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On the Minimax Capacity Loss Under
Sub-Nyquist Universal Sampling
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Abstract— This paper investigates the information rate loss
in analog channels, when the sampler is designed to operate
independent of the instantaneous channel occupancy. Specifically,
a multiband linear time-invariant Gaussian channel under uni-
versal sub-Nyquist sampling is considered. The entire channel
bandwidth is divided into n subbands of equal bandwidth.
At each time, only k constant-gain subbands are active, where the
instantaneous subband occupancy is not known at the receiver
and the sampler. We study the information loss through an
information rate loss metric, that is, the gap of achievable rates
caused by the lack of instantaneous subband occupancy infor-
mation. We characterize the minimax information rate loss for
the sub-Nyquist regime, provided that the number n of subbands
and the SNR are both large. The minimax limits depend almost
solely on the band sparsity factor and the undersampling factor,
modulo some residual terms that vanish as n and SNR grow. Our
results highlight the power of randomized sampling methods (i.e.,
the samplers that consist of random periodic modulation and low-
pass filters), which are able to approach the minimax information
rate loss with exponentially high probability.

Index Terms— Channel capacity, minimax sampling, non-
asymptotic random matrix, log-determinant, concentration of
spectral measure.

I. INTRODUCTION

THE maximum rate of information that can be conveyed
through a continuous-time communication channel is

dependent on the sampling technique employed at the receiver
end. In some cutting-edge communication systems, hardware
and cost limitations often preclude sampling at or above the
Nyquist rate, which presents a major bottleneck in transferring
wideband and energy-efficient receiver design paradigms from
theory to practice. Understanding the effects upon capacity
of sub-Nyquist sampling is thus crucial in circumventing this
bottleneck.
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In many practical scenarios, the occupancy of the communi-
cation channel varies over time. An ideal adaptive sampler can
be dynamically optimized relative to these channel variations.
Nevertheless, in most practical systems, the samplers and the
analog-to-digital converters are static and are designed inde-
pendent of which subbands are active at any given time. This
has no effect if the sampling rate employed is commensurate
with the maximum bandwidth (or the Nyquist rate) of the
channel. However, in the sub-Nyquist regime, the sampler
design significantly impacts the information rate achievable
over a given channel. As was shown in [1], the capacity-
maximizing sub-Nyquist sampling mechanism depends on
knowledge of the channel spectrum. When the subbands
available for communications are time-varying and a universal
(static) sub-Nyquist sampler is used, capacity loss is typically
incurred and our work characterizes this loss.

In the present paper, we consider a linear time-
invariant (LTI) Gaussian channel with known channel gain,
whereby the entire channel bandwidth is divided into n sub-
bands of equal bandwidth. At each timeframe, only a subset
of k subbands are active for transmission, but the spectral
occupancy information is not available at either the receiver
or the sampler. The goal is to explore universal (channel-
independent) design of a sub-Nyquist sampling system that
is robust vis-a-vis the uncertainty of instantaneous channel
occupancy. In particular, we aim to understand the resulting
loss of information rates between sampling with and with-
out subband occupancy information in some minimax sense
(as will be detailed in Section II-C), and design a sub-Nyquist
sampling system under which the information rate loss can be
uniformly controlled and optimized over all possible channel
support.

A. Related Work

In various scenarios, sampling above the Nyquist rate is not
necessary for preserving signal information in the sense that
it generates a discrete-time sufficient statistic, provided that
certain signal structures are appropriately exploited [2], [3].
Take multiband signals for example, that reside within several
subbands over a wide spectrum. If the spectral support is
known, then the sampling rate necessary for perfect signal
reconstruction is the spectral occupancy, termed the Landau
rate [4]. Such signals admit perfect recovery when sampled
at rates approaching the Landau rate, assuming appropriately
chosen sampling sets (e.g. [5], [6]). Inspired by recent “com-
pressed sensing” [7]–[9] ideas, spectrum-blind sub-Nyquist
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samplers have also been developed for multiband signals [10].
Two of the most widely used modules employed in the sampler
designs are filter banks and periodic modulation [10]–[13].
These sampling-theoretic works, however, were not based on
capacity as a metric in the sampler design.

On the other hand, the Shannon-Nyquist sampling theorem
has frequently been invoked to investigate the capacity of
analog waveform channels (e.g. [14], [15]). The effects upon
capacity of oversampling have been investigated as well in the
presence of quantization [16], [17]. However, none of these
works considered the effect of undersampling upon capacity.
Another recent line of work [18] investigated the tradeoff
between sparse coding and subsampling in AWGN channels,
but did not consider capacity-achieving input distributions.

Our recent work [1], [19] established a new framework
for investigating the capacity of LTI Gaussian channels under
a broad class of sub-Nyquist sampling strategies, including
filter-bank and modulation-bank sampling and, more generally,
time-preserving sampling. We demonstrated that sampling
with a filter bank is sufficient to approach maximum capac-
ity, assuming that perfect channel state information (CSI) is
available at both the receiver and the transmitter. In many
practical scenarios, however, the active frequency set available
for communications might be changing over time, like in
cognitive radio networks where the spectral subbands available
to cognitive users are varying over time. To the best of our
knowledge, no prior work has investigated, from a capacity
perspective, a channel-blind sub-Nyquist sampling paradigm
in the absence of subband occupancy information.

Finally, the effect of undersampling has been explored from
a source coding perspective as well. For instance, the funda-
mental rate-distortion function of Gaussian sources has been
determined under sub-Nyquist sampling with filtering [20],
revealing that the alias suppressing sampler design achieves the
optimal rate distortion function. For the case where the input
source signals are sparse, the recent work [21] characterized
the rate-distortion function under independent and memoryless
random sampling. The main results and techniques presented
herein might potentially extend to these source coding settings
to quantify the rate loss caused by spectral-blind sampling
design.

B. Main Contributions

We consider a frequency-flat multiband channel model and
the class of sampling systems with filter banks and periodic
modulation. For this model, our main contributions are sum-
marized as follows.

• We derive a lower bound (Theorem 2) on the minimax
sampled information rate loss (defined in Section II)
incurred due to the lack of channel occupancy informa-
tion, under super-Nyquist universal sampling. This mini-
max lower limit depends almost only on the band sparsity
factor and the undersampling factor, modulo some resid-
ual terms that vanish when SNR and n increase.

• We characterize in Theorem 3 the sampled information
rate loss under a class of sampling systems with periodic
modulation and low-pass filters with passband [0, W/n],

when the Fourier coefficients of the modulation wave-
forms are generated in an i.i.d. Gaussian fashion (termed
Gaussian sampling). We demonstrate that with exponen-
tially high probability, the resulting sampled information
rate loss matches the lower bound given in Theorem
2 uniformly over all possible subband occupancy. This
implies that random sampling strategies are minimax-
optimal in terms of a universal sampling design.

• The power of random sampling arises due to sharp
concentration of spectral measures of large random matri-
ces [23]. To establish Theorem 3, we derive measure
concentration of several log-determinant functions for
i.i.d. Gaussian ensembles, which might be of indepen-
dent interest for other works involving log-determinant
metrics.

C. Organization

The remainder of this paper is organized as follows.
In Section II we introduce our system model of multiband
Gaussian channels. A metric called sampled information rate
loss, and a minimax sampler, are defined with respect to
sampled channel capacity. We then determine in Section III the
minimax information rate loss. Specifically, we develop lower
bounds on the minimax information rate loss in Section III-A.
The achievability is treated in Section III-B. Besides, we derive
measure concentration of several log-determinant functions in
Section IV-C. Section V-A summarizes the key observation
and implications from our results. Section VI closes the paper
with a short summary of our findings and potential future
directions.

D. Notation

Denote by H(β) := −β log β−(1−β) log(1−β) the binary
entropy function. The standard notation f (n) = O (g(n))
means there exists a constant c > 0 such that | f (n)| ≤ c|g(n)|,
f (n) = � (g(n)) means there exist constants c1, c2 > 0 such
that c1|g(n)| ≤ | f (n)| ≤ c2|g(n)|, f (n) = ω (g(n)) means
that limn→∞ g(n)

f (n) = 0, and f (n) = o (g(n)) indicates that

limn→∞ f (n)
g(n) = 0. For a matrix A, we use Ai∗ and A∗i to

denote the i th row and i th column of A, respectively. We let
[n] denote the set {1, 2, · · · , n}, and write

([n]
k

)
for the set of

all k-element subsets of {1, 2, · · · , n}. We also use card (A)
to denote the cardinality of a set A. Let W be a p× p random
matrix that can be expressed as W = �n

i=1 Zi Z�
i , where

Zi ∼ N (0,�) are jointly independent Gaussian vectors. Then
W is said to have a central Wishart distribution with n degrees
of freedom and scale matrix �, denoted by W ∼ Wp(n,�).
Our notation is summarized in Table I.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Compound Multiband Channel

We consider a multiband Gaussian channel of total band-
width W , and it is divided into n continuous subbands1 each of

1Note that in practice, n is typically a large number. For instance, the number
of subcarriers ranges from 128 to 2048 in LTE [24], [25].
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TABLE I

SUMMARY OF NOTATION AND PARAMETERS

bandwidth W/n. A state s ∈ ([n]
k

)
is generated, which dictates

the channel support. For ease of presentation, the present work
focuses on the frequency-flat channel model, which suffices to
capture the essence of our findings. Specifically, given a state
s, the channel is assumed to be an LTI filter with impulse
response hs(t) and frequency response

Hs( f ) =
{

H, if f lies within subbands at indices from s,

0, else.

(1)

A transmit signal x(t) with a power constraint P is passed
through this multiband channel, yielding a channel output

rs(t) = hs(t) ∗ x(t) + η(t), (2)

where η(t) is stationary zero-mean Gaussian noise with power
spectral density Sη ( f ) ≡ 1. It is assumed throughout that the
knowledge of H and Sη are available at both the transmitter
and the receiver, while the state s is known only at the
transmitter. The results derived herein can be extended to
more general frequency selective channels with optimal power
control. These extensions are described in more details in
Section V-B and derived in [26].

B. Sampled Channel Capacity

We aim to design a sampler that operates below the Nyquist
rate (i.e. the channel bandwidth W ). In particular, the present
work focuses on the class of filter-bank and modulation-bank
sampling systems, which subsumes the most widely used
sampling mechanisms in practice.

1) Sampling System and Channel Capacity: We consider
the class of sampling systems that consist of a combina-
tion of filter banks and periodic modulation, as illustrated
in Fig. 1(a). Specifically, the sampling system comprises m
branches, where at the i th branch, the channel output is passed
through a pre-modulation LTI filter Fi ( f ), modulated by a

Fig. 1. (a) Sampling with modulation and filter banks: the channel output
r(t) is passed through m branches, each consisting of a pre-modulation filter,
a periodic modulator and a post-modulation filter followed by a uniform
sampler with sampling rate W/n. (b) Sampling with a bank of modulators
and low-pass filters: the channel output is passed through m branches, each
consisting of a modulator with modulation waveform qi (t) and a low-pass
filter of pass band [0, W/n] followed by a uniform sampler at rate W/n.

periodic waveform qi (t) of period Tq = (W/n)−1, and then
passed through a post-modulation LTI filter Si ( f ) followed by
uniform sampling at rate W/n. The aggregate sampling rate
is fs = m

n W . When specialized to the frequency-flat channels,
it is natural to concentrate on the case where Fi ( f ) and Si ( f )

are both flat2 within each subband
[

lW
n , (l+1)W

n

)
(l ∈ Z).

Since the modulation waveform qi (t) is periodic, its Fourier
transform can be represented by a weighted δ-train, namely,

F (qi (t)) =
∞∑

l=−∞
q̂i,lδ ( f + lW/n) (3)

for some sequence
{
q̂i,l

}
l∈Z

. This modulation operation scram-
bles the spectral content of the channel input X ( f ). As can
be seen, the signal after post-modulation filtering (i.e. yi(t)
in Fig. 1(a)) has Fourier response

n∑

l=0

q̂i,l Si ( f ) Fi

(
f + l

W

n

)
X

(
f + l

W

n

)
, ∀ f. (4)

Due to aliasing, the final sampling output (i.e. yi [n]
in Fig. 1(a)) is tantamount to a signal of Fourier

2Our main results and analytical tools can be extended to more general
frequency-varying periodic sampling systems without difficulty. Interested
readers are referred to [26] for details.
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responses

∞∑

τ=−∞

n−1∑

l=0

q̂i,l Si

(
f + τ

W

n

)
Fi

(
f + (τ + l)

W

n

)

·X
(

f + (τ + l)
W

n

)
, 0 ≤ f <

W

n
. (5)

Since Fi ( f ), Si ( f ) are piecewise flat, one can write (5) as

n∑

l=1

Qi,l X

(
f + (l − 1)

W

n

)
, 0 ≤ f <

W

n
(6)

for some sequence
{

Qi,l

}
1≤i≤m,1≤l≤n . As a result, one can

use an m × n matrix Q = [
Qi,l

]
1≤i≤m,1≤l≤n, to represent the

sampling system, termed a sampling coefficient matrix.
On the other hand, for any given Q ∈ C

m×n , there exists a
sampling system such that the Fourier response of its sampled
output obeys (6). This can be realized via the m-branch
sampling system illustrated in Fig. 1(b). In the i th branch,
the channel output is modulated by a periodic waveform qi (t)
with Fourier response

F (qi (t)) =
n∑

l=1

Qi,lδ ( f + (l − 1) W/n) ,

passed through a low-pass filter with pass band [0, W/n], and
then uniformly sampled at rate W/n. In the current paper,
a sampling system within this class is said to be Gaussian
sampling if the entries of Q are i.i.d. Gaussian random
variables. It turns out that Gaussian sampling structures suffice
to achieve overall robustness in terms of sampled information
rate loss, as will be seen in Section III.

C. Universal Sampling

As was shown in [1], the optimal sampling mechanism
for a given LTI channel with perfect CSI extracts out the
frequency set with the highest SNR and hence suppresses
aliasing. Such an alias-suppressing sampler may result in a
very low capacity for some channel support. In this paper,
we desire a sampler that operates independent of the instan-
taneous subband occupancy, and our objective is to design a
single linear sampling system that incurs minimal information
rate loss across all possible channel occupancy. In particular,
the information rate loss we consider is the gap between the
capacity under sampling with and without spectral occupancy
(i.e. Fig. 2(a) vs. Fig. 2(b)).

1) Sampled Information Rate Loss: For notational conve-
nience, define the undersampling factor and the sparsity factor
as

{
α := m/n,

β := k/n,
(7)

respectively. It will be assumed throughout that α, β ∈ (0, 1)
are some constants independent of n.

Our prior work [1] reveals that for any given state s and
sampling rate fs = αW , the capacity under channel-optimized

sampling is given by

Cs = W

2n
min {k, m} log

(

1 + P

min {α, β} W

|H |2
Sη

)

= W

2
min {α, β} log (1 + SNR) , (8)

where we set

SNR := P

min {α, β} W

|H |2
Sη

. (9)

In addition, the channel capacity under the aforementioned
filter-bank and modulation-bank sampling has also been
derived [1, Th. 5]. When specialized to the frequency-flat
channel model under uniform power allocation, the achievable
rate at a given state s without subband occupancy information
is given by

C Q
s = W

2n
log det

(
Im +SNR · (Q Q∗)− 1

2 Qs Q∗
s
(

Q Q∗)− 1
2

)

:= W

2n
log det

(
Im + SNR · Qw

s Qw∗
s
)
. (10)

Here, we let As represent the submatrix of A consisting

of the columns at indices of s, and Qw := (
Q Q∗)− 1

2 Q
the prewhitened sampling coefficient matrix. Note that
Qw Qw∗ := Im .

For any sampling system with a sampling coefficient matrix
Q, we define the sampled information rate loss for each state
s as

L Q
s := Cs − C Q

s . (11)

This metric quantifies the information rate loss of universal
sampling due to the lack of subband occupancy information,
i.e. the gap of achievable rates under the sampler in Fig. 2(a)
relative to the sampler in Fig. 2(b).

2) Minimax Sampler: We aim to design a sampler that
minimizes the loss function in some overall sense. Let L
represent the minimax information rate loss, that is,

L := inf
Q

max
s∈([n]

k )
L Q

s . (12)

A sampling system associated with a sampling coefficient
matrix M is then called a minimax sampler if it satisfies

max
s∈([n]

k )
L M

s = L . (13)

The minimax criterion is of interest for designing a sam-
pler robust against all possible channel occupancy situations,
that is, we expect the resulting sampled channel capacity
to be within a minimal gap relative to maximum capacity
in a uniform manner. Note that the minimax sampler is in
general different from the one that maximizes the lowest
capacity among all states (worst-case capacity). While the
latter guarantees an optimal worst-case capacity that can be
achieved regardless of which channel is realized, it may
result in significant information rate loss in many other states,
as illustrated in Fig. 3.
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Fig. 2. Sampling with subband occupancy information vs. sampling without subband occupancy information (universal sampling).

Fig. 3. Minimax sampler vs. the sampler that maximizes worst-case capacity.
The blue solid line represents the capacity under channel-optimized sampling
with subband occupancy information, the black dotted line represents the
capacity achieved by minimax sampler, the orange dashed illustrates the
maximum capacity minus the minimax information rate loss, while the purple
dashed line corresponds to maximum worst-case capacity.

III. MINIMAX SAMPLED INFORMATION RATE LOSS

The minimax sampled information rate loss problem boils
down to minimizing maxs L Q

s over all sampling coefficient
functions Q. In general, this problem is non-convex in Q,
and hence it is computationally intractable to find the opti-
mal sampler by solving a numerical optimization program.
Fortunately, for the entire sub-Nyquist regime, the minimax
sampled information rate loss can be quantified reasonably
well at moderate-to-high SNR, and can be well approached
by a sampler generated in a random fashion.

Our main results are summarized in the following theorem.
Theorem 1: Suppose that 0 < α, β < 1. Define


 := min {β, α} log

(
1 + 1

SNR

)
; (14)

�1 := min

{⌈
β

α − β

⌉
1

SNR
, (1 + β)

1√
SNR

}
; (15)

�2 := min

{⌈
1 − α

β − α

⌉
1

SNR
, (1 + α)

1√
SNR

}
. (16)

(a) If β < α and α + β < 1, then

L = W

2

{
H (β) − αH

(
β

α

)
+ �1

}
; (17)

(b) If β > α, then

L = W

2

{
H (α) − βH

(
α

β

)
+ �2

}
; (18)

(c) If β = α or if β < α and α + β ≥ 1, then

L = W

2

{
H (β) − αH

(
β

α

)
+ �3

}
. (19)

Here, �1 ∼ �3 are some residual terms obeying


 − �1 − log (n + 1)

n
≤ �1 ≤ 
 + c1 log n

n1/3 ,


 − �2 − log (n + 1)

n
≤ �2 ≤ 
 + c2 log n

n1/3 ,


 − �1 − log (n + 1)

n
≤ �3 ≤ 
 + c3SNR

1
3 log n

n1/3 ,

and c1 ∼ c3 are some universal constants independent of n
and SNR.

Remark 1: Note that H(·) denotes the binary entropy func-
tion. Its appearance is due to the fact that it is a tight estimate
of the rate function of binomial coefficients.

Theorem 1 provides a tight characterization of the minimax
sampled information rate loss relative to the capacity under
channel-optimized sampling. The minimax limits per unit
bandwidth are given by

L ≈

⎧
⎪⎪⎨

⎪⎪⎩

1

2
H (β) − 1

2
αH

(
β

α

)
, if α ≥ β,

1

2
H (α) − 1

2
βH

(
α

β

)
, if α ≤ β,

(20)

modulo some residual terms. For 3/4 of the sub-Nyquist
regime, the residuals are at most of order O

(
log n
n1/3 + 1

SNR

)
,

which are negligible at high SNR and when the number n of
subbands is large. For another 1/4 of the sub-Nyquist regime,

our results are tight to within a gap O
(

SNR1/3 log n
n1/3 + 1

SNR

)
,

which will vanish if3 SNR
n = o (1). For the special Landau-

rate sampling case (i.e. α = β), our bounds are accurate up
to some gap O

(
SNR1/3 log n

n1/3 + 1√
SNR

)
. We remark, however,

3This is a practically common situation. For instance, in the LTE commu-
nication systems, the median-to-high SNR for urban macrocells is typically
between 10 ∼ 20dB, while the number of sub-carriers is around 128 ∼ 2048
[27, Ch. 26].
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that the factor SNR1/3 log n
n1/3 is not an optimal order and might

be refined by other techniques.
The proof of Theorem 1 involves the verification of two

parts: a converse part that provides a lower bound on the
minimax sampled information rate loss, and an achievability
part that provides a sampling scheme to approach this bound.
As we show, the class of sampling systems with random
periodic modulation followed by low-pass filters, as illustrated
in Fig. 1(b), is sufficient to approach the minimax sampled
loss.

A. Lower Bound on the Minimax Information Rate Loss

We need to demonstrate that the minimax sampled informa-
tion rate loss under any channel-independent sampler cannot
be lower than (17)-(19) in respective regimes. This is given
by the theorem below.

Theorem 2: (1) If β ≤ α ≤ 1, then

L ≥ W

2

{
H (β) − αH

(
β

α

)
+ 
 − log (n + 1)

n

− min

{⌈
β

α − β

⌉
log

(
1 + 1

SNR

)}
,

(1 + β) log

(
1 + 1

SNR
1
2

)}
. (21)

(2) If 0 < α < β, then

L ≥ W

2

{
H (α) − βH

(
α

β

)
+ 
 − log (n + 1)

n

− min

{⌈
1 − α

β − α

⌉
log

(
1 + 1

SNR

)
,

(1 + α) log

(
1 + 1

SNR
1
2

)}
(22)

Here, 
 is defined in (14).
For the entire sub-Nyquist regime, the lower bounds we

derive are tantamount to some constants dependent only on α
and β, except for some residual terms that vanish when the
number n of subbands and the SNR tend to infinity. More
precisely, when α �= β, one has 
,� = O ( 1

SNR

)
, and hence

these residuals are at most the order of O
(

1
SNR + log n

n

)
.

In contrast, in the Landau-rate regime (α = β), the residual
term is bounded in magnitude by 2√

SNR
+ log(n+1)

n . In fact,

the term O
(

log n
n

)
arises when using the entropy function to

approximate the rate of binomial coefficients, while an addi-
tional approximation loss O ( 1

SNR

)
occurs when employing

log SNR to approximate log (1 + SNR).

B. Achievability

In general, it is computationally intractable to find a deter-
ministic solution to approach the minimax limits by solving
a numerical optimization program. Fortunately, when n and
SNR are both large, simple random sampling strategies suffice
in approaching the minimax information rate loss limits uni-
formly under all channel occupancy. The achievability result
is formally stated in the following theorem.

Theorem 3: Let M ∈ R
m×n be a Gaussian matrix such

that M i j ’s are independently drawn from N (0, 1). Then with
probability exceeding 1 − C exp (−n), the following holds:

(a) If β < α and α + β < 1, then

max
s∈([n]

k )
L M

s ≤ W

2

{
H(β)−αH

(
β

α

)
+
+ c1 log n

n1/3

}
; (23)

(b) If α < β, then

max
s∈([n]

k )
L M

s ≤ W

2

{
H(α)−βH

(
α

β

)
+
+ c2 log n

n1/3

}
; (24)

(c) If β = α or if β < α and α + β ≥ 1, then

max
s∈([n]

k )
L M

s ≤ W

2

{

H(β) − αH
(

β

α

)
+ 
 + c3SNR

1
3 log n

n1/3

}

.

(25)

Here, C, c1 ∼ c3 > 0 are some universal constants
independent of SNR and n, and 
 is given in (14).

Theorem 3 indicates that Gaussian sampling approaches
the minimax information rate loss (which is about 1

2H(β) −
1
2αH

(
β
α

)
per Hertz) to within a small gap. In fact, with

exponentially high probability, the sampled information rate
loss is almost equivalent to the minimax limit uniformly across
all states s ∈ ([n]

k

)
, as will be shown later.

IV. EQUIVALENT ALGEBRAIC PROBLEMS

Our main results in Section III can be established by
investigating equivalent algebraic problems. Observe that the
information rate loss can be expressed as

L Q
s = −C Q

s + Cs

= − W

2n
log det

(
Im + SNR · Qw

s Qw∗
s
)

+ W min {k, m}
2n

{
log SNR + log

(
1 + 1

SNR

)}

(26)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

W

2

{
− 1

n
log det

(
1

SNR
Ik + Qw∗

s Qw
s

)
+ 


}
,

if k ≤ m
W

2

{
− 1

n
log det

(
1

SNR
Im + Qw

s Qw∗
s

)
+ 


}
,

if k ≥ m

(27)

where 
 = O ( 1
SNR

)
is defined in (14). This identity makes

log det
(
ε Ik + Qw∗

s Qw
s
)

a quantity of interest. In the sequel,
we provide tight bounds on this quantity, which in turn
establish Theorems 2-3. The proofs of these results rely heav-
ily on non-asymptotic (random) matrix theory. In particular,
the proofs for the achievability bounds are established based
on measure concentration of log-determinant functions, which
will be provided at the end of this section.
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A. Upper Bound on Log Determinants

Recall that Qw Qw∗ = I , and that Bs represents the
m × k submatrix of B with columns coming from the index
set s. The following theorem investigates the properties of
log det

(
ε Ik + B∗

s Bs
)

for any m × n matrix B that has ortho-
normal rows.

Theorem 4: Consider any ε > 0. Let B be any m×n matrix
that satisfies B B∗ = Im.

(1) If β ≤ α ≤ 1, then

min
s∈([n]

k )
log det

(
ε Ik + B∗

s Bs
)

≤ αH
(

β

α

)
− H (β) + log (n + 1)

n

+ min

{
(1 + β) log

(
1 + √

ε
)
,

⌈
β

α − β

⌉
log (1 + ε)

}
.

(28)

(2) If α ≤ β ≤ 1, then

min
s∈([n]

k )
log det

(
ε Im + Bs B∗

s
)

≤ βH
(

α

β

)
− H (α) + log (n + 1)

n

+ min

{
(1 + α) log

(
1 + √

ε
)
,

⌈
(1−α) α

β−α

⌉
log (1+ε)

}
.

(29)
Theorem 4 together with (27) suggests that

L

W/2
≥

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

H (β) − αH
(

β

α

)
− O

(
1

SNR

)
− log (n + 1)

n
,

if α ≥ β,

H (α) − βH
(

α

β

)
− O

(
1

SNR

)
− log (n + 1)

n
,

if α < β,

which completes the proof of Theorem 2.
One of the key ingredients in establishing Theorem 4 is to

demonstrate that the sum
∑

s∈([n]
k )

det
(
ε I + B∗

s Bs
)

(30)

is a constant independent of the matrix B, as long as B
has orthonormal rows. Consequently, in order to maximize
mins det

(
ε I + B∗

s Bs
)
, one would wish to find a matrix B

such that det
(
ε I + B∗

s Bs
)

are almost identical over all s.
When translated to the language of channel capacity, this
observation suggests that an ideal minimax sampling method
should be able to achieve (almost) equivalent information rate
loss uniformly over all states s, for which random sampling
becomes a natural candidate due to sharp concentration of
measures.

B. Achievability Under Gaussian Ensembles

When it comes to the achievability part, the major step is to
quantify log det(ε I + (M M�)−1 Ms M�

s ) for every s ∈ ([n]
k

)
.

Interestingly, this quantity can be uniformly controlled due to
the concentration of spectral measure of random matrices [23].

This is stated in the following theorem, which demonstrates
the optimality of Gaussian sampling mechanisms.

Theorem 5: Consider any ε > 0. Let M ∈ R
m×n be an

i.i.d. random matrix satisfying M i j ∼ N (0, 1).
(a) If β < α and α + β < 1, then with probability at least

1 − C exp (−n),

min
s∈([n]

k )

1

n
log det

(
ε Ik + M�

s

(
M M�)−1

Ms

)

≥ −H(β) + αH
(

β

α

)
+ c1 log n

n1/3 . (31)

(b) If α < β ≤ 1, then with probability at least
1 − 9 exp (−2n),

min
s∈([n]

k )

1

n
log det

(
ε Im + (M M�)−

1
2 M s M�

s (M M�)−
1
2

)

≥ βH
(

α

β

)
− H (α) − c2 log n

n1/3 . (32)

(c) If β = α or if β < α and α+β ≥ 1, then with probability
exceeding 1 − 9 exp (−2n),

min
s∈([n]

k )

1

n
log det

(
ε Ik + M�

s

(
M M�)−1

Ms

)

≥ αH
(

β

α

)
− H (β) − c3 log n

(εn)1/3 . (33)

Here, c1, c2, c3, C > 0 are some universal constants inde-
pendent of n and ε.

Putting Theorem 5 and Equation (27) together implies that
∀s ∈ ([n]

k

)
,

L M
s

W/2
≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H(β) − αH
(

β

α

)
+ 
 + O

⎛

⎜⎜
⎝

log n

n

1

3

⎞

⎟⎟
⎠ ,

if β < α and α + β < 1

H (α) − βH
(

α

β

)
+ 
 + O

⎛

⎜⎜
⎝

log n

n

1

3

⎞

⎟⎟
⎠ ,

if β > α

H (β) − αH
(

β

α

)
+ 
 + O

⎛

⎜
⎜
⎝

SNR

1

3 log n

n

1

3

⎞

⎟
⎟
⎠ ,

if β = αor if β < α and α + β ≥ 1

with exponentially high probability, which establishes
Theorem 3. The above achievability bounds are established
via the concentration of spectral measure of large random
matrices.

C. Measure Concentration of Log-Determinant
Functions for Random Matrices

As mentioned above, the key machinery in establishing
the achievability bounds is to evaluate certain log-determinant
functions. In fact, many limiting results for i.i.d. Gaussian



CHEN et al.: MINIMAX CAPACITY LOSS UNDER SUB-NYQUIST UNIVERSAL SAMPLING 3355

ensembles have been derived when studying MIMO fading
channels (e.g., [28]–[31]), which focus on the first-order limits
instead of the convergence rate. Furthermore, the second-order
asymptotics and the large deviation for mutual information
have also been studied (e.g., [32], [33]) in the asymptotic
regime of large n. Most of these results focus on a special case
of the log-determinant function (i.e. log det(ε I + 1

n M M�))
and suppose that n scales independent of ε. On the other
hand, the concentration of some log-determinant functions has
been studied in the random matrix literature as a key step in
establishing universal laws for linear spectral statistics (e.g.
[34, Proposition 48]). However, these bounds are only shown
to hold with overwhelming probability (i.e. with probability
1 − e−ω(log n)), which are not sharp enough for our purpose.
As a result, we provide sharper measure concentration results
of log-determinants in this subsection.

One important class of log-determinant functions takes the
form of 1

n log det
( 1

n AA�). The concentration of such func-
tions for i.i.d. rectangular Gaussian matrices is characterized
in the following lemmas.

Lemma 1: Suppose that A ∈ R
m×n is a random matrix

whose entries are independent standard Gaussian random
variables. Assume that 0 < α < 1. Then for any δ > 0 and
any τ > 0,

card
{
i | λi

( 1
n AA�) < δ

}

n
<

α

1 − α − 1
n

δ + 4
√

ατ√
nδ

(34)

holds with probability exceeding 1 − 2 exp (−τn).
Proof: See Appendix C.

Lemma 2: Suppose that A ∈ R
m×n is a random matrix

with independent entries satisfying Ai j ∼ N (0, 1). Assume
that 0 < α < 1.

(1) For any τ > 0 and any n > max
{

2
1−√

α
, 2

τ , 7
}

,

1

n
log det

(
1

n
AA�

)
≤ (1 − α) log

1

1 − α
− α + 2 log n

n

+ 5
√

α
(
1 − √

α − 2
n

)
τ√
n

(35)

with probability exceeding 1 − 2 exp
(−2τ 2n

)
.

(2) For any n > max

{
6.414
1−α · e

τ2
1−α ,

(
α

1−α− 1
n

+ 4
√

ατ

)3
}

and any τ > 0,

1

n
log det

(
1

n
AA�

)
≥ (1 − α) log

1

1 − α
− α

−

(
2

1−α− 1
n

+ 10τ

)
log n

n1/3 (36)

with probability exceeding 1 − 7 exp(−τ 2n).
Proof: See Appendix D.

The last log-determinant function considered here takes
the form of log det

(
ε I + A� B−1 A

)
for some independent

random matrices A and B, as stated in the following lemma.
Lemma 3: Suppose that β < α and α + β ≤ 1.

Let A = R
m×k be a random matrix whose entries are

independent standard Gaussian random variables, and let

B ∼ Wm (n − k, Im) be independent of A. Then for any
τ > 0,

1

n
log det

(
ε Ik + A� B−1 A

)

≥ − (α − β) log (α − β) + α log α − β log (1 − α)

+ (1 − α − β) log

(
1 − β

1 − α

)
− (c8 + c9τ ) log n

n1/3

(37)

with probability exceeding 1−9 exp
(−τ 2n

)
, where c8, c9 > 0

are some universal constants4 independent of n and ε.
Proof: See Appendix E.

As demonstrated in (27), the information rate loss is cap-
tured by some logarithmic function. The preceding concentra-
tion of measure results will prove useful in determining such
a information rate loss metric.

V. DISCUSSION

A. Implications of Main Results

In this subsection, we summarize several key insights from
the main theorems.
(1) For the whole sub-Nyquist regime, the minimax infor-

mation rate loss is captured by several binary entropy
functions. When the number of subbands and the SNR
are sufficiently large and SNR

n = o (1), the minimax
limits depend almost only on the undersampling factor
and the sparsity factor rather than (n, k, m), which are
plotted in Fig. 4. It can be observed from the plot that
when sampling above the Landau rate (but below the
Nyquist rate), increasing the α/β ratio improves the
capacity gap, and shrinks the locus. In contrast, when
α < β, increasing α/β results in a worse capacity gap.
This implies that in the sub-Landau regime, the relative
information rate loss is easier to control when α/β
decreases, although the achievable channel capacity also
shrinks. In fact, the information rate loss is the largest
under Landau-rate sampling, as illustrated in Fig. 4. Since
the capacity under channel-optimized sampling scales as
� (W log SNR), our results indicate that the ratio of the
minimax information rate loss to the maximum capacity
vanishes at a rate � (1/ log SNR).

(2) Note that under Landau-rate sampling (i.e. α = β),
the minimax loss is 1

2H (β) (or 1
2H (α)) modulo some

residual terms. As a result, if we fix the channel sparsity
factor and increase the sampling rate above the Landau
rate, then the capacity benefit per unit bandwidth is
captured by the term 1

2αH (β/α). On the other hand, if we
fix the sampling rate but increase the channel occupancy,
then the capacity gain per Hertz one can harvest amounts
to 1

2βH (α/β). For either case, if α → 1, the information
rate loss per Hertz reduces to

1

2
H (β) − 1

2
αH

(
β

α

)
= 0,

4More precisely, by setting ζ := max
{

β
α , α

1−β

}
, one can take c8 = 3

1−ζ

and c9 = 8
(
2−√

ζ
)

1−√
ζ

for sufficiently large n.
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Fig. 4. The minimax loss per Hertz (without residual terms) vs. the sparsity
factor β and the undersampling factor α.

meaning that there is effectively no information rate loss
under Nyquist-rate sampling. This agrees with the fact
that Nyquist-rate sampling is information preserving.

(3) The information rate loss incurred by Gaussian random
sampling meets the minimax limit for Landau-rate sam-
pling uniformly across all states s, which reveals that
with exponentially high probability, random sampling
is optimal in terms of universal sampling design. This
arises since the capacity achievable by random sampling
exhibits very sharp measure concentration.

B. Extension

• Universality of Random Sampling Schemes Beyond
Gaussian Sampling. While the main theorems pro-
vided in the present paper focus on Gaussian sampling,
we remark that a much broader class of random sampling
strategies are also minimax-optimal. This subsumes the
class of sampling coefficient matrices M such that its
entries are independent sub-Gaussian random variables
with matching moments up to the second order. The
universality phenomenon that arises in large random
matrices (e.g. [35]) suggests that the minimaxity of ran-
dom sampling matrices does not depend on the particular

distribution of the coefficients, although they might affect
the convergence rate to some degree. Interested readers
are referred to [26] for derivation of these results and
associated insights.

• Beyond Frequency-Flat Channels and Uniform Power
Allocation. The present paper concentrates on the
frequency-flat channel models for simplicity of presen-
tation. Note, however, that the main results derived
herein can be readily extended to more general
frequency-varying channels. Specifically, suppose that the
information rate loss metric is defined as the gap of
achievable rates under universal sampling relative to
channel-optimized sampling (both employing optimal
power allocation). Then as long as the peak-to-average
SNR

sup f ∈[0,W ] |H ( f )|2 /Sη ( f )

1
W

´ W
0 |H ( f )|2 /Sη ( f )

is bounded, all results presented in this paper still
hold, except for some additional gap on the order of
O
(

1
SNRmin

)
, where

SNRmin := inf
f ∈[0,W ]

P

min {α, β} W

|H ( f )|2
Sη ( f )

.

A proof of this result and derivation of the optimal power
allocation is provided in [26].

VI. CONCLUSIONS

We have investigated minimax universal sampling design
from a capacity perspective. In order to characterize the loss
due to universal sub-Nyquist sampling design, we introduced
the notion of sampled information rate loss relative to the
capacity under channel-optimized sampling, and characterize
overall robustness of the sampling design through the minimax
information rate loss metric. Specifically, we have determined
the minimax limit on the sampled information rate loss achiev-
able by a class of channel-blind periodic sampling systems.
This minimax limit turns out to be a constant that depends
solely on the band sparsity factor and undersampling factor,
modulo some residual term that vanishes as the SNR and the
number of subbands grow. Our results demonstrate that with
exponentially high probability, Gaussian random sampling is
minimax-optimal in terms of a channel-blind sampler design.

It remains to study how to extend this framework to situ-
ations beyond compound multiband channels. Our notion of
sampled information rate loss might be useful in studying the
robustness for these scenarios. Our framework and results may
also be appropriate for other channels with state where sparsity
exists in other transform domains. In addition, when it comes
to multiple access channels or random access channels [36],
it would be interesting to see how to design a channel-blind
sampler that is robust for the entire capacity region.

APPENDIX A
PROOF OF THEOREM 4

Before proving the results, we first state two facts. Consider
any m × m matrix A, and list the eigenvalues of A as
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λ1, · · · , λm . Define the characteristic polynomial of A as

pA(t) = det (t I − A)

= tm − S1tm−1 + · · · + (−1)m Sm , (38)

where Sl is the lth elementary symmetric function of
λ1, · · · , λm defined as follows:

Sl :=
∑

1≤i1<···<il ≤m

l∏

j=1

λi j . (39)

We also define El(A) as the sum of determinants of all
l-by-l principal minors of A. According to [37, Th. 1.2.12],
Sl = El(A) holds for all 1 ≤ l ≤ m, indicating that

det (t I + A) = tm + E1(A)tm−1 + · · · + Em(A). (40)

Another fact we will rely on is the entropy formula of
binomial coefficients [38, Example 11.1.3], that is, for every
0 ≤ k ≤ n,

H
(

k

n

)
− log(n + 1)

n
≤ 1

n
log

(
n

k

)
≤ H

(
k

n

)
, (41)

where H(x) := x log 1
x +(1−x) log 1

1−x stands for the entropy
function.

Now we are in position to prove the theorem. For any m×n
matrix B obeying B B∗ = Im , using the identity (40) we get

∑

s∈([n]
k )

det
(
ε I + Bs B∗

s
)

=
∑

s∈([n]
k )

{

εm +
m∑

l=1

εm−l El
(

Bs B∗
s
)
}

, (42)

= εm
(

n

k

)
+

m∑

l=1

εm−l
∑

s∈([n]
k )

El
(

Bs B∗
s
)
. (43)

Consider an index set r ∈ ([m]
l

)
with l ≤ min {k, m}, and

denote by
(
Bs B∗

s
)

r the submatrix of Bs B∗
s with rows and

columns coming from the index set r . It can be verified that

det
((

Bs B∗
s
)

r

) = det
(

Br,s B∗
r,s
) =

∑

r̃∈(s
l)

det
(

Br,r̃ B∗
r,r̃

)
,

where the last equality is a consequence of the Cauchy-Binet
formula (e.g. [39]). Some algebraic manipulation yields that
for any l ≤ min {k, m},

∑

s∈([n]
k )

El
(

Bs B∗
s
) =

∑

s∈([n]
k )

∑

r∈([m]
l )

det
((

Bs B∗
s
)

r

)

=
∑

s∈([n]
k )

∑

r∈([m]
l )

∑

r̃∈(s
l)

det
(

Br,r̃ B∗
r,r̃

)

=
∑

r∈([m]
l )

∑

r̃∈([n]
l )

∑

s:r̃⊆s

det
(

Br,r̃ B∗
r,r̃

)

(a)=
∑

r∈([m]
l )

∑

r̃∈([n]
l )

(
n − l

k − l

)
det

(
Br,r̃ B∗

r,r̃

)

(b)=
∑

r∈([m]
l )

(
n − l

k − l

)
=
(

n − l

k − l

)(
m

l

)
, (44)

where (a) follows since the number of k-combinations (out
of [n]) containing r̃ (an l-combination) is

(n−l
k−l

)
, and (b) arises

from the Cauchy-Binet formula together with B B∗ = Im , i.e.
∑

r̃∈([n]
l )

det
(

Br,r̃ B∗
r,r̃

)
= det

(
Br,[n] B∗

r,[n]
) = det (I l) = 1.

(1) Suppose that k ≤ m ≤ n. The identity (43) reduces to
∑

s∈([n]
k )

det
(
ε I + Bs B∗

s
)

= εm
(

n

k

)
+

k∑

l=1

εm−l
∑

s∈([n]
k )

El
(
Bs B∗

s
)
, (45)

since any lth order (l > k) minor of Bs B∗
s is rank deficient,

i.e. El
(
Bs B∗

s
) = 0. Substituting (44) into (45) yields

∑

s∈([n]
k )

det
(
ε I + Bs B∗

s
) =

k∑

l=0

(
n − l

k − l

)(
m

l

)
εm−l , (46)

which further gives
(

n

k

)
min

s∈([n]
k )

det
(
ε I + B∗

s Bs
) ≤

∑

s∈([n]
k )

det
(
ε I + B∗

s Bs
)

=
∑

s∈([n]
k )

εk−m det
(
ε I + Bs B∗

s
)

(47)

=
k∑

l=0

(
n − l

k − l

)(
m

l

)
εk−l . (48)

The above expression allows us to derive an upper bound as
(

n

k

)
min

s∈([n]
k )

det
(
ε I + B∗

s Bs
)

≤
k∑

l=0

(
n

k − l

)(
m

l

)
εk−l =

k∑

l=0

(
n

l

)(
m

m − k + l

)
εl

=
(

m

k

) k∑

l=0

(
n

l

)( m
m−k+l

)

(m
k

) εl . (49)

Since the term
( m

m−k+l

)
/
(m

k

)
can be bounded above by

( m
m−k+l

)

(m
k

) =
m!

(m−k+l)!(k−l)!
m!

k!(m−k)!
= k!

(k − l)! (m−k+l)!
(m−k)!

=
(k

l

)

(m−k+l
l

) ≤
(

k

l

)
,

plugging this inequality into (49) we obtain
(

n

k

)
min

s∈([n]
k )

det
(
ε I + B∗

s Bs
)

≤
(

m

k

) k∑

l=0

(
n

l

)(
k

l

)
εl ≤

(
m

k

) k∑

l=0

(
n + k

2l

)
(√

ε
)2l

≤
(

m

k

) (
1 + √

ε
)n+k

, (50)

where the last equality follows from the binomial theorem.
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In addition, the identity (48) can also be written as

∑

s∈([n]
k )

det
(
ε I + B∗

s Bs
) =

k∑

l=0

(
n − k + l

l

)(
m

k − l

)
εl . (51)

For any integer K ≥ n, one can verify that ∀0 ≤ l ≤ k,
(n−k+l

l

)

(K
l

)

( m
k−l

)

(m
k

) =
∏l

i=1 (n − k + i)
∏l−1

i=0 (K − i)
·

∏l
i=1 (k − l + i)

∏l−1
i=0 (m − k + l − i)

≤ (n − k + l)l

(K − l + 1)l
· kl

(m − k + 1)l

≤
(

nk

K (m − k)

)l

. (52)

Consequently, if K ≥ k
m−k n = β

α−β n, then

(
n − k + l

l

)(
m

k − l

)
≤
(

K

l

)(
m

k

)
, (53)

which combined with (51) reveals that
(

n

k

)
min

s∈([n]
k )

det
(
ε I + B∗

s Bs
)

≤
(

m

k

) k∑

l=0

(
K

l

)
εl ≤

(
m

k

)
(1 + ε)K . (54)

Set K =
⌈

β
α−β

⌉
n. Putting the preceding

bounds (50) and (54) together suggests that

min
s∈([n]

k )

1

n
log det

(
ε I + B∗

s Bs
)

≤ 1

n
log

(
m

k

)
− 1

n
log

(
n

k

)

+ min

{
n + k

n
log

(
1 + √

ε
)
,

K

n
log (1 + ε)

}

︸ ︷︷ ︸
:=�1(ε)

.

The entropy formula (41) then allows us to simplify:

min
s∈([n]

k )

1

n
log det

(
ε I + B∗

s Bs
)

≤ m

n
H
(

k

m

)
− H

(
k

n

)
+ log (n + 1)

n
+ �1 (ε) (55)

= αH
(

β

α

)
− H (β) + �1 (ε) + log (n + 1)

n
(56)

as claimed.
(2) When m ≤ k, the identity (43) combined with (44)

leads to
(

n

k

)
min

s∈([n]
k )

det
(
ε I + Bs B∗

s

) ≤
∑

s∈([n]
k )

det
(
ε I + Bs B∗

s

)

=
m∑

l=0

(
n − l

k − l

)(
m

l

)
εm−l =

m∑

l=0

(
n − m + l

k − m + l

)(
m

l

)
εl .

(57)

Observe that
(n−m+l

k−m+l

)

(n−m
k−m

) =
∏l

i=1 (n − m + i)
∏l

i=1 (k − m + i)
≤

∏l
i=1 (n − m + i)

l!
=

(
n − m + l

l

)
≤
(

n

l

)
.

This taken collectively with (57) suggests that

(
n

k

)
min

s∈([n]
k )

det
(
ε I + Bs B∗

s
) ≤

(
n − m

k − m

) m∑

l=0

(
n

l

)(
m

l

)
εl

≤
(

n − m

k − m

) m∑

l=0

(
n + m

2l

)
(√

ε
)2l

≤
(

n − m

k − m

)
(
1 + √

ε
)n+m

. (58)

On the other hand, we claim that
(

n − m + l

k − m + l

)(
m

l

)
≤
(

n − m

k − m

)(
K

l

)
, 0 ≤ l ≤ m (59)

for some integer K ≥ m. Putting this claim and (57) together
leads to

(
n

k

)
min

s∈([n]
k )

det
(
ε I + Bs B∗

s
) ≤

m∑

l=0

(
n − m

k − m

)(
K

l

)
εl

≤
(

n − m

k − m

)
(1 + ε)K .

This together with (58) implies that

min
s∈([n]

k )

1

n
log det

(
ε I + Bs B∗

s
)

≤ 1

n
log

(
n − m

k − m

)
− 1

n
log

(
n

k

)
+

min

{
K

n
log (1 + ε) ,

n + m

n
log

(
1 + √

ε
)}

︸ ︷︷ ︸
:=�2(ε)

(60)

≤ (1 − α)H
(

β − α

1 − α

)
− H (β) + log (n + 1)

n
+ �2 (ε)

= −H (α) + βH
(

α

β

)
+ log (n + 1)

n
+ �2 (ε) , (61)

where the last inequality results from the fact log (1 + ε) ≤ ε
as well as the following identity:

1

n
log

(n−m
k−m

)

(n
k

)

= (1 − α)H
(

β − α

1 − α

)
− H (β)

= − (β − α) log

(
β − α

1 − α

)
− (1 − β) log

(
1 − β

1 − α

)
− H (β)

= − (β − α) log (β − α) + (1 − α) log (1 − α) + β log β

= −H (α) + βH
(

α

β

)
.
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Finally, it remains to establish the claim (59). In fact, when
K ≥ m, one has

(n−m
k−m

)(K
l

)

(n−m+l
k−m+l

)(m
l

) =
∏l−1

i=0 (K − i)
∏l−1

i=0 (m − i)
·
∏l

i=1 (k − m + i)
∏l

i=1 (n − m + i)

≥
(

K

m

)l

·
(

k − m

n − m

)l

≥ 1,

provided that K ≥ n−m
k−m m = 1−α

β−α · m, which justifies the
claim (59). This taken collectively with (61) leads to

min
s∈([n]

k )

1

n
log det

(
ε I + Bs B∗

s
)

≤ −H (α) + βH
(

α

β

)
+ log (n + 1)

n

+ min

{⌈
1 − α

β − α

⌉
log (1 + ε) , (1 + α) log

(
1 + √

ε
)
}
,

concluding the proof.

APPENDIX B
PROOF OF THEOREM 5

A. Proof of Theorem 5(a)

Our goal is to evaluate 1
n log det

(
ε Ik + M�

s
(
M M�)−1

Ms

)
for some small ε > 0. We first define

two Wishart matrices

�\s := 1

n
M M� − 1

n
M s M�

s ; (62)

�s := 1

n
Ms M�

s . (63)

Apparently, �s ∼ Wm
(
k, 1

n Im
)

and �\s ∼ Wm
(
n − k, 1

n Im
)
.

When 1 − α > β, i.e. n − k > m, the Wishart matrix �\s is
invertible with probability 1.

One difficulty in evaluating det
(
ε Ik + M�

s
(
M M�)−1

Ms

)
is that Ms and M M� are not independent.

This motivates us to decouple them first as follows

det

(
ε Ik + M�

s

(
M M�)−1

M s

)

= εk−m det

(

ε Im +
(

1

n
M M�

)−1 1

n
M s M�

s

)

= εk−m det

(
ε

1

n
M M� + 1

n
M s M�

s

)
det

(
1

n
M M�

)−1

= εk−m det
(
ε�\s+(1+ε)�s

)
det

(
1

n
M M�

)−1

= εk−m det
(
ε Im +(1+ε)�s�

−1
\s

)
det
(
�\s

)
det

(
1

n
M M�

)−1

= det

(
ε Ik + 1 + ε

n
M�

s �−1
\s Ms

)
det

(
�\s

)
det

(
1

n
M M�

)−1

or, equivalently,

1

n
log det

(
ε Ik + M�

s

(
M M�)−1

Ms

)

= 1

n
log det

(
ε Ik + (1 + ε)

1

n
M�

s �−1
\s Ms

)

+ 1

n
log det

(
�\s

) − 1

n
log det

(
1

n
M M�

)
. (64)

The point of developing this identity (64) is to decouple
the left-hand side of (64) through 3 matrices M�

s �−1
\s M s,

�\s and M M�. In particular, since M s and �\s are jointly
independent, we can examine the concentration of measure for
Ms and �\s separately when evaluating M�

s �−1
\s M s.

The second and third terms of (64) can be evaluated through
Lemma 2. Specifically, Lemma 2 indicates that

1

n
log det

(
1

n
M M�

)
≤−(1 − α) log (1 − α)−α+O

(
1√
n

)

(65)

with probability at least 1 − C6 exp (−2n) for some constant
C6 > 0, and that for all s ∈ ([n]

k

)
,

1

n
log det

(
�\s

)

=
log det

(
n

n−k �\s

)

n
+ log det

( n−k
n I

)

n

≥ (1 − β)

{
−
(

1 − α

1 − β

)
log

(
1 − α

1 − β

)
− α

1 − β

}

+ α log (1 − β) + O
(

log n

n1/3

)
(66)

≥ − (1 − α − β) log

(
1 − α

1 − β

)
− α + α log (1 − β)

+O
(

log n

n1/3

)
. (67)

hold simultaneously with probability exceeding
1 − C9 exp (−2n).

Our main task then amounts to quantifying
log det

(
ε Ik + M�

s �−1
\s M s

)
, which can be lower bounded

via Lemma 3. This together with (65), (67) and (64) yields
that

1

n
log det

(
ε Ik + M�

s

(
M M�)−1

Ms

)

≥ − (α − β) log (α − β) + α log α

+ (1 − α − β) log

(
1 − β

1 − α

)
− β log (1 − α)

− (1 − α − β) log

(
1 − α

1 − β

)
− α + α log (1 − β)

+ (1 − α) log (1 − α) + α − O
(

log n

n1/3

)
(68)

= αH
(

β

α

)
− H (β) − O

(
log n

n1/3

)
(69)

with probability exceeding 1 − C9 exp (−2n) for some con-
stants C9 > 0.

Since there are at most
(n

k

) ≤ 2n different states s, applying
the union bound over all states completes the proof.
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B. Proof of Theorem 5(b)

We first recognize that

1

n
log det

(
ε Im + (M M�)−

1
2 Ms M�

s (M M�)−
1
2

)

= − 1

n
log det

(
1

n
M M�

)
+ 1

n
log det

(
εM M�+Ms M�

s

n

)

≥ − 1

n
log det

(
1

n
M M�

)
+ 1

n
log det

(
1

n
M s M�

s

)

= − 1

n
log det

(
1

n
M M�

)
+ β

k
log det

(
1

k
Ms M�

s

)
+α log β.

(70)

When α < β ≤ 1, Lemma 2 implies that

1

n
log det

(
1

n
M M�

)
≤ (1 − α) log

1

1 − α
− α + c8√

n
(71)

and

1

k
log det

(
1

k
Ms M�

s

)
≥
(

1 − α

β

)
log

1

1− α
β

− α

β
− c9 log n

n1/3

(72)

hold with probability exceeding 1−9 exp (−3n), where c8 and
c9 are some positive universal constants. Putting the above
three bounds together gives

1

n
log det

(
ε Im + (M M�)−

1
2 M s M�

s (M M�)−
1
2

)

≥ − (1 − α) log
1

1 − α
+ α + (β − α) log

1

1 − α
β

− α − c10 log n

n1/3 + α log β (73)

= −H (α) + βH
(

α

β

)
− c10 log n

n1/3 (74)

for some universal constant c10 > 0, where the last identity
follows since

− (1 − α) log
1

1 − α
+ (β − α) log

1

1 − α
β

+ α log β

= −H (α) − α log α + βH
(

α

β

)
− α log

β

α
+ α log β

= −H (α) + βH
(

α

β

)
. (75)

Applying the union bound over all
(n

k

)
states concludes the

proof.

C. Proof of Theorem 5(c)

Without loss of generality, consider first the case where
s = {n − k + 1, · · · , n}. The quantity under study can be

rearranged as

log det

(
ε I k + M�

s

(
M M�)−1

Ms

)

= log

{
εk−m det

(
ε Im + M s M�

s

(
M M�)−1

)}

= log det
(
εM M� + Ms M�

s

)
− log det

(
M M�)

+ (k − m) log ε (76)

= log det

⎛

⎜
⎜⎜
⎝

1

n
M
[

ε In−k

(1 + ε) Ik

]

︸ ︷︷ ︸
:=Dε

M�

⎞

⎟
⎟⎟
⎠

− log det

(
1

n
M M�

)
+ (k − m) log ε. (77)

The term log det
( 1

n M M�) can be controlled by Lemma 2.
Thus, it amounts to derive a reasonably tight lower bound on
the term log det

( 1
n M Dε M�).

Fortunately, the concentration of spectral measure inequality
[23, Corollary 1.8] can also be applied to control the quantity∑n

i=1 f
(
λi
( 1

n M Dε M�)) for a variety of functions f (·).
Consider the auxiliary functions

f1,δ (x) :=
{

2√
δ

(√
x − √

δ
)

+ log ε, 0 < x < δ,

log x, x ≥ δ,
(78)

and

detδ (X) :=
m∏

i=1

e f1,δ(λi (X)). (79)

If we set

Zε := log detδ
(

1

n
M Dε M�

)
− E

[
log detδ

(
1

n
M Dε M�

)]
,

then using [23, Corollary 1.8] we get5

P

{∣
∣
∣∣
1

n
Zε

∣
∣
∣∣ > 4

√
α (1 + ε)

δ

√
τ

n

}

< 2 exp (−2τn) (80)

for any τ > 0. Furthermore, repeating the same argument as
in (119) and (123) we obtain

1

n
E

[
log detδ

(
1

n
M Dε M�

)]

≥ 1

n
log E

[
det

(
1

n
M Dε M�

)]

− 5α (1 + ε)

nδ
, ∀δ < (1 + ε) α, (81)

and for sufficiently large n,

P

{
λmin

(
1

n
M Dε M�

)
<

ε

n7/3

}
< 3e−3n. (82)

5This arises since the concentration of spectral measure results given in [23,
Corollary 1.8] depend only on the spectral norm ‖Dε‖.
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By setting δ = ε2/3n−1/3, one has, with probability exceeding
1 − 7 exp (−τn), that

1

n
log det

(
1

n
M Dε M�

)
− 1

n
log detδ

(
1

n
M Dε M�

)

≥
∑

i:λi

(
1
n M Dε M�

)
<δ

{
log λmin

(
1

n
M Dε M�

)
− log δ

}

≥ −card
{
i | λi

(
ε
n M M�) < δ

}

n
· log

(
n2

ε1/3

)
(83)

≥ −
(

α
(
1 − α − 1

n

) + 4
√

εατ

)

·
log

(
n2

ε1/3

)

(εn)1/3 , (84)

where (83) follows since M Dε M� � εM M�, and (84)
arises from Lemma 1. This combined with (80) and (119)
suggests that for any ε ∈ ( 1

n , 1
)
, there exist universal constants

c1 ∼ c4 > 0 such that

1

n
log det

(
1

n
M Dε M�

)

≥ 1

n
E

[
log detδ

(
1

n
M Dε M�

)]
−

(
c1 + c2

√
τ
)

log n2

ε
1
3

(εn)1/3

(85)

≥ 1

n
log E

[
det

(
1

n
M Dε M�

)]
−

(
c3 + c4

√
τ
)

log n

(εn)1/3

(86)

with probability exceeding 1 − 7 exp (−τn).
It remains to develop a tight lower bound on

1
n log E

[
det

( 1
n M Dε M�)]. Applying Cauchy-Binet identity

gives

E

[
det

(
1

n
M Dε M�

)]

=
∑

r,r̃∈([n]
m )

E

[
det

(
M [m],r

)
det

(
1

n
(Dε)r,r̃

)
det

(
M[m],r̃

)
]

=
∑

r∈([n]
m )

E

[
det

(
M [m],r M�

[m],r

)]
det

(
1

n
(Dε)r,r̃

)
(87)

= E

[
det

(
M [m],r M�

[m],r

)] ∑

r∈([n]
m )

1

nm
det

(
(Dε)r,r̃

)

= m!
nm

min{n−k,m}∑

l=max{m−k,0}
ϕn,k,m (l) , (88)

where we define ϕn,k,m (l) := (n−k
l

)( k
m−l

)
εl (1 + ε)m−l . In the

above arguments, the identity (87) arises since det
(
(Dε)r,r̃

) �=
0 only if r = r̃ . The identity (88) follows from the definition
of Dε as well as the fact that E

[
det

(
M [m],r M�

[m],r

)]
= m!

(e.g. [40, Th. 3.1]).
Since m ≥ k, (88) further yields

E

[
det

(
1

n
M Dε M�

)]
≥ m!

nm
ϕn,k,m (m − k)

= m!
nm

(
n − k

m − k

)
εm−k (1 + ε)k .

As a result,

1

n
log E

[
det

(
1

n
M Dε M�

)]

≥ 1

n
log

{
m!
nm

(
n − k

m − k

)
εm−k

}

= log m!
n

− m log m

n
+ m log

(m
n

) + log
(n−k

m−k

) + log εm−k

n

≥ −α + α log α + (1 − β)H
(

α − β

1 − β

)
+ log εm−k

n
− log n

n
.

Here, the last inequality makes use of the entropy formula (41)
as well as the following inequality

log m!
n

− m log m

n
≥

(
m + 1

2

)

n
log m − m

n
− m

n
log m

≥ −α, (89)

a consequence of the Stirling approximation (105). Substitut-
ing it back into the concentration bound (86) we get

1

n
log det

(
1

n
M Dε M�

)

≥ −α + α log α + (1 − β)H
(

α − β

1 − β

)
− log n

n

−
(
c3 + c4

√
τ
)

log n

(εn)1/3 + 1

n
log

(
εm−k

)
(90)

with probability at least 1 − 7 exp (−τn).
So far we have developed lower bounds on the term

1
n log det

( 1
n M Dε M�). The above bound taken collectively

with (77) and Lemma 2 leads to

1

n
log det

(
ε I k + M�

s

(
M M�)−1

Ms

)

= log det
( 1

n M Dε M�)− log det
( 1

n M M�)

n
+ k − m

n
log ε

≥ −α + α log α + (1 − β)H
(

α − β

1 − β

)
−

(
c3 + c4

√
τ
)

log n

(εn)1/3

− log n

n
−
{
(1 − α) log

1

1−α
−α+ 2 log n

n
+c5

√
τ

n

}

≥ αH
(

β

α

)
− H (β) −

(
c5 + c6

√
τ
)

log n

(εn)1/3 (91)

with probability at least 1−9 exp (−τn), where c5, c6 > 0 are
some universal constants. Here, the inequality (91) follows
from the following identity:

−α + α log α + (1 − β)H
(

α − β

1 − β

)
− (1 − α) log

1

1 − α
+ α

= −α + α log α − (α − β) log

(
α − β

1 − β

)
+ α

− (1 − α) log

(
1 − α

1 − β

)
+ (1 − α) log (1 − α)

= α log α − (α − β) log (α − β) + (1 − β) log (1 − β)

= αH
(

β

α

)
− H (β) . (92)

The proof is then complete by applying the union bound and
setting τ = 3.
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APPENDIX C
PROOF OF LEMMA 1

Since the indicator function 1[0,δ] (·) entails discontinuous
points, we consider instead an upper bound on 1[0,δ](·) as

f2,δ(x) :=

⎧
⎪⎨

⎪⎩

1, if 0 ≤ x ≤ δ;
−x/ε + 2, if δ < x ≤ 2δ;
0, else.

(93)

Note that for any δ > 0 and x ≥ 0, one has

δ

x
−
(
− x

δ
+ 2

)
= δ

x
+ x

δ
− 2 ≥ 2

√
δ

x
· x

δ
− 2 = 0.

This together with the facts ε
x ≥ 1 (0 ≤ x ≤ ε) and ε

x ≥ 0
(x ≥ 0) indicates that

f2,δ(x) ≤ δ

x
, ∀x ≥ 0, (94)

leading to the upper bound
n∑

i=1

f2,δ

(
λi

(
1

n
AA�

))
≤

m∑

i=1

δ

λi
( 1

n AA�)

= δtr

((
1

n
AA�

)−1
)

. (95)

It then follows from the property of inverse Wishart matrices
(e.g. [41, Th. 2.2.8]) that

E

[
1

n

n∑

i=1

f2,δ

(
λi

(
1

n
AA�

))]

≤ δ

n
E

[

tr

((
1

n
AA�

)−1
)]

= m

n − m − 1
δ = α

1 − α − 1
n

δ. (96)

Clearly, the Lipschitz constant of the function

g2,δ(x) := f2,δ(x2) =

⎧
⎪⎨

⎪⎩

1, if 0 ≤ x ≤ √
δ;

−x2/δ + 2, if
√

δ < x ≤ √
2δ

0, else

;

is bounded above by
√

8/δ. Applying [23, Corollary 1.8(b)]
then yields the following: for any ε > 0,

P

(
1

n

n∑

i=1

1[0,δ]
(

λi

(
1

n
AA�

))
>

α

1 − α − 1
n

δ + ε

)

≤ P

(
1

n

n∑

i=1

f2,δ

(
λi

(
1

n
AA�

))
>

α

1 − α − 1
n

δ + ε

)

≤ P

(
1

n

n∑

i=1

f2,δ

(
λi

(
1

n
AA�

))

> E

[
1

n

n∑

i=1

f2,δ

(
λi

(
1

n
AA�

))]

+ ε

)

≤ 2 exp

(
− δ

16α
ε2n2

)
. (97)

Put in other words, for any τ > 0, one has

card
{
i | λi

( 1
n AA�) < δ

}

n
<

α

1 − α − 1
n

δ + 4
√

ατ√
nδ

(98)

with probability exceeding 1 − 2 exp (−τn), as claimed.

In particular, by setting δ = n−1/3, one has

card
{

i | λi
( 1

n AA�) < 1
n1/3

}

n
<

α
1−α− 1

n
+ 4

√
ατ

n1/3 (99)

with probability at least 1 − 2 exp (−τn).

APPENDIX D
PROOF OF LEMMA 2

Before proceeding to the proof of measure concen-
tration, we first derive tight bounds on the quantity
1
n log E

[
det

( 1
n AA�)]. First, the Cauchy-Binet formula indi-

cates that

E

[
det

(
AA�)] =

∑

s∈([n]
m )

E

[
det

(
As A�

s

)]
, (100)

where s ranges over all m-combinations of {1, · · · , n}, and
As is the m × m minor of A whose columns come from
the columns of A at indices from s. It is well known that
(e.g. [40, Th. 3.1]) for i.i.d. random ensembles with zero mean
and unit variance, the determinant satisfies

E

[
det

(
As A�

s

)]
= m!, (101)

which immediately leads to

E

[
det

(
1

n
AA�

)]
=

∑
s∈([n]

m ) E
[
det

(
As A�

s
)]

nm

= m!
nm

(
n

m

)
. (102)

Next, from the well-known Stirling inequality
√

2πmm+ 1
2 e−m ≤ m! ≤ emm+ 1

2 e−m , (103)

one can obtain

log (m!) ≤
(

m + 1

2

)
log m − m + 1; (104)

log (m!) ≥
(

m + 1

2

)
log m − m + 1

2
log (2π) . (105)

These together with the entropy formula (41) give rise to

1

n
log E

[
det

(
1

n
AA�

)]

≤ −m

n
log n +

(
m + 1

2

)
log m

n
− m

n
+ 1

n
+ H

(m

n

)

= (1 − α) log
1

1 − α
− α + log

(
e2m

)

2n
(106)

and, similarly,

1

n
log E

[
det

(
1

n
AA�

)]

≥ (1 − α) log
1

1 − α
− α − log (n + 1)

n
. (107)

(1) We are now in a position to establish the
upper bound on log det

( 1
n AA�). Since log det

( 1
n AA�) =∑m

i=1 log
(
λi
( 1

n AA�)) is a separable function on the spectrum
of 1

n AA�, one strategy is to make use of the concentration of
spectral measure results [23]. Note, however, that the function
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log x does not satisfy the Lipschitz condition required therein.
To resolve this issue, we define an auxiliary function

f1,δ (x) :=
{

2√
δ

(√
x − √

δ
)

+ log ε, 0 < x < δ,

log x, x ≥ δ,
(108)

as well as

detδ (X) :=
m∏

i=1

e f1,δ(λi (X)). (109)

Apparently, f1,δ (x) ≥ log x , and the Lipschitz constant of the
concave function

g1,δ (x) := f1,δ

(
x2
)
=
⎧
⎨

⎩

2√
δ

(
x −√

δ
)
+log δ, 0 < x <

√
δ,

2 log x x ≥ √
δ,

is bounded above by 2√
δ
. By definition,

detδ
(

1

n
AA�

)
= det

(
1

n
AA�

)
(110)

holds in the event that
{
λmin

( 1
n AA�) ≥ δ

}
.

The deviation of log detδ
( 1

n AA�) can be controlled via
the concentration of spectral measure inequalities. Specifically,
if we set

Z := log detδ
(

1

n
AA�

)
− E

[
log detδ

(
1

n
AA�

)]
, (111)

then [23, Corollary 1.8] suggests that for any τ > 0,

P (|Z | > τ) ≤ 2 exp

(
−δτ 2

8α

)
(112)

or, equivalently,

P

{∣∣
∣
∣
1

n
Z

∣∣
∣
∣ > 4

√
α

δ

√
τ

n

}
< 2 exp (−2τn) . (113)

Since log det
( 1

n AA�) ≤ log detδ
( 1

n AA�), it amounts to
derive a tight upper bound on E

[
log detδ

( 1
n AA�)]. Note

that the behavior of the least singular value of a rectangular
Gaussian matrix has been largely studied in the random matrix
literature (e.g. [42, Corollary 5.35]), which we cite as follows.

Lemma 4: Consider a Gaussian random matrix M ∈ R
m×n

such that M i j ’s are i.i.d. standard Gaussian random variables.
For any constant 0 < ξ <

√
n − √

m,

σmin
(
M M∗) >

(√
n − √

m − ξ
)2

(114)

with probability at least6 1 − exp
(−ξ2/2

)
.

Lemma 4 indicates that if n > 2
1−√

α
, then the event

λmin

(
1

n
AA�

)
≥
(

1 − √
α − 2

n

)2

occurs with probability at least 1 − exp
(− 2

n

)
. Conditioned on

this event, we have

det

(
1

n
AA�

)
= detδ

(
1

n
AA�

)
(115)

6Note that this follows from [42, Proposition 5.34 and Th. 5.32] by
observing that σmin (M) is a 1-Lipschitz function.

holds for the numerical value δ = (
1 − √

α − 2
n

)2
. This taken

collectively with (113) (by setting τ = 1
4 ) yields that for any

n > max
{

2
1−√

α
, 5
}

,

det

(
1

n
AA�

)
= detδ

(
1

n
AA�

)

and detδ
(

1

n
AA�

)
>

1

e

√
4α
δn

e
E

[
log detδ

(
1
n AA�)]

hold simultaneously with probability at least 1 − exp
(− 2

n

)−
2 exp

(− n
2

)
> 1/n. Since det

( 1
n AA�) is non-negative, taking

expectation gives

E

[
det

(
1

n
AA�

)]
≥ 1

n
· 1

e

√
4α
δn

e
E

[
log detδ

(
1
n AA�)]

, (116)

and therefore for any n > max
{

2
1−√

α
, 7
}

and δ =
(
1 − √

α − 2
n

)2
,

1

n
E

[
log detδ

(
1

n
AA�

)]

≤ 1

n
log E

[
det

(
1

n
AA�

)]
+ log n

n
+

√
4α
δ

n1.5

≤ (1−α) log
1

1−α
−α+ log

(
e2m

)+2 log n

2n
+ 2

√
αn−1.5

1−√
α− 2

n

≤ (1 − α) log
1

1 − α
− α + 2 log n

n
+ 2

√
α

(
1 − √

α − 2
n

)
1

n1.5 ,

where the second inequality follows from (106). Putting this
and (113) together gives that for any n > max

{
2

1−√
α
, 7, 2√

τ

}
,

1

n
log det

(
1

n
AA�

)
≤ 4

√
α

(
1 − √

α − 2
n

)
√

τ

n
− α

+ (1 − α) log
1

1 − α
+ 2 log n

n
+ 2

√
α

1 − √
α − 2

n

1

n1.5

< (1 − α) log
1

1 − α
− α + 2 log n

n

+ 4
√

α
(
1 − √

α − 2
n

)√
n

(√
τ + 1

2n

)

≤ (1 − α) log
1

1 − α
− α + 2 log n

n
+ 5

√
α

1 − √
α − 2

n

√
τ

n

with probability exceeding 1 − 2 exp (−2τn), as claimed.
(2) In order to derive a lower bound on log det

( 1
n AA�)

based on (113), one would first need to bound
E
[
log detδ

( 1
n AA�)] from below. Observe the following

consequence from (112):

E

[
eZ
]

≤ E

[
e|Z |]

= −ez
P (|Z | > z) |∞z=0 +

ˆ ∞

0
ez

P (|Z | > z) dz (117)

≤ 1 +
ˆ ∞

0
2 exp

(
z − δz2

8α

)
dz

< 1 + 4

√
2πα

δ
exp

(
2α

δ

)
. (118)
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Taking the logarithm on both sides of (118) and plugging in
the expression of Z yields

log E

[
detδ

(
1

n
AA�

)]
≤ E

[
log detδ

(
1

n
AA�

)]

+ log

[

1 + 4

√
2πα

δ
exp

(
2α

δ

)]

,

leading to

1

n
E

[
log detδ

(
1

n
AA�

)]

≥ 1

n
log E

[
detδ

(
1

n
AA�

)]
−

log

[
1 + 4

√
2πα
δ exp

( 2α
δ

)
]

n

≥ 1

n
log E

[
det

(
1

n
AA�

)]
−

log

[
1 + 4

√
2πα
δ exp

( 2α
δ

)
]

n

≥ 1

n
log E

[
det

(
1

n
AA�

)]
− 5α

nδ
. (119)

for any δ ≤ α. Here, the last inequality follows from simple
numerical inequality 1 + 4

√
2πx exp(2x) ≤ exp(5x) for any

x ≥ 1. Consequently, for any δ ≤ α

1

n
E

[
log detδ

(
1

n
AA�

)]
≥ (1 − α) log

1

1 − α
− α

− log (n + 1)

n
− 5α

nδ
. (120)

This together with (113) characterizes a lower bound on
log detδ

( 1
n AA�).

It remains to quantify the gap between log detδ
( 1

n AA�) and
log det

( 1
n AA�). On the one hand, the inequality (99) indicates

that for any n ≥
(

α
1−α− 1

n
+ 4

√
ατ

)3

,

P

{
λmax

(
AA�) <

1

n1/3

}

= P

⎧
⎨

⎩

card
{

i | λi
( 1

n AA�) < 1
n1/3

}

n
> 1

⎫
⎬

⎭

≤ P

⎧
⎨

⎩

card
{

i | λi
( 1

n AA�) < 1
n1/3

}

n
>

α
1−α− 1

n
+ 4

√
ατ

n1/3

⎫
⎬

⎭

≤ 2e−τn . (121)

On the other hand, it follows from [43, Th. 4.5] that for any
n ≥ 6.414

1−α · e
τ

1−α ,

P

{
λmax

(
AA�)

λmin
(

AA�) > n2

}

= P

{
λmax

(
AA�)

λmin
(

AA�) >
n2

(n − m + 1)2 · (n − m + 1)2

}

≤ 1√
2π

(
6.414

(1 − α)n

)(1−α)n

≤ 1√
2π

e−τn. (122)

The above two probability bounds taken collectively imply

that for any n ≥ max

{
6.414
1−α · e

τ
1−α ,

(
α

1−α− 1
n

+ 4
√

ατ

)3
}

,

P

{
λmin

(
1

n
AA�

)
<

1

n7/3

}
≤ P

{
λmax

(
AA�) <

1

n1/3

}

+ P

{
λmax

(
AA�)≥ 1

n1/3 and λmin

(
1

n
AA�

)
<

1

n7/3

}

≤ P

{
λmax

(
AA�) <

1

n1/3

}
+ P

{
λmax

(
AA�)

λmin
(

AA�) > n2

}

≤ 2e−τn + 1√
2π

e−τn < 3e−τn. (123)

Consequently, by setting δ = n−1/3 and applying Lemma 1
one obtains

1

n
log det

(
1

n
AA�

)
≥ 1

n
log detδ

(
1

n
AA�

)

−
∑

i:λi

(
1
n AA�)< 1

n1/3

log
1

n1/3 − log λmin

(
1

n
AA�

)

≥ 1

n
log detδ

(
1

n
AA�

)

−
card

{
i | λi

( 1
n AA�) < 1

n
1
3

}
log

(
n2
)

n

>
1

n
log detδ

(
1

n
AA�

)

−
(

2α

1 − α − 1
n

+ 8
√

ατ

)

· log n

n1/3

with probability exceeding 1 − 5 exp (−τn). By making use
of (113), one obtains that when δ = n−1/3,

P

{∣
∣
∣
∣
1

n
log detδ

(
1

n
AA�

)
−E

[
1

n
log detδ

(
1

n
AA�

)]∣∣
∣
∣>

√
8τα

n1/3

}

< 2 exp (−τn) . (124)

Putting the above two bounds together implies that for any

n > max

{
6.414
1−α · e

τ
1−α ,

(
α

1−α− 1
n

+ 4
√

ατ

)3
}

,

1

n
log det

(
1

n
AA�

)

≥ 1

n
log detδ

(
1

n
AA�

)
−
(

2α

1 − α − 1
n

+ 8
√

ατ

)
log n

n1/3

≥ E

[
1

n
log detδ

(
1

n
AA�

)]

−
√

8τα

n
1
3

−
(

2α

1 − α − 1
n

+ 8
√

ατ

)
log n

n
1
3

> (1 − α) log
1

1 − α
− α − log (n + 1)

n
− 5α

n2/3

−
(

2α

1 − α − 1
n

+ 10
√

ατ

)

· log n

n1/3

> (1 − α) log
1

1 − α
− α −

(
2

1 − α − 1
n

+ 10
√

τ

)

· log n

n1/3 ,

(125)
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with probability exceeding 1−7 exp(−τn). Here, (125) follows
from (120), and the last inequality makes use of the fact that

5
n2/3 + log(n+1)

n ≤ 2 log n
n1/3 for all n > 6.

APPENDIX E
PROOF OF LEMMA 3

Suppose that the singular value decomposition of the real-

valued A is given by A = U A

[
� A
0

]
V �

A, where � A is a

diagonal matrix containing all k singular values of A. One
can then write

log det
(
ε I + A� B−1 A

)

= log det

(

ε I + V A [� A0] U�
A B−1U A

[
� A

0

]

V �
A

)

= log det

(
ε I + � A

(
B̃

−1
)

[k] �A

)

≥ log det

(
1

n
�2

A

)
− log det

{
1

n

(
B̃

−1
)

[k]

}
(126)

where B̃ = U�
A BU A ∼ Wm

(
n − k, U�

AU A
) =

Wm (n − k, Im) from the property of Wishart distribution.
Here,

(
B̃

−1
)

[k] denotes the leading k × k minor consisting

of matrix elements of B̃
−1

in rows and columns from 1 to k,
which is independent of A by Gaussianality.

Note that 1
n log det

( 1
n �2

A

) = 1
n log det

( 1
n A� A

)
. Then

Lemma 2 implies that for any τ > 0 and sufficiently
large n,

1

n
log det

(
1

n
�2

A

)
= 1

n
log det

(
1

n
A� A

)

= 1

n
log det

(m

n
Ik

)
+ m

n

1

m
log det

(
1

m
A� A

)

≥ β log α + α

(
−
(

1 − β

α

)
log

(
1 − β

α

)
− β

α

)
− κ̂

≥ − (α − β) log

(
α − β

α

)
− β + β log α − κ̂

= − (α − β) log (α − β) − β + α log α − κ̂, (127)

with probability exceeding 1 − 7 exp
(−τ 2n

)
, where

κ̂ :=

(
2α

1− β
α − 1

n

+ 10ατ

)
log m

m1/3 ≤

(
2

1− β
α − 1

n

+ 10τ

)
log n

n1/3 .

(128)

On the other hand, it is well known (e.g. [41, Th. 2.3.3]) that

for a Wishart matrix B̃ ∼ Wm (n − k, Im),
(

B̃
−1
)−1

[k] also

follows the Wishart distribution, that is,

(
B̃

−1
)−1

[k] ∼ Wk (n − m, I k) . (129)

By setting ζ := max
{

β
α , β

1−α

}
,then one can obtain from

Lemma 2 that for sufficiently large n,

1

n
log det

(
1

n

(
B̃

−1
)−1

[k]

)

= 1

n
log det

(
1

n − m

(
B̃

−1
)−1

[k]

)
+ 1

n
log det

(
n − m

n
Ik

)

≤ (1 − α)

{
−
(

1 − β

1 − α

)
log

(
1 − β

1 − α

)
− β

1 − α

}

+ β log (1 − α) + 2 log n

n
+

5
√

ζ(
1−√

ζ− 2
n

)τ

√
n

= − (1 − α − β) log

(
1 − β

1 − α

)
− β + β log (1 − α)

+ 2 log n

n
+

5
√

ζ(
1−√

ζ− 2
n

)τ

√
n

(130)

holds with probability exceeding 1 − 2 exp
(−2τ 2n

)
.

Combining (126), (127) and (126) suggests that for any
τ > 0 and sufficiently large n, one has

1

n
log det

(
ε Ik + A� B−1 A

)

≥ − (α − β) log (α − β) + α log α − β log (1 − α)

+ (1 − α − β) log
1 − α − β

1 − α

−

(
2

1−ζ− 1
n

+ 10−5
√

ζ(
1−√

ζ− 2
n

)τ

)

log n

n1/3

with probability exceeding 1 − 9 exp
(−τ 2n

)
.
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[28] İ. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans.
Telecommun., vol. 10, no. 6, pp. 585–595, 1999.

[29] A. Lozano and A. M. Tulino, “Capacity of multiple-transmit multiple-
receive antenna architectures,” IEEE Trans. Inf. Theory, vol. 48, no. 12,
pp. 3117–3128, Dec. 2002.

[30] C.-N. Chuah, D. N. C. Tse, J. M. Kahn, and R. A. Valenzuela, “Capacity
scaling in MIMO wireless systems under correlated fading,” IEEE Trans.
Inf. Theory, vol. 48, no. 3, pp. 637–650, Mar. 2002.

[31] A. Tulino and S. Verdu, “Random matrix theory and wireless communi-
cations,” in Foundations and Trends in Communications and Information
Theory. Hanover, MA, USA: Now Publishers Inc., 2004.

[32] W. Hachem, O. Khorunzhiy, P. Loubaton, J. Najim, and L. Pastur,
“A new approach for mutual information analysis of large dimensional
multi-antenna channels,” IEEE Trans. Inf. Theory, vol. 54, no. 9,
pp. 3987–4004, Sep. 2008.

[33] P. Kazakopoulos, P. Mertikopoulos, A. L. Moustakas, and G. Caire,
“Living at the edge: A large deviations approach to the outage MIMO
capacity,” IEEE Trans. Inf. Theory, vol. 57, no. 4, pp. 1984–2007,
Apr. 2011.

[34] T. Tao and V. Vu. (Jun. 2012). “Random matrices: Universality of
local spectral statistics of non-Hermitian matrices.” [Online]. Available:
https://arxiv.org/abs/1206.1893

[35] T. Tao and V. Vu, “Random covariance matrices: Universality
of local statistics of eigenvalues,” Ann. Probab., vol. 40, no. 3,
pp. 1285–1315, 2012.

[36] A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge,
U.K.: Cambridge Univ. Press, 2011.

[37] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.:
Cambridge Univ. Press, 1985.

[38] T. M. Cover and J. A. Thomas, Elements of Information Theory.
Hoboken, NJ, USA: Wiley, 2012.

[39] T. Tao, “Topics in random matrix theory,” in Graduate Studies in
Mathematics. Providence, RI, USA: AMS, 2012.

[40] A. Edelman, “The probability that a random real Gaussian matrix
has k real eigenvalues, related distributions, and the circular law,”
J. Multivariate Anal., vol. 60, no. 2, pp. 203–232, Feb. 1997.

[41] Y. Fujikoshi, V. V. Ulyanov, and R. Shimizu, Multivariate Statistics:
High-Dimensional Large-Sample Approximations (Probability and Sta-
tistics). Hoboken, NJ, USA: Wiley, 2010.

[42] R. Vershynin, “Introduction to the non-asymptotic analysis of random
matrices,” Compressed Sensing, Theory and Applications. New York,
NY, USA: Cambridge Univ. Press, 2012, pp. 210–268.

[43] Z. Chen and J. J. Dongarra, “Condition numbers of Gaussian random
matrices,” SIAM J. Matrix Anal. Appl., vol. 27, no. 3, pp. 603–620,
Jul. 2005.

Yuxin Chen (S’09) received the B.S. in Microelectronics with High Distinc-
tion from Tsinghua University in 2008, the M.S. in Electrical and Computer
Engineering from the University of Texas at Austin in 2010, the M.S. in
Statistics from Stanford University in 2013, and the Ph.D. in Electrical
Engineering from Stanford University in 2015. He joins the Department
of Electrical Engineering at Princeton University as an assistant professor
in February 2017. His research interests include mathematical optimization,
information theory, high-dimensional statistics, and statistical learning.

Andrea J. Goldsmith (S’90–M’93–SM’99–F’05) is the Stephen Harris pro-
fessor in the School of Engineering and a professor of Electrical Engineering
at Stanford University. She was previously on the faculty of Electrical
Engineering at Caltech. Her research interests are in information theory and
communication theory, and their application to wireless communications and
related fields. She co-founded and serves as Chief Scientist of Accelera, Inc.,
and previously co-founded and served as CTO of Quantenna Communications,
Inc. She has also held industry positions at Maxim Technologies, Memorylink
Corporation, and AT&T Bell Laboratories. Dr. Goldsmith is a Fellow of
the IEEE and of Stanford, and she has received several awards for her
work, including the IEEE Communications Society and Information Theory
Society joint paper award, the IEEE Communications Society Best Tutorial
Paper Award, the National Academy of Engineering Gilbreth Lecture Award,
the IEEE ComSoc Communications Theory Technical Achievement Award,
the IEEE ComSoc Wireless Communications Technical Achievement Award,
the Alfred P. Sloan Fellowship, and the Silicon Valley/San Jose Business
Journal’s Women of Influence Award. She is author of the book Wireless
Communications and co-author of the books MIMO Wireless Communications
and Principles of Cognitive Radio all published by Cambridge University
Press. She received the B.S., M.S. and Ph.D. degrees in Electrical Engineering
from U.C. Berkeley.

Dr. Goldsmith has served on the Steering Committee for the IEEE TRANS-
ACTIONS ON WIRELESS COMMUNICATIONS and as editor for the IEEE
TRANSACTIONS ON INFORMATION THEORY, the Journal on Foundations and
Trends in Communications and Information Theory and in Networks, the IEEE
TRANSACTIONS ON COMMUNICATIONS, and the IEEE Wireless Communi-
cations Magazine. She participates actively in committees and conference
organization for the IEEE Information Theory and Communications Societies
and has served on the Board of Governors for both societies. She has also
been a Distinguished Lecturer for both societies, served as President of the
IEEE Information Theory Society in 2009, founded and chaired the student
committee of the IEEE Information Theory society, and chaired the Emerging
Technology Committee of the IEEE Communications Society. At Stanford she
received the inaugural University Postdoc Mentoring Award, served as Chair
of Stanfords Faculty Senate in 2009 and currently serves on its Faculty Senate
and on its Budget Group.



CHEN et al.: MINIMAX CAPACITY LOSS UNDER SUB-NYQUIST UNIVERSAL SAMPLING 3367

Yonina C. Eldar (S’98–M’02–SM’07–F’12) received the B.Sc. degree in
physics and the B.Sc. degree in electrical engineering both from Tel-Aviv
University (TAU), Tel-Aviv, Israel, in 1995 and 1996, respectively, and
the Ph.D. degree in electrical engineering and computer science from the
Massachusetts Institute of Technology (MIT), Cambridge, in 2002.

From January 2002 to July 2002, she was a Postdoctoral Fellow at the
Digital Signal Processing Group at MIT. She is currently a Professor in
the Department of Electrical Engineering at the Technion-Israel Institute of
Technology, Haifa and holds the The Edwards Chair in Engineering. She is
also a Research Affiliate with the Research Laboratory of Electronics at MIT
and a Visiting Professor at Stanford University, Stanford, CA. Her research
interests are in the broad areas of statistical signal processing, sampling
theory and compressed sensing, optimization methods, and their applications
to biology and optics.

Dr. Eldar was in the program for outstanding students at TAU from 1992
to 1996. In 1998, she held the Rosenblith Fellowship for study in electrical
engineering at MIT, and in 2000, she held an IBM Research Fellowship.
From 2002 to 2005, she was a Horev Fellow of the Leaders in Science and
Technology program at the Technion and an Alon Fellow. In 2004, she was
awarded the Wolf Foundation Krill Prize for Excellence in Scientific Research,

in 2005 the Andre and Bella Meyer Lectureship, in 2007 the Henry Taub Prize
for Excellence in Research, in 2008 the Hershel Rich Innovation Award, the
Award for Women with Distinguished Contributions, the Muriel & David
Jacknow Award for Excellence in Teaching, and the Technion Outstanding
Lecture Award, in 2009 the Technion’s Award for Excellence in Teaching, in
2010 the Michael Bruno Memorial Award from the Rothschild Foundation,
and in 2011 theWeizmann Prize for Exact Sciences. In 2012 she was elected to
the Young Israel Academy of Science and to the Israel Committee for Higher
Education, and elected an IEEE Fellow. In 2013 she received the Technion’s
Award for Excellence in Teaching, the Hershel Rich Innovation Award, and the
IEEE Signal Processing Technical Achievement Award. She received several
best paper awards together with her research students and colleagues. She
received several best paper awards together with her research students and
colleagues. She is the Editor in Chief of Foundations and Trends in Signal
Processing. In the past, she was a Signal Processing Society Distinguished
Lecturer, member of the IEEE Signal Processing Theory and Methods and Bio
Imaging Signal Processing technical committees, and served as an associate
editor for the IEEE TRANSACTIONS ON SIGNAL PROCESSING, the EURASIP
Journal of Signal Processing, the SIAM Journal on Matrix Analysis and
Applications, and the SIAM Journal on Imaging Sciences.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


