
982 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 4, FEBRUARY 15, 2018

On Fienup Methods for Sparse Phase Retrieval
Edouard Jean Robert Pauwels , Amir Beck, Yonina C. Eldar, Fellow, IEEE, and Shoham Sabach

Abstract—Alternating minimization, or Fienup methods, have
a long history in phase retrieval. We provide new insights related
to the empirical and theoretical analysis of these algorithms when
used with Fourier measurements and combined with convex pri-
ors. In particular, we show that Fienup methods can be viewed as
performing alternating minimization on a regularized nonconvex
least-squares problem with respect to amplitude measurements.
Furthermore, we prove that under mild additional structural as-
sumptions on the prior (semialgebraicity), the sequence of sig-
nal estimates has a smooth convergent behavior toward a critical
point of the nonconvex regularized least-squares objective. Finally,
we propose an extension to Fienup techniques, based on a pro-
jected gradient descent interpretation and acceleration using iner-
tial terms. We demonstrate experimentally that this modification
combined with an �1 prior constitutes a competitive approach for
sparse phase retrieval.

Index Terms—Non-convex optimization, iterative algorithms,
phase retrieval, sparse signal processing, Fourier measurements.

I. INTRODUCTION

PHASE retrieval is an old and fundamental problem in a va-
riety of areas within engineering and physics [1], [2]. Many

applications of the phase retrieval problem involve estimation
of a signal from the modulus of its Fourier measurements. This
problem is ill posed in general, so that uniqueness and recov-
ery typically require prior knowledge on the input, particularly
in one-dimensional problems. Here we focus on the estimation
of real sparse signals from their Fourier magnitude, a problem
which has been treated in several recent works [3]–[6].

A longstanding line of algorithms to tackle the phase re-
trieval problem involve application of the alternating minimiza-
tion method which alternate between the constraints in time and
the Fourier magnitude constraints [7]–[9]. These methods were
pioneered by the work of Gerchberg and Saxton and later ex-
tended by Fienup; see [10] for an optimization point of view
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Toulouse III Paul Sabatier, Toulouse 31062, France (e-mail: epauwels@irit.fr).

A. Beck is with the School of Mathematical Sciences, Tel Aviv University,
Tel Aviv 6997801, Israel (e-mail: becka@tauex.tau.ac.il).

Y. C. Eldar is with the Department of Electrical Engineering, Technion—
Israel Institute of Technology, Haifa 3200003, Israel (e-mail: yonina@ee.
technion.ac.il).

S. Sabach is with the Department of Industrial Engineering, Technion—
Israel Institute of Technology, Haifa 3200003, Israel (e-mail: ssabach@ie.
technion.ac.il).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2017.2780044

on these techniques and a rich historical perspective. Relations
with saddle point optimization and alternating direction meth-
ods of multipliers were also considered in [11], [12]. Alternat-
ing minimization approaches have also been recently applied
to phase retrieval from random measurements [13], [14]. The
main advantage of this class of algorithms is their simplicity and
scalability.

A more recent approach to phase retrieval is to formulate the
recovery as a smooth nonconvex least-squares estimation prob-
lem and use dedicated techniques to estimate the signal using
continuous optimization algorithms that guarantee convergence
to critical points. The GESPAR algorithm [4] is an example of
this approach which is based on the Gauss-Newton method cou-
pled with sparsity priors. For phase retrieval with random mea-
surements, gradient descent methods have been proposed and
analyzed such as Wirtinger flow [15] and truncated amplitude
flow [16]. Both treat least-squares objectives where Wirtinger
flow measures the loss with respect to the squared-magnitude of
the measurements while the amplitude flow approach performs
a truncated gradient descent on an amplitude objective. Another
line of work suggests the use of matrix lifting and semidefi-
nite programming based relaxations [6], [17]–[20]. These tech-
niques are limited by the size of problems that can be tackled
using available numerical solvers.

Our main contribution is to propose a new look at alternating
minimization algorithms for phase retrieval in the context of
Fourier measurements and convex priors. We refer collectively
to these techniques as Fienup methods. The use of Fourier mea-
surements is less flexible than general measurements and is less
suited for statistical analysis due to its strong structure. This
renders the phase retrieval problem from Fourier measurements
harder to solve than from random unstructured measurements.
On the other hand, the strong structure of the Fourier trans-
form can be exploited for richer algorithmic construction and
analysis.

As a first step we provide two new interpretations of Fienup
algorithms. First we show that these techniques are naturally
linked to a nonsmooth nonconvex least-squares problem with
respect to an amplitude objective. Fienup approaches can then be
understood as majorization-minimization methods for solving
this problem. Second, we demonstrate that Fienup algorithms
can be viewed as a projected gradient descent scheme to min-
imize a smooth convex objective function over a nonconvex
constraint set. This observation allows to characterize the be-
havior of the algorithm and develop extensions based on known
ideas for accelerating gradient methods using inertial terms [21].
We then specialize these results to the case of �0 and �1 priors,
leading to a new inertial gradient scheme, which we refer to as
FISTAPH: FISTA for PHase retrieval.

On the theoretical side, we show that if the convex prior is well
structured (semi-algebraic or more generally representable),
then the sequence of signal estimates produced by Fienup has

1053-587X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8180-075X


PAUWELS et al.: ON FIENUP METHODS FOR SPARSE PHASE RETRIEVAL 983

a smooth convergence behavior, independently of the initial-
ization. Recall that, broadly speaking, an object is said to be
semi-algebraic if it can be represented by systems of polyno-
mial inequalities. The notion of smooth convergence is a very
desirable property, even more in nonconvex settings where it
is usually not possible to obtain global convergence estimates.
We emphasize that this result goes beyond more usual proper-
ties of the set of accumulation points as it states that the set of
accumulation points is actually a singleton. Our convergence
analysis follows well established techniques from tame opti-
mization [22], [23]. These techniques build upon the Kurdyka-
Łojasiewicz (KL) property which holds for many classes of
functions [24]–[27]. We then provide numerical experiments
based on synthetic problems to compare Fienup with �0 and
�1 priors, GESPAR [4], Wirtinger flow (or gradient) methods
[15] with �0 and �1 priors and FISTAPH. Numerical results sug-
gest that the latter combined with an �1 prior constitutes a very
competitive alternative for sparse phase retrieval.

The rest of the paper is organized as follows. Section II intro-
duces our notation and states the problem of interest more for-
mally. We also introduce several mathematical definitions that
are required for the rest of the paper and review the numerical
algorithms that are used in subsequent sections. Section III de-
scribes our characterization of Fienup methods in the context of
phase retrieval from Fourier measurements with convex priors.
We detail the relation of Fienup with a nonsmooth nonconvex
least-squares problem as well as its interpretation as projected
gradient descent. Our main convergence result and FISTAPH
algorithm are presented in Section IV. Simulation results are
provided in Section V.

II. PROBLEM FORMULATION AND MATHEMATICAL

BACKGROUND

A. Notation

Throughout the paper vectors are denoted by boldface let-
ters. For a vector x ∈ Cn , x[i] is the i-th entry of x, i =
1, 2, . . . , n and supp(x) is the support of x, namely, the set
{i = 1, 2, . . . n; x[i] �= 0}. Furthermore, ‖x‖0 counts the num-
ber of nonzero entries of the vector x: ‖x‖0 = |supp(x)| and
‖x‖p denotes the �p norm of x for p ∈ R+ . The notations | · |,
Re(·), Im(·) and ·̄ describe the modulus, real part, imaginary part
and complex conjugate, respectively, defined over the field of
complex numbers. If their argument is a vector, then they should
be understood component-wise. Similarly, basic operations, e.g.
powers, are taken component-wise when applied to vectors. For
x ∈ Cn and N ∈ N, F(x, N) ∈ CN is the vector composed of
the N first coefficients of the discrete Fourier transform of x
(obtained by zero padding if n < N ). For simplicity, we use the
shorthand notation F(x) = F(x, n) to denote the standard dis-
crete Fourier transform of x ∈ Cn andF−1 to denote its inverse.
For a set S, δS : S → R ∪ {+∞} is the indicator function of S
(0 if its argument is in S, +∞ otherwise) and PS denotes the
orthogonal projection onto the set S.

B. Phase Retrieval

Given x0 ∈ Rn , we consider measurements

c = |F(x0)| + ε, (1)

where ε ∈ Rn is an unknown vector of errors. In the rest of the
paper, we assume that c has positive entries (it is always possible
to set the potential negative entries of c to zero). The phase
retrieval problem consists of producing an estimate x̂ ∈ Rn of
x0 based solely on the knowledge of c given by (1).

As mentioned in the introduction, phase retrieval of one-
dimensional vectors from Fourier measurements requires the
use of prior knowledge. We focus on support and sparsity in-
ducing priors. For J ⊆ {1, 2, . . . , n}, we define the set XJ =
{x ∈ Rn ; supp(x) ⊆ J}. The prior function that we use will
be denoted by g : Rn → R ∪ {+∞}. We focus on the following
two priors (for a given support J):

� g : x 	→ ‖x‖0 + δXJ
(x), or �0-based nonconvex prior.

� g : x 	→ ‖x‖1 + δXJ
(x), or �1-based convex prior.

In the experimental section, we compare between these two
classes of priors. The algorithmic derivations in this paper will
be made under the assumption that g is proper and lower semi-
continuous, and the main convergence result (c.f. Theorem 4.1)
will require in addition the convexity of g. In order to efficiently
implement the proposed algorithm, we need to focus on priors
for which the proximity operator [28] is easy to compute. We
provide several examples of such priors in Section II-D.

In the rest of the paper, c ∈ Rn
+ denotes modulus measure-

ments which are assumed to be given, fixed and obtained through
(1). Given c ∈ Rn

+ , we define Zc = {z ∈ Cn ; |F(z)| = c} as
the set of vectors z that could have produced c (ignoring the
noise). To estimate x0 , we consider the regularized least-squares
problem

min
x∈Rn ,z∈ Zc

1
2
‖x − z‖2

2 + g(x), (2)

where g encodes the prior knowledge. Our algorithmic approach
consists of employing an alternating minimization method, or
one of its variants, to solve the above formulation. Note that if
g = 0, then problem (2) has multiple solutions.

C. Prior Algorithms for Phase Retrieval

We briefly review several existing algorithms for phase re-
trieval that will be used in our experiments in Section V.

One approach to sparse phase retrieval is the GESPAR algo-
rithm which is based on the damped Gauss-Newton method in
conjunction with an �0 prior [4]. Damped Gauss-Newton allows
to solve smooth, nonlinear least-squares problems. The work
of [15] is based on the notion of Wirtinger derivatives to treat
the same smooth least-squares problem as GESPAR. The no-
tion of Wirtinger derivative is needed since the objective is not
differentiable (holomorphic) as a function of complex variables
(see [15] for details). In the case of real valued functions of real
variables, the Wirtinger derivative reduces to a standard gradient
(up to a constant multiplicative factor). An obvious extension of
these types of methods is the use of proximal decomposition, or
forward-backward methods which consist of alternating a gradi-
ent step on the smooth part of the objective with a proximal step
on the nonsmooth part [21], [29]. This is the approach that we use
in the numerical experiments to treat phase retrieval with priors.

Finally, we consider alternating minimization methods that
are the main focus of this work. This approach consists of solv-
ing (2) by applying the alternating minimization algorithm. The
special structure of the problem allows to perform each partial
minimization efficiently. In particular, the projection onto Zc is
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easy, as described below in (5). These types of methods are also
referred to as Fienup algorithms. A deeper interpretation of this
approach is given in Section III.

D. Tools from Convex and Nonsmooth Analysis

Throughout the paper, our results will be based on tools from
convex and nonsmooth analysis which we review here.

The gradient of a differentiable function f is denoted by ∇f .
This concept admits extensions to nonsmooth analysis; the sub-
gradient of a nonsmooth function g is denoted by ∂g. For con-
vex functions, subgradients correspond to tangent affine lower
bounds. This definition no longer holds for nonconvex functions.
In this case, the proper understanding of subgradients involves
much more machinery which will not be discussed here. We
only consider the notion of a Fréchet critical point which gener-
alizes classical first order criticality for differentiable functions
(see [30]).

Definition 1 (Fréchet critical point): Let S ⊆ Rn be a
closed set and f : Rn → R be a lower semicontinuous func-
tion. We say that x̄ ∈ S is a Fréchet critical point of the problem

min
x∈ S

f(x)

if

lim inf
x → x̄
x �= x̄
x ∈ S

f(x) − f(x̄)
‖x − x̄‖ ≥ 0.

In other words, the negative variations of f in S around x̄ are
negligible at the first order.

We will also heavily use the notion of the proximity operator
of a function.

Definition 2 (Proximity operator): For a nonsmooth func-
tion g : Rn → R ∪ {+∞}, the (potentially multivalued) prox-
imity operator is denoted by proxg and defined by

proxg (x) ≡ argmin
y∈Rn

{
1
2
‖x − y‖2

2 + g(y)
}

. (3)

Note that when g is proper lower semicontinuous and convex,
this operator is single valued.

We next provide a few examples of such functions with their
proximity operators; many more can be found, for example, in
[31].

Example 1 (Proximity operators):
� Support prior: If C ⊆ Rn is a closed convex set, then

proxδC
is the Euclidean projection onto C. This can be

used for example to encode knowledge about the sup-
port of the signal x0 by choosing C = XJ for some
J ⊆ {1, 2, . . . , n}. In this case, the projection simply con-
sists in setting the coefficients x[i] to 0 for i �∈ J .

� Sparsity prior: If g is the �1 norm, then the proximal
operator is the soft thresholding operator.1 This can be
combined with support information prior by first setting the
coefficients outside of the support to 0 and then applying
the soft thresholding operator.

1The soft thresholding operator is given by Tα (x)i = sgn(xi ) max{|xi | −
α, 0}. If g(x) = λ‖x‖1 for some λ > 0, then proxg (x) = Tλ(x).

� Change of basis: Suppose that D is an n × n′ real ma-
trix such that its columns form an orthonormal fam-
ily, that is DT D is the identity in Rn ′

. Suppose that
g̃ : Rn ′ → R is a lower semicontinuous convex function
and let g(x) = g̃(DT x). In this case, we have proxg (x) =
x + D

(
proxg̃ (DT x) − DT x

)
(see [31, Table 1]). This al-

lows to express priors in different orthonormal bases, such
as wavelets for example.

� Trivial prior: When g = 0 the proximity operator is sim-
ply the identity map.

It is also worth mentioning that the proximity operator is effi-
ciently computable for some nonconvex priors. For example, if
g = δC where C = {x ∈ Rn ; ‖x‖0 ≤ k}, then the proximity
operator is obtained by setting the n − k lowest coefficients (in
absolute value) to 0. This can also be combined with support
information.

III. FIENUP, MAJORIZATION-MINIMIZATION AND

PROJECTED GRADIENT

In this section we expand on the alternating minimization
approach to (2) leading to the Fienup family of algorithms. For
this section, the prior term g in (2) is taken to be a general
proper lower semicontinuous function. We begin by describing
the algorithm and then provide two interpretations of it.

A. Alternating Minimization Algorithm

The alternating minimization algorithm applied to problem
(2) is explicitly written below.

The main interest in this scheme is that both partial mini-
mization steps in (4) can be carried out efficiently whenever g is
“proximable”, meaning that its prox (or a member in its prox) is
easily computed. First consider, in (4), the partial minimization
in z with x ∈ Rn being arbitrary but fixed. This minimization
amounts to computing PZc (x

k ), the orthogonal projection of
xk onto Zc . For a given x ∈ Rn , all the members in PZc (x)
are of the form z = F−1(ẑ), where for j = 1, 2, . . . , n, we have
(i =

√
−1 in the equation below)

ẑ[j] =

{
c[j] F(x)[j ]

|F(x)[j ]| , if |F(x)[j]| �= 0,

c[j]eiθj , for an arbitrary θj otherwise.
(5)

Next, we treat the subproblem in (4) of minimizing with respect
to x where z ∈ Cn is arbitrary but fixed. The partial minimiza-
tion in x is given by the expression

argminx∈ Rn

{
1
2
‖x − z‖2

2 + g(x)
}

= proxg (Re(z)), (6)
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where Re is the real part taken component-wise. We have used
the definition of the proximity operator of g given in (3). When
this operator is easy to compute, each step of the algorithm can
be carried out efficiently.

The iterations of the alternating minimization method are
summarized as follows:

zk+1 ∈ PZc (proxg (Re(zk ))),

xk+1 ∈ proxg (Re(PZc (x
k ))). (7)

We now consider several special cases of (7):
� If g = 0, then proxg is the identity and we recover the orig-

inal algorithm from Fienup [9], or alternating projection
[10].

The convergence result given in Theorem 4.1 also holds in
this case since constant functions are convex and continu-
ous.

� If g(x) = λ‖x‖1 for some λ > 0, then proxg = Tλ, where
Tλ is the soft thresholding operator (see footnote on page
8). We refer to the resulting algorithm as “AM L1”.

� If g = δCK
, where CK is the set of all K-sparse vectors,

CK = {x ∈ Rn : ‖x‖0 ≤ K}, then proxg = PCK
is the

so-called hard thresholding operator. This operator outputs
a vector which is all zeros except for the largest K com-
ponents (in absolute values) of its input vector which are
kept the same. The hard thresholding operator is multival-
ued and the resulting algorithm, which we term “AM L0”
picks an arbitrary point in its range.

B. Majorization-Minimization Interpretation

In this section, we focus on partial minimization in z. We
show that the value of this partial minimization leads to a least-
squares objective. This allows to interpret the Fienup algorithm
as a majorization-minimization process on this least-squares
function. For the rest of this section, for any x ∈ Rn , we denote
by z(x) an arbitrary but fixed member of PZc (x).

1) Partial Minimization in z: The following lemma provides
a connection between partial minimization in z and the evalua-
tion of a nonsmooth least-squares objective.

Lemma 3.1: For any x ∈ Rn , we have

min
z∈Zc

1
2
‖x − z‖2

2 =
1
2n

‖|F(x)| − c‖2
2 . (8)

Proof: An optimal solution of the minimization problem is
given by z = F−1(ẑ) where ẑ has the form (5). Now,

min
z∈Zc

1
2
‖x − z‖2

2 =
1
2
‖x −F−1(ẑ)‖2

2

=
1
2
‖F−1(F(x) − ẑ))‖2

2

=
1
2n

‖F(x) − ẑ‖2
2 .

Using the expression of ẑ in (5), we have for all j = 1, 2, . . . , n,

|F(x)[j] − ẑ[j]| =
{ ||F(x)[j]| − c[j]|, if |F(x)[j]| �= 0,

c[j], otherwise.

Putting everything together,

min
z∈Zc

1
2
‖x − z‖2

2 =
1
2n

‖F(x) − ẑ‖2
2 =

1
2n

‖|F(x)| − c‖2
2 ,

(9)

which completes the proof. �
A direct consequence of Lemma 3.1 is the following corollary
that connects between problem (2) and a regularized nonlinear
least-squares problem.

Corollary 3.2: The pair (x, z) is an optimal solution of prob-
lem (2) if and only if x is an optimal solution of

min
{

F (x) ≡ 1
2n

‖|F(x)| − c‖2
2 + g(x)

}
, (10)

and z = F−1(ẑ), where ẑ is of the form given in (5).
Note that in (10), the least-squares objective is defined with

respect to the amplitude |F(x)| and not the magnitude-squared
|F(x)|2 . For random measurements, it has been shown in [16]
that the amplitude objective leads to superior performance over
the standard magnitude-squared approach.

2) Fienup as Majorization-Minimization: In order to under-
stand further the connection with the Fienup algorithm, we de-
fine the following function:

h(x,y) ≡ 1
2
‖y − z(x)‖2

2 + g(y).

Now, for any x ∈ Rn , using Lemma 3.1, we have the following
two properties (recalling the definition of F in (10)):

h(x,y) =
1
2
‖y − z(x)‖2

2 + g(y) (11)

≥ 1
2
‖y − z(y)‖2

2 + g(y) = F (y), ∀y ∈ Rn ,

and

h(x,x) =
1
2
‖x − z(x)‖2

2 + g(x) = F (x).

In other words, using the convexity of g, we have that h(x, ·)
is a 1-strongly convex global upper bound on the objective F .
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Computing this upper bound amounts to performing partial min-
imization over z in (2). Minimizing the upper bound h(x,y) in
y corresponds to partial minimization over x in (2). The up-
per bound is tight in the sense that we recover the value of the
objective at the current point, h(x,x) = F (x). Therefore the
alternating minimization algorithm is actually a majorization-
minimization method for the nonsmooth least-squares problem

min
x∈ Rn

1
2n

‖|F(x)| − c‖2
2 + g(x). (12)

The steps presented in (4) can then be summarized as follows:

xk+1 = argmin
y∈ Rn

h(xk ,y)

= proxg (Re(z(xk )))

= proxg (Re(PZc (x
k ))),

which is exactly the mapping given in (7). Note that there is
a strong connection between proximal methods and majoriza-
tion minimization methods [32]. Finally, {xk}k∈N is the se-
quence which corresponds to signal estimates and the sequence
{zk}k∈N is auxiliary in the majorization minimization interpre-
tations.

C. Projected Gradient Descent Interpretation

We now provide an additional interpretation of the alternating
minimization algorithm as a projected gradient method for an
optimization problem related to (2) which consists of a smooth
convex objective and a nonconvex constraint set. This inter-
pretation is valid whenever g is assumed to be proper, lower
semicontinuous and convex.

For any x ∈ Rn and z ∈ Cn , we can write (2) as ‖x − z‖2
2 =

‖x − Re(z)‖2
2 + ‖Im(z)‖2

2 . To move from complex numbers
to real numbers, we set w1 = Re(z) and w2 = Im(z).
Defining a new constraint set Z̃c = {(w1 ,w2) ∈ Rn × Rn :
w1 + iw2 ∈ Zc}, problem (2) is equivalent to

min
x∈ Rn ,(w1 ,w2 )∈Z̃c

{
1
2
‖x − w1‖2

2 +
1
2
‖w2‖2

2 + g(x)
}

. (13)

Minimizing first w.r.t. x, (13) reduces to the following mini-
mization problem in w1 ,w2 :

min
(w1 ,w2 )∈Z̃c

{
H(w1 ,w2) ≡ G(w1) +

1
2
‖w2‖2

}
, (14)

where

G(w1) ≡ min
x∈ Rn

{
1
2
‖w1 − x‖2

2 + g(x)
}

.

The next result allows us to relate the gradient of H to the
optimization primitives used in the alternating minimization
method.

Lemma 3.3: Assume that g is proper, lower semicontinuous
and convex. Then the function H is continuously differentiable,
its gradient is 1-Lipschitz and can be expressed as

∇H(w1 ,w2) =
(
w1 − proxg (w1),w2

)
. (15)

Proof: From Moreau [28, Proposition 7.d], we know that
G is differentiable and ∇G(x) = x − proxg (x) = proxg ∗(x),
where g∗ is the conjugate function of g, which is convex. The

computation of the gradient of H is then immediate. We can use
the fact that proximal mappings of convex functions are nonex-
pansive [28, Proposition 5.b] to verify that ∇H is 1-Lipschitz.
Indeed, for any (w1 ,w2) and (w̃1 , w̃2), we have

‖∇H(w1 ,w2) −∇H(w̃1 , w̃2)‖2
2

= ‖proxg ∗(w1) − proxg ∗(w̃1)‖2
2 + ‖w2 − w̃2‖2

2

≤ ‖w1 − w̃1‖2
2 + ‖w2 − w̃2‖2

2

= ‖(w1 ,w2) − (w̃1 , w̃2)‖2
2 ,

completing the proof. �
Consider applying projected gradient descent to solve (14).

From Lemma 3.3, we can use a step size of magnitude 1. In this
case, taking into account the form of the gradient given in (15),
we obtain that the general update step takes the form

(wk+1
1 ,wk+1

2 )

= PZ̃c
((wk

1 ,wk
2 ) −∇H(wk

1 ,wk
2 ))

= PZ̃c
((wk

1 ,wk
2 ) − (wk

1 − proxg (w
k
1 ),wk

2 ))

= PZ̃c
(proxg (w

k
1 ), 0).

We now go back to the complex domain by setting z =
w1 + iw2 . Note that projecting (w1 ,w2) onto Z̃c is equiva-
lent to projecting z onto Zc . With this notation, the iterations of
projected gradient descent can be summarized by the following
iteration mapping (on complex numbers):

zk+1 = PZc (proxg (Re(zk ))),

which is exactly the same as (7). Therefore, the Fienup algorithm
is equivalent to projected gradient descent with unit stepsize
applied to the formulation (14). Note that from the point of view
of nonsmooth analysis, problem (14) is much better behaved
than (12).

IV. CONSEQUENCES AND EXTENSIONS

We now use the interpretations of Section III to analyze the
convergence of alternating minimization applied to problem (2),
and to offer several extensions.

A. Convergence Analysis

Our main convergence result is given in the following the-
orem. Recall that a function is semi-algebraic if its graph can
be defined by combining systems of polynomial equalities and
inequalities (for example, the �1 norm is semi-algebraic).

Theorem 4.1: Assume that g is proper, lower semicon-
tinuous, convex and semi-algebraic. Then the sequence
{xk , zk}k∈N generated by the alternating minimization algo-
rithm satisfies the following:

i) It holds that
∑

k≥0 ‖xk+1 − xk‖2 < +∞ and the se-
quence {xk}k∈N converges to a point x∗ ∈ Rn .

ii) For any accumulation point z∗ of {zk}k∈N , (x∗, z∗) is
a Fréchet critical point of problem (2) and (w∗

1 ,w
∗
2) =

(Re(z∗), Im(z∗)) is a Fréchet critical point of problem
(14).

The proof is quite technical and is given in Appendix A.
The semi-algebraic assumption on g can be relaxed to
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representability in o-minimal structures over the real field, see
[33]. Therefore, the proposed result actually applies to much
more general regularizers. For example, using boundedness of
the feasible set in (14), the same result holds if g is analytic (see
the dicussion in [34, Section 5]). The arguments build upon a
nonsmooth variant of the celebrated Kurdyka-Łojasiewicz (KL)
property [24]–[27]. Note that direct application of the results
of [22], [23] to projected gradient descent or those of [34],
[35] to majorization minimization is not possible here. Indeed,
[22], [23] require step sizes strictly smaller than 1/L where
L is the Lipschitz constant of the gradient and convergence
does not hold in this case. Furthermore, the approach of [34],
[35] requires the local model h(x,y) to be continuous with
respect to both its arguments which is not the case here due to
the arbitrary choice of z(x). These added difficulties require
separating the analysis with respect to x and z as we propose.

The most important implication of Theorem 4.1 is that the
sequence of estimated signals converges smoothly to a point
which satisfies certain optimality conditions related to problems
(2) and (14). This limit is a candidate solution to the phase
retrieval problem and the sequence {zk}k∈N allows to describe
stationarity properties of this possible solution. On the other
hand, our result does not characterize the limit uniquely so that
different initializations could still produce different limits, and
hence possible solutions.

This approach is a departure from standard convergence re-
sults that are only able to guarantee that accumulation points
of the generated sequence of iterates satisfy certain optimality
conditions. It is important to underline that the result is global:
it holds for any initialization of the algorithm and does not re-
quire any regularity assumption beyond semi-algebraicity and
convexity of g. This is in contrast with local convergence results
which are typical for alternating projection methods [36], [37]
that are applicable when the prior term g is an indicator function.

B. Acceleration and Momentum Term

A benefit of the interpretation of alternating minimization
as a projected gradient method is that it allows proposing new
variants inspired by known extensions of projected gradient al-
gorithms. In this section we focus on the incorporation of an
inertial term that results in an alternating minimization scheme
that includes a momentum term. This line of research has a long
history in optimization, starting with the development of the
heavy-ball method [38] which inspired an optimal first order
scheme for convex optimization developed by Nesterov [39],
and its extension to convex composite problems with the FISTA
method [21]. Although this last technique was proposed and
analyzed only in the context of convex optimization, we con-
sider its application in our nonconvex constrained problem since
it empirically exhibits good performances. The resulting algo-
rithm is referred to as FISTAPH, and is described as follows.

If zm is the last produced iteration, then the output of the al-
gorithm is x̂ = proxg (Re(zm )). A typical choice for the weight
sequence is αk = k−1

k+2 . The question of convergence of the it-
erates produced by this method in nonconvex settings is an
interesting topic to explore in future research. We may also fur-
ther consider monotone variants of similar types of methods,
see e.g. [29].

In the numerical experiments we employ FISTAPH in the
setting where g(x) = λ‖x‖1 for some λ > 0. In this case,
proxg = Tλ with Tλ being the soft thresholding operator with
parameter λ (see footnote on page 3).

V. EXPERIMENTS AND NUMERICAL RESULTS

In this section, we describe experiments and numerical results
comparing the different algorithms introduced in Section II-C
on the task of phase retrieval.

A. Experimental Setup

Given measurements c as in (1), our problem consists of
finding the corresponding x0 . We focus on the setting in which
x0 is known to be sparse. We vary the signal size n (with
J = {1, 2, . . . , n/2}), the sparsity level K and the signal to
noise ratio (SNR). In the following discussion, we will refer
to a recovery method M which can be seen as a black box
which takes as input a vector of measurements c ∈ Rn

+ , support
information J , sparsity level K, an initial estimate x and outputs
an estimate x̂ ∈ Rn with supp(x̂) ⊆ J and ‖x‖0 ≤ K. One
recovery experiment consists of the following:

� Fix a recovery method M, a signal length n, a support
information set J = {1, 2, . . . , n/2}, a sparsity level K
and an SNR.

� Generate x0 ∈ Rn by the following procedure:
– Choose K coordinates among J uniformly at random.
– Set these coordinate values at random in [−4,−3] ∪

[3, 4].
– Set all other coordinates to be 0.

� Generate the measurements c2 = |F(x0)|2 + ε, where ε
is white Gaussian noise according to the chosen SNR. Set
negative entries of c2 to be 0 in order to take square root.

� Call method M 100 times with data (c, J,K) and ran-
domly generate initial estimates to get 100 candidate solu-
tions {x̂it}it=1,2,...,100 .

� Compute the best estimate x̂best with best =
argminit=1,2...,100{‖|F(x̂it)| − c‖2

2}.
� Compare x̂best and x0 (modulo Fourier invariances) with

the following metric (sign is understood coordinatewise
with sign(0) = 0):

recovery(x̂best ,x0) =
{

1, sign(x̂best) = sign(x0)

0, otherwise.

This procedure was repeated 100 times. That is, for each method,
signal length, sparsity level and SNR, we have 100 signal recov-
ery experiments, each one associated with a support recovery
status. We aggregate these results by considering the recovery
probability (average of recovery(x̂best ,x0)) and the median
CPU usage for a single simulation (100 calls to the method with
different initialization estimates). We use the same initialization
for all methods by careful initialization of random seeds. All the



988 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 4, FEBRUARY 15, 2018

experiments were performed on a desk station with two 3.2 GHz
Quad Core Intel Xeon processors and 8 GB of RAM.

B. Implementation Details

In our numerical implementation, we used the following stop-
ping criterion.

� For alternating minimization and Wirtinger methods: the
difference in successive objective value less than 10−8 .

� For GESPAR: no swap improvement.
� For FISTAPH: the norm of the gradient mapping less than

10−8 .
The tuning of these criteria allows to balance accuracy and
computational time to some extent.

The �1 penalized problem includes a prior sparsity inducing
term of the form g(·) = λ‖ · ‖1 . It is necessary to tune the λ
parameter in order to obtain meaningful results. We considered
the following strategies for different methods.

� For alternating minimization, we set λ = 0.2 in all exper-
iments.

� For Wirtinger based method, λ is tuned a posteriori as
a function of n and k. The experiment was conducted
for λ = 1, 2.15, 4.64, 10, 21.5, 46.4, 100, 215, 464, and we
report only the best experiment for each setting.

An interesting feature of alternating minimization based meth-
ods is that in our experiments, recovery performance was very
consistent for different values of λ in different settings. As a re-
sult, we chose a single value of λ for all experiments. The tuning
of λ for Wirtinger based algorithms is practically much more
difficult. In particular, we found that the best λ was a highly
dependant function of the sparsity level K.

Finally, we note that �0 based priors have the sparsity level of
the estimate, K, as a parameter. On the other hand, �1 based pri-
ors will not necessarily produce K-sparse estimates. We there-
fore use truncation and keep the K largest entries in absolute
value of the last iteration.

C. Numerical Results

The performance in terms of support recovery are presented
in Fig. 1 with the corresponding algorithm run time in Fig. 2.
Each point in these plots is an average over 100 simulations of
the recovery process, each simulation consisting of 100 random
initializations of the method considered. AM corresponds to
Fienup methods with different priors, FISTA is the accelerated
variant, and WIRT stands for Wirtinger.

We make the following observations from the numerical re-
sults:

� For alternating minimization, there is a consistent increase
in recovery performance by switching from �0 to �1 based
regularization priors.

� The �1 prior degrades the performance of Wirtinger based
methods compared to the �0 prior.

� FISTAPH consistently provides the best performance and
is significantly faster than its competitors.

� Fienup with �0 prior leads to lower performance compared
to GESPAR, which was already reported in [4].

In order to evaluate the benefits of sparsity in reducing the
number of measurements, we compared Wirtinger flow with �0
prior, GESPAR and FISTAPH on the same recovery problems
(N = 256 and SNR = 20) with the difference that we only keep

Fig. 1. Support recovery comparison. For each point, the probability is esti-
mated based on 100 simulations. AM stands for alternating minimization and
WIRT for WIRTINGER. FISTAPH is described in Section IV, and GESPAR is
the method presented in [4].

Fig. 2. Timing comparison. The ordinate axis is displayed in logarithmic scale.
Each point is the median over 100 simulations, each simulation consisting of 100
random initializations for every method. AM stands for alternating minimization
and WIRT for WIRTINGER. FISTAPH is described in Section IV, and GESPAR
is the method presented in [4].

the first measurements (for other experiments, the number of
measurements is equal to the size of the signal). The results are
presented in Fig. 3. We observe that for all three methods, using
half the number of measurements allows to maintain a level
of recovery rate close to the setting where all measurements
are used. FISTAPH benefits the most from this effect. In the
simulations, the choice of the regularization parameter was
scaled proportionally to the number of measurements. The
phase transition curve is roughly linear until a certain sparsity
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Fig. 3. Recovery as a function of the number of measurements and the spar-
sity level. For each point, the probability is estimated based on 100 simulations.
WIRT stands for WIRTINGER. FISTAPH is described in Section IV, and GES-
PAR is the method presented in [4].

Fig. 4. Recovery as a function of the number of measurements and the di-
mension. The sparsity level is fixed to 10. For each point, the probability is
estimated based on 100 simulations. WIRT stands for WIRTINGER. FISTAPH
is described in Section IV, and GESPAR is the method presented in [4]. We
only consider the upper diagonal part for each window.

threshold is reached, after which, recovery does not occur even
if the number of measurements increases. For the same three
algorithms, we considered a fixed sparsity level and SNR ratio
(10 and 20 respectively) and varied the dimension and number
of measurements. The results are presented in Fig. 4. This
experiment suggests that the main factor explaining if recovery
occurs or not is the number of measurements rather than signal
dimension. Proposing theoretical ground for these empirical
observations will be the subject of future work.

As described in the experimental section, we added noise
on the squared measurements rather than on the measurements
themselves. This noise model is closer to the optimization
formulation considered for GESPAR and Wirtinger flow than
model (2) which is related to problem (12). We tried changing
the noise model on a subset of experiments (additive noise on the
measurements rather than squared measurements), however, the
performance of the different methods was very similar. There-
fore, we only report results related to the squared-measurement
noise model.

VI. CONCLUSION

The main theoretical contribution of this work is to provide
a strong theoretical basis to the fact that Fienup-type methods,
when used with Fourier transforms and convex priors, lead to
smoothly converging sequences of estimates. This result holds
under minimal assumptions and in particular, it holds globally,
independently of the initialization point. Furthermore, we char-
acterize the properties of the limiting point as Fréchet critical
points of different optimization problems. These results shed
light on properties of one of the most well known algorithms
used in the context of phase retrieval. Furthermore, based on
an interpretation as a projected gradient method, we proposed

a new variant of Fienup with the incorporation of a momentum
term which we call FISTAPH.

On the practical side, we demonstrated based on numerical
simulations that FISTAPH with �1 regularization constitutes a
very competitive alternative to other methods in the context of
sparse phase retrieval. Although this observation is only based
on empirical evidence, it potentially illustrates the fact that mo-
mentum based methods are able to avoid bad local minima and
saddle points in complicated nonconvex landscapes.

APPENDIX

PROOF OF THEOREM 4.1

The proof of Theorem 4.1 involves many notions of non-
smooth analysis which can be found in [30]. Throughout
the proof, we only consider subgradients of subdifferentially
regular functions. Each subgradient can be interpreted as a
Fréchet subgradient and the subgradient set valued mapping
is closed. We adopt the notation of Section III-C, letting
z = w1 + iw2 for two real vectors w1 and w2 and consider the
constraint set Z̃c = {(w1 ,w2) ∈ Rn × Rn ; w1 + iw2 ∈ Zc}.
We let K(x,w1 ,w2) = 1

2 ‖x − w1‖2
2 + 1

2 ‖w2‖2
2 + g(x) be the

objective function of problem (2) which with this notation
becomes

min
x∈ Rn,(w1 ,w2 )∈ Z̃c

K(x,w1 ,w2). (16)

We will denote by δZ̃c
, the indicator function of the set Z̃c (0

on the set and +∞ outside). We set K̃(x,w1 ,w2) = K(x,w1 ,
w2) + δZ̃c

(w1 ,w2) so that problem (16) is equivalent to the

(unconstrained) minimization of K̃.
Proof of (i): Using [30, Proposition 10.5 and Exercise 10.10],

the subgradient of this nonsmooth function is of the form

∂K̃(x,w1 ,w2) =

(
∂xK̃(x,w1 ,w2)

∂(w1 ,w2 )K̃(x,w1 ,w2)

)
(17)

=

⎛
⎜⎝

x − w1 + ∂g(x)(
w1 − x

w2

)
+ ∂δZ̃c

(w1 ,w2)

⎞
⎟⎠ .

Partial minimization over iterations the following

0 ∈ xk+1 − wk
1 + ∂g(xk+1) (18)

0 ∈
(

wk
1 − xk

wk
2

)
+ ∂δZ̃c

(wk
1 ,wk

2 ). (19)

Combining (17) (18) and (19), we have⎛
⎜⎝

0(
wk

1 − xk+1

wk
2

)
+ ∂δZ̃c

(wk
1 ,wk

2 )

⎞
⎟⎠ (20)

⊂ ∂K̃(xk+1 ,wk
1 ,wk

2 ).

Using (19),⎛
⎝ 0

xk − xk+1

0

⎞
⎠ ∈ ∂K̃(xk+1 ,wk

1 ,wk
2 ). (21)
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Finally, from strong convexity of K̃ with respect to its first
argument, we have

K̃(xk+1 ,wk
1 ,wk

2 ) +
1
2
‖xk+1 − xk‖2

2

≤ K̃(xk ,wk
1 ,wk

2 )

≤ K̃(xk ,wk−1
1 ,wk−1

2 ). (22)

Since g is semi-algebraic, K̃ is also semi-algebraic. Any semi-
algebraic function satisfies the nonsmooth Kurdyka-Łojasievicz
property [27]. We can now use the well established recipe [22,
Section 2.3] [23, Section 3.2] with the two conditions (21)
and (22) to obtain that the sequence

{
‖xk+1 − xk‖2

}
k∈N

is
summable. This proves statement (i) (convergence holds by
Cauchy criterion).

Proof of (ii): Using the fact that K̃ has compact sublevel
sets, the sequence

{
(xk+1 ,wk

1 ,wk
2 )
}

k∈N
is bounded and hence

has a converging subsequence. We fix an accumulation point
(x∗,w∗

1 ,w
∗
2) of the sequence (note that x∗ is given by (i)). We

remark that, thanks to (20) and the fact that ‖xk+1 − xk‖ → 0,
any accumulation point of the sequence is a critical point of K̃.
Furthermore, since xk → x∗, we have using (20) that

−
(

w∗
1 − proxg (w

∗
1)

w∗
2

)
∈ ∂δZ̃c

(w∗
1 ,w

∗
2).

This is actually the criticality condition for problem (14) which
proves statement (ii).
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conférence) with the University of Toulouse III Paul Sabatier, Toulouse, France.
He is affiliated to the Informatics Department (IRIT, Adria team). His research
interest focuses on numerical optimization with applications to machine learn-
ing, robotics, and computational biology.

Amir Beck is currently a Professor with the School
of Mathematical Sciences, Tel Aviv University, Tel
Aviv, Israel. He has authored or co-authored numer-
ous papers and given invited lectures at international
conferences. His research interest focuses on con-
tinuous optimization, including theory, algorithmic
analysis, and applications. He is currently an Asso-
ciate Editor for Mathematics of Operations Research,
Mathematical Programming Series A, and the Jour-
nal of Optimization Theory and Applications, and an
Area Editor for optimization in Operations Research.

His research has been supported by various funding agencies, including the Israel
Science Foundation, the German–Israeli Foundation, the Binational US–Israel
Foundation, the Israeli Science and Energy Ministries, and the European Com-
munity. He was the recipient of the Salomon Simon Mani Award for Excellence
in Teaching and the Henry Taub Research Prize.

Yonina C. Eldar (S’98–M’02–SM’07–F’12) re-
ceived the B.Sc. degree in physics and the B.Sc.
degree in electrical engineering in 1995 and 1996,
respectively, both from Tel Aviv University, Tel Aviv,
Israel, and the Ph.D. degree in electrical engineering
and computer science from the Massachusetts Insti-
tute of Technology, Cambridge, MA, USA, in 2002.

She is currently a Professor with the Department
of Electrical Engineering, Technion—Israel Institute
of Technology, Haifa, Israel, where she holds the Ed-
wards Chair in Engineering. She is also a Research

Affiliate with the Research Laboratory of Electronics, MIT, an Adjunct Profes-
sor with Duke University, Durham, NC, USA, and was a Visiting Professor with
Stanford University, Stanford, CA, USA. She is the author of the book Sampling
Theory: Beyond Bandlimited Systems and the coauthor of the books Compressed
Sensing and Convex Optimization Methods in Signal Processing and Commu-
nications, all published by Cambridge University Press. Her research interests
include the broad areas of statistical signal processing, sampling theory and
compressed sensing, optimization methods, and their applications to biology
and optics.

Dr. Eldar is a member of the Israel Academy of Sciences and Humanities
(elected 2017) and a EURASIP Fellow. She was a Horev Fellow of the Lead-
ers in Science and Technology program at the Technion and an Alon Fellow.
She was a member of the Young Israel Academy of Science and Humanities
and the Israel Committee for Higher Education. She is the Editor-in-Chief of
Foundations and Trends in Signal Processing, a member of the IEEE Sensor
Array and Multichannel Technical Committee and serves on several other IEEE
committees. In the past, she was a Signal Processing Society Distinguished
Lecturer, member of the IEEE Signal Processing Theory and Methods and Bio
Imaging Signal Processing technical committees, and served as an Associate
Editor for the IEEE TRANSACTIONS ON SIGNAL PROCESSING, the EURASIP
JOURNAL OF SIGNAL PROCESSING, the SIAM JOURNAL ON MATRIX ANALYSIS

AND APPLICATIONS, and the SIAM JOURNAL ON IMAGING SCIENCES. She was
the Cochair and Technical Cochair of several international conferences and
workshops. He was the recipient of many awards for excellence in research and
teaching, including the IEEE Signal Processing Society Technical Achievement
Award (2013), the IEEE/AESS Fred Nathanson Memorial Radar Award (2014),
the IEEE Kiyo Tomiyasu Award (2016), the Michael Bruno Memorial Award
from the Rothschild Foundation, the Weizmann Prize for Exact Sciences, the
Wolf Foundation Krill Prize for Excellence in Scientific Research, the Henry
Taub Prize for Excellence in Research (twice), the Hershel Rich Innovation
Award (three times), the Award for Women with Distinguished Contributions,
the Andre and Bella Meyer Lectureship, the Career Development Chair at the
Technion, the Muriel & David Jacknow Award for Excellence in Teaching, and
the Technion’s Award for Excellence in Teaching (two times). She was also the
recipient of several best paper awards and best demo awards together with her
research students and colleagues including the SIAM outstanding Paper Prize,
the UFFC Outstanding Paper Award, the Signal Processing Society Best Paper
Award, and the IET Circuits, Devices and Systems Premium Award. She was
selected as one of the 50 most influential women in Israel.

Shoham Sabach received the B.Sc. degree in math-
ematics (summa cum laude) and the M.Sc. degree
in mathematics (magna cum laude) from the Uni-
versity of Haifa, Haifa, Israel, in 2004 and 2008, re-
spectively, and the Ph.D. degree in mathematics from
the Technion—Israel Institute of Technology, Haifa,
Israel, in 2012. From October 2012 to September
2013, he was a Postdoctoral Fellow with the School
of Mathematical Sciences, Tel Aviv University, Tel
Aviv, Israel. From October 2013 to September 2014,
he was a Humboldt Postdoctoral Research Fellow

with the Institute for Numerical and Applied Mathematics, University Got-
tingen, Gottingen, Germany. He is currently an Assistant Professor with the
Faculty of Industrial Engineering and Management, Technion—Israel Institute
of Technology. His research interest focuses on continuous optimization, in-
cluding theory, algorithmic analysis, and its applications.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


