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Measurement Matrix Design for Phase Retrieval
Based on Mutual Information

Nir Shlezinger ~, Member, IEEE, Ron Dabora

Abstract—In phase retrieval problems, a signal of interest (SOI)
is reconstructed based on the magnitude of a linear transforma-
tion of the SOI observed with additive noise. The linear transform
is typically referred to as a measurement matrix. Many works on
phase retrieval assume that the measurement matrix is a random
Gaussian matrix, which, in the noiseless scenario with sufficiently
many measurements, guarantees invertability of the transforma-
tion between the SOI and the observations, up to an inherent phase
ambiguity. However, in many practical applications, the measure-
ment matrix corresponds to an underlying physical setup, and
is therefore deterministic, possibly with structural constraints. In
this paper, we study the design of deterministic measurement ma-
trices, based on maximizing the mutual information between the
SOI and the observations. We characterize necessary conditions
for the optimality of a measurement matrix, and analytically ob-
tain the optimal matrix in the low signal-to-noise ratio regime.
Practical methods for designing general measurement matrices
and masked Fourier measurements are proposed. Simulation tests
demonstrate the performance gain achieved by the suggested tech-
niques compared to random Gaussian measurements for various
phase recovery algorithms.

Index Terms—Phase retrieval, measurement matrix design, mu-
tual information, masked Fourier.

I. INTRODUCTION

N A wide range of practical scenarios, including X-ray crys-
I tallography [1], diffraction imaging [2], astronomical imag-
ing [3], and microscopy [4], a signal of interest (SOI) needs to
be reconstructed from observations which consist of the mag-
nitudes of its linear transformation with additive noise. This
class of signal recovery problems is commonly referred to as
phase retrieval [5]. In a typical phase retrieval setup, the SOI is
first projected using a measurement matrix specifically designed
for the considered setup. The observations are then obtained as
noisy versions of the magnitudes of these projections. Recovery
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algorithms for phase retrieval received much research attention
in recent years. Major approaches for designing phase retrieval
algorithms include alternating minimization techniques [6], [7],
methods based on convex relaxation, such as phaselift [8] and
phasecut [9], and non-convex algorithms with a suitable initial-
ization, such as Wirtinger flow [10], and truncated amplitude
Sflow (TAF) [11].

The problem of designing the measurement matrix received
considerably less attention compared to the design of phase
retrieval algorithms. An important desirable property that mea-
surement matrices should satisfy is a unique relationship be-
tween the signal and the magnitudes of its projections, up to an
inherent phase ambiguity. In many works, particularly in theo-
retical performance analysis of phase retrieval algorithms [8],
[10], [12], the matrices are assumed to be random, commonly
with i.i.d. Gaussian entries. However, in practical applications,
the measurement matrix corresponds to a fixed physical setup,
so that it is typically a deterministic matrix, with possibly struc-
tural constraints. For example, in optical imaging, lenses are
modeled using discrete Fourier transform (DFT) matrices and
optical masks correspond to diagonal matrices [13]. Measure-
ments based on oversampled DFT matrices were studied in [14],
measurement matrices which correspond to the parallel appli-
cation of several DFTs to modulated versions of the SOI were
proposed in [8], and [15], [16] studied phase recovery using
fixed binary measurement matrices, representing hardware lim-
itations in optical imaging systems.

All the works above considered noiseless observations,
hence, the focus was on obtaining uniqueness of the magni-
tudes of the projections in order to guarantee recovery, though
the recovery method may be intractable [17]. When noise is
present, such uniqueness no longer guarantees recovery, thus
a different design criterion should be considered. Recovery
algorithms as well as specialized deterministic measurement
matrices were considered in several works. In particular, [18],
[19] studied phase recovery from short-time Fourier transform
measurements, [20] proposed a recovery algorithm and mea-
surement matrix design based on sparse graph codes for sparse
SOIs taking values on a finite set, [21] suggested an algorithm
using correlation based measurements for flat SOIs, i.e., strictly
non-sparse SOIs, and [22] studied recovery methods and the
corresponding measurement matrix design for the noisy phase
retrieval setup by representing the projections as complex poly-
nomials.

A natural optimality condition for the noisy setup, without
focusing on a specific recovery algorithm, is to design the
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measurement matrix to minimize the achievable mean-squared
error (MSE) in estimating the SOI from the observations. How-
ever, in phase retrieval, the SOI and observations are not jointly
Gaussian, which makes computing the minimum MSE (MMSE)
for a given measurement matrix in the vector setting very dif-
ficult. Furthermore, even in the linear non-Gaussian setting, a
closed-form expression for the derivative of the MMSE exists
only for the scalar case [23], which corresponds to a single
observation. Therefore, gradient-based approaches for MMSE
optimization are difficult to apply as well.

In this work we propose an alternative design criterion for
the measurement matrix based on maximizing the mutual in-
formation (MI) between the observations and the SOI. MI is
a statistical measure which quantifies the “amount of informa-
tion” that one random variable (RV) “contains” about another
RV [24, Ch. 2.3]. Thus, maximizing the MI essentially maxi-
mizes the statistical dependence between the observations and
the SOI, which is desirable in recovery problems. MI is also
related to MMSE estimation in Gaussian noise via its derivative
[25], and has been used as the design criterion in several prob-
lems, including the design of projection matrices in compressed
sensing [26] and the construction of radar waveforms [27], [28].

In order to rigorously express the MI between the obser-
vations and the SOI, we adopt a Bayesian framework for the
phase retrieval setup, similar to the approach in [29]. Comput-
ing the MI between the observations and the SOI is a difficult
task. Therefore, to facilitate the analysis, we first restate the
phase retrieval setup as a linear multiple input-multiple output
(MIMO) channel of extended dimensions with an additive Gaus-
sian noise. In the resulting MIMO setup, the channel matrix is
given by the row-wise Khatri-Rao product (KRP) [30] of the
measurement matrix and its conjugate, while the channel input
is the Kronecker product of the SOI and its conjugate, and is
thus non-Gaussian for any SOI distribution. We show that the
MI between the observations and the SOI of the original phase
retrieval problem is equal to the MI between the input and the
output of this MIMO channel. Then, we use that fact that for
MIMO channels with additive Gaussian noise, the gradient of
the MI can be obtained in closed-form [31] for any arbitrary
input distribution. We note that a similar derivation cannot be
carried out with the MMSE design criterion since: 1) Differ-
ently from the MI, the MMSE for the estimation of the SOI
based on the original observations is not equal to the MMSE
for the estimation of the MIMO channel input based on the out-
put; 2) For the MIMO setup, a closed-form expression for the
gradient of the MMSE exists only when the input is Gaussian,
yet, the input is non-Gaussian for any SOI distribution due its
Kronecker product structure.

Using the equivalent MIMO channel with non-Gaussian in-
put, we derive necessary conditions on the measurement matrix
to maximize the MI. We then obtain a closed-form expression
for the optimal measurement matrix in the low signal-to-noise
ratio (SNR) regime when the SOI distribution satisfies a sym-
metry property, we refer to as Kronecker symmetry, exhibited
by, e.g., the zero-mean proper-complex (PC) Gaussian distribu-
tion. Next, we propose a practical measurement matrix design
by approximating the matrix which maximizes the MI for any

arbitrary SNR. In our approach, we first maximize the MI of a
MIMO channel, derived from the phase retrieval setup, after re-
laxing the structure restrictions on the channel matrix imposed
by the phase retrieval problem. We then find the measurement
matrix for which the resulting MIMO channel matrix (i.e., the
channel matrix which satisfies the row-wise KRP structure) is
closest to the MI maximizing channel matrix obtained without
the structure restriction. With this approach, we obtain closed-
form expressions for general (i.e., structureless) measurement
matrices, as well as for constrained settings corresponding to
masked Fourier matrices, representing, e.g., optical lenses and
masks. The substantial benefits of the proposed design frame-
work are clearly illustrated in a simulations study. In particular,
we show that our suggested practical design improves the per-
formance of various recovery algorithms compared to using
random measurement matrices.

The rest of this paper is organized as follows: Section II for-
mulates the problem. Section III characterizes necessary condi-
tions on the measurement matrix which maximizes the MI, and
studies its design in the low SNR regime. Section IV presents
the proposed approach for designing practical measurement ma-
trices, and Section V illustrates the performance of our design
in simulation examples. Finally, Section VI concludes the pa-
per. Proofs of the results stated in the paper are provided in the
appendix.

II. PROBLEM FORMULATION
A. Notations

We use upper-case letters to denote RVs, e.g., X, lower-case
letters for deterministic variables, e.g., z, and calligraphic letters
to denote sets, e.g., X'. We denote column vectors with boldface
letters, e.g., x for a deterministic vector and X for a random
vector; the i-th element of x is written as (x);. Matrices are rep-
resented by double-stroke letters, e.g., IM, (IM); ; is the (4, j)-th
element of M, and [, is the n X n identity matrix. Hermitian
transpose, transpose, complex conjugate, real part, imaginary
part, stochastic expectation, and MI are denoted by ()7, ()7,
()5, Re{-},Im{-}, E{-}, and I(-; ), respectively. Tr(-) denotes
the trace operator, | - || is the Euclidean norm when applied
to vectors and the Frobenius norm when applied to matrices,
® denotes the Kronecker product, d; ; is the Kronecker delta
function, i.e., 0;; = 1 when k = [ and J;, ; = O otherwise, and
a* £max(0,a). For an n x 1 vector x, diag(x) is the n x n
diagonal matrix whose diagonal entries are the elements of x,
ie., (diag(x));; = (x);. The sets of real and of complex num-
bers are denoted by R and C, respectively. Finally, forann x n
matrix X, x = vec(X) is the n? x 1 column vector obtained
by stacking the columns of X one below the other. The n x n
matrix X is recovered from x via X = vec, 1(x).

B. The Phase Retrieval Setup

We consider the recovery of a random SOI U € C", from an
observation vector Y € R™. Let A € C"™*" be the measure-
ment matrix and W € R"™ be the additive noise, modeled as a
zero-mean real-valued Gaussian vector with covariance matrix
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ot L, 0%y > 0. As in [12, Eq. (1.5)], [14, Eq. (1)], and [17,
Eq. (1.1)], the relationship between U and Y is given by:

Y = |AUP + W, (1)

where |AU|? denotes the element-wise squared magnitude.
Since for every 6 € R, the vectors U and Uel? result in the
same Y, the vector U can be recovered only up to a global
phase.

In this work we study the design of A aimed at maximizing
the MI between the SOI and the observations. Letting f(u,y)
be the joint probability density function (PDF) of U and Y,
f(u) the PDF of U, and f(y) the PDF of Y, the MI between
the SOI U and the observations Y is given by [24, Ch. 8.5]

f(U,Y) }
fFU)FY)
Specifically, we study the measurement matrix AM! which

maximizes' the MI for a fixed arbitrary distribution of U, subject
to a Frobenious norm constraint P > 0, namely,

AN = 1(U;Y), 3)

I(U;Y) 2 &uy {log 2)

arg max
Aecmxn :Tr(AAH )<P

where U and Y are related via (1). In the noiseless non-Bayesian
phase retrieval setup, it has been shown that a necessary and
sufficient condition for the existence of a bijective mapping from
U to Y is that the number of observations, m, is linearly related
to the dimensions of the SOIZ, n, see [32], [33]. Therefore, we
focus on values of m satisfying n < m < n2.

As discussed in the introduction, in practical scenarios, the
structure of the measurement matrix is often constrained. One
type of structural constraint commonly encountered in practice
is the masked Fourier structure, which arises, for example, when
the measurement matrix represents an optical setup consisting
of lenses and masks [13], [20]. In this case, Y is obtained
by projecting U via b optical masks, each modeled as an n x
n diagonal matrix G, [ € {1,2,...,b} = B, followed by an
optical lens, modeled as a DFT matrix of size n, denoted F,,
[20, Sec. 3]. Consequently, m = b - n and A is obtained as

]Fncl Gl
]FH,GQ G?

A = . - (]Ib & ]Fn) . . (4)
]FnGb Gb

Since n < m < n?, we focus on 1 < b < n. In the following
sections we study the optimal design of general (unconstrained)
measurement matrices, and propose a practical algorithm for
designing both general measurement matrices as well as masked
Fourier measurement matrices.

III. OPTIMAL MEASUREMENT MATRIX

In this section we first show that the relationship (1) can be
equivalently represented (in the sense of having the same MI)

!"The optimal matrix AMT is not unique since, for example, for any real ¢,
the matrices A and Ae’? result in the same MI I(U;Y).

2Specifically, m = 4n — 4 was shown to be sufficient and m = 4n — O(n)
was shown to be necessary.
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as a MIMO channel with PC Gaussian noise. Then, we use the
equivalent representation to study the design of measurement
matrices for two cases: The first considers an arbitrary SOI
distribution, for which we characterize a necessary condition on
the optimal measurement matrix. The second case treats an SOI
distribution satisfying a symmetry property (exhibited by, e.g.,
zero-mean PC Gaussian distributions) focusing on the low SNR
regime, for which we obtain the optimal measurement matrix in
closed-form.

A. Gaussian MIMO Channel Interpretation

In order to characterize the solution of (3), we first consider
the relationship (1): Note that for every p € {1,2,...,m} =
M, the p-th entry of |AU|? can be written as

(1aUP) =33 @), (A, (U (U). )
k=11=1

Next, define N £ {1,2,...,n}, and the m x n? matrix A such
that

(A)pﬁ(k—l)n-&-l

Letting U £ U® U*, from (5) we obtain that |[AUJ? =

A(U ® U*). Thus (3) can be written as
Y=AUQU)+W=AU+W. (7

= (A), ) (A),

p,l

pe Mk leN. (6)

We note that the transformation from U to U = U ® U* is
bijective?, since U can be obtained from the singular value de-
composition (SVD) of the rank one matrix UU = vec, ! (U ®
U*)T [34, Ch. 2.4]. We also note that A corresponds to the row-
wise KRP of A and A* [34, Ch. 12.3], namely, the rows of A are
obtained as the Kronecker product of the corresponding rows
of A and A*. Defining $,,, to be the m x m? selection matrix
such that (8, )k.1 = 0y, (k—1)m+k»> WE can write A as [30, Sec.
2.2]

A=S, (Ao A"). ®)

The relationship (7) formulates the phase retrieval setup as a
MIMO channel with complex channel input U, complex chan-
nel matrix A, real additive Gaussian noise W, and real channel
output Y. We note that U = U ® U* is non-Gaussian for any
distribution of U, since, e.g., (fj)l = |(U);|* is non-negative.
In order to identify the measurement matrix which maximizes
the MI, we wish to apply the gradient of the MI with respect
to the measurement matrix, stated in [31, Th. 1]. To facilitate
this application, we next formulate the phase retrieval setup as
a complex MIMO channel with additive PC Gaussian noise. To
that aim, let Wy € R™ be a random vector, distributed iden-
tically to W and independent of both W and U, and also let
Yo 2Y + 7W . The relationship between Y and U corre-
sponds to a complex MIMO channel with additive zero-mean

3The transformation from U to U is bijective up to a global phase. However,
the global phase can be set to an arbitrary value, as (1) is not affected by
this global phase. Therefore, bijection up to a global phase is sufficient for
establishing equivalence of the two representations in the present setup.
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PC Gaussian noise, W £ W + 7W, with covariance matrix
20%1, I,,:

Yo = AU + We. )
As the mapping from U to Uis bijective, it follows from [24,
Corollary after Eq. (2.121)] that

1(U;Y) = 1(0;Y) 2 1(0; Y0), (10)

where (a) follows from the MI chain rule [24, Sec. 2.5], since
Y = Re{Y¢}, W; = Im{Y¢}, and Wy is independent of Y
and U. Thus, (3) can be solved by finding A which maximizes
the input-output MI of the MIMO channel representation.

The MIMO channel interpretation represents the non-linear
phase retrieval setup (1) as a linear problem (9) without modify-
ing the MI. This presents an advantage of using MI as a design
criterion over the MMSE, as, unlike MI, MMSE is not invariant
to the linear representation, i.e., the error covariance matrices of
the MMSE estimator of U from Y and of the MMSE estimator
of U from Y are in general not the same.

B. Conditions on AM! for Arbitrary SOI Distribution

Let E(A) be the error covariance matrix of the MMSE esti-
mator of U from Y (referred to henceforth as the MMSE matrix)
for a fixed measurement matrix A, i.e.,

E(A) 2 5{(1] - g{fj|Y}) (fj - e{fjw})H } (11)

Based on the observation that (9) corresponds to a MIMO chan-
nel with additive Gaussian noise, we obtain the following nec-
essary condition on AM! which solves (3):

Theorem 1 (Necessary condition): Let a%,’“ be the k-th col-
umn of (AMNT k € M, and define the n x n matrix

H, (AM) 2 (Hn ® (a%’“)T) (E (AMY) )T (]In 2 (al;:“)*>
+ ((aﬁ“)T ® ]In) E (AM) ((al,:“)* ® ]In) .

Then, AM! that solves (3) satisfies:

At = H, (AM) &', Vk e M,

where A > 0 is selected such that Tr(AM'(AM)H) = P,
Proof: See Appendix A.

It follows from (12) that the k-th row of AM ke M, is
an eigenvector of the n x n Hermitian positive semi-definite
matrix Hj, (AMI), which depends on AM!. As the optimization
problem in (3) is generally non-concave, condition (12) does not
uniquely identify the optimal measurement matrix in general.
Furthermore, in order to explicitly obtain AM from (12), the
MMSE matrix E(AM") must be derived, which is not a simple
task. As an example, let the entries of U be zero-mean i.i.d.
PC Gaussian RVs. Then, U obeys a singular Wishart distribu-
tion [35], and E(A) does not seem to have a tractable analytic
expression. Despite this general situation, when the SNR is
sufficiently low, we can explicitly characterize AM! in certain
scenarios, as discussed in the next subsection.

(12)

C. Low SNR Regime

We next show that in the low SNR regime, it is possible to
obtain an expression for the optimal measurement matrix which
does notdependon E(A). Let Cy and Cy; denote the covariance
matrices of the SOI, U, and of U=U® U™, respectively. In
the low SNR regime, i.e., when U# — 0, the MI I(fJ;YC)
satisfies [31, Eq. (41)]: !

- 1 _ -
I (U;YC) N~ Ty (ACfJA ) . (13)
207,
Thus, from (10) and (13), the measurement matrix maximizing
the MI in the low SNR regime can be approximated by

AM ~ arg max

AcCmxn :Tl.(AAH )SP

Tr (ACﬁAH) R

where A is given by (8).
Next, we introduce a new concept we refer to as Kronecker
symmetric random vectors:

Definition I (Kronecker symmetry): A random vector X
with covariance matrix Cx is said to be Kronecker symmetric if
the covariance matrix of X ® X* is equal to Cx ® Cx.

In particular, zero-mean PC Gaussian distributions satisfy
Def. 1, as stated in the following lemma:

Lemma 1: Any n x 1 zero-mean PC Gaussian random vec-
tor is Kronecker symmetric.

Proof: See Appendix B.

We now obtain a closed-form solution to (14) when U is a
Kronecker symmetric random vector. The optimal A™! for this
setup is stated in the following theorem:

Theorem 2: Let a)!! be the k-th column of (AM")T &k € M,
and let v, be the eigenvector of Cy corresponding to its
maximal eigenvalue. If U is a Kronecker symmetric random
vector with covariance matrix Cy, then, for every ¢ € C" with
c||?> = P, setting al™ = (c); v}, forall k € M solves (14).
Thus,

AMI _ o H

max*

(15)
Proof: See Appendix C.

The result of Theorem 2 is quite non-intuitive from an es-
timation perspective, as it suggests using a rank-one measure-
ment matrix. This implies that the optimal measurement matrix
projects the multivariate SOI onto a single eigenvector corre-
sponding to the largest spread. Consequently, there are infinitely
many realizations of U which result in the same |AU|?. The
optimality of rank-one measurements can be explained by not-
ing that the selected scalar projection is, in fact, the least noisy
of all possible scalar projections, as it corresponds to the largest
eigenvalue of the covariance matrix of the SOI. Hence, when
the additive noise is dominant, the optimal strategy is to de-
sign the measurement matrix such that it keeps only the least
noisy spatial dimension of the signal, and eliminates all other
spatial dimensions which are very noisy. From an information
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theoretic perspective, this concept is not new, and the strategy
of using a single spatial dimension which corresponds to the
largest eigenvalue of the channel matrix in memoryless MIMO
channels was shown to be optimal in the low SNR regime, e.g.,
in the design of the optimal precoding matrix for MIMO Gaus-
sian channels [36, Sec. II-B]. However, while in [36, Sec. 1I-B]
the problem was to optimize the input covariance (using the
precoding matrix) for a given channel, in our case we optimize
over the “channel” (represented by the measurement matrix) for
a given SOI covariance matrix.

Finally, we show that the optimal measurement matrix in
Theorem 2 satisfies the necessary condition for optimality in
Theorem 1: In the low SNR regime the MMSE matrix (11)
satisfies E(A) ~ Cg, see, e.g., [36, Eq. (15)]. The Kronecker
symmetry of the SOl implies that E (A) ~ Cy ® Cy;. Plugging
this into the definition of Hj, (AM') in Theorem 1 results in
H; (AMY) = 2((a}™)TCy (a}!")*)Cy;. Theorem 1 thus states
that for every k& € M, the vector aMI must be a complex conju-
gate of an eigenvector of Cy. Consequently, the optimal matrix
in Theorem 2 satisfies the necessary condition in Theorem 1.

IV. PRACTICAL DESIGN OF THE MEASUREMENT MATRIX

As can be concluded from the discussion following
Theorem 1, the fact that (12) does not generally have a unique
solution combined with the fact that it is often difficult to an-
alytically compute the MMSE matrix, make the characteriza-
tion of the optimal measurement matrix from condition (12) a
very difficult task. Therefore, in this section we propose a prac-
tical approach for designing measurement matrices based on
Theorem 1, while circumventing the difficulties discussed above
by applying appropriate approximations. We note that while the
practical design approach proposed in this section assumes that
the observations are corrupted by an additive Gaussian noise,
the suggested approach can also be used as an ad hoc method for
designing measurement matrices for phase retrieval setups with
non-Gaussian noise, e.g., Poisson noise [8, Sec. 2.3]. The prac-
tical design is performed via the following steps: First, we find
the matrix AM! which maximizes the MI without restricting A
to satisfy the row-wise KRP structure (8). Ignoring the structural
constraints on A facilitates characterizing AM! via a set of fixed
point equations. Then, we obtain a closed-form approximation
of AM! by using the covariance matrix of the linear MMSE
(LMMSE) estimator instead of the actual MMSE matrix. We
denote the resulting matrix by A’. Next, noting that the MI is
invariant to unitary transformations, we obtain the final measure-
ment matrix by finding A which minimizes the Frobenious norm
between S, (A ® (A)*) and a given unitary transformation of
A, also designed to minimize the Frobenious norm. Using this
procedure we obtain closed-form expressions for general mea-
surement matrices as well as for masked Fourier measurement
matrices. In the following we elaborate on these steps.

A. Optimizing Without Structure Constraints

In the first step we replace the maximization of the MI
in (3) with respect to the measurement matrix A, with a
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maximization with respect to A, which denotes the row-wise
KRP of A and A*. Specifically, we look for the matrix A which
maximizes I(U; Y¢), without constraining the structure of A,
while satisfying the trace constraint in (3).

We now formulate a constraint on A which guarantees that
the trace constraint in (3) is satisfied. Letting a; be the k-th
column of AT, k € M, we have that

m m

o> lan P llaw, I

k1=1 ko=1

Al =

m

> (lae, I* + Nl 1) = m > i, (16)
1=1 ko=1 k=1

where (a) follows since a? + b*> > 2ab for all a,b € R. Next,
it follows from (8) that

(a)
<

l\J\)—‘

m

= |lay ®aj|?
k=1

(a) L1 ,
= la ]t > EHAHJ‘,

k=1

[N
a7

where (a) follows from [34, p. 709] and (b) follows from
(16). Therefore, if A satisfies HAH < P , then Tr(AAY) =
|A|?> < P, thereby satisfying the constralnt in (3). Conse-
quently, we consider the following optimization problem:

AM = (18)

arg max

I (fJ;YC) .
Accmxn? :TI.(AAH )S%

Note that without constraining A to satisfy the structure (8),
Y can be complex, and the MI between the input and the output
of the transformed MIMO channel, T (fJ; Y ), may not be equal
to the MI between the SOI and the observations of the original
phase retrieval setup, I(U;Y).

The solution to (18) is given in the following lemma:

Lemma 2 [26, Th.4.2], [37,Th. 1], [38, Prop.2]: LetE(A)
be the covariance matrix of the MMSE estimate of~I~J from
Y for a given A, and let Vi (A)Dg(A)(Vg (A)) be
the eigenvalue decomposition of E(A), in which Vg (A)
is unitary and Dpg (A) is a diagonal matrix whose diagonal
entries are the eigenvalues of ]E(A) in descending order. Let
D4 (A) be an m x n? diagonal matrix whose entries satisfy

(]DA (A>)k.k =0 (]DE (A))k.k <7 (192)
(Da(R)) >0 it (Dg(A)) =n (19
where 7) is selected such that > /" | (IDy (A))%k = %2. The

matrix AM! which solves (18) is given by the solution to

AM =D, (AMI) (WE (AMI))H (20)
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Lemma 2 characterizes AM! via a set of fixed point
equations*. Note that the matrix D4 (AM) is constructed such
that AM! which solves (20) induces a covariance matrix of
the MMSE estimate of U from Y, denoted E(AM!), whose
eigenvalues satisfy (19).

B. Replacing the MMSE Matrix with the LMMSE Matrix

In order to obtain AM! from Lemma 2, we need the er-
ror covariance matrix of the MMSE estimator of U from Y.,
E(AM"), which in turn depends on AM!. As E(A) is difficult
to compute, we propose to replace the error covariance matrix
of the MMSE estimate with that of the LMMSE estimate’ of U
from Y. The LMMSE matrix is given by [31, Sec. IV-C]

E. (A) =Cg - CgA" (2051, +ACUAH>71 ACy.

Replacing E(A) withE;, (A) in Lemma 2, we obtain the matrix
A stated in the following corollary:

Corollary 1: Let VgDg Vg be the eigenvalue decomposi-
tion of Cg, in which V is unitary and Dy is a diagonal matrix
whose diagonal entries are the eigenvalues of Cg arranged in
descending order. Let D 4 be an m x n? diagonal matrix such
that

2
204

(]DA)Z.k: = (77 - W

k. k

+
) , VkeM, (21)

where 7} is selected such that ;" (ID4)? , = 2% Finally, let

A =D,V (22)
Thep, A/ satisfies the co~nditions in Lemma 2, computed with
E(A’) replaced by E (A').

Proof: See Appendix D.

While Lemma 2 corresponds to a generalized mercury water-
filling solution [26, Th. 4.2], Corollary 1 is reminiscent of the
conventional waterfilling solution for the optimal A when U is
Gaussian [26, Th. 4.1]. However, as noted in Section III-A, fJ
is non-Gaussian for any distribution of U, thus, the resulting A’
has no claim of optimality.

C. Nearest Row-Wise Khatri-Rao Product Representation

The choice of A’ in (22) does not necessarily correspond to a
row-wise KRP structure (8). In this case, it is not possible to find
amatrix A such that |[AU|?> = A’(U ® U*), which implies that
the matrix A’ does not correspond to the model (1). Furthermore,
we note that MI is invariant to unitary transformations, and
specifically, for any unitary V € C"*™ and forany A € C™*"’

4The solution in [26, Th. 4.2] includes a permutation matrix which performs
mode alignment. However, for white noise mode alignment is not needed, and
the permutation matrix can be set to I,,» [37, Sec. III].

3 An inspiration for this approximation stems from the fact that for parallel
Gaussian MIMO scenarios, the covariance matrices of the MMSE estimate and
of the LMMSE estimate coincide at high SNRs [39].

we have that

I (ﬁ;Aﬁ+WC) W (fJ;AfJ +VHWC)

oy (fJ;VAfJ n Wc) @3
where (a) follows from [24, Eq. (8.71)], and (b) since
I(U;Y¢) =1(U; VY(), see [24, p. 35]. Therefore, in order
to obtain a measurement matrix, we propose finding an m x n
matrix A° such that, for a given unitary matrix V,
A = argmin |[VA' -8, (A® A") |
A c Cm xn

(24)

Note that while the unitary matrix V does not modify the MI,
it can result in reducing the minimal Frobenious norm in (24).
We will elaborate on the selection of V in Section I'V-E.

To solve (24), let &), be the n? x 1 column vector correspond-

ing to the k-th column of (VA’)” and IM;CH) be the Hermitian
part® of vec,, ' (a},), k € M. The solution to (24) can be analyt-
ically obtained as stated in the following proposition:

Proposition 1: Let ég be the n x 1 vector corresponding
to the k-th column of (AO)T, ke M. Let [iy max be the

largest eigenvalue of M;{H ) ,and let v, .y be the corresponding
eigenvector, when the eigenvector matrix is unitary. Then, the

columns of (AO)T which solves (24) are given by

ék = y/max (/]’kT,lllaX7O) : vlt’,max? ke M. (25)

Proof: See Appendix E.

The matrix A° derived in Proposition 1 does not necessarily
satisfy the Frobenius norm constraint P. Thus, if the squared
norm of A° is larger than P, then it is scaled down to satisfy
the norm constraint. Moreover, since 1 (U; v ACUP + W) is
monotonically non-decreasing w.r.t. v > 0 [25, Th. 2] for any
distribution of U, if the squared norm of AO° is smaller than
P, then it is scaled up to the maximal norm to maximize the
MI. Consequently, the final measurement matrix is given by
A° = L AC.

Next, we show that when U is Kronecker symmetric, then,
in the low SNR regime, A° coincides with the optimal ma-
trix characterized in Theorem 2, for any unitary transformation
matrix V. Let i; be an m x 1 vector such that (i), = 6.1,
and let Vy Dy Wﬁ be the eigenvalue decomposition of Cy.
For a Kronecker symmetric U, we have that C; = Cy ® Cyj,
and thus ij =Vy ® Vy; and ]ij =Dy ® ]D% [34, Ch.
12.3.1]. In the low SNR regime, due to the “waterfilling” in
(22), the measurement matrix extracts only the least noisy spa-
tial dimension of the SOI, resulting in A = %il (Vmax ®

*

H . . .
vmax) , where vy, is the eigenvector corresponding to
the maximal eigenvalue of the SOI covariance matrix, Cy.
Therefore, letting v; denote the leftmost column of V, we

N H . .
have that VA’ = \/%vl (Vimax @ Viax) > which results in

vec, ! (8}) = = (V)i Vinax viL, [41, Ch. 9.2] and M) =

9The Hermitian part of a matrix Z is given by %(Z + 7z,
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P H ~
\/ﬁRe{(vl)k’}Vmﬂvaax' Consequently, Vi, max = Vmax for

every k € M, and thus AP° is a rank-one matrix of the form
A° =c-vH  which coincides with AM! stated in Theorem

max?

2. For example, setting V = I, results in ¢ = /P - i;.

D. Masked Fourier Measurement Matrix

As mentioned in Section II-B, in many phase retrieval setups,
the measurement matrix represents masked Fourier measure-
ments and is constrained to the structure of (4). In the context
of phase retrieval, the design goal is to find the set of masks
{G;}!_, in (4) which result in optimal recovery performance.
To that aim, define the n x 1 vectors g, [ € B, to contain the
diagonal elements of G;, (g)r = (G;)k,x» k € N. With this
definition, we can write

(A)<[—1)n+k~p = (gl)p (]Fn)k,p )

Since A does not necessarily represent a masked Fourier struc-
ture, based on the rationale detailed in Section IV-C, we suggest
to use the masks {gM¥}?_, that minimize the distance between
the resulting measurement matrix and a unitary transformation
of A

Vk,pe N,l € B. (26)

{&" 1 = 2ugmin IVA" =8, (Ao AP,
2 ;:l e(Cn

27

where V is a given unitary matrix and A depends on {g?’IF }?:1
via (26). The set of masks which solve (27) is characterized in
the following proposition:

Proposition 2: Let Fr be an n x n diagonal matrix such
that (Fy),, = (Fy)kp, k,p € N. For all [ € B, let fijmax
be the largest eigenvalue of the n x n Hermitian matrix
Iy H(/[Eﬁ)nmklﬁ,j, where Mgﬁ)l)nm is the Hermitian part
of vec; ! (é?l_l)nM ), and let V; 1, be its corresponding eigen-
vector, when the eigenvector matrix is unitary. Then, the set of
mask coefficients {gM¥ }?_, which solves (27) is obtained as

MF 77 Vv
g = \/’fl - max (/Jl,nlaxv O) : V;imaxv leB.

Proof: See Appendix F.

(28)

The masked Fourier measurement matrix is obtained from
the coefficient vectors {gM¥}?_, via

AMF MF
(A )(l—l)-n+k,p = (gl )p (Fn)k,p , k,peN,leB.
(29)
Applying the same reasoning used in determining the scaling
of A© in Section IV-C, we conclude that the MI is maximized,

subject to the trace constraint, by normalizing AM¥ to obtain

MF _ VP AMF
AT = AT
Let us again consider a Kronecker symmetric U in the

low SNR regime. For simplicity, we set V =1,,. As dis-

cussed in the previous subsection, for this setting we have
x . H ..

that A’ = %11 (Vinax ® Viayx) > where iy is the m x 1 vec-

tor such that (i) . = Ok.1, and thus M,&m is non-zero only for

k = 1. Therefore, fijmax is zero for all [ # 1, while fij max

is the largest eigenvalue of Iﬁl*ll\?[(lH)IFl = ]MgH) = Viax Vil .,
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and thus V| ax = Vmax. Consequently, we have that

I, diag (anax)
0 ... 0
AMY = /P (30)
0 ... 0

Unlike the unconstrained case considered in the previous sub-
section, the resulting measurement matrix in (30) does not co-
incide with the optimal matrix given in Theorem 2, due to the
masked Fourier structure constraint.

E. Obtaining the Optimal Unitary Transformation Matrix

In the previous subsections we assumed that the unitary trans-
formation V applied to A’is given. In the following we propose
an algorithm to jointly identify the optimal transformation V
and the optimal measurement matrix A.

Let V denote the set of m X m complex unitary matrices and
A denote the set of m x n feasible measurement matrices. For
example, for unconstrained measurements, A = C™*", and for
masked Fourier measurements, A is the set of all matrices which
can be expressed as in (4). The optimal A and V are obtained
as the solution to the following joint optimization problem:

(AU,VU) = argmin |[VA' —S,, (A®A*)|>.

AeAVeY

€29

The solution to (31) for a fixed V is given in Propositions 1 and
2. For a fixed A, the problem in (31) is the unitary Procrustes
problem [44, Ch. 7.4]: Letting Vyq (A)Dsya (A) WL, (A) be

the SVD of $,, (A @ A*) - (A’)", the solution to (31) for a
fixed A is given by

VY (A) = Via (A) Wi, (A). (32)

Based on the above, we propose to solve the joint optimiza-
tion problem (31) in an alternating fashion, i.e., optimize over .4
for a fixed V, then optimize over V for a fixed A, and continue
with the alternating optimization process until convergence. The
overall matrix design algorithm is summarized in Algorithm 1.
As the Frobenious norm objective in (31) is differentiable, con-
vergence of the alternating optimization algorithm is guaran-
teed [45, Th. 2]. However, since the problem is not necessarily
convex’ w.r.t. both A and V, the algorithm may converge to a
local minima.

Assuming that the computation of A’in Step 1 of Algorithm 1
is carried out using a computationally efficient waterfilling al-
gorithm, as in, e.g., [46], the complexity of Algorithm 1 is
dominated by the computation of the eigenvalue decomposi-
tion required in Step 2 and by the matrix product required to
compute the SVD in Step 1. Letting ¢,,,x denote the maximal
number of iterations over Steps 3—4, it follows that the overall

7This non-convexity is observed by noting that, for example, for ¢ € (0, 27),
the right hand side of (31) obtains the same value for A and for Ael? and

a different value for %(1 + e/¢)A, which is an element of every convex set

containing A and Ael?. Consequently, when A which is not all zero solves

(31), the set of all minima is not convex, and the optimization problem is thus
not convex [40, Ch. 4.2].
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Algorithm 1: Measurement Matrix Design.
1: Initialization: Set k = 0 and Vo =1,,.
2: Compute A’ using (22).

3: Obtain Ak+1 = arg mln ||Vk

=5, (A ® A*)”2

using Proposition 1 (for general measurements) or using
Proposition 2 (for rqasked Fourier measurements).
4. Set VkJrl = Vi (AkJrl ) wH vd (Ak+l)

S
5: If termination criterion is inactive: Set £ := k + 1 and
go to Step 3.
6: AY is obtained as AY = HfHAk
k

computational complexity of the algorithm is on the order of
O(tmax - m? - n? +n%) [34, Ch. 1.1, Ch. 8.6].

While in the problem formulation we consider white Gaus-
sian noise, the measurement matrix design in Algorithm 1 can
be extended to account for colored Gaussian noise, i.e., for
noise W with covariance matrix Cyw # ‘712/1/ I,,,, by considering
the whitened observations vector C;& /%Y instead of Y. This
is because invertible transformations do not change the MI:
I(U;Y) = I(U;Cy/*Y) [24, Corollary after Eq. (2.121)],
therefore maximizing the MI for the whitened observations
maximizes the MI for the original observations. After apply-
ing the whitening transformation, Algorithm 1 can be used on
the whitened observations vector C;& /%Y with noise covariance
matrix I, , with the exception that the objective function in Step

3 is replaced with arg min ||VkCi,(,2A' -5, (A A
AcA

V. SIMULATIONS STUDY

In this section we evaluate the performance of phase retrieval
with the proposed measurement matrix design in a simulations
study. While our design aims at maximizing the statistical de-
pendence between the SOI and the observations via MI maxi-
mization, we note that phase retrieval is essentially an estimation
problem, hence, we evaluate the performance in terms of esti-
mation error. Since the phase retrieval setup inherently has a
global phase ambiguity, for an SOI realization U = u and its
estimate U = u, we define the estimation error as

c(wa)= min Im—cal
ceC:le|=1 ||UH

(33)
namely, the minimum relative distance over all phase rotations,
see, e.g., [9, Eq. (19)]. We use both phasecut [9] and TAF (with
step-size 1 and truncation threshold 0.9) [11] to estimate the
SOI U from the observations Y. Performance was evaluated
for five different measurement matrices:
e A®X _ The optimal measurement matrix for Kronecker
symmetric SOI in the low SNR regime, obtained via (15)

with c selected such that (c); = \/; /275 forall k € M.

e AYC - The unconstrained measurement matrix obtained
using Algorithm 1 with 4 = C™*".

Average estimation error

0
SNR [dB]

Fig. 1. Average estimation error vs. SNR for Ug using phasecut, m = 6n.

o AMY _ The masked Fourier measurement matrix obtained
using Algorithm 1 with A being the set of matrices which
can be expressed as in (4).

e ARY _ A random PC Gaussian matrix with i.i.d. entries.

e AP _ A coded diffraction pattern matrix with random
octanary patterns [10, Sec. 4.1], namely, a masked Fourier
matrix (4) with i.i.d. random masks, each having i.i.d.
entries distributed according to [10, Eq. (4.3)].

For the random matrices, ARG and ACP , anew realization is
generated for each Monte Carlo simulation. The squared Frobe-
nius norm constraint is set to P = m, namely, the average row
squared norm for all designed matrices is 1. Two different SOI
distributions of size n = 10 were tested:

e Ug - A sum of complex exponentials (see, e.g.,

V1) given by (Ug)r =

[9, Sec.
Z M;e’™ @tk where {M;}}_, are

1.i.d. zero-mean unit Vanance real-valued Gaussian RVs,
and {®;}_, arei.i.d. RVsuniformly distributed over [0, 7],
independent of {1 }%_,

e U; - A zero-mean PC Gaussian vector with covariance
matrix Cy corresponding to an exponentially decaying

correlation profile given by (Cy )y = 6 - ¢ 1F~ 14y =

k,leN.

Note that all tested SOIs have the same energy, measured
as the trace of the covariance matrix. The estimation error is
averaged over 1000 Monte Carlo simulations, where a new SOI
and noise realization is generated in each simulation.

In Figs. 14 we fix the observations dimension to be m =
6 - n = 60, and let the SNR, defined as 1/012V , vary from —30dB
to 30 dB, for Ug using phasecut, Ug using TAF, Ug using
phasecut, and U using TAF, respectively. It can be ob-
served from Figs. 1—4 that the deterministic unconstrained AY°
achieves the best performance over almost the entire SNR range,
for all tested SOI distributions. Notable gains are observed for
Uyg in Figs. 1 and 2, where, for example, AV attains an aver-
age estimation error of € = 0.1 for SNRs of —4 dB and —2 dB,
for phasecut and for TAF, respectively, while random Gaus-
sian measurements AR achieve ¢ = 0.1 for SNRs of 4 dB and
8 dB, for phasecut and for TAF, respectively, and random coded
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Fig.2. Average estimation error vs. SNR for Ug using TAF, m = 6n.

T T T T

_X={afofofeisfafofoinl=fofodolalalafofclna}oa] l:HjJJ

>

Average estimation error

Fig. 3.
8
®
5
3
£
H
[0}
g
2
2
-30 -20 -10 0 10 20 30
SNR [dB]
Fig. 4. Average estimation error vs. SNR for U using TAF, m = 6n.

diffraction patterns A°P achieve ¢ = 0.1 for SNRs of 6 dB and
8 dB, for phasecut and for TAF, respectively. Consequently, for
SOI distribution Ug, AYC achieves an SNR gain of 8-10 dB at
€ = 0.1 over Gaussian measurements, and an SNR gain of 10 dB
over random coded diffraction patterns. From Figs. 3 and 4 we
observe that the corresponding SNR gain at € = 0.1 for the SOI
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O A% Phasecut
O AYC, Phasecut
P AMF Phasecut
ARC, Phasecut
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Fig. 5. Average estimation error vs. sample complexity, Ug, SNR = 10 dB.
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Fig. 6.  Average estimation error vs. sample complexity, U, SNR = 10 dB.

distribution Ug is 2 dB, compared to both random Gaussian
measurements as well as to random coded diffraction patterns.
Furthermore, it is observed from Figs. 1-4 that the proposed
masked Fourier measurement matrix AMF, corresponding to
practical deterministic masked Fourier measurements, achieves
an SNR gain of 0-2 dB for both SOI distributions U and
Uyg, compared to random Gaussian measurements and random
coded diffraction patterns. It is also noted in Figs. 1-4 that, as
expected, in the low SNR regime, i.e., 1/0%, < —20 dB, A°K
obtains the best performance, as it is designed specifically for
low SNRs. However, the performance of A°X for both recovery
algorithms hardly improves with SNR as its rank-one structure
does not allow the complete recovery of the SOI at any SNR.
In Figs. 5 and 6 we fix the SNR to be 10 dB, and let the sample
complexity ratio ’7"—1 [10], [11] vary from 2 to 10, for both Ug
and Ug. From Figs. 5 and 6 we observe that the superiority
of the deterministic AV® is maintained for different sample
complexity values. For example, in Fig. 5 we observe that for
Us at SNR 1/02, = 10dB, AU obtains an estimation error of
less than € = 0.05 for m = 4n and for m = 6n, using phasecut
and using TAF, respectively, while our masked Fourier design
AMF requires m = 8n observations, and both random Gaussian
measurements and random coded diffraction patterns require
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TABLE I

FROBENIUS NORM || VA’ — S,, (A ® A*)|| COMPARISON FOR U g

1/0.‘24/ AUC A}JC AMF A%/IF
—10dB | 209 6.93 6.25 7.63
10 dB 219 699 5.70 7.66
30 dB 225 7.08 516 7.66
g 107
g ”B-g
< - B> :
o 3aly
uc “o B
102H —*=A R S B\ §
B Sk
-X -AI >
-10 i o 5 10 5 20 2 30
SNR [dB]
Fig. 7. Average estimation error vs. SNR for Ug, m = 6n.

m = 10n observations to achieve a similar estimation error, for
both phasecut and TAF. A similar behavior with less notable
gains is observed for U in Fig. 6. For example, for U using
phasecut, both AV and AMF require 7 = 5n observations to
achieve € = 0.05, while both ARG and ACP require m = 7n
observations to achieve similar performance. This implies that
our proposed designs require fewer measurements, compared
to the common random measurement matrices, to achieve the
same performance.

Moreover, we observe that the estimation error of both the
unconstrained measurements AV “ and the masked Fourier mea-
surements AMY scale w.r.t. SNR (Figs. 1-4) and sample com-
plexity (Figs. 5 and 6) similarly to random measurements ARG
and AP and that the performance gain compared to random
Gaussian measurements and random coded diffraction patterns
is maintained for various values of m.

Lastly, we numerically evaluate the performance gain ob-
tained by optimizing over the unitary matrix V, detailed in
Section IV-E. To that aim, we set AUC and AMF to be the
matrices obtained via Propositions 1 and 2, respectively, with
the unitary matrix V fixed to I,,,. In Table I we detail the val-
ues of Frobenius norm |[VA' — 8, (A ® A*)|| computed for
A}JC and A%’IF with V =1,,, and for AUC and AMY with
V obtained via (32), for m = 6n, SOI distribution Ug, and
1/o%, = —10, 10,30 dB. We note that optimizing over the uni-
tary transformation decreases the Frobenius norm by a factor
of approximately 3.3 for AVC and 1.4 for AMY. To illustrate
that the Frobenius norm improvement translates into improve-
ment in estimation performance, we depict in Fig. 7 the es-
timation error obtained with phasecut for the same setup for
1/o%, € [—10,30] dB. We observe that at € = 0.1 optimizing

the unitary matrix yields an SNR gain of 4 dB for AY“ com-
pared to APC, and a gain of 2 dB for AM" compared to AMF'
Fig. 7 demonstrates the benefits of optimizing over V in Algo-
rithm 1 rather than choosing a fixed V.

The results of the simulation study indicate that significant
performance gains can be achieved by the proposed measure-
ment matrix design, for various recovery algorithms, using de-
terministic and practical measurement setups.

VI. CONCLUSIONS

In this paper we studied the design of measurement matrices
for the noisy phase retrieval setup by maximizing the MI be-
tween the SOI and the observations. Necessary conditions on
the optimal measurement matrix were derived, and the optimal
measurement matrix for Kronecker symmetric SOI in the low
SNR regime was obtained in closed-form. We also studied the
design of practical measurement matrices based on maximiz-
ing the MI between the SOI and the observations, by applying
a series of approximations. Simulation results demonstrate the
benefits of using the proposed approach for various recovery
algorithms.

APPENDIX
We first recall the definition of the Kronecker product:

Definition 2 (Kroncker product): For any n; x ng matrix IN
and m; X mgy matrix IM, for every p; € {1,2,...,n1}, p2 €
{1,2,...,n0}, 1 €{1,2,....,m1}, @2 € {1,2,...,my}, the
entries of IN ® IM are given by [34, Ch. 1.3.6]:

= (N)Pl P2 (M)!h 2q2 "

The following properties of the Kronecker product are repeat-
edly used in the sequel:

(N ® M), (34)

—L)mi+qi1,(p2—1)m2+q»

Lemma 3: The Kronecker product satisfies:
P1 For any n% X 1 vector x; and n; X 1 vectors X, X3:

1
ny

%1 — %2 @ x5 = ||vec,, —xx5 7. 39

2

P2 For any n x 1 vector x and n? x n? matrix IM we have

that for every k € NV,

((1ooxt) M- (xex)),

n n

D IPYCRLY

p1i=1lg1=1¢=1

*

k Dn+ga,(p1—Dn+qi (X)m (X)(Il’
(36a)
and also

((xT®]In) ~]M*-(X*®x))

ORI

p1=1lq1=1ps=1

k

(??2* Jn+k, (Pl*l)"ﬂ]l( );1(X)Q1'

(36b)
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Proof: Property P1 follows since

1

2
Hvecn1 (x1 — X ®x§) ‘

i —x2 @ x5

(37

HVQC

where (a) follows from the relationship between the Frobenious
norm and the Euclidean norm, as for any square matrix X,
[1X]|? = |[vec(X)]|%; (b) follows from [34, Ch. 12.3.4].

In the proof of Property P2, we detail only the proof of (36a),
as the proof of (36b) follows using similar steps: By explicitly
writing the product of the n x n? matrix (I,, ® x” )M and the
n? x 1 vector x ® x* we have that

((ox) M- xex)),
=3 S (1 x) M
£ 95 95 ) LRI NINS

Lo
( )pz 1)n+qs,(pr—1)n+q (X®X*)(p171)n+ql . (33)
Next, from (34) we have that (I, @ X ). (5, ~1)n+0o = T )kps -

(X)qz - 616-,172( )qz and (X®X )(P -1)n+q1 = (X)pl : (X)Zl'
Substituting these computations back into (38) yields

((eox) M-xex)),

= Z Z Z (X)fn (M)(kfl)nJrqz,(plfl)nthn (X)Pl (x):;l’
n=la=lg=1

proving (36a). |

A. Proof of Theorem 1

Applying the KKT theorem [40, Ch. 5.5.3] to the problem
(3), we obtain the following necessary conditions for AM!:

Va(-T(UY) = A(P=Te(AAT))| | =0, (%)
and

/\(P " (AMI (AMI)H)) —0, (39b)
where A > 0. From (39a) it follows that for A = AM!

(0w,

To determine the derivative of the left-hand side of (40), we
use the chain rule for complex gradients [41, Ch. 4.1.1], from
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which we have that for every k; € M, ks € N,

(VAQ(U;Y)»kth:Tr<(VA(I(U;Y)))T5’(Z?:)

k1 ,ko
Tr <(VA* (I(U;Y)))T Wﬁé) ‘

k1 ko

(41)

Next, we let E¢: (A) denote the MMSE matrix for estimating U
from Y ¢, and note that (10) implies that

VA(I(U;Y)) = VA<I (G5YC>)

WA-Ec(A)ZAE@),

=

(42)

where (a) follows from [31, Eq. (4)], since the relationship be-

)k_(pl Dntq (x® X*)<p1 —)n+q tween Y and U corresponds to a PC Gaussian MIMO channel

with input U and output Y¢; (b) follows since W; = Im{Y¢}
is independent of Y = Re{Y } and of U, thus the MMSE ma-
trix for estimating U from Y, Ec(A), is equal to the MMSE
matrix for estimating U from Y, E(A). As Ml is real-valued,
it follows from (42) and from the definition of the generalized
complex derivative [41, Ch. 4.1.1] that

Va(1uy)) = (A.JE(A))*. 43)
Plugging (42) and (43) into (41) results in
(VA(I(U;Y ))kl by 121 121 (A E(A) )zl Iy
(A, © (A,
8(A)Zl’k2 1121 1221 (A )zlﬁlz 8(A)kl’kq (44)

By writing the index [y as [y = (pa — 1)n + g2, where py, g2 €
N, it follows from the definition of A in (6) that

a(A)Z J(p2—1)n+qs

¥ = (A)s, o, Otk Ops ks » (45a)
DA, Do s ko
and
O(A),
L1 v(p2*1)77’+{]2 _ (A) 6 6
* - i1 .p2 Ol1,k19q2 ko - (45b)
(A, 1, hu ‘
Thus, (44) yields
(Vafrwy)) qzl(A E@), L (B
£y (AEm) o, @), )

pa=1
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Next, we note that

A-E(A

( ( )>k (p2—1)n+gqs

- Z Z (A)klv(pl 1)n+ql( ( ))(pl n+qi,(p2—1)n+g:
ri=1lq=1

(@) N~ .

- Z Z(A)k1,p1 (A)kl-,‘h (E (A))(plfl)nJrqu(szl)nJrqz’
ri=lq=1

(47)

where (a) follows from the definition of Ain (6). Plugging (46)
and (47) into (40), we conclude that the entries of the optimal
measurement matrix AM! satisfy

A- AMI kl " Z Z Z Al\II kl B 1\[1)217(11
G2=1p1=1q =1
AMI ) (]E AMI )
( )k|,q2 ( ) (p1—=Dn+qi.(ka —l)n+qs

4 i i i (AMI)thl ( MI)

p2=1p1i=1lq=1

k1,q1

AMI ) (IE AMI ) * 48
( )kl’pz ( ) (p1—Dn+q1,(ps—Dn+ks (48)
where ) is set to satisfy the power constraint.

We now use Property P2 of Lemma 3 to express (48) in vector
form. Letting a}'! denote the k-th column of (AM")”, we note

that the first and second summands in the right hand side of (48)

correspond to (36a) and (36b), respectively, with x = a%” and
M = E” (AM"). Thus, (48) can be written as
)\ ’ (Al\ll)kl,kQ
<(]I ® ( MI) ) .ET (AMI> ) (axl ® (a%l)*))
ko
# (@ o 1) B () (@) 0 al)) . @)
ko

Consequently, as the MMSE matrix is Hermitian, we have
A aMI (Hn ® (a MI) ) ET (AMI) ) (a%I ® (ai?)*)
+ (@) @ 1) E (@AM - (@) @ all!)
T /
(1o @) () - (1 @ @)
= (@) o 1) B (@) o1,))al!

Hy, (AM) - a)', k1 € M, (50)

proving the theorem. ]

B. Proof of Lemma 1

We first write the indexes ki,ko € {1,2,...,n%} as ky =

(p1 — 1)n+qi and ky = (p2 — 1)n + q2, where p1,p2,q1,¢2
€ N. Using (34), the entries of the covariance matrix of
X ® X*, denoted Cx o x+, can then be written as

(Cxex- )(m —1)n+q1,(p2—1)n+qz
= &{ (X),, (X);, (X);, (X),, }
- &{ x),, x;, be{ 05, (%), }

Yel ), x, be{ xn, ), )

= (CX >P1 D2 (CX); 242

= (CX ®C§(>(P1*1)71+Q1,(P2*1)n+l]2 ’ G
where (a) follows from Isserlis theorem for complex Gaus-
sian random vectors [42, Ch. 1.4]; (b) follows from the proper
complexity of X, which implies that £{(X),, (X),, }£{(X);,
(X);, } = 0; and (c) follows from (34). Eq. (51) proves the
lemma. u

C. Proof of Theorem 2

To solve the optimization problem (14), we employ the fol-
lowing auxiliary lemma:

Lemma 4: Let a;, be the k-th column of AT, k € M. If U
is Kronecker symmetric with covariance matrix Cyy, then

m

Tr (ACI]AH) Z ay, CUak
k=1

(52)

Proof: Using Def. 1 and the representation (8) it follows that
Tr (ACy A™)
=Tr(Sn (A® A") - (Cu @ Cp) - (A7 @ AT) ST
i (sf,{s,,l, ((ACUAH) ® (ACUAH)*)) . (53)

where (a) follows from the properties of the trace opera-
tor [41, Ch. 1.1] and the Kronecker product [41, Ch. 10.2].
Note that 578, is an m? x m? diagonal matrix which satis-
fies (82S,,),, = 1if | = (k — 1)m + k for some k € M and
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(Sm S, )i = 0 otherwise. Therefore, (53) can be written as

NE

Tr (ACGA™) =Y ((Acua”)

k=1

® (ACy A" )

m
@ Z |a£C

(k=1)m+k,(k—1)m+k

’:Z allCyar)’, (54

where (a) follows from (34) and from the definition of a;, as the
k-th column of A, and (b) follows since Cy is Hermitian and
positive semi-definite. |
Using Lemma 4, (14) can be written as
AMT _ [all\u atl . aMI] T

»m

m

Z (akHCE ak,,)2

3 llag|P<p k=1
k=1

m H
Z(S‘CU'“‘") ol 55)

Sl 2 <P ]

= arg max

far i,

= arg max

far i,

all Cj; ay
RE ] )
value of Cy;, denoted /dex This maximum is obtained by

setting Hak 1= = /2™ Pk ¥ where v’ . is the eigenvector of

The maximal value of the ratio

is the largest eigen-

max? max

Cy; corresponding to fin .y, for any real ¢y, [43, p. 550]. Thus,

m

al’ Cj;a
Z (W) || k”? — /Lm'mx Z ||ak||2 < :u“maxP (56)

k=1 k=1

It follows from (56) that any selection of {ay, }7"_, suchthata;, =

(€)r v} . and Z |(c)|> = P solves (55). As Cy; is Hermitian

positive semi- deﬁmte it follows that i, is also the largest
eigenvalue of Cy;, and that its corresponding eigenvector is
Vmax, thus proving the theorem. [ |

D. Proof of Corollary 1

In order to prove the corollary we show that if the MMSE ma-
trix is replaced by the LMMSE matrix E, (A) then A’ in (22)
satisfies the conditions of Lemma 2, namely, Vy; diagonalizes
E; (A’) and D4 satisfies (19).

Using (22) it follows that E, (A’ ) is given by
E.(A)

- - =1
- CfJ - CfJ Wf} DE (2012/V I, +1Dy4 Wg ijvfj Dg)

DAV Cyq
— Cy — Cy VDY (2071, + DaDgD})

DAV Cy (57)
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From (57) it follows that E;, (A') is diagonalized by Vg, and
the eigenvalue matrix is the diagonal matrix given by

VEEL (A') Vg

— Dy — Dy DY (2031, + D4DgD}) " DDy (58)
In order to satisfy (19), for all k € M, (]DA)k,k must be non-
negative, and if (IINDA)k‘k > 0, then from (58):

(]Dﬁ)i k (IDA)i.k
n=(Dg)y,; — ’ 59

203 + (Da)iy D)y
Extracting (]f) A) from (59) and setting 77 = U” yields (21),
and concludes the proof ]

E. Proof of Proposition 1
Letting a;, be the k-th column of AT, k € M, we note that

m

”WA, Sm (A®A* H2 ZHak ag ®akH2 (60)

Therefore, the solution to the nearest row-wise KRP problem
(24) is given by the solutions to the m nearest Kronecker product
problems, i.e., for any k € M,

a0 = argmin ||a, — a, @ a;|?
apeCr

g 61)

W argmin ||vec, ' (a}) — ajaf

apecr
where (a) follows from (35). Solving (61) is facilitated by the
following Lemma:
Lemma 5: For an n x n matrix X with Hermitian part M x,
it holds that
argmin HX —vivl ||2
vecln

— argmin |[Mx — v'v7 [, (62)
veln

Proof: We note that since ||B||?> = Tr(BBX ), then

X —v VTH IX|1” + HV*VTH v (X +X7)v

DX + vV - 2v Mgy, (63)

where (a) follows since Mx = 3 (X + X*). Applying the

argmin operation to (63) proves the lemma. ]
From Lemma 5 it follows that (61) is equivalent to

aY = argmin ||]1\~/I§€H)

a, el

—ajay |?, (64)

* r(H) «
= argmin (M| + [lajaf |2 - 2af My a; )

apeCn
@ arg min (||a;;a£||2 —2aff (IM;CH)> ak,> , (65)

apeCn
where (a) follows since M,gH) does not depend on aj, and

since akT, 11\~/[§{H) a; is real valued [43, p. 549]. Since the rank one
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Hermitian matrix a,ja{ is positive semi-definite, the Eckart-
Young theorem [34, Th. 2.4.8] cannot be used to solve (64).
Consequently, we compute the gradient of the right hand side
of (65) w.r.t. a;. and set it to zero. This results in

2 ay)*a -2 (M) &y = 0. (66)

In order to satisfy (66), a AO must be either the zero vector or

an eigenvector of the Hermman matrix (]1\~/I£H)) with a non-

negatlve elgenvalue Specifically, for any non-negative eigen-

(H)

value [} of ]M and its corresponding unit-norm eigenvector

7, we have that (¥7)" is an eigenvector of (M}”))" with
eigenvalue /i), and thus (66) is satisfied by a} = \/fif, - (¥1)",

p € N. In order to select the eigenvalue-eigenvector pair which
minimizes the Frobenious norm, we plug af into the right hand
side of (65), which results in

H r(H
a2l — 2 @) (M) ap
(67)

Note that (67) is minimized by the largest eigenvalue. Thus,
when some eigenvalues are non-negative then the expression
(65) is minimized by taking the largest non-negative eigenvalue.
When all the eigenvalues are negative, (H\N/IECH))* is negative
definite. In this case, the expression in (65) is strictly non-
negative, hence its minimal value is obtained by setting a;, to
be the all-zero vector. Consequently, é? = /max(fix max,0) -
i}Z,max' u

F. Proof of Proposition 2

Let a, be the g-th column of AT, and recall that m = b - n.
When A corresponds to a masked Fourier measurement matrix
(4) we have that the right hand side of (65), which results in

VA"~

>y

=1

i —1 [ x/ * T
- E : E HVGC,L (a(l—1)7L+k> T A —)n+pR(-1)n+k
=1 k=1

m (A @A) |

<o

2
Hal Dntk — &(k-1)n+p & a?l—l)nﬂc”

’ 2

; (68)

(b) T T
2 ZZH"GC ( - 1)n+k)_Fkglng]Fk‘

where (a) follows from (35); (b) follows from (4) since
A(-1)n+k = Fjg;. From (68), in order to minimize the Frobe-
nious norm, the mask vectors gM" should satisfy

N M - - a N* [ F 2
g''F = argmin Z Hvecn1 <32171)n+k) —Figie/ Fy H - ()

g eC" i1

As IM(H)
follows from Lemma 5 and (69) that g

. is the Hermitian part of vec, ' (a, ;) ;). it

MF can be obtained from

. ~ 2
gt = argmlnz HIM 1k F,jg;‘ngIFkH

g[EC”

-2
—’argmmZHIF,\g zTFkH

g ecn

—2gf'By (M")),.,) Fee,  (0)

where (a) follows from the same arguments as those leading to
(65). Next, we recall that th~e Qiagonal elements of IF}, are in fact
the k-th row of F,,, hence F,[F; = L11,,. Therefore,

- - 2 - -~ ~
H]in‘gz*glek H =Tr (F;igz*nglelFZgi‘ngFk)

=Tr (gl FiFig gl ]FA]Fkgl)

Plugging this into (70) yields

g fargmmz e fQZg,HIFk( Do) Frg

el n
— 2g; F
. Z MG

3 il

= argmin
gieCn

ka@k*) g. (71)

In order to find the minimizing vector, we compute the gradient
of the right hand side of (71) with respect to g; and equate it to
zero, which results in

2 n L\
o lel” g — 2 (Z FkME;{)nmka) g =0. (72)

k=1
In order to satisfy (72), gMF must be an eigenvector of
Z Fk]M IF*) with a

non-negative elgenvalue and spe01ﬁcally, for any non-negative

the n x n Hermitian matrix
(- 1 n+k

]F,j and its corresponding

eigenvalue jij of Z FkM(z—1)n+k
k=1

unit-norm eigenvector v{, (72) is satisfied by g} = \/njj -
(\‘ff ) *,p € N.In order to characterize the vector g; which min-
imizes the Frobenious norm, we plug g/ into the right hand side
of (71), which results in

(ZE (- 1n+k k) g/

—n (i)* .

Note that (73) is minimized by the largest eigenvalue. Thus,
when some eigenvalues are non-negative then the expression
(71) is minimized by taking the largest non-negative eigen-
value. When all the eigenvalues are negative, it follows that

1
i o

1

=~ (nfi})* — 20 (gf)* = (73)



- B f
(kZIFkM(Zl)TL+ka)

*

is negative definite. In this case, the

exp}ession in (71) is strictly non-negative, hence its minimal
value is obtained by setting g; to be the all-zero vector. Conse-

quently, g;" " =
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