
8 IEEE SIgnal ProcESSIng MagazInE   |   November 2017   |

PANEL AND FORUM
Yonina C. Eldar, Alfred O. Hero III, Li Deng, Jeff Fessler,  

Jelena Kovačević, H. Vincent Poor, and Steve Young

This column summarizes the panel 
on open problems in signal process
ing, which took place on 5 March 

2017 at the International Conference on 
Acoustics, Speech, and Signal Process
ing (ICASSP) in New Orleans, Louisi
ana. The goal of the panel was to draw 
attention to some of the challenges and 
open problems in various areas of signal 
processing and generate discussion on  
future research areas that can be of ma
jor significance and impact in signal 
processing. Five leading experts repre
senting diverse areas within signal pro
cessing made up the panel:

 ■ Li Deng, Microsoft: machine learning
 ■ Jeff Fessler, the University of Michigan: 

medical imaging
 ■ Jelena Kovačević, Carnegie Mellon 

University: graph signal processing
 ■ H. Vincent Poor, Princeton Univer

sity: wireless communication
 ■ Steve Young, the University of 

Cam bridge: speech and language 
processing.

It was organized and moderated by Yo
nina Eldar from the Technion and Al
fred O. Hero III from the University 
of Michigan.

The panel drew a very large crowd 
and stimulated a vibrant discussion on 
directions, trends, and challenges of sig
nal processing in the 21st century and 
in the era of big data. In this column, 
we summarize the main points raised by 
the panelists and the audience in each of 

the aforementioned topics. Our goal and 
hope is to further the discussion on some 
of the main challenges and opportuni
ties for signal processing in the coming 
years and to highlight areas where, as a 
community, working and collaborating 
together, we may have impact on theory, 
applications, and education.

Next, we summarize open problems 
in the previously mentioned areas, high
lighted by the participants: open problems 
in machine learning, medical imaging, 
graph signal processing, physical layer 
wireless communications, and speech 
and language processing. A common 
crosscutting theme that emerged was the 
opportunity to improve performance by 
the better integration of accurate physical 
models into stateoftheart  algorithms.

Open problems in machine learning
Machine learning aims to give comput
ers the ability to learn by exploiting data 
instead of being explicitly programmed. 
There are many approaches in machine 
learning, including support vector ma
chines, decisiontree learning, artificial 
neural networks, Bayesian networks, 
genetic algorithms, rulebased learning,  
and inductive logical programming, among  
others [3]. In recent years, the fastest 
growing area of machine learning comes 
from neural networks and related gen
erative models, where carefully design 
ed hierarchies are built into the overall 
machinelearning models to form mul
tiple layers of latent representations that 
disentangle the confounding factors and 
complexity in the raw data. This type of 

hierarchical model and the associated 
machinelearning algorithms are called 
deep learning [1], [2], which represents 
the most recent and influential advance 
in machine learning over the past decade. 
The first successful application of deep 
learning in realworld tasks came from 
speech recognition in our signal process
ing community and was published in this 
magazine [13], followed quickly with 
computer vision, natural language pro
cessing, robotics, speech synthesis, and 
image rendering [2].

Despite impressive empirical suc
cesses of deep learning and other ma
chinelearning approaches, many open 
problems remain to be solved. Current 
deeplearning methods typically lack 
interpretability, in contrast to traditional 
machinelearning techniques based on 
linear models. In a number of applica
tions, deeplearning methods achieve 
recognition accuracy close to or exceed
ing that of humans, but they require 
considerably more training data, power 
consumption, and computing re  sources 
than humans. In addition, although ac
curacy results are often statistically im
pressive, they are often unreliable on 
an individual basis. Finally, most of the 
current deeplearning models have no 
reasoning and explaining capabilities, 
making them vulnerable to disastrous 
failures or attacks without the ability to 
foresee and thus to prevent them.

To overcome these challenges, both 
fundamental and applied research is  
needed. One potential breakthrough 
in machine learning is in developing 
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interpretable deeplearning models with the aim of creat
ing new algorithms and methods that can overcome current 
limitations of machinelearning systems in their lack of 
ability to explain the actions, decision, and prediction out
comes to human users while promising to perceive, learn, 
decide, and act on their own. This new class of machine
learning systems will allow users to understand and thus trust 
the system’s outputs and to foresee and predict future system 
behaviors. To this end, neural networks and symbolic systems 
need to be integrated, enabling the machinelearning systems 
themselves to construct models that will explain how the 
world works. That is, they will discover by themselves the un
derlying causes or logical rules that shape their prediction and 
decisionmaking processes interpretable to human users in  
symbolic and natural language forms. An initial work in this 
direction makes use of an integrated neuralsymbolic repre
sentation called tensor-product neural memory cells, which 
can be decoded back to symbolic form without loss of infor
mation after extensive learning in the neuraltensor domain.

Another potential breakthrough in machinelearning 
research is in new algorithms for reinforcement and unsu
pervised deep learning, which make use of weak or even no 
training signals paired to inputs to guide the learning. Effec
tive reinforcementlearning algorithms will allow machine
learning systems to learn via interactions with possibly 
adversarial environments and with themselves.

The most challenging problem, however, is unsupervised 
learning, for which no satisfactory machinelearning algo
rithms have been devised so far in practical applications. 
The development of unsupervised learning techniques is 
significantly behind that of supervised and reinforcement 
deep learning. The most recent development in unsuper
vised learning exploits sequential output structure and ad
vanced optimization methods to alleviate the need for using 
labels in training prediction systems [12].

Future advances in unsupervised learning include taking 
into account new sources of learning signals such as the struc
ture of input data and building conditional generative models. 
In this context, the recent popular topic of generative adver
sarial networks [2] is a highly promising direction exploiting 
the longstanding concept of analysis by synthesis. A closely 
related open problem is multimodal deep learning with cross
domain information as lowcost supervision. Standard speech 
recognition, image recognition, and text classification meth
ods make use of supervision labels within each of the speech, 
image, and text modalities separately. This is far from how 
children learn to recognize speech and classify text. For ex
ample, children often get a distant “supervision” signal for 
speech sounds by an adult pointing to an image scene or text.

A final future direction for tackling open problems in  
machine learning is the paradigm of learningtolearn or 
metalearning; i.e., how to design a machinelearning system 
that improves or automatically discovers a learning algo
rithm. Learningtolearn is a powerful emerging paradigm 
and a fertile research direction expected to impact a wide 
range of realworld applications.

Holcombe Department of Electrical and Computer Engineering
Faculty Search in Computer Engineering and 

Electrical Engineering
The Holcombe Department of Electrical and Computer Engineering 
at Clemson University is seeking applicants for multiple computer 
engineering and electrical engineering tenure-track or tenured 
faculty positions at the rank of assistant professor or associate 
professor. The Department has a particular interest in applicants 
in the following technical areas: (1) machine learning, computer 
vision, artificial intelligence, signal processing, with collaborations in 
biomedical engineering, health science, or automotive engineering; (2) 
embedded computing, sensors, wearables; (3) high-performance 
computing with an emphasis on big data, high-performance 
networking, or accelerated computing architectures; and (4) cyber 
security and cyber-physical system security. Outstanding assistant-
professor candidates will be considered for the Warren Owens 
Assistant Professorship.
The Holcombe Department of ECE is one of the largest and 
most active departments in Clemson University, with 32 primary 
and 14 affiliated full-time faculty members, approximately 550 
undergraduates and 190 graduate students. Annual research 
expenditures exceed $8.6 million. Many members of the faculty 
are known internationally; they include eight IEEE Fellows, three 
endowed chairs, and four named professors. Annual funded 
research expenditures exceed $8.6 million. The Department and 
Clemson have highly successful computing-focused research 
programs in high-performance computing and networking; privacy, 
communications security, and secure control systems; and mobile 
health devices.
Clemson University is the largest land-grant institution in South 
Carolina, enrolling 18,600 undergraduates and 4,800 graduate 
students. Seven colleges house strong programs in architecture, 
engineering, science, agriculture, business, social sciences, arts 
and education. A faculty of 1,500 and staff of 3,700 support 84 
undergraduate degree offerings, 73 master’s degree programs and 
40 Ph.D. programs. An annual operating budget of approximately 
$956 million and an endowment of $621 million fund programs 
and operations. The University has externally funded research 
expenditures of $100 million per year. Research and economic 
development activities are enhanced by public-private partnerships 
at 4 innovation campuses and 6 research and education centers 
located throughout South Carolina.  Clemson University is ranked 
23th among national public universities by U.S. News & World Report.

Applicants must have an earned doctorate in electrical 
engineering, computer engineering, or a closely related field. 
Applicants should submit a current curriculum vitae, statements of 
research and teaching strategy, and a minimum of five references 
with full contact information. Application material should be 
submitted electronically at the following Web link:  

http://apply.interfolio.com/39731

To ensure full consideration, applicants must apply by December 
1, 2017; however, the search will remain open until the position 
is filled.
Clemson University is an AA/EEO employer and does not discriminate 
against any person or group on the basis of age, color, disability, 
gender, pregnancy, national origin, race, religion, sexual orientation, 
veteran status or genetic information. Clemson University is building 
a culturally diverse faculty committed to working in a multicultural 
environment and encourages applications from minorities and women. 
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Open problems in medical imaging
Medical image reconstruction is the pro
cess of forming interpretable images from 
the data recorded by an imaging system. 
Until recently, there have been two pri
mary methods for image reconstruction: 
analytical and iterative. Analytical meth
ods use idealized mathematical models 
for the imaging system. Typically, these 
techniques consider only the geometry 
and sampling properties of the imaging 
system and ignore details of the system 
physics and measurement noise. These 
reconstruction approaches have been 
used extensively because they require 
modest computation.

Over the past two decades, image re
construction has evolved from the exclu
sive use of analytical methods to a wider 
use of modelbased approaches that ac
count for the physics and statistics. Usu
ally the problems are ill posed, so that 
maximumlikelihood (ML) methods 
would propagate excessive noise from 
the measurements into the reconstruct
ed image. Using priors or regularizers 
can overcome this limitation. A popular 
approach is to base iterative methods 
on maximum a posteriori (MAP) esti
mation. MAP estimation encompasses 
1) modeling the system, 2) developing 
signal models to serve as priors, 3) de
veloping faster optimization algorithms, 
and 4) assessing the quality of the re
constructed image.

The transition from analytical to it
erative algorithms took place at widely 
different dates in different modalities. 
In positron emission tomography (PET) 
and singlephoton emission computed 
tomography (SPECT), a seminal paper 
on an expectation maximization (EM) 
algorithm in the early 1980s led to more 
than a decade of research before a key ac
celeration method called ordered subsets 
(OS) (related to incremental gradients in 
the optimization field) helped lead to the 
commercial adoption of OSEM for clin
ical PET and SPECT in about 1997, using 
an (unregularized) ML approach. This 
transition provided a dramatic improve
ment in image quality. Human PET scan
ners only recently began to provide MAP 
methods clinically using a modification 
of a Gaussian Markov random field prior 
and a convergent OS algorithm.

In Xray computed tomography 
(CT), iterative image reconstruction first 
became available commercially for the 
CT part of SPECTCT scanners in about 
2010, using a different OS algorithm 
published a decade earlier. In 2012, the 
first U.S. Food and Drug Administration 
(FDA)approved iterative MAP method 
targeted at reduced Xray dose became 
available for clinical CT, building on an 
IEEE Transactions on Signal Process-
ing paper from two decades earlier. This 
approach also uses a modified Gaussian 
MRF to make it edge preserving.

In MRI, researchers studied iterative 
techniques to quantify relaxation param
eters, reconstruct data from multiple re
ceive coils, and correct for magnetic field 
inhomogeneities. A turning point was 
the introduction of compressed sensing 
in about 2005, spawning an explosion of 
research that finally led to FDA approval 
of compressed sensing MRI products in 
2017 using combinations of total variation 
regularization and wavelet sparsifying 
transforms. In all of the aforementioned 
examples, more than a decade passed be
tween the key publication and commercial 
availability of the method!

Commercial MAP techniques use rela
tive simple priors defined mathematically. 
The emerging research trend is to explore 
signal models that are learned from data. 
In Xray CT, there are numerous images 
acquired at “normal” Xray doses from 
which one can learn signal models to use 
later for reconstructing images from low
dose data. Another datadriven option 
is to learn a sparse signal model during 
image reconstruction, rather than relying 
on training data, called blind or adaptive 
dictionary (or transform) learning. This 
datadriven evolution provides opportu
nities for signal processing researchers to 
explore signal models that better solve in
verse problems, particularly from limited 
or noisy data.

One can “unroll the loop” of an itera
tive reconstruction algorithm and treat it 
as a sequence of processing steps akin to a 
deep neural network and then use data to 
train more aspects of the processing chain. 
Recent conferences have seen an explo
sion of such methods. There are many 
significant challenges because such algo
rithms are arguably even more nonlinear 

(and opaque) than the edgepreserving 
regularization techniques used clinically 
today. Can one characterize the “resolu
tion” and “noise” properties of such algo
rithms? What is the best training metric: 
MSE or diagnostic image quality? What if 
a patient has significantly different image 
features than those found in the training 
data? How well will a method trained for 
one system configuration (e.g., a certain 
set of coils in MRI or a certain set of an
gular views and pitch in CT) generalize to 
other configurations? Some experts have 
conjectured that “machine learning will 
transform radiology significantly within 
the next five years” but others point out 
there are significant technical and legal 
challenges. These questions and more 
should provide numerous research op
portunities for signal processors inter
ested in inverse problems like medical 
imaging [11].

Open problems in  
graph signal processing
Today’s data is being generated at 
an unprecedented rate from a diversity 
of sources. Examples include profile 
information in social networks, stimuli 
in brain connectivity networks, and traf
fic flow in city street networks, among 
others. A decade ago, a typical data set 
was supported on a regular lattice; today, 
the story is quite different. Data is sup
ported on complex and irregular struc
tures. Often, these structures are modeled 
by graphs, as they are able to describe 
both the structure and the data associ
ated with that structure. For example, 
in an online social network, a user’s 
profile may contain the user’s date of  
birth, school attended, professional or
ganizations, and more. Each of these 
attributes can form a subnetwork with 
different properties. Using graphs, we 
want to analyze data supported on such 
complex structures, allowing us to mine 
information from online social networks, 
transportation networks, the power grid, 
and more, in the same context. While 
these are representatives of physical
world graphs, other graphs may include 
abstract concept networks such as knowl
edge graphs and correlation graphs.

Data science on graphs has been 
considered from several angles by graph 
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theory, network science, and graph mining, all dealing with 
graph structure. More recently, the area of graph signal pro
cessing has emerged, formalizing the addition of metadata as 
signals on a graph [4]–[6]. Graph signal processing aims to 
extend classical signal processing tasks and tools to data on 
irregular structures modeled by graph signals (see Figure 1). 
The goal is to gain an understanding of the intrinsic structure 
of the data by using tools well understood on regular struc
tures, such as filtering and Fourier transforms, and to perform 
tasks such as sampling, restoration, compression, and topol
ogy learning.

Signal processing on graphs is an active area of research; 
many challenges and opportunities still remain. For example, 
a number of basic concepts in statistical signal processing and 
sampling theory have not yet been entirely extended to graphs 
in a unified way. More advanced challenges include the scale 
of the data, its heterogeneity, distributed analysis and process
ing, fusing data from different scales and resolutions, and 
processing tensor values defined on nodes. Disparate commu
nities such as network science, machine learning, and signal 
processing are all currently working on these challenges with 
the tendency to attack such problems either via learning meth
ods or by building models; an important path for advancing 
this field and dealing effectively with the deluge of data is to 
combine the tools and integrate these different approaches.

Open problems in physical layer  
wireless communications
Wireless communications have been a major driver of signal 
processing research for at least the past three decades, spurred 
by the development of widespread consumer mobile commu
nications and other applications, which today impact the lives 
of billions of people—indeed, most people alive today. Here 
we focus on research in the physical layer of mobile communi
cation networks where signal processing has perhaps had the 
greatest impact.

Modern mobile communication networks have been 
through four generations to date, and the fifth generation (5G) 

Professor/Associate Professor/Assistant Professorship in 
the Department of Electrical and Electronic Engineering 

The University 
Established in 2012, the Southern University of Science and 
Technology (SUSTech) is a public institution funded by the municipal 
of Shenzhen, a special economic zone city in China. Shenzhen is a 
major city located in Southern China, situated immediately north of 
Hong Kong Special Administrative Region. As one of China’s major 
gateways to the world, Shenzhen is the country’s fast-growing city 
in the past two decades. The city is the high-tech and manufacturing 
hub of southern China, home to the world’s third-busiest container 
port, and the fourth-busiest airport on the Chinese mainland. A 
picturesque coastal city, Shenzhen is also a popular tourist destination 
and was named one of the world’s 31 must-see tourist destinations 
in 2010 by The New York Times. The Southern University of Science 
and Technology is a pioneer in higher education reform in China. 
The mission of the University is to become a globally recognized 
institution which emphasizes academic excellence and promotes 
innovation, creativity and entrepreneurship. The teaching language 
at SUSTech is bilingual, either English or Putonghua. Set on five 
hundred acres of wooded landscape in the picturesque Nanshan 
(South Mountain) area, the new campus offers an ideal environment 
suitable for learning and research. 

Call for Application 
The Southern University of Science and Technology now invites 
applications for the faculty position in the Department of Electrical and 
Electronic Engineering. It is seeking to appoint a number of tenured or 
tenure track positions in all ranks. Candidates with research interests 
in all mainstream fields of electrical and electronic engineering will 
be considered, including but not limited to IC Design, Embedded 
Systems, Internet of Things, VR/AR, Signal and Information 
Processing, Control and Robotics, Big Data, AI, Communication/
Networking, Microelectronics, and Photonics. SUSTech adopts the 
tenure track system, which offers the recruited faculty members a 
clearly defined career path. Candidates should have demonstrated 
excellence in research and a strong commitment to teaching. A 
doctoral degree is required at the time of appointment. Candidates 
for senior positions must have an established record of research, 
and a track-record in securing external funding as PI. As a State-
level innovative city, Shenzhen has chosen independent innovation 
as the dominant strategy for its development. It is home to some of 
China’s most successful high-tech companies, such as Huawei and 
Tencent. As a result, SUSTech considers entrepreneurship is one of 
the main directions of the university, and good starting supports will 
be provided for possible initiatives. SUSTech encourages candidates 
with intention and experience on entrepreneurship to apply. 

Terms & Applications 
To apply, please send curriculum vitae, description of research 
interests and statement on teaching to eehire@sustc.edu.cn. 
SUSTech offers competitive salaries, fringe benefits including medical 
insurance, retirement and housing subsidy, which are among the best 
in China. Salary and rank will commensurate with qualifications and 
experience. Candidates should also arrange for at least three letters 
of recommendation sending directly to the above email account. 
The search will continue until the position is filled. For informal 
discussion about the above posts, please contact Professor Xiaowei 
SUN, Head of Department of Electrical and Electronic Engineering, 
by phone 86-755-88018558 or email: sunxw@sustc.edu.cn.
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Figure 1. A graph signal models data (values on the graph nodes) 
supported on complex structures (graph nodes).
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is rapidly emerging. The key enablers of 
the most recent deployed generation of 
mobile networks, the socalled fourth 
generation (4G), have been the develop
ment of methods to exploit the spatial di
versity afforded by the wireless medium 
in the forms of multipleinput, multiple 
output (MIMO) antenna systems, coop
eration, and relaying; the exploitation of 
frequency diversity through the use of 
orthogonal frequencydivision multiple 
access signaling; and the development of 
methods to approach link capacity via 
the iterative decoding of turbo or low
density paritycheck codes. These signal 
processing advances have allowed 4G 
networks to meet the challenge of real
time multimedia communications that 
has been the primary advance of 4G over 
its predecessors.

The emerging generation of mobile 
networks, 5G, presents a number of new 
signal processing challenges. Beyond 
providing adequate capacity and reli
ability, 5G networks also add the issue 
of energy efficiency, required to support 
several new applications areas. These 
include the socalled Internet of Things 
(IoT), which is envisioned to involve 
ordersofmagnitude more terminals 
than 4G networks in highly densified 
configurations of lowcomplexity ter
minals; systems requiring autonomy or 
telecontrol, in which low latency and 
very high reliability are critical; and 
immersive experiences, such as virtual 
reality, which require very high band
width streaming [7].

These requirements give rise to a 
number of open problems and potential 
solutions. Solutions enabling densifi
cation and the consequent interference 
management include cloud radio access 
networks, massive MIMO systems, mil
limeter wave techniques, and transceivers 
that can harvest radiofrequency energy 
from their surroundings. Substantial ca
pacity enhancements are also needed, 
and some techniques for providing greater 
capacity (in addition to densification of re
sources) include full duplex transmission 
and nonorthogonal multipleaccess tech
niques, both of which will be enabled by 
sophisticated signal processing. Security 
is another issue in which signal process
ing has a key role to play; traditionally, 

security has been a higherlayer issue, with 
encryption being a primary mechanism. 
However, with highly dense networks of 
lowcomplexity terminals connected via 
loosely organized networks, new meth
ods are needed. Physical layer security 
is such a promising method, which relies 
on signal processing techniques, such as 
coding, beamforming, and signal design. 
Finally, many emerging applications, 
such as autonomous vehicles and factory 
automation, require lowlatency, highreli
ability communications via short packets. 
Since the existing theory of reliable data 
transmission is largely based on analyses 
in the asymptote of infinite blocklength, 
new theories are needed to understand 
the limits of reliable communication in 
this regime. In addition, in applications 
such as autonomous driving, worstcase 
metrics may be more appropriate than the 
standard averagecase analysis.

Open problems in speech  
and language processing
Spoken language processing encompasses 
methods and techniques for transforming 
and manipulating speech, text, and a wide 
variety of related symbolic representa
tions. Examples are speech recognition 
(speech"words), natural language un
derstanding (words"meaning), natural 
language generation (meaning"words), 
speech synthesis (words"speech), and 
machine translation (words in L1"words 
in L2). Modern applications of spoken 
language processing will typically incor
porate many if not all of these component 
technologies [8]–[10]. For example, intelli
gent agents such as Siri and Alexa require 
all of the aforementioned technologies to 
support conversations over a wide range 
of topics in many languages. 

Since virtually all spoken language 
processing involves classification and/or 
prediction, modern approaches depend 
heavily on statistical models and ma
chine learning. A major breakthrough 
in recent years has been the widespread 
deployment of deep learning [9]. The 
ability of neural networks to automati
cally learn lowlevel features, the use of 
attention mechanisms to learn which fea
tures are important, and the flexibility to 
scale parameter sets both in width and 
depth has led to significant performance 

improvements. For example, word er
ror rates for realtime large vocabulary 
speakerindependent speech recogni
tion are now routinely below 10%, and 
speech synthesis quality is acceptable 
for most applications.

The renaissance of neural networks 
has also been the catalyst for the devel
opment of a powerful toolbox of core 
network components (such as deep neu
ral networks, long shortterm memory 
networks, convolutional neural networks, 
and more) and development tools (such as 
TensorFlow, Torch, and others), which al
low solutions to complex problems to be 
assembled, trained, and deployed quickly 
and at a relatively low cost.

Despite the undoubted progress wit
nessed over the last decade, there re
main many challenges. The recognition 
of fluent conversations between human 
speakers and speech in high levels of 
background noise or in the presence of a 
competing talker still falls well short of 
human performance. Our ability to un
derstand the meaning of natural language 
sentences, especially in the context of past 
interactions and a changing realworld 
environment, remains extremely limited.

Two emerging trends aimed at ad
dressing some of the challenges are con
tinuous representations and endtoend 
training. In particular, there is currently a 
shift away from symbolic representations 
to continuous space representations. An 
already wellestablished example of this is 
the use of word embeddings. By project
ing discrete words into a continuous high
dimensional space, many of the problems 
associated with synonyms, antonyms, 
and rare words are mitigated by the use 
of simple wellbehaved distance metrics. 
The extension of embeddings to represent 
whole sentences and conversations enables 
variablelength sequences to be mapped 
into fixedlength vectors that can then be 
manipulated using conventional clas
sification and prediction models. There is 
also increasing emphasis on endtoend 
training. Conventional systems are typi
cally built as a pipeline of processes for 
which each component interface needs 
to be explicitly defined, and training data 
needs to be appropriately labeled at every 
component interface. This is expensive and 
inevitably results in information loss as the 
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signal propagates through the pipeline. By 
treating component interfaces as hidden 
variables, and training end to end, costs are 
reduced and performance increases.

In summary, the extensive use of ma
chine learning coupled with the avail
ability of largescale computing and very 
large data sets have led to a significant 
improvement across all areas of speech 
and language processing. Ultimately, 
however, the real challenge will concern 
our ability to extract and manipulate the 
underlying meaning of word sequences 
and this is an area that has so far re
mained rather elusive.
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ICIP 2016 Competition on Mobile 
Ocular Biometric Recognition
Rattani, A.; Derakhshani, R.;  
Saripalle, S.K; Gottemukkula, V.
The aim of this competition is to eval
uate and compare the performance of 
mobile ocular biometric recognition 
schemes in visible light on a large 
scale database (VISOB Data Set ICIP 
2016 Challenge Version) using stan
dard evaluation methods. Four differ
ent teams from universities across the 
world participated in this competition, 
submitting five algorithms altogether. 
The best results were obtained by a 
team from Norwegian Biometrics Lab
oratory (NTNU, Norway).

 2016

Semantic Context and Depth-
Aware Object Proposal Generation
Zhang, H.; He, X.; Porikli, F.; Kneip, L. 
This paper presents a contextaware 
object proposal generation method for 
stereo images. The authors propose to 
incorporate additional geometric and 

highlevel semantic context informa
tion into the proposal generation.  

 2016

Super-Resolution of Compressed 
Videos Using Convolutional  
Neural Networks
Kappeler, A.; Yoo, S.; Dai, Q.;  
Katsaggelos, A.K.
In this paper, for the problem of com
pressed video superresolution, the 
authors propose a CNN that is trained on 
both the spatial and the temporal di  men
sions of compressed videos to enhance 
their spatial resolution. Consecutive 
frames are motion compensated and used 
as input to a CNN that provides superre
solved video frames as output.  

 2016

Classification of Hyperspectral 
Image Based on Deep Belief 
Networks
Li, T.; Zhang, J.; Zhang, Y.
In this paper, deeplearning frameworks, 
the restricted Boltzmann machine 

model, and its deep structure deep belief 
networks are introduced in hyperspec
tral image processing as the feature 
extraction and classification approach.

 2014

Image Character Recognition 
Using Deep Convolutional Neural 
Network Learned from  
Different Languages
Bai, J.; Chen, Z.; Feng, B.; Xu, B.
This paper proposes a sharedhidden
layer deep convolutional neural net
work (SHLCNN) for image character 
recognition. In SHLCNN, the hidden 
layers are made common across char
acters from different languages, per
forming a universal feature extraction 
process that aims at learning common 
character traits existing in different 
languages, such as strokes, while the 
final softmax layer is made language 
dependent, trained based on characters 
from the destination language only. 

 2014
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Kovačević, “Discrete signal processing on graphs: 
Sampling theory,” IEEE Trans. Signal Process., vol. 
63, no. 24, pp. 6510–6523, Dec. 2015. 

[7] F.L. Luo and C. Zhang, Eds. Signal Processing 
for 5G: Algori thms and Implementat ions . 
Chichester, U.K.: WileyIEEE Press, 2016.

[8] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. 
Kavukcuoglu, and P. Kuksa, “Natural language pro
cessing (almost) from scratch,” J. Mach. Learn. Res., 
vol. 12, pp. 2493–2537, Aug. 2011. 

[9] L. Deng, “Industrial technology advances: Deep 
learning: From speech recognition to language and 
multimodal processing,” APSIPA Trans. Signal 
Inform. Process., vol. 5, pp. 1–15, Jan. 2016.  

[10] N. Mrksic, I. Vulic, D. O. Seaghdha, I. Leviant, 
R. Reichart, M. Gasic, A. Korhonen, and S. Young, 
“Semantic specialization of distributional word vector 
spaces using monolingual and crosslingual con
straints,” Trans. Assoc. Computat. Linguistics, vol. 5, 
pp. 309–324, Sept. 2017. 

[11] J. A. Fessler. (2017). Medical image reconstruc
tion: A brief overview of past milestones and future 
directions. [Online]. Available: http://arxiv.org/
abs/1707.05927

[12] Y. Liu, J. Chen, and L. Deng, “Unsupervised 
sequence classification using sequential output sta
tistics,” in Proc. NIPS, Dec. 2017.

[13] G. Hinton, et al., “Deep neural networks for 
acoustic modeling in speech recognition,” IEEE 
Signal Process. Mag., vol. 29, no. 6, pp. 82–97, Nov. 
2012. 

 
SP

PANEL AND FORUM (continued from page 13)


