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Abstract—Cognitive radio requires efficient and reliable spec-
trum sensing of wideband signals. In order to cope with the sam-
pling rate bottleneck, new sampling methods have been proposed
that sample below the Nyquist rate. However, such techniques
decrease the signal-to-noise ratio (SNR), deteriorating the per-
formance of subsequent energy detection. Cyclostationary detec-
tion, which exploits the periodic property of communication signal
statistics, absent in stationary noise, is a natural candidate for this
setting. In this paper, we consider cyclic spectrum recovery from
sub-Nyquist samples, in order to achieve both efficiency and ro-
bustness to noise. To that end, we propose a structured compressed
sensing algorithm, which extends orthogonal matching pursuit to
account for the structure imposed by cyclostationarity. Next, we de-
rive a lower bound on the sampling rate required for perfect cyclic
spectrum recovery in the presence of stationary noise. In partic-
ular, we show that the cyclic spectrum can be reconstructed from
samples obtained at 4/5 of the Nyquist rate, without any sparsity
constraints on the signal. If the signal of interest is sparse, then the
sampling rate may be further reduced to 8/5 of the Landau rate.
Once the cyclic spectrum is recovered, we estimate the number of
transmissions that compose the input signal, along with their car-
rier frequencies and bandwidths. Simulations show that cyclosta-
tionary detection outperforms energy detection in low SNRs in the
sub-Nyquist regime. This was already known in the Nyquist regime,
but is even more pronounced at sub-Nyquist sampling rates.

Index Terms—Spectrum sensing, cyclostationary detection, sub-
Nyquist sampling, compressed sensing, cognitive radio.

I. INTRODUCTION

S PECTRUM sensing has been thoroughly investigated in
the signal processing literature. Several sensing schemes

have been proposed, with different performance and complex-
ity levels. The simplest approach is energy detection [1], which
does not require any a priori knowledge on the input signal.
Unfortunately, energy detection is very sensitive to noise and
performs poorly at low signal to noise ratio (SNR). In con-
trast, matched filter (MF) detection [2], [3], which correlates a
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known waveform with the input signal to detect the presence of
a transmission, is the optimal linear filter for maximizing SNR
in the presence of additive stochastic noise. This technique re-
quires perfect knowledge of the potential received transmission.
A compromise between both methods is cyclostationary detec-
tion [4]–[6]. This approach is more robust to noise than energy
detection but at the same time only assumes the signal of interest
exhibits cyclostationarity.

Cyclostationary processes have statistical characteristics that
vary periodically. This periodicity may arise from the under-
lying data modulation mechanism, such as carrier modulation,
periodic keying or pulse modulation. The cyclic spectrum, a
characteristic function of such processes, exhibits spectral peaks
at certain frequency locations called cyclic frequencies, which
are determined by the signal parameters, particularly the carrier
frequency and symbol rate [6]. When determining the pres-
ence or absence of a signal, cyclostationary detectors exploit a
fundamental property of the cyclic spectrum: stationary noise
and interference exhibit no spectral correlation. Non-stationary
interference can be distinguished from the signal of interest
provided that at least one cyclic frequency of the signal is not
shared with the interference [6]. This renders such detectors
highly robust to noise and interference.

The traditional task of spectrum sensing has recently been
facing new challenges due, to a large extent, to cognitive radio
(CR) applications [7]. Today, CRs are perceived as a poten-
tial solution to spectrum overcrowdedness, bridging between
the scarcity of spectral resources and their sparse nature [8].
Even though most of the spectrum is already owned and new
users may hardly find free frequency bands, various studies
[9]–[11] have shown that it is typically significantly underuti-
lized. CRs allow secondary users to opportunistically use the
licensed spectrum when the corresponding primary user (PU) is
not active [7]. CR requirements dictate new challenges for its
most crucial task, spectrum sensing. On the one hand, detection
has to be performed in real time, efficiently and with minimal
software and hardware resources. On the other hand, it has to
be reliable and able to cope with low SNR regimes.

Nyquist rates of wideband signals, such as those CRs deal
with, are high and can even exceed today’s best analog-to-
digital converters’ (ADCs) front-end bandwidths. In addition,
such high sampling rates generate a large number of samples to
process, affecting speed and power consumption. In order to ef-
ficiently sample sparse wideband signals, several new sampling
methods have recently been proposed [12]–[15] that reduce the
sampling rate in multiband settings below the Nyquist rate. This
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alleviates the burden on both the analog and digital sides by en-
abling the use of cheaper and lower power reduced rate ADCs
and the processing of fewer samples.

The authors of [12] derive the minimal sampling rate allow-
ing for perfect signal reconstruction in noise-free settings and
provide specific sampling and recovery techniques. However,
when the final goal is spectrum sensing and detection, recon-
structing the original signal is unnecessary. Power spectrum
reconstruction from sub-Nyquist samples is considered in [16]–
[18]. These works seek power spectrum estimates from low rate
samples, using multicoset sampling [16]–[18] and the modu-
lated wideband converter (MWC) [18] proposed in [13]. The
presence or absence of a signal in a particular frequency band
is then assessed with respect to the estimated power within the
band. Unfortunately, the sensitivity of energy detection used in
the above works is amplified when performed on sub-Nyquist
samples due to noise aliasing [19]. Therefore, this scheme fails
to meet CR performance requirements in low SNR regimes.
On the other hand, little a priori knowledge can be assumed on
the received signals, making MF difficult to implement. Con-
sequently, cyclostationary detection is a natural candidate for
spectrum sensing from sub-Nyquist samples at low SNRs.

Signal detection using cyclostationarity and its application
to spectrum sensing for CR systems in the Nyquist regime
have been thoroughly investigated; see e.g., [5], [8], [20], [21].
Recently, cyclostationary detection from sub-Nyquist samples
was treated in [22]–[30]. A general framework is adopted,
that exploits a linear relation between the sub-Nyquist and
Nyquist samples, over a finite sensing time. In particular,
a transformation between the Nyquist cyclic spectrum and
the time-varying correlations of the sub-Nyquist samples is
derived to retrieve the former from the latter. In [22], the
carrier frequencies, symbol periods and modulation types of
the transmissions are assumed to be known. In this case, the
cyclic spectrum can be reduced to its potential non zero cyclic
frequencies, which are recovered using a simple least squares
(LS) approach. However, this scheme cannot be applied in the
context of blind spectrum sensing for CR.

The authors in [23], [24] consider low-pass compressive mea-
surements of the correlation function. The cyclic autocorrelation
is then reconstructed at a given lag using compressed sensing
(CS) algorithms [31]. Two heuristic detection techniques are
developed in order to infer the presence or absence of a trans-
mission. However, it is not clear how the signal itself should be
sampled in order to obtain these correlation measurements. In
addition, no requirements on the number of samples for recov-
ering the cyclic autocorrelation nor guarantees on the detection
methods are provided.

In [25], [26], the authors consider a random linear rela-
tion between the autocorrelation of sub-Nyquist samples and
the Nyquist cyclic spectrum. They then formulate an �1-norm
regularized LS problem, enforcing sparsity on the cyclic spec-
trum. The same ideas are adopted in [27] but reconstruction is
performed in matrix form, allowing for higher resolution. In
[28], correlation lags beyond lag zero are exploited and the span
of the random linear projections is extended beyond one period
of cyclostationarity of the signal. These extensions allow for LS
recovery without any sparsity requirements on the signal.

The main drawback of this digital approach, adopted by all
works above, is that it does not deal with the sampling scheme
itself, in which we do not have access to the Nyquist samples.
This approach assumes that the sub-Nyquist samples can be
expressed as random linear projections of the Nyquist samples,
without considering the actual sampling mechanism. In addi-
tion, due to the inherent finite sensing time, the recovered cyclic
frequencies lie on a predefined grid. Therefore, the frequencies
of interest are assumed to lie on that grid. The theoretical reso-
lution that can be achieved is thus dictated by the sensing time.
Finally, no theoretical guarantees on the minimal sampling rate
allowing for perfect recovery of the cyclic spectrum have been
given.

In [29], a concrete sampling scheme is considered, known
as multicoset, or non-uniform sampling. The authors derive
conditions on the system matrix to have full rank, allowing
for perfect cyclic spectrum recovery from the compressive
measurements. Random sampling in the form of a succes-
sive approximation ADC (SAR-ADC) architecture [32] is used
in [30]. The resulting sampling matrix is similar to that ob-
tained by multicoset sampling, with the distinction that the grid
is that of the quantization time rather than the Nyquist grid.
While explicit sampling schemes are considered, the theoretical
cyclic spectrum resolution still depends on the sensing time,
so that the gridding, or discretization, is part of the theoretical
derivations.

In this work, we propose to reconstruct the signal’s cyclic
spectrum from sub-Nyquist samples obtained using the methods
of [12]–[14]. Our theoretical approach does not involve gridding
or discretization and the cyclic spectrum can be recovered at any
frequency. In addition, the MWC analog front-end presented in
[13] is a practical sampling scheme that has been implemented
in hardware [33]. We perform cyclostationarity detection on the
sub-Nyquist samples, thereby obtaining both an efficient, fast
and frugal detector on the one hand and one that is reliable
and robust to noise on the other hand. We derive a sampling
rate bound allowing for perfect cyclic spectrum recovery in our
settings, for sparse and non sparse signals. We note that the
cyclic spectrum can be perfectly recovered in the presence of
stationary noise, from compressed samples, except for a limited
number of cyclic frequencies that are multiples of the basic
low sampling rate. For those, reconstruction is performed in the
presence of bounded noise.

In particular, we show that, in the presence of stationary noise,
the cyclic spectrum can be reconstructed from samples obtained
at 4/5 of the Nyquist rate, without any sparsity assumption on
the signal. If the signal of interest is sparse, then the sampling
rate may be further reduced to 8/5 of the Landau rate, which is
the Lebesgue measure of the occupied bandwidth [34]. Similar
results were observed in [18] in the context of power spectrum
reconstruction of stationary signals. There, it was shown that
the power spectrum of non sparse signals can be retrieved at
half the Nyquist rate and that of sparse signals may be perfectly
recovered at the Landau rate. Once the cyclic spectrum is recon-
structed, we apply our feature extraction algorithm, presented
in [35] in the Nyquist regime, which estimates the number of
transmissions and their respective carrier frequencies and band-
widths.



3006 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 11, JUNE 1, 2017

The main contributions of this paper are as follows:
� Low rate sampling and digital processing - the cyclic

spectrum is recovered directly from sub-Nyquist samples.
Both sampling and digital processing are performed at a
low rate.

� Structured CS algorithm - an orthogonal matching pur-
suit (OMP) based algorithm to reconstruct the cyclic spec-
trum is proposed, that exploits the inherent structure of
the correlation matrices between frequency samples of the
signal.

� Robust detection in low SNR - we show that cyclostation-
ary detection performed by estimating the transmissions
carrier frequency and bandwidth is more robust to noise
than energy detection at sub-Nyquist rates.

� Minimal sampling rate derivation - a lower bound on
the sampling rate required for cyclic spectrum recovery is
derived for both sparse and non sparse signals.

This paper is organized as follows. In Section II, we de-
scribe the cyclostationary multiband model. Sections III and IV
present the sub-Nyquist sampling stage and cyclic spectrum re-
construction algorithm and conditions, respectively. Numerical
experiments are presented in Section V.

II. CYCLOSTATIONARY MULTIBAND MODEL

A. Multiband Model

Let x(t) be a real-valued continuous-time signal, supported
onF = [−1/2TNyq,+1/2TNyq] and composed of up to Nsig un-
correlated cyclostationary transmissions corrupted by additive
noise, such that

x(t) =
N sig∑

i=1

si(t) + n(t). (1)

Here n(t) is a wide-sense stationary bandpass noise and si(t) is
a zero-mean cyclostationary bandpass process, as defined below,
from the class of pulse-amplitude modulation (PAM) signals:

si(t) =
√

2 cos(2πfit)
∑

k

aI
ik gi(t− kTi)

−
√

2 sin(2πfit)
∑

k

aQ
ik gi(t− kTi). (2)

The unknown symbols modulating the in-phase and quadrature
components are denoted by {aI

ik} and {aQ
ik}, respectively,

and gi(t) are the unknown pulse shape functions. The single-
sided bandwidth, carrier frequency and symbol period are de-
noted by Bi , fi and Ti , respectively. Special cases of passband
PAM include phase-shift keying (PSK), amplitude and phase
modulation (AM-PM) and quadrature amplitude modulation
(QAM) [36].

Formally, the Fourier transform of x(t), defined by [37]

X(f) =
∫ ∞

−∞
x(t)e−j2πf tdt, (3)

is zero for every f /∈ F . Let fNyq = 1/TNyq be the Nyquist rate
of x(t). The number of transmissions Nsig, their carrier frequen-
cies, bandwidths, symbol rates and modulations, including the

symbols {aik} and the pulse shape functions gi(t) are unknown.
It follows that the reconstruction of the cyclic spectrum, defined
in the next section, is performed in a blind scenario. The single-
sided bandwidth of each transmission is only assumed to not
exceed a known maximal bandwidth B, namely Bi ≤ B for all
1 ≤ i ≤ Nsig. If the bandwidth is fully occupied, then NsigB is
on the order of fNyq.

We will consider the special case of sparse multiband signals
as well and show that the sampling rate for perfect cyclic spec-
trum reconstruction can be further reduced. In this setting, the
number of transmissions Nsig which dictates the signal’s spar-
sity, or at least an upper bound on it, is assumed to be known and
NsigB � fNyq. We denote by K = 2Nsig the upper bound on
the number of occupied bands, to account for both the positive
and negative frequency bands for each signal.

B. Cyclostationarity

A process s(t) is said to be cyclostationary with period T0
in the wide sense if its mean E[s(t)] = μs(t) and autocorrela-
tion E[s(t− τ/2)s(t + τ/2)] = Rs(t, τ) are both periodic with
period T0 [4]:

μs(t + T0) = μs(t), Rs(t + T0 , τ) = Rs(t, τ). (4)

Given a wide-sense cyclostationary random process, its auto-
correlation Rs(t, τ) can be expanded in a Fourier series

Rs(t, τ) =
∑

α

Rα
s (τ)ej2παt , (5)

where α = m/T0 ,m ∈ Z and the Fourier coefficients, referred
to as cyclic autocorrelation functions, are given by

Rα
s (τ) =

1
T0

∫ T0 /2

−T0 /2
Rs(t, τ)e−j2παtdt. (6)

The cyclic spectrum is obtained by taking the Fourier transform
of (6) with respect to τ , namely

Sα
s (f) =

∫ ∞

−∞
Rα

s (τ)e−j2πf τ dτ, (7)

where α is referred to as the cyclic frequency and f is the angu-
lar frequency [4]. If there is more than one fundamental cyclic
frequency 1/T0 , then the process s(t) is said to be polycyclo-
stationary in the wide sense. In this case, the cyclic spectrum
contains harmonics (integer multiples) of each of the fundamen-
tal cyclic frequencies [6]. These cyclic frequencies are related to
the transmissions carrier frequencies and symbol rates as well
as the modulation type.

An alternative interpretation of the cyclic spectrum, which we
will exploit, expresses it as the cross-spectral density Sα

s (f) =
Suv (f) of two frequency-shifted versions of s(t), u(t) and v(t),
such that

u(t) � s(t)e−jπαt , (8)

v(t) � s(t)e+jπαt . (9)

Then, from [37], it holds that

Sα
s (f) = Suv (f) = E

[
S

(
f +

α

2

)
S∗

(
f − α

2

)]
. (10)
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Fig. 1. Support region of the cyclic spectrum of Sα
si

(f ).

The Fourier transform of a wide-sense stationary process n(t)
is a white noise process, not necessarily stationary, so that [37]

E [N(f1)N ∗(f2)] = S0
n (f1)δ(f1 − f2). (11)

Therefore, stationary noise exhibits no cyclic correlation [6],
that is

Sα
n (f) = 0, α �= 0. (12)

This property is the motivation for cyclostationary detection,
particularly in low SNR regimes.

C. Cyclic Spectrum of Multiband Signals

Denote by [f (1)
i , f

(2)
i ] the right-side support of the ith

transmission si(t). Then, Bi = f
(2)
i − f

(1)
i and fi = (f (1)

i +
f

(2)
i )/2. The support region in the (f, α) plane of the cyclic

spectrum Sα
si

(f) of such a bandpass cyclostationary signal is
composed of four diamonds, as shown in Fig. 1. More precisely,
it holds that [6]

Sα
si

(f) = 0, for

∣∣∣∣|f | −
|α|
2

∣∣∣∣ ≤ f
(1)
i or |f |+ |α|

2
≥ f

(2)
i .

(13)
Moreover, since x(t) is bandlimited to F , it follows that [6]

Sα
x (f) = 0, for |f |+ |α|

2
≥ fNyq

2
. (14)

Since the transmissions si(t) are assumed to be zero-mean
and uncorrelated (coming from different sources), the cyclic
spectrum of x(t) does not contain any additional harmonics
which would result from correlation between different trans-
missions. It is thus given by

Sα
x (f) =

{∑N sig

i=1 Sα
si

(f) α �= 0
∑N sig

i=1 S0
si

(f) + S0
n (f) α = 0.

(15)

At the cyclic frequency α = 0, the cyclic spectrum reduces to
the power spectrum and the occupied signal bandwidth along
the angular frequency axis is 2NsigB, to account for both
positive and negative frequency bands. This cyclic frequency
α = 0 contains the noise power spectrum as well. Consequently,

we choose to detect the transmissions and estimate their carri-
ers and bandwidths at cyclic frequencies α �= 0. Note that, for
α �= 0, the sum only contains the contributions of the transmis-
sions that exhibit cyclostationarity at the corresponding cyclic
frequency α. Therefore, for each α �= 0, the sum typically con-
tains less than Nsig non zero elements. It follows from (15) that,
besides the noise contribution at the cyclic frequency α = 0, the
support of Sα

x (f) is composed of 4Nsig diamonds, that is four
diamonds for each transmission, as those shown in Fig. 1.

The support of Sα
x (f) consists of two types of correlations:

the two diamonds lying on the angular frequency f axis and
those lying on the cyclic frequency α. The diamonds on the
f axis contain self-correlations between a band and its shifted
version. These correspond to cyclic peaks at locations (f, α),
with f ∈ F and 0 ≤ |α| ≤ B. Cyclic features at these locations
are the result of the transmissions symbol rate 1/Ti . The value
of Ti can be derived from the bandwidth, as

Ti =
1 + γi

Bi
, (16)

where 0 ≤ γi ≤ 1 is the unknown excess-bandwidth parameter
of gi(t) [36]. Therefore, cyclic peaks that stem from the symbol
rate appear at cyclic frequencies α = 1

Ti
≤ Bi ≤ B.

The two diamonds lying on the α axis contain cross-
correlations between two symmetric bands, belonging to the
same transmission. These correspond to cyclic peaks at locations
(f, α), with 0 ≤ |f | ≤ B/2 and B < |α| ≤ fNyq. In particular,
applying (10) for α = ±2fi , namely

S±2fi
x (f) = E [X(f + fi)X∗(f − fi)] , (17)

computes the correlation between the positive and negative
bands of the ith transmission. This generates a peak, or cyclic
feature, in the cyclic spectrum at location (f = 0, α = ±2fi).
By detecting the peak location, one can estimate the carrier fre-
quency of the corresponding transmission si(t). Furthermore,
from (13), it is clear that the occupied bandwidth in the cyclic
spectrum at α = ±2fi is equal to the bandwidth Bi . These
observations are key to estimating the transmissions carrier fre-
quency and bandwidth. We note that other modulations not in-
cluded in (2) may not exhibit features at α = ±2fi . In such
cases, higher order cyclostationary statistics may be used for
detection [6], [38].

D. Goal

Our objective is to reconstruct Sα
x (f) from sub-Nyquist sam-

ples without any a priori knowledge on the support and modu-
lations of si(t), 1 ≤ i ≤ Nsig. We show that the cyclic spectrum
of non sparse signals can be recovered from samples obtained
at 4/5 of the Nyquist rate. If the signal is assumed to be sparse,
then the sampling rate may be as low as 8/5 of the Landau rate.

We then estimate the number of transmissions Nsig present
in x(t), their carrier frequencies fi and bandwidths Bi . Once
the signals’ carrier and bandwidth are estimated, the occupied
support is determined. In [35], we proposed a generic feature
extraction algorithm for the estimation of Nsig, fi and Bi , for all
1 ≤ i ≤ Nsig, from the cyclic spectrum obtained from Nyquist
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samples. Here, we apply the same scheme to the reconstructed
cyclic spectrum from sub-Nyquist rather than Nyquist samples.

III. SUB-NYQUIST SAMPLING

In this section, we briefly describe the sub-Nyquist sam-
pling schemes we consider: multicoset sampling [12] and the
MWC [13]. These methods were previously proposed for sparse
multiband signals in conjunction with energy detection. We
show that both techniques lead to identical expressions for the
signal’s cyclic spectrum in terms of correlations between the
samples. Therefore, the cyclic spectrum reconstruction stage
presented in Section IV can be applied to either of the sampling
approaches.

A. Multicoset Sampling

Multicoset sampling [15] can be described as the selection
of certain samples from the uniform grid. More precisely, the
Nyquist grid is divided into blocks of N consecutive samples,
from which only M are kept. The ith sampling sequence is
defined as

xci
[n] =

{
x(nTNyq), n = mN + ci,m ∈ Z

0, otherwise,
(18)

where 0 < c1 < c2 < . . . < cM < N − 1. Multicoset sampling
may be implemented as a multi-channel system with M chan-
nels, each composed of a delay unit corresponding to the coset
ci followed by a low rate ADC. Let fs = 1

N TNyq
≥ B be the

sampling rate of each channel and Fs = [0, fs ]. Following the
derivations in [12], we obtain

z(f̃) = Ax(f̃), f̃ ∈ Fs , (19)

where zi(f̃) = Xci
(ej2π f̃ TNyq), 0 ≤ i ≤M − 1, are the

discrete-time Fourier transforms (DTFTs) of the multicoset sam-
ples and

xk (f̃) = X
(
f̃ + Kkfs

)
, (20)

where Kk = k − 
N +2
2 � for 1 ≤ k ≤ N . Each entry of x(f) is

referred to as a slice of the spectrum of x(t). The ikth element
of the M ×N matrix A is given by

Aik =
1

NTNyq
ej 2 π

N ci Kk , (21)

namely A is determined by the known sampling pattern {ci}Mi=1 .

B. MWC Sampling

The MWC [13] is composed of M parallel channels. In each
channel, an analog mixing front-end, where x(t) is multiplied
by a mixing function pi(t), aliases the spectrum, such that each
band appears in baseband, as illustrated in Fig. 2. The mixing
functions pi(t) are required to be periodic with period Tp such
that fp = 1/Tp ≥ B. The function pi(t) has a Fourier expansion

pi(t) =
∞∑

l=−∞
cile

j 2 π
T p

lt
. (22)

Fig. 2. The spectrum slices x(f̃ ) of the input signal are shown here to be
multiplied by the coefficients ail of the sensing matrix A, resulting in the
measurements zi (f̃ ) for the ith channel. Note that in multicoset sampling, only
the slices’ complex phase is modified by the coefficients ail . In the MWC, both
the phases and amplitudes are affected in general.

In each channel, the signal goes through a lowpass filter with cut-
off frequency fs/2 and is sampled at the rate fs ≥ fp , resulting
in the samples yi [n]. For the sake of simplicity, we choose
fs = fp . From [13], the relation between the known DTFTs of
the samples yi [n] and the unknown X(f) is given by

z(f̃) = Ax(f̃), f̃ ∈ Fs , (23)

where z(f̃) is a vector of length M with ith element zi(f̃) =
Yi(ej2π f̃ Ts ). The entries of the unknown vector x(f̃) are given
by (20). The M ×N matrix A contains the known coefficients
cil such that

Ail = ci,−l = c∗il , (24)

where N = �fNyq/fs. This relation is illustrated in Fig. 2.
Systems (19) and (23) are identical for both sampling

schemes: the only difference is the sampling matrix A. In the
next section, we derive conditions for the reconstruction of the
cyclic spectrum from either class of samples. The requirements
on the resulting sampling matrix A are tied to conditions on the
sampling pattern for multicoset sampling [12] and on the mix-
ing sequences for the MWC [13]. We then present a method for
reconstruction of the analog cyclic spectrum for both sampling
schemes jointly. In particular, we will reconstruct Sα

x (f) from
correlations between shifted versions of z(f̃), defined in (19)
and (23). We note that for both sampling approaches, the overall
sampling rate is

ftot = Mfs =
M

N
fNyq. (25)

In the simulations, we consider samples obtained using the
MWC. However, multicoset samples can be used indifferently.

IV. CYCLIC SPECTRUM RECONSTRUCTION

In this section, we provide a method to reconstruct the cyclic
spectrum Sα

x (f) of x(t) from sub-Nyquist samples obtained
using either of the sampling schemes described above, namely
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multicoset and the MWC. We also investigate cyclic spectrum
recovery conditions, that is the minimal sampling rate allowing
for perfect recovery of Sα

x (f) in the presence of stationary noise.
Finally, we consider the special case of power spectrum recon-
struction, presented in [18], and compare it to cyclic spectrum
recovery.

A. Relation between the Samples and the Cyclic Spectrum

From (19) or (23), we have

Ra
z (f̃) = ARa

x(f̃)AH , f̃ ∈ [0, fs − a] , (26)

for all a ∈ [0, fs ], where

Ra
x(f̃) = E

[
x(f̃)xH (f̃ + a)

]
, (27)

and

Ra
z (f̃) = E

[
z(f̃)zH (f̃ + a)

]
. (28)

Here (.)H denotes the Hermitian conjugate operation. The en-
tries in the matrix Ra

x(f̃) are correlations between shifted ver-
sions of the slices x(f̃), namely correlations between frequency-
shifted versions of x(t). The variable a controls the shift between
the slices, while f̃ , obtaining values in the interval [0, fs − a],
determines the specific frequency location within the slice. Both
a and f̃ are continuous and Ra

x(f̃) can be computed for any
combination of a ∈ [0, fs ] and f̃ ∈ [0, fs − a]. In practice, with
a limited sensing time, a and f̃ are discretized according to the
number of samples per channel. Consequently, we choose to use
an asymmetric definition of the cyclic spectrum in (27) and (28),
where the shift a is applied only to one term. This definition is
typically adopted in discrete settings, in which we do not have
access to frequency samples with non integer shifts.

To proceed, we begin by investigating the link between the
cyclic spectrum Sα

x (f) and the shifted correlations between the
slices x(f̃), namely the entries of Ra

x(f̃). We then show how
the latter can be recovered from Ra

z (f̃) using (26).
The alternative definition of the cyclic spectrum (10) implies

that the elements in the matrix Ra
x(f̃) are equal to Sα

x (f) at the
corresponding α and f . Indeed, it can easily be shown that

Ra
x(f̃)(i,j ) = Sα

x (f), (29)

for

α = (j − i)fs + a

f = −fNyq

2
+ f̃ − fs

2
+

(j + i)fs

2
+

a

2
. (30)

Here, Ra
x(f̃)(i,j ) denotes the (i, j)th element of Ra

x(f̃). In par-
ticular, from (15), it follows that for a = 0, namely with no shift,
it holds that

R0
x(f̃) =

N sig∑

k=1

R0
sk

(f̃) + R0
n(f̃). (31)

The diagonal matrix R0
n(f̃) contains the noise’s power spec-

trum, such that

R0
n(f̃)kk = S0

n

(
−fNyq

2
+ kfs + f̃

)
, (32)

Fig. 3. Original spectrum X (f ).

for 0 ≤ k ≤ N − 1, and

Ra
sk

(f̃) = E
[
sk (f̃)sH

k (f̃ + a)
]
. (33)

Here, sk (f̃) is a vector of size N whose non zero elements are
the frequency slices from x(f̃) corresponding to the kth trans-
mission. The diagonal of R0

x(f̃) contains the power spectrum
of x(t) such that

R0
x(f̃)kk = S0

x

(
−fNyq

2
+ kfs + f̃

)
, 0 ≤ k ≤ N − 1,

(34)
is the sum of the transmissions’ and noise’s power spectrum.
Since n(t) is stationary, for a �= 0, we have

Ra
x(f̃) =

N sig∑

k=1

Ra
sk

(f̃). (35)

Our goal can then be stated as recovery of Ra
x(f̃), for a ∈ [0, fs ]

and f̃ ∈ [0, fs − a], since once Ra
x(f̃) is known, Sα

x (f) follows
for all (α, f), using (29).

We now consider the structure of the autocorrelation ma-
trices Ra

x(f̃), which is related to the support of the cyclic
spectrum Sα

x (f). In Section II-B, we discussed the support of
Sα

x (f), composed of two types of correlations: self-correlations
between a band and its shifted version and cross-correlations
between shifted versions of symmetric bands belonging to the
same transmission. Consider a given frequency location f̃ and
shift a. The frequency component xi(f̃), for 0 ≤ i ≤ N − 1,
can be correlated to at most two entries of x(f̃ + a), one from
the same band and one from the symmetric band. The correlated
component can be either in the same, respectively symmetric,
slice or in one of the adjacent slices. This follows from the fact
that each band may split between two slices at most, since we re-
quire fp ≥ B. Thus, the first correlated entry is either i or i± 1
and the second is either N − i, N − i + 1 or N − 1 + 2. Since
the noise is assumed to be wide-sense stationary, from (11), a
noise frequency component is correlated only with itself. Thus,
n(t) can contribute non-zero elements only on the diagonal of
R0

x(f̃).
Figures 4 and 5 illustrate these correlations for a = 0 and

a = fs/2, respectively. First, in Fig. 3, an illustration of the
spectrum of x(t), namely X(f), is presented for the case of
a sparse signal buried in stationary bandpass noise. It can be
seen that frequency bands of X(f) either appear in one fp -slice
or split between two slices. The resulting vector of spectrum
slices x(f̃) and the correlations between these slices without
any shift, namely R0

x(f̃), are shown in Figs. 4(a) and (b),
respectively. Define the d-diagonal and d-anti diagonal of an
N ×N matrix to be its (i, j)th elements such that j = i + d, and
j = N − i + 1− d, respectively. In particular, the 0-diagonal
stands for the main diagonal and the 0-anti diagonal is the sec-
ondary diagonal. In Fig. 4(b), we observe that self-correlations
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Fig. 4. (a) Spectrum slices vector x(f̃ ) (b) correlated slices of x(f̃ ) in the
matrix R0

x (f̃ ).

Fig. 5. (a) Spectrum slices vector x(f̃ ) (b) spectrum slices shifted vector
x(f̃ + a) for a = fs /2 (c) correlated slices of x(f̃ ) and x(f̃ + a) in the
matrix Ra

x (f̃ ), with a = fs /2.

appear only on the main diagonal since every frequency
component is correlated with itself. In particular, the main
diagonal contains the noise’s power spectrum (in green). Cross-
correlations between the yellow symmetric triangles appear in
the 0-anti diagonal, whereas those of the blue trapeziums are
contained in the−1 and 1-anti diagonals. The red rectangles do
not contribute any cross-correlations for a shift of a = 0. Fig-
ures 5(a) and (b) show the vector x(f̃) and its shifted version
x(f̃ + a) for a = fs/2, respectively. The resulting correlation
matrix Ra

x(f̃) appears in Fig. 5(c). Here, the self correlations
of the blue trapeziums appear in the−1-diagonal. The non zero
cross-correlations all appear in the anti-diagonal, for the shift
a = fs/2. We note that for this shift, the yellow triangles do not
contribute self or cross correlations.

The following four conclusions can be drawn from the obser-
vations above on the structure of Ra

x(f̃), for a given a ∈]0, fs ]
and f̃ ∈ [0, fs − a]. We will treat the case where a = 0 sepa-
rately since it yields a different structure due to the presence of
noise.

� Conclusion 1: The non zeros entries of Ra
x(f̃) are con-

tained in its −1, 0 and 1-diagonals and −1, 0 and 1-anti
diagonals.

� Conclusion 2: The ith row of Ra
x(f̃) contains at

most two non zero elements at locations (i, g(i)) and
(i, g(N − i + 1)), where

g(i) =

⎧
⎪⎨

⎪⎩

i or i± 1 2 ≤ i ≤ N − 1,

i or i + 1 i = 1,

i or i− 1 i = N.

(36)

� Conclusion 3: The jth column of Ra
x(f̃) contains at

most two non zero elements at locations (g(j), j)) and
(g(N − j + 1), j), for 1 ≤ j ≤ N .

� Conclusion 4: For each specific frequency f̃ , a transmis-
sion contributes to at most two slices, one in the nega-
tive and one in the positive frequencies. This is due to
the assumption that fp ≥ B. Therefore, Ra

x(f̃) contains
at most K = 2Nsig rows/columns that have non zero ele-
ments. Without any sparsity assumption, it is obvious that
K = N even if the number of transmissions is greater than
N/2.

From Conclusions 2 and 4, it follows that Ra
x(f̃) is 2K-

sparse and has additional structure described in Conclusions
1-3.

Since the non zero elements of Ra
x(f̃) only lie on the 3 main

and anti-diagonals, (26) can be further reduced to

ra
z (f̃) = (Ā⊗A)vec(Ra

x(f̃)) = (Ā⊗A)Bra
x(f̃) � Φra

x(f̃),
(37)

where Ā denotes the conjugate matrix of A and

Φ = (Ā⊗A)B. (38)

Here,⊗ is the Kronecker product, ra
z (f̃) = vec(Ra

z (f̃)), where
vec(·) denotes the column stack concatenation operation, and B
is a N 2 × (6N − 4) selection matrix that selects the elements
of the −1, 0 and 1-diagonals and anti-diagonals of Ra

x(f̃) from
the vector vec(Ra

x(f̃)). The resulting (6N − 4)× 1 vector com-
posed of these selected elements is denoted by ra

x(f̃).
From Conclusions 2-4, the vector ra

x(f̃) is 2K-sparse and its
support presents additional structure. Denote by Σk the set of
k-sparse vectors that belong to a linear subspace Σ. In our case,
ra
x(f̃) belongs to Σk = Σ2K , defined as

Σ2K = {x ∈ R(6N−4)×1 | |S(x)| ≤ 2K ∧ S(x) ∈ I}, (39)

where S(x) denotes the support of x and the set I is determined
by the following properties:

1) If the group indexed by j is in I, then the group indexed
by (N + 1− j) is in I as well. The groups are defined in
the following items.

2) If the group indexed by 2 ≤ j ≤ N − 1 is in I, then it
means that at most one of the entries {6j − 1, 6j, 6j + 1}
and at most one of the entries {6j + 2, 6j + 3, 6j + 4}
are in I.

3) If the group indexed by j = 1 is in I, then at most one of
the entries {1, 2} and at most one of the entries {3, 4} are
in I.

4) If the group indexed by j = N is in I, then at most one
of the entries {6N − 7, 6N − 6} and at most one of the
entries {6N − 5, 6N − 4} are in I.

Item 1) follows from Conclusion 4 and items 2)-3) and 4)
follow from Conclusions 2-3. We note that the indexation above
is valid if the selection matrix in (37) selects the elements of
vec(Ra

x(f̃)) row by row. Any other selection order would yield
a different indexation.

Consider now the case in which a = 0. The matrix R0
x(f̃)

contains the power spectrum of the transmissions and the noise
on its main diagonal and cyclic components of the transmis-
sions on its−1, 0 and 1-anti diagonals. The remaining elements
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are zero. Denote by r0
x1

the N × 1 non-sparse vector com-
posed of the diagonal of R0

x(f̃) and by r0
x2

the (3N − 2)× 1
sparse vector composed of its −1, 0 and 1-anti diagonals. Let
Φ1 = Ā�A, where � denotes the Khatri-Rao product, and
Φ2 = (Ā⊗A)B̃ with B̃ a N 2 × (3N − 2) selection matrix
that selects the elements of the −1, 0 and 1-anti diagonals of
R0

x(f̃) from the vector vec(R0
x(f̃)). Combining (31) and (37),

we can write r0
z(f̃) as the sum of two components as follows,

r0
z(f̃) = Φ2r0

x2
(f̃) + w(f̃), (40)

where w(f̃) = Φ1r0
x1

(f̃) is the noise component. We note that
the signal’s power spectrum is buried in the noise w(f̃). There-
fore, we do not recover it and signal detection will be performed
only on cyclic frequencies α �= 0.

From (14) and (29), by recovering ra
x(f̃) ∈ Σ2K for all

a ∈ [0, fs ], f̃ ∈ [0, fs − a], we recover the entire cyclic spec-
trum of x(t). We consider only a ≥ 0 and consequently α ≥ 0.
We thus only reconstruct half of the cyclic spectrum, known to
be symmetric [6]. In (37), there is no noise component, even if
the signal x(t) is corrupted by additional stationary noise. For
the corresponding cyclic frequencies, we can therefore achieve
perfect recovery. In contrast, in (40), namely for a = 0, there is
an additional noise component. From (30), this case corresponds
to cyclic frequencies which are multiples of the channels’ sam-
pling frequency fs . For these frequencies, the recovery of the
sparse vector r0

x2
(f̃) ∈ Σ2K is not perfect and is performed

in the presence of bounded noise. In the simulations, we ob-
serve that for detection purposes, this noisy recovery is satis-
factory. To achieve perfect recovery for these cyclic frequencies
as well, we may sample the signal using a different sampling
frequency fs2 .

B. Cyclic Spectrum Recovery Conditions

We now consider conditions for perfect recovery of the cyclic
spectrum Sα

x (f) from sub-Nyquist samples. Corollary 1 below
derives sufficient conditions on the minimal number of channels
M for perfect recovery of Ra

x(f̃), for any a ∈]0, fs ] and f̃ ∈
[0, fs − a] in the presence of additive stationary noise. As stated
above, for a = 0, the recovery is noisy. From Conclusion 1,
we only need to recover ra

x(f̃) from (37) or (40) for a �= 0 or
a = 0, respectively. Theorem 1 first states sufficient conditions
for reconstruction of the vector ra

x(f̃) ∈ Σ2K . To that end, we
rely on the following Lemma which is well known in the CS
literature [15], [31].

Lemma 1: For any vector y ∈ Rm , there exists at most one
signal x ∈ Σk such that y = Ax if and only if all sets of 2k
columns of A belonging to W , such that

W = {S(x1)
⋃

S(x2)|x1 ,x2 ∈ Σk}, (41)

are linearly independent. In particular, for uniqueness we must
have that m ≥ 2k.

Using Lemma 1, it follows that in order to perfectly recover
ra

x(f̃) ∈ Σ2K from ra
z (f̃), we need to ensure that all sets of

4K columns of Φ belonging to W are linearly independent. In
our case, W is the set of unions of the supports of two vectors
from Σ2K , as defined in (39). The following theorem relates
spark properties of the sampling matrix A to rank properties of

the M 2 × 4K sub-matrices of Φ, whose columns belong to W ,
which we denote by ΦW . Since Φ2 in (40) is a submatrix of
Φ, we only need to consider recovery conditions for the case
a �= 0. For a = 0, under these conditions, we do not achieve
perfect recovery due to the presence of noise in (40).

Theorem 1: Let Φ be defined in (38), with A of size M ×N
(M ≤ N ) such that spark(A) = M + 1. The M 2 × 4K matrix
ΦW , whose columns belong to W defined in (41) with Σk =
Σ2K from (39), is full column rank if M > 8

5 K.
We note that if K ≥ 2, namely there is at least one trans-

mission, then M > 8
5 K implies M 2 ≥ 4K and ΦW is a tall

matrix.
Proof: Recall that the matrix Φ is expressed as

Φ = [ ā1 ⊗ a1 ā2 ⊗ a2 . . . āN ⊗ aN . . .

. . . ā1 ⊗ a2 ā2 ⊗ a3 . . . āN−1 ⊗ aN

. . . ā2 ⊗ a1 ā3 ⊗ a2 . . . āN ⊗ aN−1

ā1 ⊗ aN ā2 ⊗ aN−1 . . . āN ⊗ a1 . . .

. . . ā1 ⊗ aN−1 ā2 ⊗ aN−2 . . . āN−1 ⊗ a1

. . . ā2 ⊗ aN ā3 ⊗ aN−1 . . . āN ⊗ a2 ], (42)

where ai and āi denote the ith column of A and its conjugate,
respectively. Assume by contradiction that the columns of ΦW

are linearly dependent. Then, there exist β1 , · · ·β4K , not all
zeros, such that

4K∑

j=1

βjφ
W
j = 0, (43)

where φW
j denotes the jth column of ΦW and is of the form

φW
j = ā[j ] ⊗ ag([j ]) or ā[j ] ⊗ ag([N +1−j ]) . (44)

Here, a[j ] denotes the column of A that corresponds to the jth
selected column of Φ and g(·) is defined in (36). Denote by k0
the number of indices [j], for 1 ≤ j ≤ K, that appear twice in
ΦW . Obviously, 0 ≤ k0 ≤ K and k0 is even.

From 1)-4) in the definition of Σ2K , we can express ΦW as

ΦW = [ ā[1] ⊗ ag([1]) . . . ā[K ] ⊗ ag([K ]) . . .

. . . ā[1] ⊗ ah([1]) . . . ā[k0 /2] ⊗ ah([k0 /2]) . . .

. . . ā[K−k0 /2] ⊗ ah([K−k0 /2]) . . . ā[K ] ⊗ ah([K ]) . . .

. . . ā[K +1] ⊗ ag([K +1]) . . . ā[2K−k0 ] ⊗ ag([2K−k0 ]) . . .

. . . ā[1] ⊗ ag([K ]) . . . ā[K ] ⊗ ag([1]) . . .

. . . ā[1] ⊗ ah([K ]) . . . ā[k0 /2] ⊗ ah([K−k0 /2]) . . .

. . . ā[k0 /2] ⊗ ah([K−k0 /2]) . . . ā[K ] ⊗ ah([1]) . . .

. . . ā[K +1] ⊗ a[2K−k0 ] . . . āg([2K−k0 ]) ⊗ ag([K +1]) ].
(45)

Here, h(i) is defined as g(i) and, for each index i, we can
have either h(i) = g(i) or h(i) �= g(i). Recall that g(i) is equal
to either i or one of its consecutive indices. By rearranging
the columns of ΦW with respect to the left entry index of
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each Kronecker product, the system of equations (43) can be
written as

CĀT = 0, (46)

where the M × (2K − k0) matrix C is defined by

C = [β1ag ([1]) + βK +1ah([1]) + β2K +1ag([K ])

+β3K +1ah([K ])

· · · βK ag ([K ]) +βK +k0 ah([K ]) +β3K ag([1]) + β3K +k0 ah([1])

· · · βK +k0 +1ag([K +1]) + β3K +k0 +1ag([2K−k0 ])

· · · β2K ag([2K−k0 ]) + β4K ag([K +1]) ]. (47)

We next show that rank(CĀT ) > 0 in order to contra-
dict the assumption that there exist β1 , · · ·β4K , not all ze-
ros, such that (43) holds. Denote by n0 the number of
quadruplets (βj , βK +j , β2K +j , β3K +j ), for 1 ≤ j ≤ K, or
pairs (βk0 +j , β2K +k0 +j ), for K + 1 ≤ j ≤ 2K − k0 , with one
non zero element at least. Obviously, 1 ≤ n0 ≤ 2K − k0 . Let
C̃ be the M × n0 matrix composed of the n0 columns of C
corresponding to these non zero quadruplets/pairs and let ÃT

be constructed out of the corresponding n0 rows of ĀT . Then,
from the Sylvester rank inequality,

rank(CĀT ) = rank(C̃ÃT ) ≥ rank(C̃) + rank(ÃT )− n0 .
(48)

In addition,

rank(ÃT ) ≥ min (n0 , spark(A)− 1) , (49)

and

rank(C̃) ≥ min

(⌈n0

4

⌉
,

spark(A)− 1
4

)
. (50)

The last inequality follows from the fact that any linear com-
bination of n columns of C is a linear combination of at least
�n/4 distinct columns of A. Therefore,

rank(CĀT ) ≥ min

(⌈n0

4

⌉
,
5
4
M − n0

)
. (51)

Since M > 8
5 K, it holds that rank(CĀT ) ≥ 1, for all 1 ≤ n0 ≤

2K − k0 , 0 ≤ k0 ≤ K, contradicting (46). �
Corollary 1, which directly follows from Theorem 1, provides

sufficient conditions for perfect recovery of ra
x(f̃).

Corollary 1: If
1) spark(A) = M + 1,
2) M > 8

5 K,
then the system (37) has a unique solution in Σ2K .
Proof: Conditions 1)-2) ensure that all sets of 2K columns

belonging to W are linearly independent, from Theorem 1. Thus,
the proof follows from Lemma 1. �

Under the conditions of Corollary 1, the cyclic spectrum
Sx(f) can be perfectly recovered for cyclic frequencies α which
are not multiples of fs . For α that are multiples of fs , the re-
covery is performed in the presence of bounded noise, yielding
a bounded reconstruction error. For detection purposes, this has
proven satisfactory in the simulations.

Without any sparsity assumption, we can repeat the proof of
Theorem 1 with K = N and k0 = N , leading to 1 ≤ n0 ≤ N .
We thus obtain that, if M > 4

5 N , then we can perfectly recover
the cyclic spectrum of x(t). The minimal sampling rate is then

fmin0 = Mfs =
4
5
Nfs =

4
5
fNyq. (52)

This means that even without any sparsity constraints on the
signal, we can retrieve its cyclic spectrum from samples below
the Nyquist rate, by exploiting its cyclostationary properties.
A similar result was already observed in [18] in the context of
power spectrum reconstruction of wide-sense stationary signals
in noiseless settings. In that case, the power spectrum slices ap-
pear only on the diagonal of the matrix R0

x(f̃) and it follows
that Φ = Ā�A. Power spectrum recovery is therefore a spe-
cial case of cyclic spectrum reconstruction, treated here. There,
it was shown that the power spectrum can be retrieved at half the
Nyquist rate without any sparsity constraints. Here, we extend
this result to cyclic spectrum reconstruction, which requires a
higher rate.

If x(t) is assumed to be sparse in the frequency domain, with
K = 2Nsig � N , then the minimal sampling rate for perfect
reconstruction of its cyclic spectrum is

fmin = Mfs =
16
5

NsigB =
8
5
fLandau. (53)

It was shown in [18], that the power spectrum of a station-
ary sparse signal can be perfectly recovered at its Landau rate.
Again, the minimal sampling rate for cyclic spectrum recovery
is slightly higher than that required for power spectrum recon-
struction.

C. Cyclic Spectrum Recovery

So far, we only discussed conditions for perfect recovery of
the cyclic spectrum, namely for (37) to have a unique solution.
We now provide an algorithm for cyclic spectrum reconstruc-
tion. To account for the structure of ra

x(f̃) for a �= 0, we extend
orthogonal matching pursuit (OMP) [15], [31]. In each iteration,
we add an internal loop that, for a selected element originally
from the diagonals of Ra

x(f̃ ), checks for a corresponding non-
zero element from the anti-diagonals, and vice versa, as defined
by the set I. For a = 0, we use the standard OMP [15], [31]. We
note that, for all a ≥ 0, we can exploit the additional symmetric
structure of ra

x(f̃) as defined by Property 1 of I. Our structured
OMP method (assuming that the columns of Φ are normalized)
is formally defined by Algorithm 1.

In Algorithm 1, v = ra
z (f̃), Λi denotes the set of comple-

mentary indices with respect to i according to Property 2 of I,
namely for 2 ≤ i ≤ N − 1,

Λi =

{
{6di + 5, 6di +6, 6di +7} if 0<mod(i− 4, 6) ≤ 3
{6di + 8, 6di + 9, 6di + 10} else,

(54)
where di = 
 i−4

6 �. For i = 1 and i = N , Λi is similarly defined
according to Properties 3 and 4, respectively. The vector wS is
the reduction of w to the support S, ΦS contains the corre-
sponding columns of Φ, Sc denotes the complementary set of
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Algorithm 1: Structured OMP.
Input: observation vector v of size m, measurement
matrix Φ of size m× n, threshold ε > 0

Output: index set S containing the locations of the non
zero indices of u, estimate for sparse vector û

Initialize: residual r0 = v, index set S0 = ∅, possible
index set Γ0 = {1, . . . , n}, estimate û = 0, � = 0
while halting criterion false do

�← � + 1
b← Φ∗r�

S� ← S� ∪ arg max
i∈Γ�

bi

Γ� ← Γ� \ Λi

(û�)S� ← Φ†S�
v, (û�)S c

� ← 0
δ0 ← ||v −Φû� ||2
for j ∈ Λi do

wS�
j ← Φ†S� ∪jv, wS c

�
j ← 0

δj ← ||v −Φwj ||2
end for
if δ0 −min

j∈Λ i

δj > ε then

S� ← S� ∪ arg min
j∈Λ i

δj

(û�)S� ← Φ†S�
v, (û�)S c

� ← 0
end if
r← v −Φû�

end while
return S� and û�

S and † is the Moore-Penrose pseudo-inverse. The halting crite-
rion in Algorithm 1, as for standard OMP, can be sparsity-based
if the true sparsity is known, or at least an upper bound on it, or
residual-based.

Similarly to [12], the set (37) consists of an infinite number
of linear systems since f̃ is a continuous variable. Since the
support S is common to ra

x(f̃) for all f̃ ∈ Fs , we propose to
recover it jointly instead of solving (37) for each f̃ individually,
thus increasing efficiency and robustness to noise. To that end,
we use the support recovery paradigm from [12] that produces
a finite system of equations, called multiple measurement vec-
tors (MMV) from an infinite number of linear systems. This
reduction is performed by what is referred to as the continu-
ous to finite (CTF) block. The cyclic spectrum reconstruction
of both sparse and non sparse signals can then be divided into
two stages: support recovery, performed by the CTF, and cyclic
spectrum recovery. From (37), for a ∈]0, fs ], we have

Qa = ΦZaΦH (55)

where

Qa =
∫

f̃∈Fs

ra
z (f̃)ra

z
H (f̃)df̃ (56)

is an M ×M matrix and

Za =
∫

f̃∈Fs

ra
x(f̃)ra

x
H (f̃)df̃ (57)

is an N ×N matrix. Then, any matrix Va for which Qa =
Va (Va)H is a frame for ra

z (Fs) = {ra
z (f̃)|f̃ ∈ Fs} [12], [39].

Clearly, there are many possible ways to select Va . We construct
it by performing an eigendecomposition of Qa and choosing
Va as the matrix of eigenvectors corresponding to the non zero
eigenvalues. We then define the following linear system

Va = ΦUa . (58)

For a = 0, identical derivations can be carried out by replacing
Φ by Φ2 . From [12] (Propositions 2-3), the support of the unique
sparsest solution of (58) is the same as the support of ra

x(f̃) in
our original set of equations (37). For simplicity, Algorithm 1
presents the single measurement vector (SMV) version of the
recovery algorithm, which can be adapted to the MMV setting,
similarly to the simultaneous OMP [15], [31], to solve (58).

As discussed above, ra
x(f̃) is 2K-sparse for each specific

f̃ ∈ [0, fs − a], for all a ∈ [0, fs ]. However, after combining
the frequencies, the matrix Ua is 4K-sparse (at most), since
the spectrum of each transmission may split between two slices.
Therefore, the above algorithm, referred to as SBR4 in [12]
(for signal reconstruction as opposed to cyclic spectrum recon-
struction), requires a minimal sampling rate of 2fmin for sparse
signals or 2fmin0 for non sparse signals. In order to achieve
the minimal rate fmin or fmin0 , the SBR2 algorithm regains the
factor of two in the sampling rate at the expense of increased
complexity [12]. In a nutshell, SBR2 is a recursive algorithm
that alternates between the CTF described above and a bi-section
process. The bi-section splits the original frequency interval into
two equal width intervals on which the CTF is applied, until the
level of sparsity of Ua is less or equal to 2K. We refer the reader
to [12] for more details.

Once the support S is known, perfect reconstruction of the
cyclic spectrum is obtained by

(r̂a
x)S (f̃) = Φ†S ra

z (f̃)

r̂a
x i

(f̃) = 0 ∀i /∈ S, (59)

for all a ∈]0, fs ] and

(r̂0
x)S (f̃) = (Φ2)

†
S r0

z(f̃)

r̂0
x i

(f̃) = 0 ∀i /∈ S. (60)

The cyclic spectrum Sα
x (f) is then assembled using (29) for

(f, α) defined in (30).

D. Carrier Frequency and Bandwidth Estimation

Once the cyclic spectrum Sα
x (f) is reconstructed from the

sub-Nyquist samples, we apply our carrier frequency and band-
width estimation algorithm from [35]. Our approach is a simple
parameter extraction method from the cyclic spectrum of multi-
band signals. It allows the estimation of several carriers and
several bandwidths simultaneously, as well as that of the num-
ber of transmissions Nsig. The proposed algorithm consists of
the following five steps: preprocessing, thresholding, clustering,
parameter estimation, corrections. Here, we briefly describe the
algorithm steps. The reader is referred to [35] for more details.
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Fig. 6. Processing flow diagram. The input signal x(t) is first fed to the MWC
analog front-end which generates the low rate samples z[n] shown in (23) in the
frequency domain. The correlations rz

a (f̃ ) between frequency shifted versions
of the samples are then computed by vectorizing (28). The CTF next produces
a finite set of equations, which are solved using Algorithm 1, exploiting the
known structure of the sparse vectors that compose the cyclic spectrum Sα

x (f ).
The number of transmissions Nsig, their respective carrier frequencies fi and
bandwidths Bi are finally estimated from Sα

x (f ). The entire processing is
performed at a low rate.

The preprocessing aims to compensate for the presence of
stationary noise in the cyclic spectrum at the cyclic frequency
α = 0, by attenuating the cyclic spectrum energy around this
frequency. Thresholding is then applied to the resulting cyclic
spectrum in order to find its peaks. For each cyclic frequency α,
we retain the value of the cyclic spectrum at f = 0. The locations
and values of the selected peaks are then clustered to find the
corresponding cyclic feature. Before separating the clusters, we
start by estimating their number using the elbow method, which
can be traced to speculation by Thorndike [40]. Clustering is
then performed using the k-means method. At the end of the
process, each cluster represents a cyclic feature. It follows that,
apart from the cluster present at DC which we remove, the num-
ber of signals Nsig is equal to half the number of clusters. Next,
we estimate the carrier frequency fi and bandwidth Bi of each
transmission. The carrier frequency yields the highest correla-
tion [6] and thus the highest peak, at the cyclic frequency equal
to twice its value, namely α = 2fi . It is therefore estimated as
half the cyclic frequency of the highest peak within the clus-
ters belonging to the same signal. The bandwidth is found by
locating the edge of the support of the angular frequencies.

The processing flow of our low rate sampling and cyclic
spectrum recovery algorithm is summarized in Fig. 6.

V. SIMULATION RESULTS

We now demonstrate via simulations cyclic spectrum recon-
struction from sub-Nyquist samples and investigate the per-
formance of our carrier frequency and bandwidth estimation
algorithm. We compare our approach to energy detection and
explore the impact of the sampling rate on the detection per-
formance. Throughout the simulations we use the MWC analog
front-end [33] for the sampling stage.

A. Preliminaries

We begin by explaining how we estimate the elements of
Ra

z (f̃) in (28). The overall sensing time is divided into P time
windows of length Q samples. We first compute the estimates

of zi(f̃), 1 ≤ i ≤M using the fast Fourier transform (FFT) on
the samples zi [n] over a finite time window. We then estimate
the elements of Ra

z (f̃) as

R̂a
z (f̃)(i,j ) =

1
P

P∑

p=1

ẑp
i (f̃)ẑp

j (f̃ + a), (61)

for a ∈ [0, fs ] and f ∈ [0, fs − a]. Here, ẑp
i (f̃) is the estimate

of zi(f̃) from the pth time window.
The cyclic spectrum recovery is presented here in the fre-

quency domain. Reconstruction can be equivalently performed
in the time domain by modulating the slices to replace the fre-
quency shift f̃ + a. Then, r̂a

x [n] is recovered using the time
equivalent of (59)-(60). However, estimation of the carrier fre-
quencies fi and bandwidths Bi is performed on the cyclic spec-
trum, in the frequency domain. Thus, the Fourier transform of
r̂a
x [n] needs to be computed, and Sα

x (f) is then mapped using
(29) for (f, α) defined in (30). Therefore, we choose to perform
the entire processing in the frequency domain. Another reason to
do so is that SBR2 can obviously be performed in the frequency
domain only, as opposed to SBR4 which can be implemented
both in time and frequency.

We note that in theory, our approach does not require any
discretization, neither in the angular frequency f nor in the
cyclic frequency α. Indeed, Ra

x(f̃) can be computed for any
a ∈ [0, fs ] and f̃ ∈ [0, fs − a]. This distinguishes our scheme
from those based on a transformation between Nyquist and sub-
Nyquist samples, where the resolution is theoretically inherent
to the problem dimension and dictated by the length of the
Nyquist samples vector. In practice, the resolution both in f and
α obviously depends on the sensing time and is determined by
the number of samples, namely the number of discrete Fourier
transform (DFT) coefficients of ẑ(f̃).

We compare our cyclostationary detection to energy detection
based on power spectrum recovery, presented in [18]. There, it
was shown that power spectrum sensing outperforms spectrum
sensing, namely energy detection performed on the recovered
signal itself. This power spectrum reconstruction approach is
a special case of ours for a = 0, when only the matrix R0

x(f̃)
is considered and only its diagonal is reconstructed. Therefore,
we compare our detection approach performed on Sα

x (f) for
α �= 0 to energy detection carried out on Sα

x (f), for α = 0,
corresponding to the diagonal elements of R0

x(f̃).
Throughout the simulations we consider additive white Gaus-

sian noise (AWGN) n(t). The SNR is defined as the ratio be-
tween the power of the wideband signal and that of the wideband
noise

SNR =
∑N sig

i=1 ||si(t)||2
||n(t)||2 . (62)

B. Cyclic Spectrum Recovery

We first illustrate cyclic spectrum reconstruction from sub-
Nyquist samples. We consider x(t) composed of Nsig = 3 AM
transmissions. Each transmission has bandwidth B = 80MHz
and the carrier frequencies are drawn uniformly at random in
[0,

fNyq

2 ], with fNyq6.4 GHz. The SNR is set to −5 dB. In the
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Fig. 7. Original (top) and reconstructed (bottom) power spectrum (α = 0)
using energy detection.

Fig. 8. Sub-Nyquist samples in the first channel in the frequency domain.

sampling stage, we use the MWC with M = 11 channels, each
sampling at fs = 95 MHz. The overall sampling rate is therefore
1.05GHz, that is 2.2 times the Landau rate and 16% of the
Nyquist rate. Here, the theoretical minimal sampling rate is
fmin = 768 MHz. Figure 7 shows the original and reconstructed
power spectrum of x(t), namely S0

x(f). In this experiment, the
carriers are f1 = 97 MHz, f2 = 573 MHz and f3 = 1.4 GHz.
We observe that the recovery of the power spectrum failed;
some occupied bands were not reconstructed and others that
only contained noise were identified as active. This is due to the
poor performance of energy detection in low SNR regimes. In
can be seen in Fig. 7 that the signal spectrum is not buried in
noise and the transmissions would have been perfectly detected
using energy detection on Nyquist samples. However, in sub-
Nyquist regimes, the aliasing decreases the SNR [19], as can
be seen in Fig. 8, which shows the DFT of the samples of one
channel. As a consequence, energy detection failed in this sub-
Nyquist regime.

The reconstructed cyclic spectrum of x(t) is presented in
Fig. 9 (the reader is referred to the colored version for a clearer
figure), where we observe that the noise contribution is concen-
trated at α = 0 while it is significantly lower at the non zero

Fig. 9. Reconstructed cyclic spectrum (cyclostationary detection).

Fig. 10. Reconstructed cyclic spectrum for f = 0, Sα
x (0), as a function of

the cyclic frequency α (cyclostationary detection).

cyclic frequencies. For clarity, we focus on the one-dimensional
section of Sα

x (f) for f = 0, shown in Fig. 10. It can be clearly
seen that the highest peaks (at least 6dB above the lower peaks)
are located at αi = 2fi for all 3 active transmissions. This illus-
trates the advantage of cyclostationary detection in comparison
with energy detection.

Next, we perform cyclostationary detection on the recon-
structed cyclic spectrum. We compare the performance of cyclo-
stationary and energy detection performed on the reconstructed
cyclic and power spectrum, respectively. For cyclostationary de-
tection, we use a single-cycle detector which computes the en-
ergy at several frequencies around f = 0 and at a single cyclic
frequency α. In the simulations, we consider AM modulated sig-
nals. We address a blind scenario where the carrier frequencies
of the signals occupying the wideband channel are unknown and
we have Nsig = 3 potentially active transmissions, with single-
sided bandwidth B = 100 MHz. For each iteration, the alterna-
tive and null hypotheses define the presence or absence of one
out of the Nsig transmissions. We refer to that transmission as
the signal of interest. The Nyquist rate of x(t) is fNyq = 10 GHz.
We consider N = 64 spectral bands and M = 7 analog chan-
nels, each sampling at fs = 156 MHz. The overall sampling
rate is Mfs = 1.09 GHz which is 182% of the Landau rate
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Fig. 11. ROC for both energy and cyclostationary detection.

and 10.9% of the Nyquist rate. Here, the theoretical minimal
sampling rate is fmin = 960 MHz. The receiver operating char-
acteristic (ROC) curve is shown in Fig. 11 for different SNR
regimes (the averages were performed over P = 15 time win-
dows). Detection occurs if the presence of the signal of interest
is correctly detected while false alarm is declared if a detection
is claimed when the signal of interest is absent. It can be seen
that cyclostationary detection outperforms energy detection in
low SNR regimes, as expected. This is already known in the
Nyquist regime and is now shown on samples obtained at a
sub-Nyquist rate.

C. Carrier Frequencies and Bandwidths Recovery

We now demonstrate carrier frequency and bandwidth estima-
tion from sub-Nyquist samples. We first illustrate our algorithm
process on a specific experiment. We consider x(t) composed of
Nsig = 3 BPSK transmissions, which have cyclic features at lo-
cations (f, α) = (0,±2fi), (±fi,± 1

Ti
), where fi is the carrier

frequency and Ti is the symbol period of the ith transmission
[6]. Each transmission has bandwidth Bi = 18 MHz and sym-
bol rate Ti = 1/Bi = 0.56 μs, and the carrier frequencies are
drawn uniformly at random in [0,

fNyq

2 ], with fNyq = 1 GHz.
In this experiment, the selected carriers are f1 = 163.18 MHz,
f2 = 209.69 MHz and f3 = 396.12 MHz. The SNR is set to−5
dB. In the sampling stage, we use the MWC with M = 9 chan-
nels, each sampling at fs = 23.26 MHz. The overall sampling
rate is therefore 210MHz, that is a little below twice the Landau
rate and 21% of the Nyquist rate. Here, the theoretical minimal
sampling rate is fmin = 172.8 MHz.

Figure 12 presents the original and reconstructed power spec-
trum using P = 100 time windows. We observe that the signal’s
spectrum was not perfectly recovered due to the noise. The re-
constructed cyclic spectrum, including the power spectrum, es-
timated over P = 100 time windows as well, is shown in Fig. 13
and the section corresponding to f = 0 can be seen in Fig. 14.
The cyclic peaks at locations (f, α) = (0,±2fi), for i = 1, 2, 3
are observed in both figures. In Fig. 15, we illustrate the clus-
tering stage of our algorithm as a function of α for f = 0. The
estimated number of clusters is 6, yielding a correctly estimated
number of signals N̂sig = 3. The estimated carrier frequen-

Fig. 12. Original and reconstructed power spectrum (energy detection).

Fig. 13. Reconstructed cyclic spectrum (cyclostationary detection).

Fig. 14. Reconstructed cyclic spectrum for f = 0, Sα
x (0), as a function of

the cyclic frequency α (cyclostationary detection).

cies using cyclostationary based estimation are f̂1 = 162.66
MHz, f̂2 = 209.19 MHz and f̂3 = 395.11 MHz, and the corre-
sponding estimated bandwidths are B̂1 = 17.4 MHz, B̂2 = 17.4
MHz and B̂3 = 17.0 MHz. Using energy based estimation,
we obtain N̂sig = 5 signals, with estimated carrier frequen-
cies f̂1 = 93.04 MHz, f̂2 = 162.82 MHz, f̂3 = 255.86 MHz
and f̂4 = 383.89 MHz, f̂5 = 465.21 MHz and estimated band-
widths B̂1 = B̂2 = B̂3 = B̂5 = 23.1 MHz, B̂4 = 46.3 MHz.



COHEN AND ELDAR: SUB-NYQUIST CYCLOSTATIONARY DETECTION FOR COGNITIVE RADIO 3017

Fig. 15. Clustering with k = 6.

Fig. 16. Probability of detection - cyclostationary vs. energy detection.

Clearly, cyclostationary detection succeeded where energy de-
tection failed.

We now investigate the performance of our carrier frequency
and bandwidth estimation algorithm from sub-Nyquist samples
with respect to SNR and compare it to energy detection. We
consider x(t) composed of Nsig = 3 BPSK transmissions with
identical parameters as in the previous section. The sampling pa-
rameters remain the same as well. In each experiment, we draw
the carrier frequencies uniformly at random and generate the
transmissions. The results are averaged over 1000 realizations.

Figure. 16 shows the probability of detection of both cy-
clostationary (blue) and energy (red) detection. A detection is
reported if the distance between the true and recovered carrier
frequencies is below 10 times the frequency resolution, which
is equal to 0.388MHz. The average number of false alarms,
namely unoccupied bands that are labeled as detection, is shown
in Fig. 17. Clearly, cyclostationarity outperforms the energy ap-
proach in terms of probability of detection. Cyclostationary de-
tection also yields fewer false alarms. For high SNRs, the gap
between the performance of both schemes is small, since energy
detection still succeeds in these regimes. This gap widens with
SNR decrease, where the advantage of cyclostationary detec-
tion is clearly marked. The curves for both cyclostationary and
energy detection show a rapid decrease of performance below

Fig. 17. False alarm - cyclostationary vs. energy detection.

Fig. 18. Probability of detection - sub-Nyquist vs. Nyquist sampling (cyclo-
stationary detection).

a certain SNR level. We note that this level is lower for cy-
clostationary detection. This behavior is common to CS based
recovery algorithms, which fail in the presence of large noise
and yield wrong signal support, leading to misdetections and
false alarms. When the SNR becomes too low, cyclostation-
ary detection fails as well, due to the finite sensing time and
averaging.

Next, we compare cyclic spectrum reconstruction from
Nyquist and sub-Nyquist samples. We consider the same pa-
rameters as above for the signal generation and the sampling
front-end. From Fig. 18, which shows the detection performance
in both regimes, it can be seen that the gap between them is not
large. The loss in performance due to the reduced number of
samples is small since it is compensated by cyclostationary de-
tection, which is robust to noise.

In Fig. 19, we wish to validate the derived theoretical minimal
sampling rate. In the settings described above, the lower bound is
fmin = 172.8 MHz, which corresponds to a minimal number of
channels Mmin = 10 for perfect cyclic spectrum recovery. It can
be seen in the figure that beyond 10 channels, the probability
of detection is close to 1 in the noiseless regime. Detection
errors are due to the finite sensing time and averaging. In the
presence of noise, the probability of detection is slightly lower
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Fig. 19. Probability of detection for varying sampling rate (cyclostationary
detection).

Fig. 20. Probability of detection - structured OMP vs. traditional OMP (cy-
clostationary detection).

and the number of channels required to reach its maximal value
is higher. Below 10 channels, the cyclic spectrum cannot be
perfectly recovered and the detection performance decreases
with the number of channels.

Finally, we compare the recovery performance of our struc-
tured OMP presented in Algorithm 1 with traditional OMP.
Here, we consider Nsig = 4 transmissions and M = 14 sam-
pling channels. The remaining parameters are identical to those
in the previous experiments. The added performance of exploit-
ing the structure of the correlation matrices can be observed in
Fig. 20 above a certain SNR value.

VI. CONCLUSION

In this paper, we considered cyclostationary detection in a
sub-Nyquist regime, to cope with efficiency and robustness
requirements for spectrum sensing in the context of CR. We
presented a cyclic spectrum reconstruction algorithm from sub-
Nyquist samples along with recovery conditions for both sparse
and non sparse signals. We showed that even if the signal is
not sparse, its cyclic spectrum can be recovered from samples
obtained below the Nyquist rate. The minimal rates obtained for

both the sparse and non sparse cases are found to be higher than
those required for power spectrum recovery and lower than the
rates required for signal reconstruction. Once the cyclic spec-
trum is recovered, we applied our feature extraction algorithm
that estimates the number of transmissions and their respec-
tive carrier frequency and bandwidth. Simulations performed at
low SNRs validate that cyclostationary detection outperforms
energy detection in the sub-Nyquist regime, as well as the the-
oretical lower sampling bound.
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