
3810 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 5, MAY 2018

The Distortion Rate Function of Cyclostationary
Gaussian Processes
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Abstract— A general expression for the quadratic distortion
rate function (DRF) of cyclostationary Gaussian processes in
terms of their spectral properties is derived. This expression can
be seen as the result of orthogonalization over the different com-
ponents in the polyphase decomposition of the process. We use
this expression to derive, in a closed form, the DRF of several
cyclostationary processes arising in practice. We first consider the
DRF of a combined sampling and source coding problem. It is
known that the optimal coding strategy for this problem involves
source coding applied to a signal with the same structure as
one resulting from pulse amplitude modulation (PAM). Since a
PAM-modulated signal is cyclostationary, our DRF expression
can be used to solve for the minimal distortion in the combined
sampling and source coding problem. We also analyze in more
detail the DRF of a source with the same structure as a
PAM-modulated signal, and show that it is obtained by reverse
waterfilling over an expression that depends on the energy of the
pulse and the baseband process modulated to obtain the PAM
signal. This result is then used to explore the effect of the symbol
rate in PAM on the DRF of its output. In addition, we also study
the DRF of sources with an amplitude-modulation structure, and
show that the DRF of a narrow-band Gaussian stationary process
modulated by either a deterministic or a random phase sine-wave
equals the DRF of the baseband process.

Index Terms— Source coding, rate-distortion, modulation,
Gaussian processes.

I. INTRODUCTION

THE distortion rate function (DRF) describes the average
minimal distortion achievable in sending an informa-

tion source over a rate-limited noiseless link. Sources with
memory posses an inherent statistical dependency that can be
exploited in the context of data compression. However, not
many closed-form expressions for the DRF of such sources are
known, and those are usually limited to the class of stationary
processes. Two notable exceptions are the DRFs of the Wiener
process, derived by Berger [1], and of auto-regressive Gaussian
processes, derived by Gray [2]. Indeed, information sources
are rarely stationary in practice, and source coding techniques
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that are based on stationary assumptions about the source
may achieve poor performance if the source has time-varying
statistics.

A Cyclostationary process (CSP) (also known as period-
ically correlated, periodically stationary or block-stationary
process) is a processes whose statistics are invariant to time
shifts by integer multiples of a given time constant, denoted
as the period of the process. As described in the survey by
Gardner et al. [3], CSPs have been used in many fields to
model periodic time-variant phenomena. In particular, they
arise naturally in synchronous communication where block
coding and modulation by periodic signals are employed.
Spectral properties of CSPs were first studied by Bennett
in [4] who also coined the term cyclostationary. These
spectral properties and others that will be exploited in our
derivations are also reviewed in [3] and in the references
therein.

A coding theorem with respect to CSPs was first considered
by Nedoma [5] (who referred to such processes as block-
stationary). This theorem implies that the optimal tradeoff
between code rate and distortion in encoding a CSP is given by
its Shannon’s DRF, i.e., by an optimization over a class of joint
probability distributions subject to a mutual information rate
constraint. Since CSPs are a special class of asymptotic mean
stationary (AMS) processes, this coding theorem also arises
as special cases from Gray’s work on AMS processes [6].
Nevertheless, it seems that the only existing mechanism for
evaluating this DRF is by the Karhunen-Loève (KL) expan-
sion [7] of the process. In this method it is required to solve
for the eigenvalues of a Fredholm integral equation for each
finite blocklength, and use a waterfilling expression over these
eigenvalues. The DRF is then obtained in the limit as the
size of the blocklength goes to infinity. This evaluation, how-
ever, does not exploit the special block periodicity of CSPs.
Moreover, it does not provide intuition on the optimal source
coding technique in terms of spectral properties of the process.
In contrast, the DRF of a stationary Gaussian process is
obtained by waterfilling over its power spectral density, which
provides clear intuition about how the source code represents
each frequency component of the process [8].

An interesting motivation for evaluating the DRF of CSPs
using their spectral properties arises in the following example:
suppose we are interested in finding the DRF of the process
obtained by modulating a continuous-time Gaussian station-
ary process U(·) by a cosine wave with random phase �,
namely

X�(t) = √
2U(t) cos (2π f0t + �), t ∈ R, (1)
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where � is uniformly distributed over [0, 2π). This
process is commonly given as an example of a wide-
sense stationary process in signal processing textbooks
(e.g. [9, Example 8.18]). Note that due to the random phase,
X�(·) is not Gaussian and in fact is non-ergodic, since the
distribution of the phase cannot be learned from a single
realization of X�(·). It seems that in the context of rate-
distortion theory, the spectrum of X�(·) can only be used
to derive an upper bound on its DRF given by the DRF of
a Gaussian stationary process with the same second order
statistics [10, Th. 4.6.5]. The theory of AMS processes [11]
implies that the DRF of X�(·) is given by the DRF of each
one of its ergodic components [6, Th. 11.3.1], corresponding to
different realizations ϕ ∈ [0, 2π) of the phase �. Each ergodic
component satisfies a source coding theorem such that its
DRF is evaluated by optimizing over probability distributions
subject to a mutual information rate constraint. One may think
that this decomposition provides a recipe to evaluate the DRF
of X�(·) by averaging over the DRF of the process Xϕ(·),
obtained by fixing the phase in X�(·). However, while the
process Xϕ(·) is Gaussian, it is no longer stationary – but
rather cyclostationary. Since Xϕ(·) arises by modulating a
stationary process whose spectrum is known, it raises the
question as to whether a simple expression for its DRF can
be given in terms of the spectrum of the original stationary
process. Such an expression for the DRF of the CSP Xϕ(·)
would lead to the DRF of the non-ergodic, non-Gaussian,
stationary process X�(·).

In this work we derive an expression for (Shannon’s) DRF
of Gaussian CSPs which uses their spectral properties, and
therefore generalizes the waterfilling expression for the DRF
of Gaussian stationary processes derived by Kolmogorov [12].
This expression is obtained by considering the polyphase
components of the process, which can be seen as a set
of stationary processes that comprise the CSP (e.g. [13]).
We show that the DRF of a discrete-time CSP can be obtained
in closed form by orthogonalizing over these components at
each frequency band. For continuous-time CSPs, we obtain
an expression that is based on increasingly fine discrete-
time approximations of the continuous-time signal. The DRF
evaluated for these approximations converges to the DRF
of the continuous-time process under mild conditions on its
covariance function.

The main results of this paper are divided into two parts.
In the first part we derive a general expression for evaluating
the DRF of a second order Gaussian CSP in terms of its
spectral properties. This expression is given in the form of a
reverse waterfilling solution over the eigenvalues of a spectral
density matrix defined in terms of the time-varying spectral
density of the source. For discrete-time Gaussian processes, the
size of this matrix equals the discrete period of the source.
We extend our result to Gaussian CSPs in continuous-time
by taking increasingly finer discrete time approximations. The
resulting expression is a function of the eigenvalues of an
infinite matrix. In addition, we derive a lower bound on the
DRF which can be obtained without evaluating the matrix
eigenvalues. We show that this bound is tight when the
polyphase components of the process are highly correlated.

In the second part of the paper we use our general DRF
expression to study the distortion-rate performance in several
specific cases. In particular:

• We derive a closed form expression for the DRF of a
process with a pulse-amplitude modulation (PAM) signal
structure. We show how this expression can be used to
derive the minimal distortion in estimating a stationary
Gaussian process from a rate-limited version of its sub-
Nyquist samples.

• We study the effect of the symbol rate in PAM on
the DRF of the modulated signal at the output of the
modulator. In particular, we quantify the intuition that
the complexity of the signal at the output of the PAM
increases with the symbol rate.

• We evaluate in closed form the DRF of a Gaussian
stationary process modulated by a deterministic cosine
wave. We show that the DRF of the modulated process
equals that of the baseband stationary Gaussian process
provided the latter is narrowband. We further conclude
that the stationary, non-Gaussian and non-egodic process
given by (1) has a DRF identical that of the modulated
process without the random phase. These two results
imply that the DRF of the stationary non-Gaussian ampli-
tude modulated process is strictly smaller than the DRF
of a Gaussian stationary process with the same second
order statistics.

We note that the DRF of a signal obtained by modulating
a baseband signal does not shed light onto the performance
in using this modulation technique on the baseband signal to
transmit it through a channel. Indeed, in order to measure the
modulation method performance, the distortion of the received
signal should be measured with respect to the baseband signal
as in indirect source coding [10, Ch. 3.5], rather than with
respect to the modulated signal. Nevertheless, the DRF of the
modulated signal may be used to characterize the empirical
distribution of any optimal source code that attains it, as has
been done in [14] and [15] for i.i.d. signals. This distribution
can then be used to derive the distortion in estimating the
baseband signal from an encoded version of its modulated
version, in a similar way to the case of i.i.d signals considered
in [16]. However, since properties of the optimal codes in these
modulation techniques are not yet known, the derivation of this
distortion is beyond the scope of this paper.

The rest of this paper is organized as follows: in Section II
we review concepts and notation from the theory of CSPs
and rate distortion theory. Our main results are given in
Section III, where we derive an expression for the DRF
of a Gaussian CSP and a lower bound on this DRF.
In Section IV we explore applications of our main result in
various special cases. Concluding remarks are provided in
Section V.

II. BACKGROUND AND PROBLEM FORMULATION

A. Cyclostationary Processes

Throughout the paper, we consider zero mean Gaussian
processes in both discrete and continuous time. We use round
brackets to denote a continuous time index and square brackets
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for a discrete time index, i.e.

X (·) = {X (t), t ∈ R} ,

and

X[·] = {X[n], n ∈ Z} .

Matrices and vectors are denoted by bold letters.
The statistics of a zero mean Gaussian process X (·) is

specified in terms of its autocorrelation function1

RX (t, τ ) � E [X (t + τ )X (t)].

If in addition the autocorrelation function is periodic in t with
a fundamental period T0,

RX (t + T0, τ ) = RX (t, τ ),

then we say that X (·) is a cyclostationary process (CSP)
or simply cyclostationary2 [3], [17]. We also assume that
RX (t, τ ) is bounded and Riemann integrable on [0, T0] × R,
and therefore

σ 2
X = lim

T →∞
1

2T

∫ T

−T
EX (t)2dt = 1

T0

∫ T0

0
RX (t, 0)dt

is finite.
Suppose that RX (t, τ ) has a convergent Fourier series repre-

sentation in t for almost any τ ∈ R. Then the statistics of X (·)
is uniquely determined by the cyclic autocorrelation (CA)
function:

R̂n
X (τ ) � 1

T0

∫ T0/2

−T0/2
RX (t, τ )e−2π int/T0 dt, n ∈ Z. (2)

The Fourier transform of R̂n
X (τ ) with respect to τ is denoted

as the cyclic power spectral density (CPSD) function:

Ŝn
X ( f ) =

∫ ∞

−∞
R̂n

X (τ )e−2π iτ f dτ, −∞ ≤ f ≤ ∞. (3)

If Ŝn
X ( f ) is identically zero for all n �= 0, then RX (t, τ ) =

RX (0, τ ) for all 0 ≤ t ≤ T and the process X (·) is
stationary. In such a case SX ( f ) � Ŝ0

X ( f ) is the power
spectral density (PSD) function of X (·). The time-varying
power spectral density (TPSD) function [17, Sec. 3.3] of X (·)
is defined by the Fourier transform of RX (t, τ ) with respect
to τ , i.e.

S t
X ( f ) �

∫ ∞

−∞
RX (t, τ )e−2π i f τ dτ. (4)

The Fourier series representation implies that

S t
X ( f ) =

∑
n∈Z

Ŝn
X ( f )e2π int/T0 . (5)

1In [17] and in other references, the symmetric auto-correlation function

R̃X (t, τ ) � E [X (t + τ/2)X (t − τ/2)] = RX (t − τ/2, τ ),

the corresponding CPSD ˆ̃Sn
X ( f ) and TPSD S̃ t

X ( f ), are used. The conversion

between Ŝn( f ) and the symmetric CPSD is given by ˆ̃Sn
X ( f ) = Ŝn

X ( f −
n/(2T0)).

2It is customary to distinguish between wide-sense cyclostationarity which
relates only to the second order statistics of the process, and strict-sense
cyclostationarity which relates to the finite order statistics of the process
[18, Ch. 10.4]. Both definitions coincide in the Gaussian case.

Associated with every CSP X (·) with period T0 is a set of
stationary discrete time processes Xt [·], 0 ≤ t ≤ T0, defined
by

Xt [n] = X (T0n + t), n ∈ Z. (6)

These processes are called the polyphase components (PC) of
the CSP X (·). The cross-correlation function of Xt1[·] and
Xt2[·] is given by

RXt1 Xt2 [n, k] = E [X[T0(n + k) + t1]X[T0n + t2]]
= RX (T0n + t2, T0k + t1 − t2)

= RX (t2, T0k + t1 − t2). (7)

Since RXt1 Xt2 [n, k] depends only on k, this implies that Xt1 [·]
and Xt2[·] are jointly stationary. The PSD of Xt [·] is given by

SXt

(
e2π iφ

)
�

∑
k∈Z

RXt Xt [0, k]e−2π iφk

=
∑
k∈Z

RX (t, T0k) e−2π iφk , −1

2
≤ φ ≤ 1

2
. (8)

Exploiting the spectral properties of sampled processes, we
can use (8) and (5) to connect the functions SXt

(
e2π iφ

)
and

the CPSD of X (·) as follows:

SXt

(
e2π iφ

)
= 1

T0

∑
k∈Z

S t
X

(
φ − k

T0

)

= 1

T0

∑
k∈Z

∑
n∈Z

Ŝn
X

(
φ − k

T0

)
e2π int/T0 .

More generally, for t1, t2 ∈ [0, T0] we have

SXt1 Xt2

(
e2π iφ

)

=
∑
k∈Z

RXt1 Xt2 [0, k]e−2π ikφ

= 1

T0

∑
k∈Z

S t2
X

(
φ − k

T0

)
e

2π i(t1−t2)
φ−k
T0

= 1

T0

∑
k∈Z

∑
m∈Z

Ŝm
X

(
φ − k

T0

)
e

2π i
(

m t2
T0

+ t1−t2
T0

(φ−k)
)
. (9)

We now turn to briefly describe the discrete-time counterpart
of the CA, CPSD, TPSD and the polyphase components
defined in (2), (3), (4) and (6), respectively.

A discrete time zero mean Gaussian process X[·] is said
to be cyclostationary with period M ∈ N if its covariance
function

RX [n, k] = E [X[n + k]X[n]]
is periodic in k with period M . For m = 0, . . . , M − 1, the
mth cyclic autocorrelation (CA) function of X[·] is defined as

R̂m
X [k] �

M−1∑
n=0

RX [n, k]e−2π inm/M .

The mth CPSD function is then given by

Ŝm
X

(
e2π iφ

)
�

∑
k∈Z

R̂m
X [k]e−2π iφk ,
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and the discrete TPSD function is

Sn
X

(
e2π iφ

)
�
∑
k∈Z

RX [n, k]e−2π iφk .

Finally, we have the discrete time Fourier transform relation

Sn
X

(
e2π iφ

)
= 1

M

M−1∑
m=0

Ŝm
X

(
e2π iφ

)
e2π iφnm/M .

The m-th stationary component X̄m [·], 0 ≤ m ≤ M − 1
of X[·] is defined by

Xm [n] � X[Mn + m], n ∈ Z. (10)

For 0 ≤ m, r, n ≤ M − 1 and k ∈ Z we have

RXm Xr [n, k] = E
[
Xm [n + k]Xr [n]]

= E [X[Mn + Mk + m]X[Mn + r ]]
= RX [Mn + r, Mk + m − r ]
= RX [r, Mk + m − r ]. (11)

Using properties of multi-rate signal processing:

SXm Xr

(
e2π iφ

)
=

∑
k∈Z

RX [r, Mk + m − r ]e−2π ikφ

= 1

M

M−1∑
n=0

Sr
X

(
e2π i φ−n

M

)
e2π i(m−r) φ−n

M . (12)

The discrete-time counterpart of (9) is then

SXm Xr

(
e2π iφ

)
= 1

M

M−1∑
k=0

M−1∑
n=0

Ŝn
X

(
e2π i φ−k

M

)
e2π i nr+(m−r)(φ−k)

M .

(13)

The functions SXm Xr
(
e2π iφ

)
, 0 ≤ m, r ≤ M − 1 define

an M × M matrix SX
(
e2π iφ

)
with (m + 1, r + 1)th entry

SXm Xr
(
e2π iφ

)
. This matrix completely determines the statis-

tics of X[·], and can be seen as the PSD matrix associated
with the stationary vector valued process XM [n] defined by
the stationary components of X[·]:

XM [n] �
(

X0[n], . . . , X M−1[n]
)
, n ∈ Z. (14)

We denote the autocorrelation matrix of XM [·] as the PSD-PC
matrix. Note that the (r + 1, m + 1)th entry of this matrix is
given by (11).

B. Examples

We now present two important modulation models which
result in CSPs.

Example 1 (Amplitude Modulation (AM)): Given a
Gaussian stationary process U(·) with PSD SU ( f ), consider
the process

XAM(t) = √
2U(t) cos (2π f0t + ϕ),

where f0 > 0 and ϕ ∈ [0, 2π) are deterministic constants.
This process is cyclostationary with period T0 = f −1

0 and
CPSD [19, eq. (41)]

Ŝm
AM( f ) = 1

2

⎧⎪⎨
⎪⎩

SU ( f + f0) + SU ( f − f0), m = 0,

SU ( f ∓ f0)e±2iϕ, m ± 2,

0, otherwise.

This leads to the TPSD

S t
X ( f ) = 1

2
SU ( f + f0)(1 + e−2(2π i f0 t+ϕ))

+ 1

2
SU ( f − f0)(1 + e2(2π i f0 t+ϕ)). (15)

Example 2 (Pulse-Amplitude Modulation (PAM)):
Consider a Gaussian stationary process U(·) modulated by a
deterministic signal p(t) as follows:

XPAM(t) =
∑
n∈N

U(nT0)p(t − nT0). (16)

This process is cyclostationary with period T0 and CPSD
[19, eq. (49)]

Ŝn
PAM( f ) = 1

T0
P ( f ) P∗

(
f − n

T0

)
SU ( f ), n ∈ Z, (17)

where P( f ) is the Fourier transform of p(t) and P∗( f ) is its
complex conjugate. If T0 is small enough such that the support
of P( f ) is contained within the interval

(
− 1

2T0
, 1

2T0

)
, then

Ŝn
PAM( f ) = 0 for all n �= 0, which implies that X P AM(·) is

stationary.

C. The Distortion-Rate Function

For a fixed T > 0, let XT be the reduction of X (·) to the
interval [−T, T ]. Define the distortion between two waveforms
x(·) and y(·) over the interval [−T, T ] by

dT (x(·), y(·)) � 1

2T

∫ T

−T
(x(t) − y(t))2 dt . (18)

We expand XT by a Karhunen-Loève (KL) expansion
[7, Ch. 9.7] as

XT (t) =
∞∑

k=1

Xk fk(t), −T ≤ t ≤ T, (19)

where { fk} is a set of orthogonal functions over [−T, T ]
satisfying the Fredholm integral equation

λk fk(t) = 1

2T

∫ T

−T
K X (t, s) fk(s)ds, t ∈ [−T, T ], (20)

with corresponding eigenvalues {λk}, and where

K X (t, s) � EX (t)X (s) = RX (s, t − s).

Assuming a similar expansion as (19) to an arbitrary random
waveform YT , we have

EdT (XT , YT ) = 1

2T

∫ T

−T
E (X (t) − Y (t))2 dt

=
∑
n∈Z

E (Xn − Yn)2 .

The mutual information between X (·) and Y (·) on the interval
[−T, T ] is defined by

IT (X (·), Y (·)) � 1

2T
lim

N→∞ I
(

XN−N ; YN−N

)
,

where XN−N = (X−N , . . . , X N ), YN−N = (Y−N , . . . , YN ) and
the Xns and Yns are the coefficients in the KL expansion of
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X (·) and Y (·), respectively. Denote by PT the set of joint prob-
ability distributions PX,X̂ over the waveforms

(
X (·), X̂(·)

)
,

such that the marginal of X (·) agrees with the original
distribution, and the average distortion EdT

(
X (·), X̂(·)

)
does

not exceed D. The rate-distortion function (RDF) of X (·) is
defined by

R(D) = lim
T →∞ RT (D),

where

RT (D) = inf IT

(
X (·); X̂(·)

)

and the infimum is over the set PT . It is well known that
R(D) and RT (D) are non-increasing convex functions of D,
and therefore continuous in D over any open interval [10]. We
define their inverse functions as the distortion-rate functions
D(R) and DT (R), respectively. We note that by its definition,
D(R) is bounded from above by the average power of X (·)
over a single period:

σ 2
X � lim

T →∞
1

2T

∫ T

−T
EX2(t)dt = lim

T →∞
1

2T

∫ T

−T
RX (t, 0)dt

= 1

T0

∫ T0

0
RX (t, 0)dt = R̂0

X (0).

For Gaussian processes, we have the following parametric
representation for RT (D) or DT (R) [7, eq. (9.7.41)]:

DT (θ) =
∞∑

k=1

min {θ, λk} (21a)

RT (θ) = 1

2

∞∑
k=1

log+ (λk/θ) , (21b)

where log+ x � max {log x, 0}.
In the discrete-time case the DRF is defined in a similar

way as in the continuous-time setting described above by
replacing the continuous-time index in (18), (19) and (20), and
by changing integration to summation. Since the KL transform
preserves norm and mutual information, this definition of the
DRF in the discrete-time case is consistent with standard
expressions for the DRF of a discrete-time source with mem-
ory as in [10, Ch. 4.5.2]. Note that with these definitions,
the continuous-time distortion is measured in MSE per time
unit while the discrete-time distortion is measured in MSE
per source symbol. Similarly, in continuous-time, R represents
bitrate, i.e., the number of bits per time unit. In the discrete-
time setting we use the notation R̄ to denote bits per source
symbol.

Since the distribution of a zero-mean Gaussian CSP with
period T0 is determined by its second moment RX (t, τ ),
we observe that such processes are T0-ergodic and therefore
block-ergodic as defined in [20, Definition 1]. It follows
that a source coding theorem that associates D(R) with the
optimal MSE performance attainable in encoding X (·) at
rate R is obtained from the main result of [20]. Another
way to deduce a source coding theorem for CSPs is by
noting that they belong to the class of asymptotic mean
stationary process (AMS) [11, Excercise 6.3.1]. A source

coding theorem for this class of processes in discrete-time
can be found in [21]. Its extension to continuous-time follows
immediately as long as the flow defined by the process, i.e. the
mapping from the time index set [−T, T ] to the probability
space, is measurable. This last condition is implicit in our
definition of a continuous-time stationary process in terms of
its finite dimensional probability distributions [22].

D. Problem Formulation: Evaluation of the DRF

In the special case in which X (·) is stationary, it is possi-
ble to obtain D(R) without explicitly solving the Fredholm
equation (20) or evaluating the KL eigenvalues: in this case,
the density of these eigenvalues converges to the PSD SX ( f )
of X (·). This leads to the celebrated reverse waterfilling
expression for the DRF of a stationary Gaussian process,
originally derived by Kolmogorov [12]:

D(Rθ ) =
∫ ∞

−∞
min {SX ( f ), θ} dφ. (22a)

Rθ = 1

2

∫ ∞

−∞
log+ [SX ( f ) /θ ] d f. (22b)

The discrete-time version of (22) is given by

D(R̄θ ) =
∫ 1

2

− 1
2

min
{

SX

(
e2π iφ

)
, θ
}

dφ. (23a)

R̄θ = 1

2

∫ 1
2

− 1
2

log+ [
SX

(
e2π iφ

)
/θ
]

dφ. (23b)

Equations (22) and (23) define the distortion as a function
of the rate through a joint dependency on the water level
parameter θ .

We note that stationarity is not a necessary condition for
the existence of a density function for the eigenvalues in the
KL expansion. For example, such a density function is known
for the Wiener process [1] which is a non-stationary process.

The main problem we consider in this paper is the evaluation
of D(R) for a general Gaussian CSP. In principle, this evalua-
tion can be obtained by computing the KL eigenvalues in (20)
for each T , using (21) to obtain DT (R) and finally taking
the limit as T goes to infinity. For general CSPs, however,
an easy way to describe the density of the KL eigenvalues
is in general unknown. As a result, the evaluation of the
DRF directly by the KL eigenvalues usually does not lead
to a closed-form solution. In the next section we derive an
alternative representation for the function D(R) which is based
on an approximation of the kernel K X (t, s) used in (20). This
representation leads to a simple expression for the DRF and
allows the derivation of the DRF of the PAM and AM process
of Examples 1-2 in closed forms.

III. MAIN RESULTS

We now derive our main results regarding the DRF of
a Gaussian CSP which do not involve the solution of the
Fredholm integral equation (20). We begin by obtaining an
expression for this DRF in terms of the eigenvalues of the
PC-PSD matrix of the CSP. Next, we derive a lower bound on
this DRF that does not require eigenvalue decomposition.
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Fig. 1. Waterfilling interpretation of (25) for M = 3. The lossy compres-
sion error (blue) and the preserved spectrum (yellow) are associated with
equations (25a) and (25b), respectively.

A. DRF in Terms of Spectral Properties

Our first observation is that in the discrete-time case, the
DRF of a Gaussian CSP can be obtained by an expression
for the DRF of a vector Gaussian stationary source. This
expression is an extension of (23), which was derived in
[23, eqs. (20) and (21)] and is given as follows:

DX(Rθ ) = 1

M

M∑
m=1

∫ 1
2

− 1
2

min
{
λm

(
e2π iφ

)
, θ
}

dφ (24a)

Rθ = 1

2M

M∑
m=1

∫ 1
2

− 1
2

log+ [
λm

(
e2π iφ

)
/θ
]

dφ, (24b)

where λ1
(
e2π iφ

)
, . . . , λM

(
e2π iφ

)
are the eigenvalues of the

PSD matrix SX
(
e2π iφ

)
at frequency φ. In particular, we have

the following result:
Theorem 1: Let X [·] be a discrete-time Gaussian cyclo-

stationary process with period M ∈ N. The distortion rate
function of X[·] is given by

D(Rθ ) = 1

M

M∑
m=1

∫ 1
2

− 1
2

min
{
λm

(
e2π iφ

)
, θ
}

dφ (25a)

R̄θ = 1

2M

M∑
m=1

∫ 1
2

− 1
2

log+ [
λm

(
e2π iφ

)
/θ
]

dφ, (25b)

where λ1
(
e2π iφ

) ≤ · · · ≤ λM
(
e2π iφ

)
are the eigenvalues of

the PSD-PC matrix with (m + 1, r + 1)th entry given by

SXm Xr

(
e2π iφ

)
= 1

M

M−1∑
n=0

Sr
X

(
e2π i φ−n

M

)
e2π i(m−r) φ−n

M . (26)

Proof: A full proof can be found in Appendix A. The idea
is to use the polyphase decomposition (12) and the stationary
vector valued process XM [·] defined in (14). The PSD matrix
of the process is shown to coincide with the PSD-PC matrix
of X[·]. The proof shows that the DRF of X[·] is evaluated to
the DRF of XM [·]. The result then follows by applying (24)
to XM [·]. �

Equation (25) has the waterfilling interpretation illustrated
in Fig. 1: the DRF is obtained by setting a single water-
level over all eigenvalues of (26). These eigenvalues can be

seen as the PSD of M independent processes obtained by the
orthogonalization of the PC of X[·]. The overall area below
the water-level is the spectral density of the noise term in
the test channel that attains Shannon’s DRF, while the area
above this level is associated with the reconstructed signal in
this channel [10]. Compared to the limit in the discrete-time
version of the KL expansion (21), expression (25) exploits the
cyclostationary structure of the process by using its spectral
properties. These spectral properties capture information on
the entire time-horizon and not only over a finite blocklength
as in the KL expansion.

The following theorem explains how to extend the above
evaluation to the continuous-time case.

Theorem 2: Let X (·) be a Gaussian cyclostationary process
with period T0 and correlation function RX (t, τ ) Lipschitz
continuous in its second argument. For a given M ∈ N, denote

DM (Rθ ) = 1

M

M∑
m=1

∫ 1
2

− 1
2

min
{
λm

(
e2π iφ

)
, θM

}
dφ (27a)

Rθ = 1

2T0

M∑
m=1

∫ 1
2

− 1
2

log+ [
λm

(
e2π iφ

)
/θM

]
dφ, (27b)

where λ1
(
e2π iφ

) ≤ · · · ≤ λM
(
e2π iφ

)
are the eigenvalues of

the matrix SX
(
e2π iφ

)
with its (m + 1, r + 1)th entry given by

1

T0

∑
k∈Z

SrT0/M
X

(
φ − k

T0

)
e2π i(m−r) φ−k

M

= 1

T0

∑
k∈Z

∑
n∈Z

Ŝn
X

(
φ − k

T0

)
e2π i nr+(m−r)(φ−k)

M . (28)

Then the limit of DM in M exists and the distortion-rate
function of X (·) is given by

D(R) = lim
M→∞ DM (θM (R)). (29)

1) Proof Sketch: The proof idea is to use a discrete-time
CSP that approximates X (·). This approximation becomes
tighter as M increases, so that the limit in (29) converges
to the DRF of the continuous-time process. The proof details
are given in Appendix B.

B. Discussion

The expression (27) is obtained by taking the limit in (25)
over the time-period of a discrete-time CSP, where the
code rate R is appropriately adjusted to bits per time unit.
Although (27) only provides the DRF in terms of a limit, this
limit is associated with the intra-cycle time resolution and not
with the time horizon as in (21). This fact allows us to express
the DRF in terms of the spectral properties of the process, that
captures the “memory” of the process across the entire time
horizon.

We note that limits of the form (29) have been obtained
in closed-form using Szegő’s Toeplitz distribution theorem
[24, Sec. 5.2] when the underlying process is stationary
and the matrix considered is Toeplitz [2], [10] or block
Toeplitz [25], [26]. Unfortunately, the matrix in (28) is not
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Toeplitz or block Toeplitz so Szegő’s theorem is not applicable.
In the following section we provide a few examples where the
limit in (29) can be obtained in closed form which leads to a
closed form expression for the DRF.

Equation (27) may be viewed as the extension to CSPs
of the waterfilling expression (22) derived for stationary
processes. While the latter can be understood as the limiting
result of coding along orthogonal frequency bands [8], (27)
implies that the DRF for CSPs is the result of two orthogo-
nalization procedures: (1) over the PC inside a cycle, which is
associated with the eigenvalue decomposition of the PSD-PC,
and (2) over different frequency bands of the stationary
processes resulting from the first orthogonalization. As in the
case of stationary processes, the above procedure provides an
intuitive way to attain the DRF: encode the mth orthogonal
component resulting from the first orthogonalization using a
separate bitstream whose rate is determined by

Rm � 1

T0

∫ 1
2

− 1
2

log+ [
λm

(
e2π iφ

)
/θM

]
dφ.

Within each component, the encoding is achieved by coding
along orthogonal frequency bands [8] according to Pinsker’s
waterfilling expression (23) with bitrate Rm .

The main issue with evaluating the DRF using the limit
in (29) is that it involves the eigenvalue decomposition of a
matrix with growing dimension. Thus, we next derive a lower
bound on the DRF that does not require the evaluation of these
eigenvalues.

C. A Lower Bound

We now use the same decomposition of the process into
its stationary PCs that led to (27) to derive a lower bound on
the DRF. The basis for this bound is the following proposition,
which holds for any source distribution and distortion measure
(although we will consider here only the quadratic Gaussian
case).

Proposition 1: Let X[·] be a vector valued process of
dimension M. The distortion-rate function of X[·] satisfies

DX (R) ≥ 1

M

M−1∑
m=0

DXm (R). (30)

Proof: Any rate R code for the process X[·] can be seen
as a rate R code for describing each of the coordinates Xm [·],
m = 0, . . . , M − 1. At each coordinate, this code cannot
achieve lower distortion than the optimal rate R code for that
coordinate. �

Proposition 1 applied to Gaussian CSPs leads to the follow-
ing result:

Proposition 2: Let X[·] be a discrete-time Gaussian CSP
with period M ∈ N. The distortion rate function of X[·]
satisfies

D(R̄) ≥ 1

M

M−1∑
m=0

∫ 1
2

− 1
2

min
{

SXm

(
e2π iφ

)
, θm

}
dφ, (31)

where for each m = 0, . . . , M − 1, θm satisfies

R̄(θm) = 1

2

∫ 1
2

− 1
2

log+ [
SXm

(
e2π iφ

)
/θm

]
dφ, (32)

and

SXm

(
e2π iφ

)
� SXm Xm

(
e2π iφ

)
= 1

M

M−1∑
n=0

Sm
X

(
e2π i φ−n

M

)

is the PSD of the mth PC of X[·].
1) Proof: The claim is a direct application of Proposition 1

to our case of a discrete-time CSP: the summands on the
RHS of (31) are the individual DRF of the PCs Xm [·],
m = 0, . . . , M − 1, of X[·] obtained by (23).

Proposition 2 may be extended to the continuous-time case
by approximating the outer integral in (33) by finite sums.
This yields the following result:

Proposition 3: Let X (·) be a continuous-time Gaussian
cyclostationary process with period T0 > 0 and correlation
function RX (t, τ ) that is Lipschitz continuous in its second
argument. The distortion rate function of X (·) satisfies

D(R)≥ 1

T0

∫ T0

0

∫ 1
2

− 1
2

min

{∑
n∈Z

S t
X

(
φ−n

T0

)
, θt

}
dφdt, (33)

where for each 0 ≤ t ≤ T0, θt satisfies

R(θt ) = 1

2T0

∫ 1
2

− 1
2

log+
[∑

n∈Z

S t
X

(
φ − n

T0

)
/θt

]
dφ. (34)

2) Proof: See Appendix C.
The bound (31) is obtained by averaging the minimal

distortion at rate R in describing each one of the PCs of X (·).
For each such component Xt [·] there is an associated water
level θt obtained by solving (34) for θt . For R = 0, θt is
always bigger than the essential supremum of

SXt

(
e2π iφ

)
= 1

T0

∑
n∈Z

S t
X

(
φ − n

T0

)
,

so the RHS of (31) equals the average over the total power
of each one of the PCs of X (·) which are summed to
σ 2

X = DX (0). On the other hand, if R → ∞, then θt → 0 for
all t ∈ [0, T0], and again equality holds in (31). That is, the
bound is tight in the two extremes of R = 0 and R → ∞.

From a source coding point of view, the bound (33) can be
understood as if a source code of rate R is applied to each
of the PCs of X (·) individually. On the other hand, the DRF
in (27) is obtained by applying a single rate R code to describe
all PCs simultaneously. As a result, the bound becomes tight
only when the PCs are highly correlated with one another, i.e.,
when a single PC determines the rest of them. A case where
the latter holds is shown in the following example.

Example 3 (Equality in (33)): Let X (·) be the PAM signal
of Example 2 where the pulse p(t) is given by

p(t) =
{

1 0 ≤ t < T0,

0 otherwise.

The sample path of X (·) has a staircase shape as illustrated
in Fig. 2. This process is equivalent to the discrete time



KIPNIS et al.: DRF OF CYCLOSTATIONARY GAUSSIAN PROCESSES 3817

Fig. 2. An example of a continuous-time PAM process that attains equality
in (33).

Fig. 3. Combined sampling and source coding system model.

process Ū [·] � {U(nT0), n ∈ Z} both in information rate and
squared norm per period T0, which is enough to conclude
that DX (R) = DU (RT0). Indeed, the PCs in this case
are maximally correlated, in the sense that a realization of
X0[·] = {X (nT0), n ∈ Z} determines the value of X
[·] =
{X ((n + 
)T0), n ∈ Z} for all 0 ≤ 
 < 1. In addition, for
all 0 ≤ t ≤ T0 we have

S t
X

(
e2π iφ

)
= S0

X

(
e2π iφ

)
=
∑
n∈Z

SU

(
φ − n

T0

)
,

where the latter is the PSD of the discrete time process Ū [·],
so (22) implies that the RHS of (33) is the DRF of Ū [·].
We therefore conclude that the DRF of X (·) is given by the
RHS of (33).

IV. APPLICATIONS

In this section we apply the expression obtained in
Theorem 2 to study the distortion-rate performance of a few
CSPs that arise in practice.

A. Combined Sampling and Source Coding

We begin with the distortion-rate performance in the
combined sampling and source coding problem considered
in [27]. This problem is described by the system of Fig. 3:
the source U(·) is a Gaussian stationary process with a
known PSD SU ( f ). The source is uniformly sampled at rate
fs = T −1

s , resulting in the discrete time process Ū [·] defined
by Ū [n] = U(n/ fs). The process Ū [·] is then encoded
at rate R bits per time unit. The goal is to estimate the
source U(·) from its sampled and encoded version under a
quadratic distortion. We denote by the function DU |Ū ( fs , R)

the minimal distortion attainable in this estimation, where the
minimization is over all collections of encoders and decoders
operating at bitrate R. Note that if U(·) is sampled above
its Nyquist rate, then there is no loss of information in the
sampling operation, and we get

DU |Ū ( fs , R) = DU (R),

where DU (R) is found by (22). Therefore, the interesting
case is that of sub-Nyquist sampling of U(·). In what follows
we use Theorem 2 to derive DU |Ū ( fs , R) in closed form.

Our first observation is that the combined sampling and
source coding problem of Fig. 3 may be seen as an indi-
rect source coding problem [28]; the distortion is measured
with respect to the process U(·), but a different process,
namely Ū [·], is available to the encoder. Wolf and Ziv [29]
have shown that the optimal source coding scheme under
quadratic distortion for this class of problems is obtained as
follows: the encoder first obtains the minimal mean square
error (MMSE) estimate of the unseen source, and then an
optimal source code is applied to describe this estimated
sequence to the decoder. In the setting of Fig. 3, this implies
that DU |Ū ( fs , R) is attained by first obtaining the MMSE
estimate

Ũ(t) = E
[
U(t)|Ū [·]]

at the encoder, and then solving a standard source coding
problem with respect to Ũ(·). Moreover, this scheme implies
that the distortion decomposes into two parts:

DU |Ū ( fs , R) = mmse(U |Ū) + DŨ (R), (35)

where mmse(U |Ū) is the MMSE in estimating U(·) from
Ū [·], and DŨ (R) is the DRF of the process Ũ(·).

Standard linear estimation techniques [30] leads to

Ũ(t) =
∑
n∈Z

Ū [n]w(t − nT0) =
∑
n∈Z

U(nT0)w(t − nT0),

where the Fourier transform of w(t) is given by

W ( f ) = SU ( f )∑
k∈Z

SU ( f − k/T0)
. (36)

Moreover, the error in this estimation is

mmse(U |Ū) =
∫ ∞

−∞
SU ( f )d f −

∫ 1
2T0

− 1
2T0

S̃W ( f )d f, (37)

where

S̃W ( f ) =
∑
k∈Z

|W ( f − k/T0)|2 SU ( f − k/T0). (38)

We conclude from the above that DŨ (R), and therefore
DU |Ū ( fs , R), is obtained by solving a source coding prob-
lem for an information source with a PAM signal structure,
illustrated in Fig. 4. Since Example 2 implies that such a
signal is cyclostationary with period Ts = f −1

s , we can
apply Theorem 2 in order to evaluate this DRF. By doing
so, we obtain the following general result:
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Fig. 4. Minimal distortion in Fig. 3 is obtained by a PAM modulator followed
by an optimal source code (the Enc” in this figure) for the output of this
modulator.

Proposition 4 (DRF of PAM-Modulated Signals): Let
XPAM(·) be defined by

XPAM(t) =
∑
n∈Z

U(nT0)p(t − nT0), t ∈ R, (39)

where U(·) is a Gaussian stationary process with3 PSD
SU ( f ) and p(t) is an analog deterministic signal with∫∞
−∞ |p(t)|2 dt < ∞ and Fourier transform P( f ). Assume

moreover, that the covariance function RXPAM(t, τ ) of XPAM(·)
is Lipschitz continuous in its second argument. The distortion-
rate function of XPAM(·) is given by

D(θ) = 1

T0

∫ 1
2T0

− 1
2T0

min
{

S̃( f ), θ
}

d f (40a)

R(θ) = 1

2

∫ 1
2T0

− 1
2T0

log+ [
S̃( f )/θ

]
d f, (40b)

where

S̃( f ) �
∑
k∈Z

|P( f − k/T0)|2 SU ( f − k/T0). (41)

Proof: See Appendix D. �
Proposition 4 applied to the process Ũ(·) implies that its

DRF DŨ (R) is given by waterfilling over the function

J ( f ) �
∑
k∈Z

|W ( f − k fs)|2 SU ( f − k fs).

As a result, we obtain from (35) and (40) the following expres-
sion for the minimal distortion in the combined sampling and
source coding problem:

DU |Ū ( fs , R) = mmse(U |Ū) + 1

T0

∫ 1
2T0

− 1
2T0

min {J ( f ), θ} d f,

(42a)

where

R(θ) = 1

2

∫ 1
2T0

− 1
2T0

log+ [J ( f )/θ ] d f. (42b)

3Although we only use the value of U(t) at t ∈ ZT0, it is convenient to
treat U(·) as a continuous-time source so that the expressions emerging have
only continuous-time spectrum.

B. Information Rates of Signals With PAM Structure

Proposition 4 provides a general closed form for the DRF
of Gaussian processes with a PAM structure. In this sub-
section we use this expression to study the effect of the
PAM of (39) on the complexity or the compressibility of
the signal generated by this modulation, as a function of the
symbol rate at its input. Intuitively, this complexity is increased
with the symbol rate, since then the output contains more
information on the modulated symbols per unit time. This
increase, however, reaches saturation if these symbols become
correlated. This phenomena can be quantified precisely by
exploring the dependency of the DRF of the modulator output
XPAM(·) on the symbol rate.

For convenience, we assume that the origin of the random
symbols in the PAM is a Gaussian stationary process U(·)
sampled every T0 time units. Therefore, the PAM output
of (39) can be seen as a non-ideal reconstruction of U(·)
from its uniform samples using pulses of shape p(t), as
illustrated in Fig. 6. Since the randomness in XPAM(·) is only
due to U(·), the process XPAM(·) may be described with a
lower bitrate than U(·) to attain the same distortion level,
when this level is normalized to account for the effect of
the modulator on the signal’s energy. In other words, the
DRF curve of XPAM(·) is bounded from above by the DRF
of U(·). In addition, we expect the DRF of X�(·) to increase
with the symbol rate 1/T0, and saturate as this rate exceeds
the Nyquist rate of U(·), provided the latter is bandlimited.
Indeed, when 1/T0 is higher than the Nyquist rate of U(·), the
support of SU ( f ) is contained within (−1/2T0, 1/2T0). In this
case, (40) implies that the DRF (and the RDF) of XPAM(·) is
obtained by waterfilling over the function

S̃( f ) = |P( f )|2 SU ( f ). (43)

That is, the effect of the modulation in super-Nyquist sampling
is identical to the effect of a linear filter with frequency
response P( f ) applied to U(·). This filtering can be under-
stood as a linear transformation of the coordinates represented
by the frequency components [31, Ch. 22]. Assuming that
P( f ) does not change the support of (43) (that is, this change
in coordinates is invertible), the process U(·) may be recovered
from XPAM(·) with zero mean-square error. When the sampling
frequency, i.e., the symbol rate 1/T0, is below the Nyquist rate
of U(·), perfect recovery of U(·) is impossible in general.
Intuitively, in this case XPAM(·) is more compressible and
therefore can be represented with fewer bits per unit time than
U(·) for the same distortion level. A quantitative evaluation of
this effect is given in Fig. 6, where the DRF of XPAM(·) is
compared to the DRF of U(·) for three sub-Nyquist symbol
rates. Examples for the realization of XPAM(·) and U(·) using
sub- and super- Nyquist symbol rates are given in Fig. 5.

C. Amplitude Modulation With Random Phase

In this section we turn back to the two processes discussed
in the introduction as our motivating examples and evaluate
their DRFs using Theorem 2.

Consider the process X�(·) obtained by modulating a
stationary Gaussian process U(·) by a cosine-wave of
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Fig. 5. Two realizations over time of the PAM process XPAM(·) (blue) and the
baseband process U(·) (dashed) with the PSD and pulse shape given in Fig. 6,
corresponding to sub-Nyquist (left) and super-Nyquist (right) symbol rates.
Fig. 6 below shows that for the same distortion level, the PAM-modulated
process on the left can be described with fewer bits per unit time than the
PAM-modulated process on the right.

Fig. 6. The DRF of the PAM signal (16) for three values of symbol rate
1/T0 compared to the Nyquist rate W of U(·). The DRF of the baseband
stationary signal U(·) (assuming that the modulation preserves the average
power of the signal) is given by the dashed curve. The PSD of U(·) and the
shape of the pulse p(t) are given in the small frames. This figure shows that
as the symbol rate decreases, the PAM process can be described with fewer
bits per unit time for the same distortion level.

frequency f0 and a random phase � uniform over
[0, 2π), as defined in (1). It is an elementary exercise
[9, Example 8.18] to show that the process X�(·) is stationary
with PSD

S�( f ) = 1

2
SU ( f − f0) + 1

2
SU ( f + f0). (44)

From [10, Th. 4.6.5], an upper bound on the DRF of X�(t),
denoted by DX�(R), is obtained by the DRF of a Gaussian
process with the same PSD S�( f ) through the reverse-
waterfilling (22). However, it seems that DX�(R) cannot be
determined solely from the second order statistics of X�(·).

The main obstacle in deriving DX�(R) is the random
phase of X�[·], which makes the process non-Gaussian and
non-ergodic. This random phase may be handled using an
asynchronous block code [6, Ch. 11.6], i.e. by adding a short
prefix consisting of a source synchronization word to each
block. Indeed, the following proposition follows directly from
the proof of [6, Th. 11.6.1]:

Proposition 5: For any ϕ ∈ [0, 2π) (deterministic), the
DRF of X�(·) coincides with the DRF of the process

Xϕ(t) = √
2U(t) cos (2π f0t + ϕ), t ∈ R. (45)

Fig. 7. The DRF of the processes Xϕ(·) of (45) (blue), the baseband
process U(·) (dashed), and the lower bound of Proposition 3. The PSD SU ( f )
is taken to be the pulse given in the small frame. Proposition 6 implies that
DU (R) and DXϕ (R) coincide for fs > 2 fB . Also shown is the DRF of
the Gaussian stationary process with PSD S�( f ) (dotted), which provides an
upper bound on DXϕ (R).

It was noted in Example 1 above that Xϕ(·) is a CSP with
the SCD function (15). It follows that DX�(R) is given by the
DRF of the Gaussian CSP Xϕ(·), generated by modulating the
stationary Gaussian process U(·) using a deterministic cosine
wave. Note that regardless of the carrier frequency f0, the
baseband process U(·) can always be recovered from Xϕ(·),
and that the

√
2 factor implies that the modulation preserves

energy. These two facts are not enough to guarantee equality
between the DRFs of the processes, since the modulation may
lead to a ‘change in coordinates’ in the spectrum, in analogy
with (43) and [31, Ch. 22]. In the following proposition we
use Theorem 2 to show that this equality indeed holds as long
as f0 is larger than twice the bandwidth of SU ( f ).

Proposition 6: Let U(·) be a Gaussian stationary process
bandlimited to (− fB , fB). Let f0 > 2 fB . The DRF of the
process

Xϕ(t) = √
2U(t) cos (2π f0t + ϕ), t ∈ R,

equals the DRF of the stationary Gaussian process U(·).
Proof: See Appendix E. �

Proposition 7 asserts that the process Xϕ(·) with AM signal
structure suffers the same minimal distortion as the baseband
process U(·) upon encoding each of them at rate R, provided
the latter is narrowband. Fig. 7 shows that this equality
does not necessarily hold when U(·) is not narrowband.
Propositions 5 and 6 leads to the following conclusion:

Corollary 7: Let U (·) be a Gaussian stationary process
bandlimited to (− fB, fB ). Assume that � is uniformly distrib-
uted over (0, 2π) and f0 > 2 fB . The distortion rate function
of the stationary process

X�(t) = √
2U(t) cos (2π f0t + �), t ∈ R,

equals the DRF of the baseband process U(·).
It is interesting to note that the DRF of a Gaussian process

with the same PSD as the stationary process X�(·) is strictly
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larger than the DRF of the baseband process U(·), and
therefore provides an upper bound on DX�(R). This upper
bound is illustrated in Fig. 7.

V. CONCLUSIONS

We derived an expression for the DRF of a class of Gaussian
processes with periodically time-varying statistics, known as
CSPs. This DRF is computed by reverse waterfilling over
eigenvalues of a spectral density matrix associated with the
polyphase components in the decomposition of the source.
Unlike other general expressions for the DRF of Gaussian
processes that use orthogonal basis expansions over increasing
but finite time intervals, the expression we derive exploits
the cyclostationarity of the process by orthogonalizing the
polyphase components. Since these components are defined
over the entire time horizon, the resulting expression can
be given in terms of the spectrum of the process. In the
continuous-time counterpart the solution is given in terms of
a limit over functions of these eigenvalues.

While we leave open the question whether there exists
a closed form solution to the above limit in general, we
evaluated this limit in two special cases: a Gaussian signal
with PAM signal structure, and a Gaussian signal with AM
signal structure. We obtained the corresponding DRFs of
these processes in terms of the power spectral density of the
baseband stationary processes. The DRF result for a process
with a PAM structure was then used to derive the DRF of a
process under combined sampling and source coding.

In addition to an expression for the DRF of CSPs,
we derived a lower bound on this DRF by averaging
the minimal distortion attained in encoding each of the
polyphase components over a single period. This bound
is tight when high correlation among these components is
present.

APPENDIX A

In this Appendix we prove Theorem 1. Consider the vector
valued process XM [·] defined in (14). The rate-distortion
function of XM [·] is given by (24):

D(θ) = 1

M

M∑
m=1

∫ ∞

−∞
min

{
λm

(
e2π iφ

)
, θ
}

dφ, (46a)

R(θ) = 1

2

M∑
m=1

∫ ∞

−∞
log+ [

λm

(
e2π iφ

)
/θ
]

dφ, (46b)

where 0 ≤ λ1
(
e2π iφ

) ≤ · · · ≤ λM
(
e2π iφ

)
are the eigenval-

ues of the spectral density matrix SXM

(
e2π iφ

)
obtained by

taking the Fourier transform of covariance matrix RX[k] =
E
[
X M [n + k](X M [n])T

]
entry-wise. The (m, r)th entry of

SXM

(
e2π iφ

)
is given by (12):(

SXM

(
e2π iφ

))
m,r

= Sm,r
X

(
e2π iφ

)

= 1

M

M−1∑
k=0

Sr
X

(
e2π i φ−k

M

)
e2π i(m−r) φ−k

M .

(47)

It is left to show that the DRF of XM [·] coincides with
the DRF of X[·]. By the source coding theorem for AMS
processes [6, Th. 11.4.1] it is enough to show that the oper-
ational block coding distortion-rate function ( [6, Ch. 11.2])
of both processes is identical. Indeed, any N block codebook
for XM [·] is an M N block codebook for X[·] which achieves
the same quadratic distortion averaged over the block.
However, since XM [·] is stationary, by [6, Lemma 11.2.3]
we know that any distortion above the DRF of XM [·] is
attained for large enough N . This implies that the same is true
for X[·].

APPENDIX B

In this Appendix we prove Theorem 2. Given a Gaussian
cyclostationary process X (·) with period T0 > 0, we define
the discrete-time process X̄[·] obtained by uniformly sampling
X (·) at intervals T0/M , i.e.

X̄[n] = X (nT0/M), n ∈ Z. (48)

The autocorrelation function of X̄[·] satisfies

RX̄ [n + M, k] = E
[
X̄ [n + M + k]X̄[n + M]]

= E [X (nT0/M+T0+kT0/M)X (nT0/M+T0)]

= RX (nT0/M + T0, kT0/M + T0)

= RX (nT0/M, kT0/M)

= RX̄ [n, k],
which means that X̄ [·] is a discrete-time Gaussian cyclosta-
tionary process with period M . The TPSD of X̄[·] is given
by

Sm
X̄
(e2π iφ) = M

T0

∑
k∈Z

SmT0/M
X

(
M

T0
(φ − k)

)
.

This means that the PSD of the mth PC of X̄[·] is

Sm
X̄

(
e2π iφ

)
= 1

M

M−1∑
n=0

Sm
X̄

(
e2π i φ−n

M

)

= 1

T0

M−1∑
n=0

∑
k∈Z

SmT0/M
X

(
φ − Mk − n

T0

)

= 1

T0

∑
l∈Z

SmT0/M
X

(
φ − l

T0

)
.

By applying Theorem 1 to X̄[·], we obtain an expression
for the DRF of X̄[·] as a function of M:

DM (θM ) = 1

M

M∑
m=1

∫ 1
2

− 1
2

min
{
λm

(
e2π iφ

)
, θM

}
dφ (49a)

R̄(θM ) = 1

2M

M∑
m=1

∫ 1
2

− 1
2

log+ [
λm

(
e2π iφ

)
/θM

]
dφ, (49b)
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where λ1
(
e2π iφ

) ≤ · · · ≤ λM
(
e2π iφ

)
are the eigenvalues of

the matrix with (m + 1, r + 1)th entry

SX̄m X̄r

(
e2π iφ

)

= 1

M

M−1∑
n=0

Sr
X̄

(
e2π i φ−n

M

)
e2π i(m−r) φ−n

M

= 1

T0

M−1∑
n=0

∑
k∈Z

SrT0/M
X

(
φ − n − kM

T0

)
e2π i(m−r) φ−n

M ,

= 1

T0

∑
l∈Z

SrT0/M
X

(
φ − l

T0

)
e2π i(m−r) φ−l

M . (50)

In order to express the code-rate in bits per time unit,
we multiply the number of bits per sample R̄ by the sampling
rate M/T0. This shows that the DRF of X̄[·], as measured in
bits pertime unit R, is given by (27).

In order to complete the proof we rely on the following
lemma:

Lemma 8: Let X (·) be as in Theorem 2 and let X̄ [·] be its
uniformly sampled version at rate M/T0 as in (48). Denote
the DRF at rate R bits per time unit of the two processes by
D(R) and D̄(R), respectively. Then

lim
M→∞ D̄(R) = D(R).

The rest of the appendix is devoted to the proof of Lemma 8.
Throughout the next steps it is convenient to use the

covariance kernels K (t, s) = RX (s, t − s) and K̄ [n, k] =
RX̄ [n, k − n]. For M ∈ N, define

K̃ (t, s) = K (�t M/T0�T0/M, �sM/T0�T0/M).

For any fixed T > 0, the kernel K̃ (t, s) defines an Hermitian
positive compact operator [32] on the space of square inte-
grable functions over [−T, T ]. The eigenvalues of this opera-
tor are given by the Fredholm integral equation

λ̃l f̃l(t) = 1

2T

∫ T

−T
K̃ (t, s) f̃l (s)ds, −T ≤ t ≤ T, (51)

where it can be shown that there are at most MT/T0 non-
zero eigenvalues {λ̃l} that satisfy (51). We define the function
D̃T (R) by the following parametric expression:

D̃T (θ) =
∞∑

l=1

min
{
λ̃l , θ

}

R(θ) = 1

2

∞∑
l=1

log+
(

λ̃l

θ

)
(52)

(the eigenvalues in (52) are implicitly depend on T ). Note that

∞∑
l=1

λ̃l = 1

2T

∫ T

−T
K̃ (t, t)dt = 1

2T

N∑
n=−N

K (nT0/M, nT0/M),

(53)

where N = MT/T0. Expression (53) converges to

1

2T

∫ T

−T
K (t, t)dt ≤ σ 2

X

as M goes to infinity due to our assumption that R(t, τ )
is Riemann integrable and therefore so is K (t, s). Since we
are interested in the asymptotic of large M , we can assume
that (53) is bounded. This implies that D̃T (R) is bounded.

We would like to claim that the eigenvalues {λ̃l} approxi-
mate the eigenvalues {λl}. We have the following lemma:

Lemma 9: Let {λl} and {λ̃l} be the eigenvalues in the Fred-
holm integral equation of K (t, s) and K̃ (t, s), respectively.
Assume that these eigenvalues are numbered in a descending
order. Then∣∣∣λl − λ̃l

∣∣∣ ≤ 4CT0/M, l = 1, 2, . . . . (54)

A. Proof of Lemma 9

Approximations of the kind (54) can be obtained by Weyl’s
inequalities for singular values of operators defined by self-
adjoint kernels [33]. In our case it suffices to use the following
result [34, Corollary 1”]:∣∣∣λl − λ̃l

∣∣∣ ≤ 2 sup
t,s∈[−T ,T ]

∣∣K (t, s) − K̃ (t, s)
∣∣ , l = 1, 2, . . . .

(55)

The assumption that RX (t, τ ) is Lipschitz continuous in τ
implies that there exists a constant C > 0 such that for any
t1, t2, s ∈ R,

|K (t1, s) − K (t2, s)| = |RX (s, t1 − s) − RX (s, t2 − s)|
≤ C |t1 − t2| .

We therefore conclude that K X (t, s) is Lipschitz continuous
in both of its arguments from symmetry. Lipschitz continuity
of K (t, s) implies that

|K (t1, s1) − K (t2, s2)|
≤ |K (t1, s1) − K (t1, s2)| + ∣∣K (t1, s2) − K̃ (t2, s2)

∣∣
≤ C |s1 − s2| + C |t1 − t2| .

As a result, (55) leads to∣∣∣λl − λ̃l

∣∣∣
≤ 2 sup

t,s

∣∣K (t, s) − K̃ (t, s)
∣∣

= 2 sup
t,s∈[−T ,T ]

|K (t, s)−K (�t M/T0�T0/M, �sM/T0�T0/M)|
≤ 2C (|t − �t M/T0�T0/M| + |t − �sM/T0�T0/M|)
≤ 4CT0/M,

which proves Lemma 9.
The significance of Lemma 9 is that the eigenvalues of the

kernel K (t, s) used in the expression for the DRF of X (·)
can be approximated by the eigenvalues of K̃ (t, s), where
the error in each of these approximations converge, uniformly
in T , to zero as M increases. Since only a finite number
of eigenvalues participate in (21) and since both DT (R) and
D̃T (R) are bounded continuous functions of their eigenvalues,
we conclude that D̃T (R) converges to DT (R) uniformly in T .
Now let ε > 0 and fix M0 large enough such that for all
M > M0 and for all T∣∣∣DT (R) − D̃T (R)

∣∣∣ ≤ ε. (56)
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Recall that in addition to (23), the DRF of X̄ [·], denoted
here as D̄(R̄), can also be obtained as the limit in N of the
expression

D̄N (θ) =
∞∑

l=1

min
{
λ̄l , θ

}

R̄(θ) = 1

2

∞∑
l=1

log+ (
λ̄l/θ

)
,

where λ̄1, λ̄2, . . . are the eigenvalues in the KL expansion of
X̄ over n = −N, . . . , N :

λ̄l fl [n] = 1

2N +1

N∑
k=−N

K X̄ [n, k] fl [k], l = 1, . . . , N, (57)

(there are actually at most 2N+1 distinct non-zero eigenvalues
that satisfies (57)). Letting TN = T0 M/N and f̃l (t) =
fl (�t/T0�M) (57) can also be written as

λ̄l fl [n] =
∫ TN

−TN

K̃ X (nT0/M, s) fl [�s/T0�M] ds, l =1, 2, . . . ,

λ̄l f̃l (t) =
∫ TN

−Tn

K̃ (t, s) f̃l(s)ds, − TN < t < TN .

From the uniqueness of the KL expansion, we obtain that
for any N , the eigenvalues of K̃ (t, s) over TN = T0 M/N
are given by the eigenvalues of K̄ [n, k] over −N, . . . , N .
We conclude that

D̄N (R̄) = D̃TN (R), (58)

where R = R̄T0/M . Now take N large enough such that∣∣D̄N (R) − D̄(R)
∣∣ < ε,

and ∣∣DTN (R) − D(R)
∣∣ < ε.

For all M ≥ M0 we have∣∣D(R) − D̄(R)
∣∣ =

∣∣∣D(R) − DTN (R) + DTN (R) + D̃TN (R)

− D̃TN (R) +D̄N (R) − D̄N (R) − D̄(R)
∣∣

≤ ∣∣D(R) − DTN (R)
∣∣ (59)

+
∣∣∣DTN (R) − D̃TN (R)

∣∣∣ (60)

+
∣∣∣D̃TN (R) − D̄N (R)

∣∣∣ (61)

+ ∣∣D̄N (R) − D̄(R)
∣∣ ≤ 3ε, (62)

where the last transition is because: (59) and (62) are smaller
than ε by the choice of N , (60) is smaller than ε from (56).
and (61) equals zero from (58).

APPENDIX C

In this Appendix we prove Proposition 3. We use the process
X̄ [·] defined in the proof of Theorem 2 as the uniform sampled
version of X (·) at rate T0/M . From Proposition 1 we conclude
that the DRF of X̄[·] satisfies

DX̄ (R̄)≥ 1

M

M−1∑
m=0

∫ 1
2

− 1
2

min

{
1

T0

∑
l∈Z

SmT0/M
X

(
φ−l

T0

)
, θm

}
dφ,

(63)

where for all m = 0, . . . , M − 1, θm is determined by

R̄ = 1

2

∫ 1
2

− 1
2

log+
[

1

T0

∑
l∈Z

SmT0/M
X

(
φ − l

T0

)
/θm

]
dφ.

Denote t = mT0/M . As M approaches infinity, the RHS
of (63) converges to an integral with respect to t over the
interval (0, T0), which implies

D̄(R̄) ≥ 1

T0

∫ T0

0

∫ 1
2

− 1
2

min

{∑
l∈Z

S t
X

(
φ − l

T0

)
, θt

}
dφ, (64)

and

R̄ = 1

2

∫ 1
2

− 1
2

log+
[∑

l∈Z

SmT0/M
X

(
φ − l

T0

)
/θm

]
dφ, (65)

where we denoted θt = T0θm . In order to go from R̄ to R we
multiply (65) by M/T0, so that (64) and (65) lead to (33). The
fact that the function D̄(R) converges to D(R) as M goes to
infinity follows from the proof of Theorem. 2.

APPENDIX D

In this Appendix we provide a proof of Proposition 4. The
entries of the matrix S

(
e2π iφ

)
in Theorem 2 are obtained by

using the CPSD of the PAM process (17) in (28). For all
M ∈ N, this leads to

Sm+1,r+1

(
e2π iφ

)

= 1

T 2
0

∑
k∈Z

[
P

(
φ − k

T0

)
SU

(
φ − k

T0

)
e2π i(φ−k) m−r

M

×
∑
n∈Z

P∗
(

φ − n − k

T0

)
e2π i nr

M

]
(66)

= 1

T 2
0

∑
k∈Z

P

(
φ − k

T0

)
SU

(
φ − k

T0

)
e2π i(φ−k) m

M

×
∑
l∈Z

P∗
(

φ − l

T0

)
e−2π i(φ−l) r

M . (67)

The expression (67) consists of the product of a term depend-
ing only on m and a term depending only on r . We conclude
that the matrix S

(
e2π iφ

)
can be written as the outer product

of two M dimensional vectors, and thus it is of rank one. The
single non-zero eigenvalue λM

(
e2π iφ

)
of S

(
e2π iφ

)
is given

by the trace of the matrix, which, by the orthogonality of the
functions e2π i nr

M in (66), is evaluated as

λM

(
e2π iφ

)
= M

T 2
0

∑
k∈Z

∣∣∣∣P
(

φ − k

T0

)∣∣∣∣
2

SU

(
φ − k

T0

)
. (68)

We now use (68) in (27). In order to obtain (40), we change
the integration variable from φ to f = φ/T0 and the water-
level parameter θ to T0θ/M . Note that the final expression is
independent of M , so that the limit in (29) is already given
by this expression.
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APPENDIX E

We now provide a proof of Proposition 6. Since SU ( f ) is
compactly supported, the covariance function RU (τ ) =
EU(t + τ )U(t) is an analytic function and therefore Lipsshitz
continuous. Lipschitz continuity of RU (τ ) implies Lipschitz
continuity of RX (t, τ ) in its second argument and therefore
Theorem 2 applies: The DRF of the Gaussian CSP Xϕ(·) with
period T0 = f −1

0 is obtained by using Theorem 2 with the
SCD (15). For all M ∈ N and m, r = 0, . . . , M − 1 we have,

Sm+1,r+1

(
e2π iφ

)

= f0

2

∑
k∈Z

SU ( f0(φ − k − 1))
(

1 + e4π ir/M
)

e2π i(φ−k) m−r
M

+ f0

2

∑
k∈Z

SU ( f0(φ − k+1))
(

1+e−4π ir/M
)

e2π i(φ−k) m−r
M .

Under the assumption that f0 > 2 fB we have that for all
φ ∈ (− 1

2 , 1
2

)
, SU ( f0(φ − k ± 1)) = 0 for all k �= ±1. This

leads to

Sm+1,r+1

(
e2π iφ

)
(69)

= SU ( f0φ)
f0
(
1 + e4π ir/M

)
2

e2π i(φ+1) m−r
M

+ SU ( f0φ)
f0
(
1 + e−4π ir/M

)
2

e2π i(φ−1) m−r
M

= 2 f0 SU ( f0φ)e2π i m−r
M φ cos

(
2π

m

M

)
cos

(
2π

r

M

)
. (70)

From (70) we conclude that the matrix S
(
e2π iφ

)
can be

written as

S
(

e2π iφ
)

= 2 f0 SU ( f0φ)SM

(
e2π iφ

)
S∗

M

(
e2π iφ

)
,

where SM
(
e2π iφ

) ∈ RM×1 is given by(
1, e2π iφ/M cos

(
2π

M

)
, . . . , e2π iφ M−1

M cos

(
2π(M − 1)

M

))
.

This means that S
(
e2π iφ

)
is a matrix of rank one, and its

single non-zero eigenvalue is given by its trace:

λM

(
e2π iφ

)
=2 f0 SU ( f0φ)

M−1∑
m=0

cos2 (2πm/M)= M f0 SU ( f0φ).

We use this in (28):

DM (Rθ ) = f0

M

∫ 1
2

− 1
2

min {M f0 SU ( f0φ), θ} dφ

= f0

∫ ∞

−∞
min {SU ( f0φ), θ/M} dφ

=
∫ ∞

−∞
min {SU ( f ), θ/M} d f, (71)

where

Rθ = f0

2

M∑
m=1

∫ 1
2

− 1
2

log+ [
λm

(
e2πφ

)]
dφ

= f0

2

∫ 1
2

− 1
2

log+ [M f0 SU ( f0φ)/θ ] dφ

= 1

2

∫ ∞

−∞
log+ [SU ( f )/(θ/M)] d f . (72)

From (71) and (72) we conclude that for every M , the
parametric expression of D as a function of R is identical
to the DRF of the stationary process U(·) given by (22).

ACKNOWLEDGMENT

The authors wish to thank Robert M. Gray for helpful
remarks. They also wish to thank the anonymous reviewers
and the AE for the depth and breadth of their reviews which
have greatly improved the paper.

REFERENCES

[1] T. Berger, “Information rates of Wiener processes,” IEEE Trans. Inf.
Theory, vol. 16, no. 2, pp. 134–139, Mar. 1970.

[2] R. Gray, “Information rates of autoregressive processes,” IEEE Trans.
Inf. Theory, vol. 16, no. 4, pp. 412–421, Jul. 1970.

[3] W. A. Gardner, A. Napolitano, and L. Paura, “Cyclostationarity: Half
a century of research,” Signal Process., vol. 86, no. 4, pp. 639–697,
Apr. 2006.

[4] W. R. Bennett, “Statistics of regenerative digital transmission,” Bell Syst.
Tech. J., vol. 37, no. 6, pp. 1501–1542, Nov. 1958.

[5] J. Nedoma, “On the ergodicity and R-ergodicity of stationary probability
measures,” Zeitschrift Wahrscheinlichkeitstheorie, vol. 2, pp. 90–97,
1963.

[6] R. M. Gray, Entropy and Information Theory. New York, NY, USA:
Springer-Verlag, 1990.

[7] R. G. Gallager, Information Theory and Reliable Communication.
Hoboken, NJ, USA: Wiley, 1968.

[8] T. Berger and J. D. Gibson, “Lossy source coding,” IEEE Trans. Inf.
Theory, vol. 44, no. 6, pp. 2693–2723, Oct. 1998.

[9] S. Haykin, An Introduction to Analog and Digital Communications.
Hoboken, NJ, USA: Wiley, 2009.

[10] T. Berger, Rate Distortion Theory: A Mathematical Basis for Data
Compression. Englewood Cliffs, NJ, USA: Prentice-Hall, 1971.

[11] R. M. Gray, Probability, Random Processes, and Ergodic Properties.
New York, NY, USA: Springer, 2009.

[12] A. Kolmogorov, “On the Shannon theory of information transmission in
the case of continuous signals,” IRE Trans. Inf. Theory, vol. 2, no. 4,
pp. 102–108, Dec. 1956.
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