrier switching for each of
the bands. This input is specially designed to allow testing
the system’s ability to rapidly sense the input spectrum and
adapt to changes, as required by modern CRo and shared
spectrum standards, e.g., in the SSPARC program. The sys-
tem’s effective sampling rate, equal to 480 MHz, is only 8%
of the Nyquist rate and 2.4 times the Landau rate. This rate
constitutes a relatively small oversampling factor of 20%
with respect to the theoretical lower sampling bound. The
main advantage of the Xampling framework, demonstrated
here, is that sensing is performed in real time from sub-
Nyquist samples for the entire spectral range, which results
in substantial savings in both computational and memory
complexity.

Support recovery is digitally performed on the low rate
samples. The prototype successfully recovers the support
of the comm transmitted bands, as demonstrated in Fig. 8.
Once the support is recovered, the signal itself can be re-
constructed from the sub-Nyquist samples in real time. We
note that the reconstruction does not require interpolation to
the Nyquist rate and the active transmissions are recovered
at the low rate of 20 MHz, corresponding to the bandwidth
of the slices z(f ).

By combining both spectrum sensing and signal re-
construction, the MWC prototype serves as two separate
comm devices. The first is a state-of-the-art CRo that per-
forms real-time spectrum sensing at sub-Nyquist rates, and
the second is a unique receiver able to decode multiple data
transmissions simultaneously, regardless of their carrier fre-
quencies, while adapting to spectral changes in real time.

The CRr system [36]–[38] includes a custom made sub-
Nyquist radar receiver board composed of Nb = 4 parallel
channels that sample Nb = 4 distinct bands of the radar sig-
nal spectral content. In the ith channel, the transmitted band
with center frequency f i

r and bandwidth Bi
r = 80 kHz is fil-

tered, demodulated to baseband, and sampled at 250 kHz
(with intentional oversampling). This way, four sets of con-
secutive Fourier coefficients are acquired. More details on
the hardware design can be found in [38]. After sampling,
the spectrum of each channel output is computed via FFT
and the 320 Fourier coefficients are used for digital recov-
ery of the delay-Doppler map [36]. The prototype simulates
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Fig. 8. SpeCX comm system display showing (a) low rate samples acquired from one MWC channel at rate 120 MHz and (b) digital reconstruction
of the entire spectrum from sub-Nyquist samples.

transmission of P = 50 pulses towards L = 9 targets. The
CRr transmits over Nb = 4 bands, selected according to
the procedure presented in Section V-A, after the spec-
trum sensing process has been completed by the comm
receiver. We compare the target detection performance of
our CRr with a traditional wideband radar with bandwidth
Bh = 20 MHz. The CRr transmitted bandwidth is thus equal
to 3.2% of the wideband.

Fig. 9 shows windows from the GUI of our CRr sys-
tem. Fig. 9(a) illustrates the coexistence between the radar
transmitted bands in red and the existing comm bands in
white. The gain in power is demonstrated in Fig. 9(b); the
wideband radar spectrum is shown in blue, our CRr in red,
and the noise in yellow in a logarithmic scale. The true and
recovered range-Doppler maps for the CRr whose trans-
mit signal consists of four disjoint subbands are shown
in Fig. 9(c). All nine targets are perfectly recovered and
clutter, shown in yellow, is discarded. Fig. 9(d) shows the
performance when the four subbands are joined together to
result in a 320-kHz contiguous band for the radar transmit-
ter. There are many missed detections and false alarms in
this case.

Let the true and estimated ranges of the ith target be di

and d̂i , respectively. Then, the root-mean-square localiza-
tion error (RMSLE) of L targets is given by

RMSLE =
√√√√ 1

L

L∑

i=1

(di − d̂i)2. (45)

In Fig. 9(c) and (d), the RMSLE is shown as follows: CRr
(0.34 km), 320-kHz band or four adjacent bands with same
bandwidth (8.1km), and wideband (1.2km). The poor reso-
lution of the four adjacent bands scenario is due to its small
aperture. The native range resolution in case of 2-MHz
wideband scenario is 75 m. In Fig. 9(c), the CRr is able

Fig. 9. SpeCX radar display showing (a) coexisting comm and CRr and
(b) CRr spectrum compared with the full-band radar spectrum. The

range-Doppler display of detected and true locations of the targets for the
case of (c) CRr (four disjoint bands) and (d) all four transmit subbands

together forming a contiguous 320-kHz band.

to detect nine targets at locations 6.097, 31.764, 35.046,
35.451, 35.479, 81.049, 81.570, 121.442, and 120.922 km.
Here, the distance between two closely spaced targets is
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less than 75 m. This empirically shows that our CRr sys-
tem with nonadjacent bands yields better resolution than
the traditional wideband scenario.

VII. SUMMARY

Our SpeCX model proposes a comm and radar spectral
coexistence approach through the well-established theory
of Xampling. We demonstrated that the two networks can
actively cooperate through handshaking of information on
the RF environment and optimize their performances. Un-
like previous approaches, we presented a complete solution
that shows signal recovery in both systems with minimal
known information about the spectrum. We showed that the
SpeCX is practically feasible through the development and
real-time testing of our hardware prototype.

Some elements of the signal model that were not
considered in this paper include performance of the
comm receiver when the radar signal is also contaminated
with clutter and hostile jamming. Extensions to MIMO
radar–comm spectrum sharing as described by [14] are also
interesting. Here, we may utilize the cognitive sub-Nyquist
MIMO radar developed in [84]. It would also be useful
to incorporate additional optimization constraints into the
radar waveform design.
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