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Namrata Vaswani, Seyedehsara Nayer, and Yonina C. Eldar, Fellow, IEEE

Abstract—We develop two iterative algorithms for solving the
low-rank phase retrieval (LRPR) problem. LRPR refers to re-
covering a low-rank matrix X from magnitude-only (phaseless)
measurements of random linear projections of its columns. Both
methods consist of a spectral initialization step followed by an it-
erative algorithm to maximize the observed data likelihood. We
obtain sample complexity bounds for our proposed initialization
approach to provide a good approximation of the true X . When
the rank is low enough, these bounds are significantly lower than
what existing single vector phase retrieval algorithms need. Via
extensive experiments, we show that the same is also true for the
proposed complete algorithms.

Index Terms—Phase retrieval, low rank matrix recovery, sparse
representations.

I. INTRODUCTION

IN RECENT years there has been a large amount of work on
the phase retrieval (PR) problem and on its generalization. The

original PR problem involves recovering a length-n signal x from
the magnitudes of its discrete Fourier transform (DFT) coefficients.
Generalized PR replaces the DFT by inner products with any set of
measurement vectors, ai . Thus, the goal is to recover x from |ai

′x|2 ,
i = 1, 2, . . . , m. These magnitude-only measurements are referred to
as phaseless measurements. PR is a classical problem that occurs in
many applications such as X-ray crystallography, astronomy, and
ptychography because the phase information is either difficult or
impossible to obtain [3]. Algorithms for solving it have existed since
the work of Gerchberg and Saxton and Fineup [4], [5]. In recent
years, there has been much renewed interest in PR, e.g., [3], [6]–[18]
and in sparse PR, e.g., [19]–[21].

One popular class of approaches, pioneered in Candès et al. [6],
[7], solves PR by recovering the rank one matrix Z := xx′ from
yi := |ai

′x|2 = trace(aiai
′Z) via a semi-definite relaxation. This

can provably recover x (up to a global phase uncertainty) using only
m = cn independent identically distributed (iid) Gaussian phaseless
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measurements. However because of the ‘lifting’, its computational
and storage complexity depends on n2 instead of on n (it needs
to recover an n × n matrix instead of an n-length vector). Here,
and throughout the paper, the letter c is re-used to denote different
numerical constants each time it is used.

In more recent works, non-convex methods, that do not lift the
problem to higher dimensions, have been explored along with prov-
able guarantees [9]–[11]. An alternating minimization (AltMin) tech-
nique with spectral initialization, AltMinPhase, was developed and
analyzed in [9]. The AltMin step of this approach is essentially the
same as the old Gerchberg-Saxton algorithm [4]. A gradient descent
method with spectral initialization, called Wirtinger Flow (WF), was
studied in [10]. In [11], truncated WF (TWF), which introduced a
truncation technique to further improve WF performance, was devel-
oped. It was shown that TWF recovers x from only cn iid Gaussian
phaseless measurements, while the number of iterations needed for
getting an error of order ε is c log(1/ε) (converges geometrically).
AltMinPhase and WF require more measurements, cn log3 n and
cn log n, respectively. WF also has a slower convergence rate. Two
recent modifications of TWF [22], [23] have the same order com-
plexities but improved empirical performance.

Problem Setting: In this work, instead of a single vector x, we
consider a set of q vectors, x1 , x2 , . . . , xq , such that the n × q matrix,

X := [x1 , x2 , . . . , xq ],

has rank r � min(n, q). For each column xk of X , we observe a
set of m measurements of the form

yi,k := |ai,k
′xk |2 , i = 1, 2, . . . m, k = 1, 2, . . . , q. (1)

The measurement vectors, ai,k , are mutually independent. Our goal
is to recover the matrix X from these mq phaseless measurements
yi,k . Since we have magnitude-only measurements of each column
xk , we can only hope to recover each column xk up to a global
phase ambiguity. We refer to the above problem as low rank phase
retrieval (LRPR).

In some applications, the goal may be to only recover the span of
the columns of X , range(X). This would be the case, for example,
if one is interested in only seeing the principal directions of variation
of the dataset, and not in recovering the dataset itself. We refer to this
easier problem as phaseless PCA (principal component analysis).

A motivating application for LRPR is dynamic astronomical imag-
ing such as solar imaging where the sun’s surface properties gradu-
ally change over time [24]. The changes are usually due to a much
smaller number of factors, r, than the size of the image, n, or the total
number of images, q. If the images are arranged as 1D vectors xk ,
then the resulting matrix is approximately low rank. As another po-
tential application, consider a Fourier ptychography imaging system
that captures a dynamic scene exhibiting a temporal evolution; this
is often the case when observing live biological specimens in vitro.
Suppose the scene resolution is n and the total number of captured
frames is q. If the dynamics is approximated to be linear and slow
changing, then the matrix formed by stacking the frames next to each
other can be modeled as a rank-r matrix, where r � min(q, n). Sim-
ilar applications involving a sequence of gradually changing images
also occur in X-ray and sub-diffraction imaging systems. Moreover,
if we are only interested in identifying the principal directions of
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variation of the image sequences, then the problem becomes that of
phaseless PCA. PCA is often the first step for classification, cluster-
ing, modeling, or other exploratory data analysis.

Contributions: This work has two contributions. We propose iter-
ative algorithms for solving the LRPR problem described above. Our
solution approach relies on the fact that a rank r matrix X can be
expressed (non-uniquely) as X = UB where U is an n × r matrix
with mutually orthonormal columns. Its first step consists of a spec-
tral initialization step, motivated by TWF, for first initializing U , and
then, the columns of B. The remainder of the algorithm is devel-
oped in one of two ways: using a projected gradient descent strat-
egy to modify the TWF iterates (LRPR1); or an AltMin algorithm,
motivated by AltMinPhase, that directly exploits the decomposition
X = UB (LRPR2). Via extensive experiments, we demonstrate that
both LRPR1 and LRPR2 have better sample complexity than TWF;
with LRPR2 being the best. Moreover, when enough measurements
are available for TWF to work, we show that the LRPR initialization
can also be used to speed up basic TWF for solving LRPR.

Our second, and most important, contribution is a sample com-
plexity bound for the proposed initialization to get within an ε ball
of the true X . Our results show that, if the goal is to only initialize
U with subspace recovery error below a fixed level, say ε = 1/4,
then a total of mq = cnr2/ε2 = 16cnr2 iid Gaussian measurements
suffice with high probability (whp). When r is small, nr2 is only
slightly larger than nr which is the minimum required by any tech-
nique to recover the span of U . If the goal is to also initialize the
xk ’s with normalized error below say ε = 1/4, then we need more
measurements, but still significantly fewer than TWF. For example, if
r ≤ c log n and q ≥ cn, then, only 16c

√
n measurements per column

are required. We note that our guarantees assume that a different set
of measurements is used for initializing U and B (see Model 3.1).

As seen in many earlier works, e.g., AltMinPhase [9], resampled
WF [10, Algorithm 2 and Theorem 5.1] or TWF [11], the sample
complexity of the entire algorithm is equal to or smaller than that of
the initialization step for a fixed error level1. This is why initialization
guarantees are important.

Our problem setting assumes a different (mutually independent)
set of measurement vectors is used for imaging each column xk .
This is critical for guaranteeing the improved sample complexity of
our solution approach over single-vector PR methods because this
is what ensures that the mq matrices yi,kai,kai,k

′ are all mutually
independent conditioned on X . Hence, we can exploit averaging
over mq such matrices when estimating U . If ai,k = ai,1 (same
ai’s are used), then this benefit disappears since only m of the above
matrices are mutually independent. We demonstrate this in Table I
(last column) in Sec. V. We discuss the practical implications of our
setting in Sec. III-D.

Two other works that also generalize WF [10], but to solve a
completely different problem include [25], [26]. These study the
problem of recovering a rank r matrix M from measurements of
the form zi = trace(Ai

′M ). This is the low rank matrix sensing
problem studied in [27] and a lot of earlier and later works. In our
problem, if we use the same ai’s for all columns xk , and define zi :=∑

k (ai
′xk )2 and M :=

∑
k xkxk

′, then we could use the strategy
of [25], [26] or, in fact, any low-rank matrix sensing technique, e.g.,
AltMinSense from [27], to recover M from the zi’s; followed by
recovering range(U ) as its column space. However, for the reasons
explained above, use of same measurement vectors will not yield any
advantage over single vector PR. When using different ai,k ’s, none
of these methods are applicable.

1For AltMinPhase, the initialization sample complexity (for achieving a given
fixed error) is cn log3 n while it is only cn log n per iteration for the rest of the
algorithm. For resampled WF, it is cn log2 n for initialization and cn log n for
the rest of the algorithm, while for TWF, it is cn both for the initialization and
for the complete algorithm.

Notation: The notation ai,k
iid∼ N (µ, Σ) means that the vectors

ai,k are iid real Gaussian vectors with mean µ and covariance ma-

trix Σ; and bk
indep∼ N (µk , Σk ) means that the bk ’s are mutually

independent and bk is generated from N (µk , Σk ). We use ′ to de-
note matrix or vector conjugate transpose, and ‖.‖p to denote the
lp norm of a vector or the induced lp norm of a matrix. When the
subscript p is missing, i.e., when we just write ‖.‖, it denotes the l2
norm of a vector or the induced l2 norm of a matrix. We use I to
denote the identity matrix. The notation 1ζ is the indicator function
for statement ζ , i.e., 1ζ = 1 if ζ is true and 1ζ = 0 otherwise. For
a vector z, |z|, √z and phase(z) compute the element-wise magni-
tude, square-root, and phase of each entry of z, and diag(z) creates
a diagonal matrix with entries from z.

Paper Organization: In Sec. II, we develop the proposed LRPR
initialization approach (LRPR-init). We obtain sample complexity
bounds for it in Sec. III. In Sec. IV, we explain how LRPR-init can
be used to develop iterative algorithms for LRPR that are either faster
than basic TWF (LRPR+TWF) or need a smaller m to work (LRPR1
and LRPR2). Numerical experiments backing our claims are shown
in Sec. V. We prove our results from Sec. III in Sec. VI, and conclude
in Sec. VII.

The algorithms proposed in this work are applicable for both real
and complex measurements. Experiments are shown for both cases
too. Moreover, as shown in our experiments, our algorithms also
apply to noisy measurements. However, for simplicity, we state and
prove our guarantees only for the real Gaussian measurements’ case.
Their extension to complex Gaussian measurements is straightfor-
ward.

II. LOW RANK PR (LRPR) INITIALIZATION

Our goal is to recover an n × q low rank matrix X from phaseless
measurements of linear projections of each of its columns, i.e, from
yi,k := (ai,k

′xk )2 , i = 1, 2, . . . , m, and k = 1, 2, . . . , q. In this sec-
tion, we develop an approach to obtain an initial estimate of X that
relies on the fact that a rank r matrix X can be expressed (non-
uniquely2) as X = UB where U is an n × r matrix with mutually
orthonormal columns and B = [b1 , b2 , . . . bq ] is an r × q matrix.
The proposed initialization approach first computes an estimate of
range(U ), i.e., it returns Û that may be very different from U in
Frobenius norm, but their spans are close, i.e., the subspace error,
SE(Û , U ) is small. Here,

SE(Û , U ) := ‖(I − Û Û ′)U‖
quantifies the subspace error (principal angle) between the range
spaces of two matrices Û , U with mutually orthonormal columns.
Using Û , we find estimates b̂k so that dist(Û b̂k , xk ) is small. Here,

dist(z1 , z2) := min
φ∈[0,2π ]

‖z1 − e
√−1φz2‖

quantifies the phase-invariant distance3 between two complex vectors
z1 , z2 [10], [11]. The bk ’s are initialized by estimating

gk := Û
′
xk = Û

′
Ubk

for each k, and setting b̂k = ĝk . Because Û can be arbitrarily ro-
tated w.r.t. U , this approach may not give accurate estimates of the
individual bk ’s, i.e., dist(bk , b̂k ) may not be small.

2We can rewrite X as X = (UR)(R′B) for any rotation matrix R.
3When z1 and z2 are both real, the phase is only +1 or −1, and so,

dist(z1 , z2 ) = min(‖z1 − z2‖, ‖z1 + z2‖).
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TABLE I
REAL GAUSSIAN MEASUREMENT VECTORS: INITIALIZATION ERROR COMPARISONS. LRPR: LRPR-INIT, TWF: TWF-INIT, TWFPROJ: TWFPROJ-INIT

A. LRPR-init: Spectral Initialization for LRPR

LRPR-init is a two step approach. We first initialize U using a
truncated spectral initialization idea [11]. For this, define

Y U,0 :=
1

mq

m∑

i=1

q∑

k=1

yi,kai,kai,k
′.

Let 1
q

∑q
k=1 xkxk

′ EVD= U Λ̄U ′ denote the reduced eigenvalue de-
composition (EVD) of XX ′/q. Thus, U is an n × r matrix with
orthonormal columns and Λ̄ is an r × r diagonal matrix. It is not
hard to see that [10, Lemma A.1],

E[yi,kai,kai,k
′] = 2xkxk

′ + ‖xk‖2I . (2)

and, therefore,

E[Y U,0 ] = 2U Λ̄U ′ + trace(Λ̄)I .

Clearly, the subspace spanned by the top r eigenvectors of this matrix
is equal to range(U ) and the gap between its r-th and (r + 1)-th
eigenvalue is 2λmin(Λ̄). If m and q are large enough, then, one can
use an appropriate law of large numbers’ result to argue that Y U,0
will be close to its expected value whp. By the sin θ theorem [28],
as long as 2λmin(Λ̄) is large compared to ‖Y U,0 − E[Y U,0 ]‖, the
same will also be true for the span of the top r eigenvectors of Y U,0 .

However, as explained in [11], because yi,kai,kai,k
′ can be writ-

ten as ww′ with w a heavy-tailed random vector, more samples will
be needed for the law of large numbers to take effect than if w were
not heavy-tailed. To remedy this situation, we use the truncation idea
suggested in [11] and compute Û as the top r eigenvectors of

Y U :=
1

mq

∑

i

∑

k

yi,kai,kai,k
′1{yi , k ≤9

∑
i y i , k
m }. (3)

The idea of truncation is to average only over those (i, k)’s for which
yi,k is not too far from its empirical mean.

Next we consider initialization of the bk ’s. Define the matrix

M k :=
1
m

∑

i

yi,kai,kai,k
′. (4)

Suppose that Û is independent of the M k ’s. Then, from (2), condi-
tioned on Û ,

E[Û ′M k Û ] = Û
′
(2xkxk

′ + ‖xk‖2I)Û = 2gkgk
′ + ‖xk‖2I .

The top eigenvector of this expectation is proportional to gk and
the gap between its first and second eigenvalues is 2‖gk‖2 =
2‖Û ′Ubk‖2 . Thus, as long as Û is a good estimate of U (in terms of
SE), the eigen-gap will be close to 2‖bk‖2 . Therefore, we can argue
that the normalized top eigenvector of Û ′M k Û , denoted v̂k , will
be a good estimate of vk := gk /‖gk‖. Using this idea, we initialize

the xk ’s as x̂k = Û v̂k ν̂k where ν̂k =
√∑

i yi,k /m is an estimate

of νk := ‖gk‖. We do not use truncation here because gk is an

Algorithm 1: Low Rank PR Initialization (LRPR-init).
Set r̂ = arg maxj(λj (Y U)− λj+1(Y U)) with Y U defined in (3).

1) Compute Û as top r̂ eigenvectors of Y U .
2) For each k = 1, 2, . . . , q,

a) compute v̂k as the top eigenvector of
Û ′ 1

m

∑
i yi,kai,kai,k

′Û .

b) compute ν̂k :=
√

1
m

∑
i yi,k ; set b̂k = ĝk = v̂k ν̂k

Output Û and x̂k := Û b̂k for all k = 1, 2, . . . , q.

Algorithm 2: Projected-TWF initialization (TWFproj-init).

1) For each k = 1, 2, . . . , q, set x̂0
k as the top eigenvector of

1
m

∑m
i=1 yi,kai,kai,k

′1{yi , k ≤9
∑

i y i , k
m } scaled by

√∑m
i=1 yi,k /m; create X̂

0,T W F

2) Project X̂
0,T W F

onto the space of rank r matrices to get

X̂
0
.

r length vector, with r � n, and we need to use many more than r
measurements for accurate recovery.

The complete approach, LRPR-init, is summarized in Algorithm 1.
Note that this uses the same set of measurements to recover U and
bk ’s. But, as seen from our numerical experiments, it still works
well in practice. For our analysis in Sec. III, we assume that a new
set of measurements is available for computing ĝk , and thus M k is
independent of Û .

Algorithm 1 also estimates the rank r automatically by looking for
the maximum gap between consecutive eigenvalues of Y U . As we
explain in Sec. III-C, under a simple assumption on the eigenvalues
of Λ̄, this returns the correct rank whp.

B. Projected-TWF Initialization

Another way to obtain an initial estimate of the low rank matrix X
would be to project the matrix formed by the TWF initialization for
each column xk onto the space of rank r matrices. This is summarized
in Algorithm 2. However, as we show in Sec. V, Tables I and II,
this approach performs much worse than LRPR-init. The reason is
that it does not simultaneously exploit averaging of the matrices
yi,kai,kai,k

′ over both i and k.

III. SAMPLE COMPLEXITY BOUNDS FOR LRPR-INIT

In this section, we obtain sample complexity bounds for getting a
provably accurate initial estimate of both U and of the xk ’s whp. For
simplicity, our results assume iid real Gaussian measurement vectors,
ai,k . As will be evident from the proofs, the extension to complex
Gaussian vectors is straightforward. In Sec. III-A, we provide a guar-
antee for the case when X is a deterministic unknown matrix with
known rank r. These hold whp over measurement vectors ai,k . In
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TABLE II
COMPLEX GAUSSIAN MEASUREMENT VECTORS: INITIALIZATION COMPARISONS. LRPR: LRPR-INIT, TWF: TWF-INIT, TWFPROJ: TWFPROJ-INIT

Algorithm 3: LRPR-init-theoretical: initialization with
partitioned measurements.
Known r: Set r̂ = r.
Unknown r: Set r̂ = arg maxj (λj (Y U )− λj+1(Y U )) where
Y U is defined in (3).

1) Compute Û as top r̂ eigenvectors of Y U defined in (3).
2) For each k = 1, 2, . . . , q,

a) compute v̂k as the top eigenvector of

Y b,k := Û ′
(

1
m̃

m̃∑

i=1

ynew
i,k anew

i anew
i

′
)

Û , (5)

b) compute ν̂k =
√

1
m̃

∑
i ynew

i,k ; set b̂k = ĝk = v̂k ν̂k .

Output Û and x̂k := Û b̂k for all k = 1, 2, . . . , q.

Sec. III-B, we give results for the case of X being random with
known rank r. These hold whp both over matrices X generated from
the assumed probability distribution and over measurement vectors
ai,k . In Sec. III-C, we show how we can extend both sets of results
to the unknown rank case.

The proof of our results consists of two parts. We first bound
the subspace recovery error SE(Û , U ). Next, we use this to bound
the error in estimating the xk ’s, dist(x̂k , xk ). To do this, we show
that, if Û is a given matrix with SE(Û , U ) small enough, and if the
measurement vectors and the measurements that are used to estimate
the bk ’s are independent of Û , then, whp, dist2(x̂k , xk ) can be
shown to be bounded by cε‖xk‖2 for any chosen ε. To ensure that the
independence assumption holds, we use a standard trick developed in
many earlier works, e.g., [9]. We analyze a “partitioned” version of
Algorithm 1. Denote the total number of measurements by mtot . We
partition these into two disjoint sets of size m and m̃ respectively; we
use the first set for estimating U and the second set for estimating
the bk ’s. Denote the first set of measurements and measurement
vectors by yi,k and ai,k respectively. Denote the second set by
ynew

i,k and anew
i respectively. Since the different bk ’s are recovered

independently, for the second set, we can use the same measurement
vectors, anew

i , for all the xk ’s. Thus, we have the following setting.
Model 3.1 (Measurement model): For each xk ,
� we observe yi,k := (ai,k

′xk )2 where ai,k
iid∼ N (0, I), for i =

1, 2, . . . , m; and
� we observe ynew

i,k := (anew
i

′xk )2 where anew
i

iid∼ N (0, I), for
i = 1, 2, . . . , m̃.

� The sets of vectors {anew
i , i = 1, 2, . . . , m̃} and

{ai,k , i = 1, 2, . . . , m, k = 1, 2, . . . , q} are mutually in-
dependent.

Thus we have a total of mtot = m + m̃ measurements per vector
xk .

With measurements taken as above, we study Algorithm 3.

A. Main Results for Deterministic X - Known Rank Case

Let
1
q
XX ′ EVD= U Λ̄U ′, (6)

and X = UB. Thus, Λ̄ = 1
q

∑
k bkbk

′. Let λ̄max and λ̄min denote

the maximum and minimum eigenvalues of Λ̄. Define

ρ :=
maxk ‖xk‖2
1
q

∑
k ‖xk‖2

, and κ :=
λ̄max

λ̄min
. (7)

Thus, κ is the condition number of XX ′. Using ρ, we can bound
maxk ‖bk‖2 = maxk ‖xk‖2 in terms of λ̄max as4

max
k
‖bk‖2 = max

k
‖xk‖2 = ρ

r∑

j=1

λj (Λ̄) ≤ rρλ̄max .

We then have the following result.
Theorem 3.2 (Deterministic X): Consider an unknown deter-

ministic rank r matrix X . Assume that the measurements of its
columns are generated according to Model 3.1. Consider the out-
put of Algorithm 3 (known r case). Suppose that r ≤ cn1/5 . For an
ε < 1, if

m̃ ≥ c
√

n

ε2 , m ≥ cκ2 · r4 log n(log m̃)2

ε2 ,

mq ≥ cρ2κ2 · nr4(log m̃)2

ε2 ,

then, with probability at least 1 − 4 exp(−cn)− 32q
n4 ,

1)
SE(Û , U ) ≤ cε

r log m̃
;

2) for all k = 1, 2, . . . , q, dist(xk , x̂k )2 ≤ cε‖xk‖2 , and so

NormErr(X , X̂) :=
∑q

k=1 dist(xk , x̂k )2
∑q

k=1 ‖xk‖2
≤ cε.

Furthermore, if q ≤ cn2 , then the above event holds with proba-
bility at least 1 − c/n2 .

Proof: The proof is given in Section VI. �
Notice that our lower bounds depend on κ2 where κ is the condi-

tion number of XX ′. This is pretty typical, e.g., it is also the case in
[25]–[27] and many other works. It may be possible to remove this
dependence by borrowing ideas from [29]. A second point to note is
that the probability of the good event depends inversely on q. This
dependence comes from needing to ensure that each of the q vec-
tors xk are accurately recovered. However, the dependence is pretty

4This follows because 1
q

∑
k
‖xk ‖2 = trace( 1

q

∑
k

xk xk
′) =

trace( 1
q XX′) = trace(Λ̄) =

∑r

j=1 λj (Λ̄).
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weak: when q < cn2 , the probability can be further lower bounded
by 1 − c/n2 .

For the rest of our discussion, assume that ε, κ and ρ are fixed.
We compare our result with that of TWF initialization [11]. TWF
has the best sample complexity, m ≥ cn, for single vector PR. Since
Theorem 3.2 provides a guarantee for LRPR-init which exploits the
low-rank property of X , when q/r is large, its per column sample
complexity is significantly smaller than that of TWF. For example,
if r = c log n and q = cr4(log n)3 = (log n)7 , then it needs m̃ =
c
√

n and m = cn/ log n and hence mtot := m + m̃ = cn/ log n.
When q is larger, for example, q = c

√
n, it only requires mtot =

c
√

nr4 log3 n = c
√

n(log n)7 . For q ≥ cn, just mtot = c
√

n mea-
surements suffice. This is also backed up by our numerical experi-
ments; see Tables I and II. Here we used n = 100 and r = 2. With
as few as m = 5

√
n measurements, when q = 100, the LRPR-init

normalized error is 0.33. When q = 1000, this error is only 0.1.
When the goal is to only recover U with subspace error at most ε

(and not the xk ’s), the required lower bounds can be relaxed further.
In particular, we have the following corollary.

Corollary 3.3: In the setting of Theorem 3.2, if m̃ = 0, m ≥
cκ2 ·r 2 log n

ε2 and mq ≥ cρ2 κ2 ·nr 2

ε2 , then with probability at least 1 −
2 exp(−cn)− 2q

n4 , SE(Û , U ) ≤ cε.
Recall that U is an n × r matrix and hence has nr unknowns.

From Corollary 3.3, for a fixed ε, ρ, and κ, one needs a total of
only mq = cnr2 measurements to recover U . When r is small, e.g.,
r = c log n, this is only slightly more than the minimum required
which would be nr.

To recover the bk ’s, it follows from Theorem 3.2 that we need an
extra set of m̃ ≥ c

√
n measurements.

� The lower bound m̃ ≥ c
√

n can be replaced by m̃ ≥ cn1/5 ,
or in fact cn1/d for any integer d ≥ 2, and our result will not
change, except for numerical constants.

� We can even replace m̃ ≥ c
√

n by m̃ ≥ cr log4 r, which is
much weaker, but then Theorem 3.2 will hold with probability
lower bounded by only 1 − 8q

m̃ 8 − 2 exp(−cn)− 8q
n4 .

In Theorem 3.2, we also need an extra factor of (r log m̃)2 in
the lower bounds on m and mq as compared to Corollary 3.3. This
is needed because our algorithm recovers gk := Û

′
Ubk and sets

x̂k = Û ĝk . Thus, for it to give an accurate enough estimate of xk ,
we need to ensure that SE(Û , U ) is very small so that ‖Û ′U‖ is close
to one. In particular we need SE(Û , U ) ≤ ε/r log m̃. Guaranteeing
this requires a larger lower bound on mq and m than just ensuring
SE(Û , U ) ≤ ε.

B. Main Results for Random X - Known Rank Case

First consider an independent zero mean Gaussian model on the
bk ’s.

Model 3.4: Assume that xk = Ubk with bk
indep∼ N (0,Λk ),

Λk diagonal, and bk ’s independent of U . The matrix U can fol-
low any probability distribution. Define

Λ̄ :=
1
q

∑

k

E[bkbk
′] =

1
q

∑

k

Λk ,

let λ̄min be its minimum eigenvalue, λ̄max its maximum eigenvalue,

and κ := λ̄m a x

λ̄m in
its condition number. Assume also that, for all k =

1, 2, . . . , q,

λk,max := λmax(Λk ) ≤ cλ̄max .

This is ensured, for example, if maxk λk,max ≤ c mink λk,max .

With this model, notice that E[ 1
q

∑
k xkxk

′] EVD= U Λ̄U ′.

In using Model 3.4, there are two main changes. The first is that we
need to apply a law of large numbers result to show that 1

q

∑
k bkbk

′

is close to Λ̄ whp. This will hold only when q is large enough, and,
hence, our result will also need another lower bound on q. The second
change is that we need to replace rρλ̄max by r(10 log n)λ̄max in the
lower bound on mq. This is the high probability upper bound on
‖bk‖2 under Model 3.4. Moreover, because of these two changes,
the probability of the good event reduces slightly.

Theorem 3.5 (Gaussian model): In the setting of Theorem 3.2,
suppose that the xk ’s satisfy Model 3.4. For a ε < 1, if

m̃ ≥ c
√

n

ε2 , m ≥ cκ2r4(log m̃)2

ε2 ,

mq ≥ cκ2nr4(log m̃)2(log n)2

ε2 , q ≥ cκ2r3(log n)(log m̃)2

ε2 ,

then, the conclusions of Theorem 3.2 hold with probability at least
1 − 2 exp(−cn)− 36q

n4 − 20
n2 .

Proof: See Section VI. �
Observe that the lower bound on q in Theorem 3.5 is not very

restrictive. From the lower bounds on m̃ and mq, q anyway needs
to be more than cr4(log n)4 in order to get a lower bound on mtot
that is smaller than cn (which is the best lower bound achievable by
a single vector PR method).

As will be evident from the proof of Theorem 3.5, any random
model that ensures that (a) maxk ‖bk‖2 is bounded whp, and (b)
1
q

∑
k bkbk

′ is close to Λ̄ whp will suffice. For example, even if the
bk ’s in Model 3.4 have nonzero and different means, a similar result
can be proved. More generally, as we state below, a sub-Gaussian
assumption works as well. The independence assumption on bk ’s
may also be weakened to any other assumption that ensures that (b)
holds, however we do not pursue it here.

Corollary 3.6 (sub-Gaussian model): Let xk = Ubk with bk ’s
being independent of U . Let Λ̄ := E[ 1

q

∑
k bkbk

′], let λ̄max be
its maximum eigenvalue and κ its condition number. Assume that
the bk ’s are independent sub-Gaussian random vectors with sub-
Gaussian norm bounded by c

√
λ̄max .

With this model replacing Model 3.4 on X , Theorem 3.5 holds
with probability at least 1 − 2 exp(−cn)− cq

n4 − c
n2 .

Proof: In the proof of Theorem 3.5, only the proofs of
Lemmas 6.8, 6.9 change. �

C. Main Results - Unknown Rank Case

We now turn to the setting where the rank r is unknown and show
how Theorem 3.2 can be modified for this setting. Other results are
modified similarly.

Consider the rank estimation approach given in Algorithm 3. We
have the following corollary.

Corollary 3.7: Consider Algorithm 3 (unknown r case). Assume
the setting of Theorem 3.2 with ε ≤ 0.001. If, in addition, κ ≤ 10 and
if Λ̄ is such that λ̄j − λ̄j+1 ≤ 0.9λ̄min , then, with the probability
given in Theorem 3.2,

1) r̂ = r, and,
2) all conclusions of Theorem 3.2 hold.
Another way to correctly estimate r is via thresholding.
Corollary 3.8: Consider Algorithm 3 with rank estimated as fol-

lows. Set r̂ as the smallest index j for which λj (Y U )− λn (Y U ) ≥
0.25λ̄min . Assume the setting of Theorem 3.2 with ε ≤ 0.001. Then,
if κ < 124, then, with the probability given in Theorem 3.2,

1) r̂ = r, and,
2) all conclusions of Theorem 3.2 hold.
The rank estimation approach of Algorithm 3 does not require

knowledge of any model parameters. Hence it is easily applicable for
real data (even without training samples being available). However, it
works only when consecutive eigenvalues of Λ̄ (consecutive nonzero
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Algorithm 4: LRPR+TWF (TWF initialized using
LRPR-init).

1) Initialize X̂
0

using Algorithm 1
2) For each t ≥ 0, do:

• for each k, k = 1, 2, . . . , q, update

x̂t+1
k = x̂t

k −
μ

m

m∑

i=1

yi,k − |ai,k
′x̂t

k |2
ai,k

′x̂t
k

ai,k 1E i
1 ∪ E i

2
(8)

where the events E i
1 , E i

2 are defined in [11, eq. 28].

singular values of X) are not too far apart. On the other hand,
the thresholding based approach of Corollary 3.8 does not require
any extra assumptions beyond those in Theorem 3.2 and κ < 124.
However it necessitates knowledge of λ̄min .

D. Using Different Measurement Vectors for Each xk

Our problem setting requires that we use a different set of m
measurement vectors ai,k for each column xk in order to estimate U .
Thus, any application where our algorithms are used needs to apply
a total of mtotq measurement vectors (often, masks), and also needs
to store a total of mtotq length-n measurement vectors. However,
observe that, because we use different measurement vectors and
exploit the low-rank property of the matrix X , if r ≤ c log n, we only
need mtotq = cnpolylog(n) measurement vectors. Here polylog(n)
refers to a polynomial in (log n).

On the other hand, if we used the same measurement vectors for
each column xk , we would require only m measurement vectors.
But we would need m ≥ cn such vectors. Since cnpolylog(n) is
only a little larger than cn, our setting is not much more difficult to
implement in practice than the same measurement vectors’ setting.

An advantage of our setting is as follows. In practice, the re-
gion being imaged changes continuously over time. Thus, using our
approach, one can just acquire a total of mmat independent mea-
surements by imaging the region of interest for a certain period of
time. The value of q (and hence of m = mmat/q) may be decided
later depending on the desired tradeoff between temporal resolution
and accuracy per pixel5. If the changes are gradual, then one can use
a smaller value of q, but gain in accuracy with a larger m.

IV. LOW RANK PR (LRPR) - COMPLETE ALGORITHM

So far we developed an initialization procedure that directly ex-
ploited the low-rank property of X . Here, we explain three possible
ways to develop a complete LRPR algorithm. The first, given next,
uses LRPR-init to only speed up TWF.

A. LRPR+TWF: Speeding up TWF

Consider the LRPR problem and an application where acquir-
ing measurements is not expensive, but computational power is. In
this case, we can use LRPR-init (Algorithm 1) to jointly initialize
all columns of the matrix X , followed by using the best existing
vector PR algorithm such as TWF [11] for recovering each column
separately. TWF implements truncated gradient descent for maxi-
mizing data likelihood under Poisson measurement noise. We sum-
marize TWF initialized with LRPR-init (LRPR+TWF) in Algorithm
4. LRPR+TWF still requires mtot ≥ cn measurements per column,
but, as we explain next, it needs c(log n − 12 log log n) fewer iter-

ations to converge than the original TWF (basic TWF, Algorithm 4
initialized using Algorithm 7). To see this, consider the result of

5If the measurements are masked-Fourier, then this can be done with the
constraint that m is an integer multiple of n.

Algorithm 5: LRPR1: LRPR via projected gradient descent.

1) Initialize X̂
0

using Algorithm 1 (LRPR-init).
2) For each t ≥ 0, do

a) for each k, k = 1, 2, . . . , q, compute x̂t+1
k using (8)

defined in Algorithm 4. Call the resulting matrix

X̂
t+1,T W F

;

b) project X̂
t+1,T W F

on the space of rank r matrices to

get X̂
t+1

.

Fig. 1. First column: frame 1 and 104, of the original plane video. Next three
columns: frames recovered using the various methods from m = 3n phaseless
masked Fourier (CDP model) measurements.

Theorem 3.2. Another way to interpret this is as follows. Suppose
we are given m = cn and m̃ = cn. Then, it is clear that this result
holds for any ε satisfying

ε2 ≥ c max
(

1√
n

,
κ2r4(log n)3

n
,
ρ2κ2r4(log n)2

q

)

.

If q ≥ c
√

n, then this means that ε = c
ρκr 2 (log n)

n1 / 4 works. Combining
this with [11, Theorem 1], we have the following corollary.

Corollary 4.1 (LRPR+TWF): Consider Algorithm 4. If m = cn,
m̃ = cn, r ≤ c log n, and q ≥ c

√
n (but q ≤ cn2 ), then, there exists

universal constants b1 < 1 and c1 , such that, with probability, at least
1 − c/n2 ,

NormErr(X , X̂
t
) ≤ (1 − b1)tNormErr(X , X̂

0
)

≤ (1 − b1)t c1
ρκ(log n)3

n1/4 .

From Corollary 4.1, to reduce the final error, NormErr(X , X̂
T

),
below a given tolerance, εfin , Algorithm 4 needs a total of T itera-
tions, with T satisfying

T ≥ − log εfin

− log(1 − b1)
− 0.25(log n − 12 log log n − log(c1ρκ))

− log(1 − b1)
.

On the other hand, basic TWF (Algorithm 4 initialized with
TWF initialization, Algorithm 7) needs T ≥ − log ε f in

− log(1−b1 ) . Thus, using
LRPR-init to initialize TWF reduces the number of iterations needed
for TWF to converge by c(log n − 12 log log n). However, LRPR-init
is also roughly r times more expensive than TWF-init. As seen from
Fig. 2(a), when r is small, the reduction in number of iterations still
results in lower total time taken by LRPR+TWF as compared to basic
TWF.

B. LRPR1: Low Rank PR via Projected Gradient Descent

The simplest way to develop a complete algorithm that exploits
the low rank property of X is to use a projected gradient descent
approach to modify TWF. This projects the TWF output at each iter-
ation onto the space of rank r matrices. We summarize the complete
LRPR1 approach (projected-TWF initialized with LRPR-init) in Al-
gorithm 5. When m is small, this results in significantly improved
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Fig. 2. Plot of reconstruction error, NormErr, as a function of the computation time taken. We obtain each plot as follows. For each iteration t = 0, 1, 2, . . . , 100,
we plot the error at iteration t against the time taken until iteration t. This is why, for algorithms with lower per iteration cost, the plot ends earlier, e.g., in (b),
LRPR1 took only 20 seconds to complete 100 iterations and hence its plot ends at that time.

performance over TWF because it exploits the low-rank structure of
the matrix X at each step. For an example, see Fig. 2(b).

C. LRPR2: Low Rank PR via Alternating Minimization

The third and most powerful approach is to modify the entire al-
gorithm to directly exploit the low-rank property of the matrix X ,
i.e., to use its decomposition as X = UB. This idea can be used to
modify TWF or AltMinPhase (Gerchberg-Saxton algorithm) or, in
fact, many of the other PR methods from literature, e.g., [12], [13].
As noted by an anonymous reviewer, the last two are significantly
faster than Gerchberg-Saxton. TWF is truncated gradient descent
to minimize the negative data likelihood under a Poisson noise as-
sumption, where as AltMinPhase is an AltMin approach to minimize
the squared loss function (data likelihood under iid Gaussian noise).
For noise-free measurements, this distinction is immaterial, and all
methods apply.

Modifying TWF for the set of variables U , B needs to be done
with care, and needs to include a step that ensures that one of ‖U‖
or ‖B‖ does not keep increasing. An early attempt along these lines
is given in [1].

Modifying the AltMin strategy is simpler and we ex-
plain it here. Let yk := [y1,k , y2,k , . . . , ym,k ]′ and Ak :=
[a1,k , a2,k , . . . , am,k ]. Then

√
yk = |Ak

′xk |. Suppose that the
phase information were available, i.e., suppose that we had access
to a diagonal matrix Ck so that Ck

√
yk = Ak

′xk . Then recover-
ing X from these linear measurements would be an example of a
low-rank matrix recovery problem. This itself can be solved by min-
imizing over U and B alternatively as in [27]. With B fixed, this
is a least squares (LS) recovery problem for U and vice versa. With
estimates of U and B, we can estimate the phase matrix Ck as the
Ĉk = diag(phase(Ak

′Û b̂k )). The proposed complete algorithm,
LRPR2, summarized in Algorithm 6, alternates between these three
steps. The per iteration cost of the AltMin approach is larger than that
of TWFproj iterates and hence LRPR2 is often slower than LRPR1,
e.g., see Fig. 2(b). However, from numerical experiments, LRPR2
needs the smallest value of m to converge as seen, for example, in
Fig. 2(c).

We show the power of both LRPR1 and LRPR2 for recovering
a real video from coded diffraction pattern (CDP) measurements
in Fig. 1. As can be seen, with as few as m = 3n CDP measure-
ments, both these methods significantly outperform basic TWFproj
(Algorithm 5 initialized using Algorithm 2) and basic TWF (Algo-
rithm 4 initialized using Algorithm 7). This experiment is inspired
by an analogous experiment for recovering a regular camera im-
age from CDP measurements reported in [11, Fig. 2]. While this
is not a real practical application since the video used is a reg-
ular camera video of a moving airplane, this example illustrates
two points: (i) many real image sequences are indeed approxi-
mately low-rank; and (ii) our algorithm has significant advantage
over single vector PR methods for jointly recovering this approxi-

Algorithm 6: LRPR2: LRPR via Alternating Minimization.

1) Let Û and b̂k denote the output of Algorithm 1.
2) For t = 1 to T , repeat the following three steps:

a) Ĉk ← diag(phase(Ak
′Û b̂k )), for k = 1, 2, . . . , q

b) Û ← arg minŨ

∑
k ‖Ĉk

√
yk −Ak

′Ũ b̂k‖2
c) b̂k ← arg minb̃k

‖Ĉk
√

yk −Ak
′Û b̃k‖2 , for

k = 1, 2, . . . , q
3) Output Û and x̂k = Û b̂k for all k = 1, 2, . . . , q.
Steps 2 and 3 involve solving a Least Squares (LS) problem
which can be solved in closed form as follows.
• Step 2: Let Û vec be the columnwise vectorized version of Û .

Compute Û vec = (
∑

k M k
′M k )−1 ∑

k (M k
′Ĉk
√

yk )
where
M k := [Ak

′(b̂k )1 , Ak
′(b̂k )2 , . . . , Ak

′(b̂k )r ]. Reshape Û vec

to get Û . For large sized problems, conjugate gradient for LS
(CGLS) is a faster approach to solve the LS problem since it
does not require matrix inversion.
• Step 3: b̂k = (M ′M )−1M ′Ĉk

√
yk where M = Ak

′Û .

Algorithm 7: TWF initialization (TWF-init).

For each k = 1, 2, . . . , q, set x̂0
k as the top eigenvector of

∑m
i=1 yi,kai,kai,k

′1{yi , k ≤9
∑

i y i , k
m } scaled by

√∑m
i=1 yi,k /m.

mately low-rank video. For a detailed explanation of this and some
more such experiments, please see Supplementary Material and
http://www.ece.iastate.edu/namrata/LRPR/.

V. NUMERICAL EXPERIMENTS

We discuss here the results of three sets of experiments. All exper-
iments were done on a single laptop which had these specifications:
Intel(R) CPU E3-1240 v5 3.50 GHz, Installed memory: 32 GB, Sys-
tem type is 64 bit.

Experiment 1: The first experiment shows the power of the pro-
posed initialization approach, LRPR-init (Algorithm 1), by compar-
ing its initialization error with that of TWF initialization (TWF-init,
Algorithm 7) and of TWFproj-init (Algorithm 2). TWF-init does
not use knowledge of rank, TWFproj-init assumes r is known, while
LRPR-init estimates the rank automatically as explained earlier. For a
fair comparison with TWFproj-init, we also show the error of LRPR-
init with r̂ = r. Data was generated as follows. The matrix U is
obtained by orthonormalizing an n × r matrix with iid Gaussian en-
tries; bk ’s were generated as being iid uniformly distributed between
−1 and 1; and we set xk = Ubk . Measurements were generating
using (1).

We used n = 100, r = 2, ai,k
iid∼ N (0, I) (Table I) and ai,k

iid∼
CN (0, I) (Table II) and varied m and q. Here CN refers to a circu-
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larly symmetric complex Gaussian distribution. We show 100-time
Monte Carlo averaged errors. The averaging is only over the mea-
surement vectors. As can be seen from both tables, LRPR-init sig-
nificantly outperforms TWF-init and TWFproj-init when m is small.
The reason is that LRPR-init estimates X = UB by first estimating
range(U ) as the top r eigenvectors of Y U ; and Y U averages the
nearly mq mutually independent matrices M i,k := yi,kai,kai,k

′.
This is possible to do because E[yi,kai,kai,k

′] = 2Ubkbk
′U ′ +

‖bk‖2I . Thus even though the expected values are different for dif-
ferent k, all have span of top r eigenvectors equal to range(U ). In
TWF-init, the averaging over measurements of different columns is
not exploited at all, and thus, unsurprisingly, it has the worst perfor-
mance. In TWFproj-init, averaging over both k and i is exploited,
but not simultaneously - the first step is TWF-init which averages
only over i. The projection step can be interpreted as averaging over
the q rank-one matrices x̂k x̂k

′ (where x̂k = x̂
TWF ,init
k ), followed

by computing its top r eigenvectors and projecting X̂
TWF ,init

onto
their subspace. In situations where the TWF-init error itself is very
large, the second step does not help much.

When the product mq is large, the rank r̂ is correctly estimated
by LRPR-init (Algorithm 1) either always or most of the time. We
display a Monte Carlo estimate of the probability of r̂ = r in the
2nd column. In these cases, LRPR with r̂ known versus r̂ estimated
both have similar errors (3rd and 4th columns). Inspired by a re-
viewer’s concern, we also evaluate LRPR-init with r̂ deliberately set
to a wrong value 2r in the 5th column. As can be seen, the error
degradation is gradual even with a wrong rank estimate.

Finally, Table I shows errors of LRPR-Same in the last column.
This refers to LRPR operating on measurements of the form yi,k :=
(ai
′xk )2 . Because it uses the same ai’s for all columns xk , there

are only m (and not mq) mutually independent matrices to average
over. Hence its errors are almost as large as those of TWF.

Experiment 2: We evaluated LRPR-init (Algorithm 1) in the noisy
measurements case. We generated yi,k = (ai,k

′xk )2 + wi,k where
wi,k were iid uniform between −1 and 1 (so that the noise variance
was 0.33). The Monte Carlo estimate of E[|ai,k

′xk |2 ] was 0.67
leading to a signal-to-noise ratio of 2. The results are shown in the
6th columns of Tables I and II. Observe that the error of LRPR-init
even with noisy measurements is smaller than the errors of TWFproj-
init and TWF-init with noise-free measurements.

Experiment 3: For various values of m, we evaluate the speed
of convergence of the five complete algorithms - basic TWF (Algo-
rithm 4 initialized with Algorithm 7), basic TWFproj (Algorithm 2
initialized with Algorithm 5), LRPR+TWF (Algorithm 4), LRPR1
(Algorithm 5), and LRPR2 (Algorithm 6). We define “converges”
as NormErr below 10−10 . We generated data as in the noise-free
complex Gaussian case described above with n = 100, r = 2 and
q = 1000.

In Fig. 2(a), we compare the speed of error decay of TWF when
initialized with either TWF-init (TWF) or with the proposed initial-
ization, LRPR-init (LRPR+TWF). We used m = 8n (large enough
m for TWF iterations to converge). For t = 0, 1, 2, . . . , 100, we plot
the error at the end of iteration t on the y-axis and the time taken
till the end of iteration t on the x-axis (t = 0 corresponds to ini-
tialization). As can be seen, LRPR-init takes longer to finish than
TWF-init (the first ‘triangle’ is to the right of the first circle). How-
ever, because LRPR-init results in much lower initialization error,
LRPR+TWF needs much fewer iterations to “converge”, and, so the
total time taken by it to “converge” is also smaller.

If m is reduced to m = 0.8n measurements, as can be seen from
Fig. 2(b), neither of TWF or LRPR+TWF converge. Basic TWFproj
also does not converge and this is because its initialization error is
larger (for reasons explained earlier). However, both LRPR1 and
LRPR2 converge. It is also apparent that LRPR1 is significantly
faster than LRPR2. This is because its per iteration cost is lower.

If m is reduced further to m = 0.6n (Fig. 2(c)), then LRPR1 does
not converge whereas LRPR2 still does. This is because LRPR2 iter-
ates directly exploit the split-up X = UB whereas LRPR1 iterates
first implement a TWF iteration and then project the resulting matrix
onto the space of rank r matrices.

VI. PROOFS OF THEOREMS 3.2 AND 3.5

The approach for proving both Theorems 3.2 and 3.5 is simi-
lar. In Sec. VI-A, we summarize the two results that will be used
in our proof - the Davis-Kahan sin θ theorem [28] and a simple
modification of Theorem 5.39 of Vershynin [30]. The sin θ theo-
rem bounds the subspace error between the principal subspaces of
a given Hermitian matrix and its perturbed version. The Vershynin
result is a probabilistic concentration bound for the empirical co-
variance matrix of independent sub-Gaussian random vectors. This
will be used to bound the terms from the bound obtained by ap-
plying the sin θ theorem. In Sec. VI-B, we bound SE(Û , U ) both
under a deterministic and a random assumption on X . In Sec. VI-
C, we use this to bound dist(xk , x̂k ), again under both the de-
terministic and random settings. In Sec. VI-D, we combine these
results to prove Theorem 3.2. In Sec. VI-E, we prove Theorem 3.5.
Finally, we prove the two corollaries for the unknown rank case -
Corollaries 3.7 and 3.8 - in Sec. VI-F.

The derivations in this section use many useful results about sub-
Gaussian and sub-exponential r.v.’s and the ε-net taken from [30].
These are summarized in Appendix A. The lemmas that are not
proved here are proved in Appendix B.

A. Davis-Kahan sin θ Theorem and Vershynin’s Result

We first state a simple corollary of the Davis-Kahan sin θ theorem
[28, Sec. 2] that follows from it using Weyl’s inequality (see [31],
[32] for a proof).

Theorem 6.1 (sin θ theorem [28]): Consider a Hermitian matrix
D and its perturbed version D̂. Define H := D̂ −D. Let E be the
matrix of top r eigenvectors of D, and let F be the matrix of top r

eigenvectors6 of D̂. If λr (D)− λr+1(D)− ‖H‖ > 0, then

SE(F , E) := ‖(I − F F ′)E‖ ≤ ‖H‖
λr (D)− λr+1(D)− ‖H‖ .

In Sec. VI-B, we will use the above result with D̂ = Y U and D
being the expected value of a matrix that is close to it. In Sec. VI-C,
we will use it similarly for Y b,k .

Theorem 6.2 below is a simple generalization of Theorem 5.39 of
[30].

Theorem 6.2: Suppose that wj , j = 1, 2, . . . , N , are n-length in-
dependent, sub-Gaussian random vectors with sub-Gaussian norms
bounded by K .

1) For an ε < 1 and a given vector z, with probability (w.p.)
≥ 1 − 2 exp(−cε2N ),
∣
∣
∣
∣
∣
∣
z′

⎛

⎝ 1
N

∑

j

(wjwj
′ − E[wj wj

′])

⎞

⎠ z

∣
∣
∣
∣
∣
∣
≤ 4εK2‖z‖2 .

2) For an ε < 1, w.p. ≥ 1 − 2 exp(n log 9 − cε2N ),
∥
∥
∥
∥
∥
∥

1
N

∑

j

(wj wj
′ − E[wj wj

′])

∥
∥
∥
∥
∥
∥
≤ 4εK2 .

Proof: The proof follows that of Theorem 5.39 in [30]. It is given
in the Supplementary Material. �

6More generally, E and F can be any matrices whose columns span the space
of top r eigenvectors of D and D̂ respectively.
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1) Proving Theorems 3.2 and 3.5 simultaneously: Define the
following (trivial) model.

Model 6.3: The matrix X is a deterministic unknown.
This just makes it simpler to simultaneously obtain subspace error

bounds under the assumptions of both Theorems 3.2 and 3.5. Notice
that, if we write xk = Ubk , then the definitions of Λ̄, ρ and κ
given in (6) and (7) in Sec. III-A imply that, under Model 6.3,
Λ̄ = 1

q

∑
k bkbk

′, κ is its condition number, and maxk ‖bk‖2 =

maxk ‖xk‖2 ≤ rρλ̄max .

B. Bounding SE(Û ,U)

Recall that Û is the matrix of top r eigenvectors of Y U . To bound
SE(Û , U ) using Theorem 6.1, we define a matrix Σ− such that (i)
U is the matrix of its top r eigenvectors; and (ii) there is a signifi-
cant nonzero gap between its r-th and (r + 1)-th eigenvalues. More
specifically, we let Σ− = c1U Λ̄U ′ + c2I where c1 and c2 are posi-
tive constants that are defined later. Clearly, λr (Σ−)− λr+1(Σ−) =
c1 λ̄min . By Theorem 6.1, if λr (Σ−)− λr+1(Σ−) > ‖Y U −Σ−‖,
then,

SE(Û , U ) ≤ ‖Y U −Σ−‖
c1 λ̄min − ‖Y U −Σ−‖ . (9)

Thus, all we need now is to specify Σ− and find a high probability
upper bound on ‖Y U −Σ−‖.

To this end, as also done in [11, Appendix C], we first lower and
upper bound Y U in order to replace 1

m

∑
i yi,k in its indicator func-

tion expression by a constant. Recall that Y U is defined in (3) and that
1
m

∑
i yi,k = xk

′( 1
m

∑
i ai,kai,k

′)xk . By Fact A.3, item 3, in Ap-
pendix A, ai,k ’s are sub-Gaussian with sub-Gaussian norm bounded
by c. Thus, using the first part of Theorem 6.2, conditioned on
xk , | 1

m

∑
i yi,k − ‖xk‖2 | ≤ ε1‖xk‖2 w.p. ≥ 1 − 2 exp(−cε2

1m).
The constant multiplying ε1 is moved into the c in the probability.
This bound holds for all k = 1, 2, . . . , q w.p.≥ 1 − 2q exp(−cε2

1m).
This implies that, with the same probability, conditioned on X ,
Y − � Y U � Y + , where

Y − :=
1

mq

m∑

i=1

q∑

k=1

w−i,kw−i,k
′, Y + :=

1
mq

m∑

i=1

q∑

k=1

w+
i,kw+

i,k
′,

w−i,k :=
(

ai,k
′ xk

‖xk‖
)

ai,k 1(
ai , k

′ xk
‖xk ‖

)2
≤9(1−ε1 )

‖xk‖, and

w+
i,k =

(

ai,k
′ xk

‖xk‖
)

ai,k 1(
ai , k

′ xk
‖xk ‖

)2
≤9(1+ε1 )

‖xk‖.

Notice that w+
i,k is w−i,k with 9(1 − ε1) replaced by 9(1 + ε1) in the

indicator function. The following claim is immediate.
Lemma 6.4: Conditioned on X , w.p. ≥ 1 − 2q exp(−cε2

1m),
‖Y U − Y −‖ ≤ ‖Y + − Y −‖.

Define

Σ− := E[Y −] and Σ+ := E[Y + ].

We obtain expressions for these in the next lemma.
Lemma 6.5: Let ξ ∼ N (0, 1). Define

β−1 = β−1 (ε1) := E[(ξ4 − ξ2)1ξ 2≤9(1−ε1 ) ],

β−2 = β−2 (ε1) := E[ξ21ξ 2≤9(1−ε1 ) ].

Under both Models 6.3 and 3.4,

E[Y −|X ] = β−1 U

(
1
q

∑

k

bkbk
′
)

U ′ + β−2

(
1
q

∑

k

‖bk‖2
)

I ,

and Σ− = β−1 U Λ̄U ′ + β−2 trace(Λ̄)I .

The matrices E[Y + |X ] and Σ+ have similar expressions where we
replace β−i by β+

i , i = 1, 2. For defining β+
i , replace 9(1 − ε1) in

the indicator function by 9(1 + ε1).
By the triangle inequality and Lemma 6.4, conditioned on X , w.p.

≥ 1 − 2q exp(−cε2
1m),

‖Y U −Σ−‖ ≤ ‖Y U − Y −‖+ ‖Y − −Σ−‖
≤ ‖Y + − Y −‖+ ‖Y − −Σ−‖
≤ 2‖Y − −Σ−‖+ ‖Y + −Σ+‖+ ‖Σ+ −Σ−‖.

To bound ‖Y − −Σ−‖, we first bound ‖Y − − E[Y −|X ]‖ using the
second claim of Theorem 6.2. We bound ‖Y + −Σ+‖ similarly.

Lemma 6.6: Conditioned on X , w.p. ≥ 1 − 2 exp(n log 9 −
ε2
2mq),

‖Y − − E[Y −|X ]‖ ≤ ε2 max
k
‖bk‖2 .

The same bound holds with the same probability for ‖Y + −
E[Y + |X ]‖.

Remark 6.7: Since the claim of Lemma 6.6 holds with the same
probability lower bound for all X , it also holds with the same prob-
ability lower bound if we average over X . The same is true for
Lemma 6.4.

The next lemma bounds maxk ‖bk‖2 = maxk ‖xk‖2 .
Lemma 6.8: Under Model 6.3, maxk ‖bk‖2 ≤ rρλ̄max . Under

Model 3.4, w.p. ≥ 1 − 2q/n4 , maxk ‖bk‖2 ≤ r(10 log n)λ̄max .
Under Model 6.3, Σ− = E[Y −|X ] and so ‖E[Y −|X ]−Σ−‖ =

0. Under Model 3.4, we use the second claim of Theorem 6.2, to
bound ‖E[Y −|X ]−Σ−‖ as follows.

Lemma 6.9: Under Model 6.3, ‖E[Y −|X ]−Σ−‖ = 0. Under
Model 3.4, w.p. ≥ 1 − 2 exp(r log 9 − cε2

3q)− 18 exp(−cε2
3

q
r ),

‖E[Y −|X ]−Σ−‖ ≤ ε3 λ̄max .

Combining Lemmas 6.6, 6.8 and 6.9, we can bound ‖Y − −Σ−‖
under both models. We get the same bound on ‖Y + −Σ+‖ as well.

Finally, we bound ‖Σ+ −Σ−‖ using the fact that, for all ξ > ξ0 ,

ξde−
ξ 2
4 ≤ b for any d > 1.

Lemma 6.10: If ε1 ≤ 1/9, then

‖Σ+ −Σ−‖ ≤ [(β+
1 (ε1)− β−1 (ε1)) + (β+

2 (ε1)− β−2 (ε1))r]λ̄max

≤ 30rε1 λ̄max

Combining the above bounds, we conclude the following.
Corollary 6.11: Let

pU,1 := 2q exp(−cε2
1m) + 4 exp(n log 9 − cε2

2mq),

pU,2 := pU,1 +
4q

n4 + 4 exp(r log 9 − cε2
3q) + 36 exp(−cε2

3
q

r
),

εU,1 := 3rε2ρ + 30rε1 ,

εU,2 := 3rε2(10 log n) + 30rε1 + 3ε3 . (10)

Then,
1) under Model 6.3, w.p.≥ 1 − pU,1 , ‖Y U −Σ−‖ ≤ εU,1 λ̄max ;

and
2) under Model 3.4, w.p.≥ 1 − pU,2 , ‖Y U −Σ−‖ ≤ εU,2 λ̄max .
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Finally, to bound the subspace error of Û , we also require a lower
bound on β−1 . This follows easily using the fact that, for all ξ > ξ0 ,

ξde−
ξ 2
4 ≤ b for any d > 1.

Lemma 6.12: If ε1 ≤ 1/9, then

β−1 (ε1) = 2 − E[(ξ4 − ξ2)1ξ 2≥(9−9ε1 ) ] ≥ 0.5.

Applying the sin θ theorem, Theorem 6.1, and the last two claims
above, we get the following result.

Corollary 6.13 (SE(Û , U ) bound): Let Model 1 be Model 6.3
and Model 2 be Model 3.4. If κεU,d < 1/16 then, under Model d,
w.p. ≥ 1 − pU,d ,

δU := SE(Û , U ) ≤ 2.3κεU,d .

Proof: Using Theorem 6.1,

SE(Û , U ) ≤ ‖Y U −Σ−‖
β−1 λ̄min − ‖Y U −Σ−‖ .

Since ε1 ≤ εU,d ≤ κεU,d ≤ 1/16, using Lemma 6.12, β−1 ≥ 0.5.
Thus, under Model d, w.p. ≥ 1 − pU,d ,

δU := SE(Û , U ) ≤
κεU , d

0.5

1 − κεU , d

0.5
<

8
7

1
0.5

κεU,d < 2.3κεU,d ,

completing the proof. �

C. Bounding dist(xk , x̂k )

Recall that δU := SE(Û , U ) was bounded above. Here, we bound
dist(xk , x̂k )’s in terms of δU and other quantities.

Remark 6.14: For notational simplicity, we let x = xk , b := bk ,
yi := ynew

i,k , ai := anew
i , Y b := Y b,k defined in (5) in Algorithm

3. Since the different bk ’s are recovered separately, but using the
same technique, this notation does not cause any confusion at most
places. Where it does, we clarify.

In this section, we state all results conditioned on x and Û . Under
this conditioning, in all our claims, the probability of the desired
event is lower bounded by a value that does not depend on x or Û .
Thus, the same probability lower bound holds even when we average
over x and Û (holds unconditionally).

Notice that x = Ub can be rewritten as

x = Ûg + e, where

g := Û
′
x = Û

′
Ub, e := (I − Û Û ′)x.

We can further split g as g = vν where ν = ‖g‖ and v = g/ν. Recall
that we estimate x as

x̂ = Û ĝ = Û v̂ν̂,

where v̂ is the top eigenvector of Y b and ν̂ =
√

1
m̃

∑
i yi . The

following fact is immediate.
Fact 6.15: The vector e and the scalar ν := ‖g‖ satisfy ‖e‖ ≤

δU ‖b‖, and7(1 − δU )‖b‖ ≤ ν ≤ ‖b‖.
Using the definition of dist, it is easy to see that8

dist(x1 , x2) ≤ dist(x1 , x3) + ‖x3 − x2‖. (11)

From (11) and Fact 6.15,
� dist(x, x̂) ≤ δU ‖b‖+ dist(g, ĝ);
� dist(g, ĝ) ≤ ‖b‖dist(v, v̂) + |ν − ν̂|;

7using ν = ‖Ûg‖ ≥ ‖x‖ − ‖e‖ ≥ (1 − δU )‖b‖,
8dist(x1 , x2 ) = minφ∈[0 ,2π ] ‖x1 − ejφ (x2 + x3 − x3 )‖ ≤

minφ∈[0 ,2π ] (‖x1 − ejφ x3‖+ ‖x2 − x3‖) = dist(x1 , x3 ) + ‖x2 − x3‖.

� dist(v, v̂)2 = 2(1 − |v̂′v|), and SE(v̂, v) = ‖v − v̂v̂′v‖ ≥
1 − |v̂′v|. Thus,

dist(x, x̂) ≤ δU ‖b‖+
√

2SE(v̂, v)‖b‖+ |ν − ν̂| (12)

We now need to bound SE(v̂, v) and |ν − ν̂|. Using the first claim
of Theorem 6.2, we can bound the latter as follows.

Lemma 6.16 (|ν̂ − ν| bound): Conditioned on x and Û , w.p.
≥ 1 − 2 exp(−cε2

4m̃), |ν̂ − ν| ≤ ε4‖b‖+ δU ‖b‖. This holds for all
νk ’s, k = 1, 2, . . . , q, w.p. ≥ 1 − 2q exp(−cε2

4m̃).
To bound SE(v̂, v), we use Theorem 6.1 with D̂ = Y b . To define

a matrix D, whose top eigenvector is v, let

ãi := Û
′
ai , (13)

Y g :=
1
m̃

m̃∑

i=1

(ãi
′g)2 ãi ãi

′. (14)

It is easy to see that, conditioned on Û , ãi
iid∼ N (0, I). By letting

g be the first column of I and using rotation invariance of ãi [10,
Lemma A.1],

E[Y g |x, Û ] = 2gg′ + ‖g‖2I .

Clearly, the top eigenvector of this matrix is proportional to g and
the desired eigen-gap is 2‖g‖2 ≥ 2(1 − δU )2‖b‖2 . So, we can use
D = 2gg′ + ‖g‖2I for applying Theorem 6.1. It remains to bound
‖Y b − (2gg′ + ‖g‖2I)‖.

Recall that Y b = 1
m̃

∑m̃
i=1(ai

′x)2 ãi ãi
′. Thus,

‖Y b − (2gg′ + ‖g‖2I)‖
≤ ‖Y g − (2gg′ + ‖g‖2I)‖+ ‖Y e,1‖+ 2‖Y e,2‖, (15)

where

Y e,1 :=
1
m̃

m̃∑

i=1

e′aiai
′eãi ãi

′, and

Y e,2 :=
1
m̃

m̃∑

i=1

e′ai ãi
′gãi ãi

′.

To bound ‖Y g − (2gg′ + ‖g‖2I)‖, we use following modification
of Theorem 4.1 of [9].

Lemma 6.17: [modified version of Theorem 4.1 of [9]] Let Y g

be as defined in (14). Recall that g := Û
′
Ub is an r-length vector

and, conditioned on Û , ãi
iid∼ N (0, I). If m̃ > cr log4 r/ε2

5 , then,
conditioned on x and Û , w.p. ≥ 1 − 4/m̃8 ,

‖Y g − (2gg′ + ‖g‖2I)‖

≤
⎛

⎝

√

8000r log4 m̃

m̃
+

√
2

m̃4

⎞

⎠ ‖g‖2 ≤ 2ε5‖g‖2 .

This holds for all gk ’s, for k = 1, 2, . . . , q, w.p. ≥ 1 − 4q/m̃8 .
Next, consider ‖Y e,1‖. In the argument below, everything is con-

ditioned on Û and x. Suppose that m̃ > r. Using Cauchy-Schwartz
for matrices, Theorem 8.4, with X̃ i = e′aia

′
ie and Ỹ i = ãi ãi

′, and
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simplifying the resulting bounds, we get

‖Y e,1‖2 ≤
∥
∥
∥
∥
∥

1
m̃

∑

i

e′aiai
′ee′aia

′
ie

∥
∥
∥
∥
∥
·
∥
∥
∥
∥
∥

1
m̃

∑

i

ãi ãi
′ãi ãi

′
∥
∥
∥
∥
∥

≤ max
i

ai
′ee′ai

∥
∥
∥
∥
∥

1
m̃

∑

i

e′aiai
′e

∥
∥
∥
∥
∥

×max
i

ãi
′ãi

∥
∥
∥
∥
∥

1
m̃

∑

i

ãi ãi
′
∥
∥
∥
∥
∥

≤ (80r log m̃)‖b‖2(1 + ε4)‖e‖2(20r log m̃)(1 + ε4)

≤ 1600(r log m̃)2δ2
U (1 + ε4)2‖b‖4 ,

w.p. ≥ 1 − 4/m̃8 − 2 exp(−cε2
4m̃)− 2 exp(r log 9 − cε2

4m̃).
The first inequality is by Cauchy-Schwartz (Theorem 8.4). The

second one pulls out the scalar maxi ai
′ee′ai from the first sum-

mation and the scalar maxi ãi
′ãi from the second summation.

The third inequality relied on the following arguments to bound
the four terms. It used (i) Theorem 6.2, part 1 with z = e to
bound ‖e′( 1

m̃

∑
i aia

′
i)e‖; (ii) Theorem 6.2, part 2 for bounding

1
m̃

∑
i ãi ãi

′; and (iii) Fact A.3, item 4 in Appendix A to bound
maxi ‖ãi‖2 by 20r log m̃ w.p. ≥ 1 − 2/m̃8 (since m̃ > r). This
was possible because conditioned on Û , ãi ∼ N (0, I). (iv) Finally,
it used the triangle inequality, Fact A.3, item 4 and the fact that
ãi = Û

′
ai ∼ N (0, I) and U ′ai ∼ N (0, I) to bound

max
i
|ai
′e| ≤ max

i
‖ai

′U‖‖b‖+ max
i
‖ai

′Û‖‖Û ′U‖‖b‖

≤ 2
√

20r log m̃‖b‖,

w.p. ≥ 1 − 2/m̃8 . The fourth inequality in the bound on ‖Y e,1‖2
follows using ‖e‖ ≤ δU ‖b‖.

The value of ‖Y e,2‖ can be bounded in a similar fashion:

‖Y e,2‖2 ≤ ‖ 1
m̃

∑

i

e′ai ãi
′gg′ãia

′
ie‖ ‖

1
m̃

∑

i

ãi ãi
′ãi ãi

′‖

≤ 400(r log m̃)2δ2
U (1 + ε4)2‖b‖4 ,

with the same probability. The main difference here is that we
bound maxi(ãi

′g)2 instead of maxi(ai
′e)2 . To do this, we

use maxi(ãi
′g)2 ≤ maxi ‖ãi‖2‖g‖2 ≤ 20r(log m̃)‖b‖2 w.p. ≥

1 − 2/m̃8 . Thus, we have the following lemma.
Lemma 6.18: Suppose that m̃ > r. Conditioned on x and Û ,

w.p. ≥ 1 − 6/m̃8 − 4 exp(−cε2
4m̃)− 2 exp(r log 9 − cε2

4m̃),

‖Y e,1‖ ≤ 40(r log m̃)δU (1 + ε4)‖b‖2 ,

‖Y e,2‖ ≤ 20(r log m̃)δU (1 + ε4)‖b‖2 .

This holds for all gk ’s for k = 1, 2, . . . , q, w.p. ≥ 1 − 6q/m̃8 −
4q exp(−cε2

4m̃)− 2 exp(r log 9 − cε2
4m̃).

Let

pg :=
10q

m̃8 + 4q exp(−cε2
4m̃) + 2 exp(r log 9 − cε2

4m̃). (16)

Using (15) and the bounds from Lemmas 6.17 and 6.18, we conclude
the following. If m̃ ≥ 1

ε2
5
cr log4 r, then, conditioned on X and Û ,

w.p. ≥ 1 − pg , for all k = 1, 2, . . . , q,

‖Y b,k−(2gkgk
′+‖gk‖2I)‖ ≤ (2ε5 +80r log m̃(1+ε4)δU )‖bk‖2 .

Using Theorem 6.1 and Fact 6.15, with the same probability,

SE(v̂k , vk ) ≤ ‖Y b,k − (2gkgk
′ + ‖gk‖2I)‖

2‖gk‖2 − ‖Y b,k − (2gkgk
′ + ‖gk‖2I)‖

≤ (2ε5 + 80r log m̃(1 + ε4)δU )
(2 − 2δU − (2ε5 + 80r log m̃(1 + ε4)δU )

.

If the numerator is smaller than 1 − 2δU , then

SE(v̂k , vk ) ≤ (2ε5 + 80r log m̃(1 + ε4)δU ).

As before, we can average over X and Û and still get all the events
above to hold with the same probability. Using the above bound,
(12), and Lemma 6.16, we get the following.

Corollary 6.19 (dist(x̂k , xk ) bound): If m̃ ≥ 1
ε2

5
cr log4 r, w.p.

≥ 1 − pg − 2q exp(−cε2
4m̃), dist(x̂k , xk ) is upper bounded by

(ε4 + 2δU +
√

2(2ε5 + 80r log m̃(1 + ε4)δU ))‖bk‖,
for all k = 1, 2, . . . , q, if 2ε5 + r log m̃(1 + ε4)δU < 1 − 2δU .

D. Proof of Theorem 3.2

Combining Corollaries 6.13 and 6.19, we can conclude the
following. If m̃ ≥ cr log4 r/ε2

5 , then, w.p. ≥ 1 − pU,1 − pg −
2q exp(−cε2

4m̃), dist(x̂k , xk ) is bounded by
(
ε4 + 4.6κεU,1 +

√
2(2ε5 + 184r log m̃(1 + ε4)κεU,1)

)
‖bk‖

for all k = 1, 2, . . . , q, as long as κεU,1 ≤ 1/16 (this automat-
ically implies ε1 < 1/9) and (2ε5 + 184r log m̃(1 + ε4)κεU,1) ≤
1 − 4.6κεU,1 .

Recall that εU,1 = rρε2 + rε1 . Thus to get dist(x̂k , xk ) below
c
√

ε‖bk‖, for an ε < 1, we set

ε1 =
ε

150κr2 log m̃
, ε2 =

ε

15κρr2 log m̃
, ε4 =

√
ε, ε5 = ε/5.

With these choices notice that, if m̃ ≥ 3 and r ≥ 3, then
κεU,1 = κ(3rρε2 + 30rε1) = 2ε/(5r log m̃) < 1/16; and 2ε5 +
r log m̃(1 + ε4)κεU,1 ≤ 1 − 2/16.

Using the expressions for pU,1 and pg , to get the probability of
the desired event below 1 − 2 exp(−cn)− 32q/n4 , we need

ε2

cκ2r4 log2 m̃
m ≥ 4 log n,

ε2

cκ2ρ2r4 log2 m̃
mq ≥ cn,

m̃ ≥ c
√

n, m̃ ≥ cr log4 r

ε2 ,

εm̃ ≥ 4 log n, m̃ ≥ (4 log n + (log 9)r)
ε

.

We obtained these bounds by taking each probability term and finding
a lower bound on m̃, m or mq to get it below either cq/n4 or
2 exp(−cn). Theorem 3.2 assumes r ≤ n1/5 . Thus, r log4 r ≤ c

√
n,

r ≤ c
√

n. For large n, log n ≤ c
√

n.

E. Proof of Theorem 3.5

We use the same approach as above. With Model 3.4, both εU and
pU are larger. We have εU = εU,2 which is equal to 3ε3 plus εU,1
with ρ replaced by 10 log n. Also, pU = pU,2 = pU,1 + 2q/n4 +
2 exp(r log 9 − cε2

3q) + 18 exp(−cε2
3

q
r ).

Thus, two things change in the conditions required to get the error
below c

√
ε w.p. ≥ 1 − 2 exp(−cn)− 16q/n4 − 2q/n4 − 20/n4 .

First, ρ2 is replaced by (10 log n)2 in the lower bound on mq. Second,
we set ε3 = ε

κr log m̃ . With this, to get 2 exp(r log 9 − cε2
3q) < 2/n4
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and 18 exp(−cε2
3

q
r ) < 18/n4 , we need the assumed lower bound

on q.

F. Proof of Corollary 3.7 and Corollary 3.8

From the proof given in the previous subsections, we need r̂ = r in
order to apply the sin θ theorem (Theorem 6.1) to bound SE(Û , U )
in Corollary 6.13.

Using Corollary 6.11, w.p. ≥ 1 − pU,1 ,

‖Y U −Σ−‖ ≤ εU,1 λ̄max = κεU,1 λ̄min , where

Σ− := β−1 (ε1)U Λ̄U ′ + β−2 (ε1)trace(Λ̄)I , (17)

and β−1 (ε1), β−2 (ε1) are defined in Lemma 6.5. Let β−1 := β−1 (ε1).
Suppose that ε ≤ 0.001. From Sec. VI-D, ε1 ≤ εU,1 ≤ ε ≤ 0.001.
Using κ ≤ 10, 2κεU,1 ≤ 0.02.

Thus, from (17), Weyl’s inequality [33], and λ̄j − λ̄j+1 ≤
0.9λ̄min , we conclude the following: for a j < r and a j ′ > r, w.p.
≥ 1 − pU,1 ,

λr (Y U )− λr+1(Y U ) ≥ (β−1 − 2κεU,1)λ̄min

≥ (β−1 − 0.02)λ̄min ,

λj (Y U )− λj+1(Y U ) ≤ λj (Σ−)− λj+1(Σ−) + 2κεU,1 λ̄min

= β−1 (λ̄j − λ̄j+1) + 2κεU,1 λ̄min ,

≤ (0.9β−1 + 0.02)λ̄min , and

λj ′(Y U )− λj ′+1(Y U ) ≤ λj ′(Σ−)− λj ′+1(Σ−) + 2κεU,1 λ̄min

= 0 + 2κεU,1 λ̄min ≤ 0.02λ̄min .

By Lemma 6.12, β−1 ≥ 0.5. Using this, we conclude that

λr (Y U )− λr+1(Y U ) ≥ (β−1 − 0.02)λ̄min

> (0.9β−1 + 0.02)λ̄min

≥ λj (Y U )− λj+1(Y U ), and

λr (Y U )− λr+1(Y U ) ≥ (β−1 − 0.02)λ̄min

> 0.02λ̄min ≥ λj ′(Y U )− λj ′+1(Y U )

for a j < r and a j ′ > r. The second row used 0.1β−1 > 0.04 and the
last row used β−1 − 0.02 > 0.02.

Thus, if κ ≤ 10, and λ̄j − λ̄j+1 ≤ 0.9λ̄min , then, under the as-
sumptions of Theorem 3.2, w.p.≥ 1 − pU,1 , λj (Y U )− λj+1(Y U )
is largest for j = r, i.e., r̂ = r. Using this and then proceeding exactly
as before, we obtain Corollary 3.7.

To get Corollary 3.8, use (17), Weyl’s inequality [33], and κ ≤
124, to argue that, w.p. ≥ 1 − pU,1 , for any j > r,

λr (Y U )− λn (Y U ) ≥ (β−1 − 0.002κ)λ̄min ≥ (0.5 − 0.246)λ̄min ,

λj (Y U )− λn (Y U ) ≤ 0.002κλ̄min < 0.25λ̄min .

Thus, w.p. ≥ 1 − pU,1 , j = r is the smallest index for which
λr (Y U )− λn (Y U ) ≥ 0.25λ̄min and hence the rank estimation ap-
proach of Corollary 3.8 returns r̂ = r.

VII. CONCLUSIONS AND FUTURE WORK

We presented two iterative phase retrieval algorithms – LRPR1
and LRPR2 – for recovering a set of q unknown vectors lying in a
low (r) dimensional subspace of Rn from their phaseless measure-
ments. Both methods are initialized by a two step spectral initializa-
tion procedure, called LRPR-init, that first estimates the subspace

from which all the vectors are generated, and then estimates the
projection, of each vector, into the estimated subspace. The rest of
LRPR1 involves projected truncated gradient descent. The remainder
of LRPR2 involves alternating minimization to update the estimates
of U , B, and the unknown phase of (ai,k

′xk ) for each i, k.
We obtained sample complexity bounds for LRPR-init and argued

that, when q/r is large, these are much smaller than those for TWF
or any other single-vector PR method. Via extensive experiments,
we also showed that the same is true for both the complete algo-
rithms - LRPR1 and LRPR2. Between the two, LRPR2 has better
performance, but also higher per iteration computational cost, than
LRPR1.

In future work we will analyze the complete LRPR2 algorithm.
This should replace the dependence of sample complexity on 1/ε2

by a dependence on − log ε.

APPENDIX A
PRELIMINARIES

As explained in [30], ε-nets are a convenient means to discretize
compact metric spaces. The following definition is [30, Definition
5.1] for the unit sphere.

Definition A.1 (ε-net and covering number of the unit sphere in
Rn ): For an ε > 0, a subset Nε of the unit sphere in Rn is called an
ε-net if, for every vector x on the unit sphere, there exists a vector
y ∈ Nε such that ‖y − x‖ ≤ ε.

The covering number of the unit sphere in Rn , is the size of the
smallest ε-net, Nε , on it.

Fact A.2 (Facts about ε-nets).
1) By Lemma 5.2 of [30], the covering number of the unit sphere

in Rn is upper bounded by (1 + 2
ε )n .

2) By Lemma 5.4 of [30], for a symmetric matrix, W , ‖W ‖ =
maxx:‖x‖=1 ‖x′W x‖ ≤ 1

1−2ε maxx∈Nε ‖x′W x‖.
Fact A.3 (Facts about sub-Gaussian random vectors):
1) If x is a sub-Gaussian random vector with sub-Gaussian

norm K , then for any vector z, (i) x′z is sub-Gaussian with
sub-Gaussian norm bounded by K‖z‖; (ii) (x′z)2 is sub-
exponential with sub-exponential norm bounded by 2K2‖z‖2 ;
and (iii) (x′z)2 − E[(x′z)2 ] is centered (zero-mean), sub-
exponential with sub-exponential norm bounded by 4K2‖z‖2 .
This follows from the definition of a sub-Gaussian random
vector; Lemma 5.14 and Remark 5.18 of [30].

2) By [30, Corollary 5.17], if xi , i = 1, 2, . . . N , are a set of inde-
pendent, centered, sub-exponential r.v.’s with sub-exponential
norm bounded by Ke , then, for an ε < 1,

Pr

(

|
N∑

i=1

xi | > εKeN

)

≤ 2 exp(−cε2N ).

3) If x ∼ N (0, Λ̄) with Λ̄ diagonal, then x is sub-Gaussian with
‖x‖ϕ2 ≤ c

√
λ̄max . Moreover, if y = x1x where x1 is a zero

mean bounded r.v. with bound M , then ‖y‖ϕ2 ≤ cM
√

λ̄max .
4) If xi ∼ N (0, Λ̄), for i = 1, 2, . . . , N , are n-length random

vectors and Λ̄ is diagonal, then

Pr
(

max
i=1,2,...,N

‖xi‖2 ≤ λ̄max · n · 2ν

)

≥ 1 − 2nN exp(−ν), for ν > 1.

This is a direct consequence of eq. 5.5 of [30] which says
that if x ∼ N (0, 1), then Pr(|xi | > t) ≤ 2 exp(−t2/2) for a
t > 1. Using this along with the union bound first for bounding
‖xi‖2 =

∑n
j=1(xi)2j for a given i and then for bounding its

max over i gives the above result.
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5) Using [30, Lemma 5.5], if xi’s are sub-Gaussian
random vectors with sub-Gaussian norm bounded by
K , then the following generalization of the above
fact holds: Pr(maxi=1,2,...,N ‖xi‖2 ≤ K2 · n · 2ν) ≥ 1 −
CnN exp(−cν).

The following is an easy corollary of Cauchy-Schwartz for sums
of products of vectors.

Theorem A.4 (Cauchy-Schwartz for sums of matrices): For
matrices X t and Y t , ‖ 1

α

∑α
t=1 X̃ t Ỹ

′
t‖2 ≤ λmax( 1

α

∑α
t=1

X̃ tX̃
′
t)λmax( 1

α

∑α
t=1 Ỹ t Ỹ

′
t).

APPENDIX B
PROOFS OF LEMMAS FROM SECTION VI

We prove the lemmas that were not proved in Section VI.
Define

wi,k :=
(

ai,k
′ xk

‖xk‖
)

ai,k 1(
ai , k

′ xk
‖xk ‖

)2
≤9(1−ε1 )

‖xk‖.

Then Y − = 1
mq

∑
k

∑
i wi,kwi,k

′.
Proof of Lemma 6.5: Since ai,k is rotationally symmetric,

to compute E[wi,kwi,k
′|X ] easily, we can let xk

‖xk ‖ be
the first column of the identity matrix. With this, wi,k =
(ai,k )1ai,k 1(ai , k )2

1≤9(1−ε1 ) ‖xk‖. Thus, using the argument of [11,

Appendix C], E[wi,kwi,k
′|X ] = (β−1

xk
‖xk ‖

xk
‖xk ‖

′ + β−2 I)‖xk‖2 =

(β−1 xkxk
′ + β−2 ‖xk‖2I). Using this with xk = Ubk , Λ̄ =

1
q

∑
k bkbk

′, and 1
q

∑
k ‖bk‖2 = trace(Λ̄), both claims follow un-

der Model 6.3. To get Σ− under Model 3.4, using linearity of expec-
tation and of trace, trace(Λ̄) = E[ 1

q

∑
k ‖bk‖2 ]. �

Proof of Lemma 6.6: The proof relies on the following.
� Let D = maxk ‖bk‖2 = maxk ‖xk‖2 .
� We first argue argue that, conditioned on X , each wi,k is sub-

Gaussian with sub-Gaussian norm bounded by c‖xk‖ ≤ c
√

D.
To show this easily, we use the strategy of [11, Appendix C].
Since ai,k is rotationally symmetric, without loss of general-
ity, suppose that xk

‖xk ‖ is the first column of the identity ma-
trix. Then, wi,k = ai,k (ai,k )11(ai , k )2

1≤9(1−ε1 ) ‖xk‖. With
this simplification, wi,k is of the form xx1 where x1 is a
bounded r.v. with bound

√
9(1 − ε1)‖xk‖ and x is Gaussian

with zero mean and covariance matrix I . Thus, using Fact A.3,
item 3, it is sub-Gaussian with sub-Gaussian norm bounded by
c‖xk‖ ≤ c

√
D.

� Conditioned on X , all the wi,k ’s are mutually independent.
There are N = mq of them.

Thus, all the mq wi,k ’s are mutually independent sub-Gaussian
random vectors with sub-Gaussian norm bounded by c

√
D. So, we

can apply the second claim of Theorem 6.2 with wj replaced by
wi,k and summed over the N = mq vectors, wi,k , to show that
‖Y − − E[Y −|X ]‖ ≤ ε2D w.p. ≥ 1 − 2 exp(n log 9 − cε2

2mq). �
Proof of Lemma 6.8: Let D = maxk ‖bk‖2 . Under Model 6.3,

D ≤ rρλ̄max by definition. Under Model 3.4, we use Fact A.3,
item 4 with n ≡ r, N ≡ q, ν ≡ 5 log n to get D ≤ 10 log n w.p.
≥ 1 − 2rqn−5 ≥ 1 − 2qn−4 since r ≤ n. �

Proof of Lemma 6.9: ‖E[Y −|X ]−Σ−‖ is bounded by

β−1 ‖
1
q

∑

k

bkbk
′ − Λ̄‖+ β−2

∣
∣
∣
∣
∣

1
q

∑

k

‖bk‖2 − trace(Λ̄)

∣
∣
∣
∣
∣

Clearly, β−1 ≤ 2 and β−2 ≤ 1. By Fact A.3, item 3, bk is sub-Gaussian

with ‖bk‖ϕ2 ≤ c
√

λk,max . By model assumption, λk,max ≤
cλ̄max . Thus, ‖bk‖ϕ2 ≤ c

√
λ̄max . Apply the second claim of Theo-

rem 6.2 with N ≡ q, n ≡ r and K ≡ c
√

λ̄max to get ‖ 1
q

∑
k bkb′k −

Λ̄‖ ≤ ε3 λ̄max w.p. ≥ 1 − 2 exp(r log 9 − cε2
3q). The constant next

to ε3 λ̄max has been absorbed into the c in the probability.
For the second term, apply Theorem 6.2 with N ≡ rq,

n ≡ 1 and K ≡ c
√

λ̄max to get | 1
rq

∑
k ‖bk‖2 − trace(Λ̄)

r | ≤
ελ̄max w.p. ≥ 1 − 2 exp(log 9 − cε2rq). Thus, | 1q

∑
k ‖bk‖2 −

trace(Λ̄)| ≤ rελ̄max with the same probability. Use ε =
ε3/r to conclude that | 1q

∑
k ‖bk‖2 − trace(Λ̄)| ≤ ε3 λ̄max w.p.

≥ 1 − 18 exp(−cε2
3

q
r ). �

Proof of Lemma 6.10: Using ξ exp(−ξ2/2) < 1 for all ξ2 > 8,

β+
2 (ε1)− β−2 (ε1) = E[ξ21(9−9ε1 )≤ξ 2≤(9+9ε1 ) ]

= 2
∫ √9+9ε1

√
9−9ε1

ξ2 1√
2π

e−
ξ 2
2 dξ

≤ 2
1√
2π

∫ √9+9ε1

√
9−9ε1

ξdξ =
1√
2π

(18ε1)

Similarly, using ξ3 exp(−ξ2/2) < 3.1 for all ξ2 > 8,

β+
1 (ε1)− β−1 (ε1) ≤ 3.1 · 1√

2π
18ε1 < 22.4ε1

�
Proof of Lemma 6.12: Using (ξ4 − ξ2) exp(−ξ2/4) < 7.58 for

all ξ2 > 8, Fact A.3, item 4 and ε1 ≤ 1/9,

β−1 = E[(ξ4 − ξ2)]− E[(ξ4 − ξ2)1ξ 2≥(9−9ε1 ) ]

≥ 2 − 7.58 · 2
∫ ∞
√

9−9ε1

1√
2π

e−
ξ 2
4 dξ

= 2 − 7.58 · √2 Pr(x2 ≥ (9 − 9ε1)/2)

≥ 2 − 7.58 · √2 exp(−(9 − 9ε1)/4) ≥ 0.5

where x ∼ N (0, 1). �
Proof of Lemma 6.16: By triangle inequality, |ν̂ − ν| ≤

|ν̂ − ‖x‖|+ |‖x‖ − ν |. By Fact 6.15, |‖x‖ − ν| ≤ δU ‖b‖.
We can bound |ν̂ − ‖x‖| by applying Theorem 6.2, part
1. Recall that ν̂2 = 1

m̃

∑
i yi = 1

m̃

∑
i(ai

′x)2 and so, w.p.
≥ 1 − 2 exp(−cε2

4m̃),

| ν̂2 − ‖x‖2 | = |x′( 1
m

∑

i

aiai
′ − I)x| ≤ ε4‖x‖2

Since ε4 < 1, this implies that (1 − ε4)‖x‖ ≤ ν̂ ≤ (1 + ε4)‖x‖
and so |ν̂ − ‖x‖ | ≤ ε4‖x‖. Hence, w.p. ≥ 1 − 2 exp(−cε2

4m̃),
|ν̂ − ν| ≤ (ε4 + δU )‖x‖. �

Proof of Lemma 6.17: The proof is a simplified and clearer ver-
sion of the proof of Theorem 4.1 of [9]. The complete proof is
given in the Supplementary Document. We give the key ideas
here. Let E[.] denote expectation conditioned on x, Û . Recall that
E[Y g ] = 2gg′ + ‖g‖2I and thus we need to bound ‖Y g − E[Y g ]‖.
(1) Due to rotational symmetry of ãi’s we can let g be the
first column of I . This gives a simpler expression for Y g . (2)
Truncate ãi’s as follows: for each j = 1, 2, . . . , r, let (ãtrunc

i )j =
(ãi)j if ((ãi)j )2 ≤ 20 log m, (ãtrunc

i )j = 0 otherwise. Define
Y trunc

g using ãtrunc
i ’s. (3) Apply Theorem 1.4 of [34] (matrix Bern-

stein) to bound ‖Y trunc
g − E[Y trunc

g ]‖ w.p. ≥ 1 − 2/m̃8 . (4) By
definition, ‖Y g − Y trunc

g ‖ = 0 w.p.≥ 1 − 2/m̃8 . (5) Finally bound
‖E[Y g ]− E[Y trunc

g ]‖ by 4/m̃4.5 . This is easy because both E[Y g ]
and E[Y trunc

g ] are diagonal (the latter is diagonal because the trun-
cation ensures that entries of ãtrunc

i are also mutually independent and
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zero mean). Bound the diagonal entries using the following trick: for
ξ large, e.g. for ξ > 10, ξ4e−ξ 2 /4 < 1 and so ξ4e−ξ 2 /2 < e−ξ 2 /4 ;
similarly, ξ2

1 e−ξ 2
1 /4ξ2

2 e−ξ 2
2 /4 < 1 for ξ1 , ξ2 large. �

APPENDIX C
SUPPLEMENTARY DOCUMENT

Proof of Theorem 6.2: The proof strategy is similar to that of
Theorem 5.39 of [30]. By Fact A.3, item 1, for each j, the
r.v.s wj

′z are sub-Gaussian with sub-Gaussian norm bounded
by K‖z‖; (wj

′z)2 are sub-exponential with sub-exponential
norm bounded by 2K2‖z‖2 ; and (wj

′z)2 − E[(wj
′z)2 ] =

z′(wjwj
′)z − z′(E[wjwj

′])z are centered sub-exponential with
sub-exponential norm bounded by 4K2‖z‖2 . Also, for different j’s,
these are clearly mutually independent. Thus, by applying Fact A.3,
item 2 (Corollary 5.17 of [30]) we get the first part.

To prove the second part, let N1/4 denote a 1/4-th net on the unit

sphere in Rn . Let W := 1
N

∑N
j=1(wjwj

′ − E[wj wj
′]). Then by

Fact A.2 (Lemma 5.4 of [30])

‖W ‖ ≤ 2 max
z∈N1 / 4

|z′W z| (18)

Since N1/4 is a finite set of vectors, all we need to do now
is to bound |z′W z| for a given vector z followed by apply-
ing the union bound to bound its maximum over all z ∈ N1/4 .
The former has already been done in the first part. By Fact
A.2 (Lemma 5.2 of [30]), the cardinality of N1/4 is at most

9n . Thus, using the first part, Pr(maxz∈N1 / 4 |z′W z| ≥ 4εK 2

2 ) ≤
9n · 2 exp(−c ε2

4 N ) = 2 exp(n log 9 − cε2N ). By (18), we get the
result. �

Complete Proof of Lemma 6.17: The proof is a simplified and
clearer version of the proof of Theorem 4.1 of [9]. The few differences
are as follows: we truncate differently (in a simpler fashion); and we
use different constants to get a higher probability of the good event.

Without loss of generality, assume that g is unit norm. Recall

that Y g := 1
m

∑
i(ãi

′g)2 ãi ãi
′ with ãi

iid∼ N (0, I). Since ãi’s are
rotationally symmetric, without loss of generality, we can assume
that g is the first column of identity matrix. Then,

Y g =
1
m

∑

i

(ãi)21 ãi ãi
′

We use Theorem 1.5 of [34] to prove the result. To use this result, we
need to first truncate ãi’s. In particular we need to definitely truncate
(ãi)1 and ‖ãi‖2 . However truncating all entries of ãi results in a
simpler proof and hence we use this approach. For j = 1, 2, . . . , r,
define

(ãtrunc
i )j = (ãi)j if ((ãi)j )2 ≤ 20 log m,

(ãtrunc
i )j = 0 otherwise

Define

Y trunc
g :=

1
m̃

∑

i

(ãtrunc
i )21 ãtrunc

i ãtrunc
i

′

By Fact A.3, item 4, ãtrunc
i = ãi w.p. ≥ 1 − 2r/m̃10 ≥ 1 − 2/m̃9

since m̃ ≥ r. This holds for all i = 1, 2, . . . m̃, w.p. ≥ 1 − 2/m̃8 .
Thus, ‖Y g − Y trunc

g ‖ = 0 w.p. ≥ 1 − 2/m̃8 .
To apply Theorem 1.5 of [34] (matrix Bernstein), define

matrix Xi := (ãtrunc
i )21 ãtrunc

i ãtrunc
i

′. Clearly ‖Xi‖ ≤ 20 log m̃ ·
(r20 log m̃) = 400r log2 m̃ := R. Also ‖E[X2

i ]‖ ≤ (ãtrunc
i )41

‖ãtrunc
i ‖2‖E[ãtrunc

i ãtrunc
i

′]‖ ≤ 8000r log3 m̃‖E[ãtrunc
i ãtrunc

i
′]‖ ≤

8000r log3 m̃. Here we used ‖E[ãtrunc
i ãtrunc

i
′]‖ ≤ 1. This is

true because: (a) even with the truncation, the different com-
ponents of ãtrunc

i remain independent and zero mean and so
E[(ãtrunc

i )j1(ãtrunc
i )j2 ] = 0 for j1 �= j2; thus, E[ãtrunc

i ãtrunc
i

′] is
diagonal; and (b) it is easy to see that E[(ãtrunc

i )2j ] ≤ E[(ãi)2j ] = 1.

Thus, we can apply the theorem with R = 400r log2 m̃ and σ2 =

‖∑i E[X2
i ]‖ ≤ 20m̃R log m̃. Picking ν =

√

400 · 20 r log4 m̃
m̃ , we

get

‖Y trunc
g − E[Y trunc

g ]‖ ≥ ν

w.p. ≤ 2r exp
(

− m̃2ν2

m̃R log m̃ + m̃Rν/3

)

≤ 2r exp
(

− m̃ν2

2R log m̃

)

≤ 2 exp

(

log r − m̃400 · 20r log4 m̃

m̃2 · 400r log3 m̃

)

= 2 exp(log r − 10 log m̃) ≤ 2/m̃9

This follows since m̃ > cr log4 r (and so ν < 1 and m̃ > r)
Moreover, w.p. ≥ 1 − 2/m̃8 ,

‖Y trunc
g − Y g‖ = 0

Thus, w.p. ≥ 1 − 4/m̃8 ,

‖Y g − E[Y trunc
g ]‖ ≤ ν =

√

8000
r log4 m̃

m̃

Now we only need to bound ‖E[Y trunc
g ]− E[Y g ]‖. This is easy and

uses the following facts. (a) clearly, E[Y g ] is diagonal; (b) E[Y trunc
g ]

is also diagonal since with our truncation the different components
of ãtrunc

i remain independent and zero mean; and (c) thus we only
need to bound the diagonal entries of E[Y trunc

g ]− E[Y g ]. Consider
the (1, 1)-th entry. We bound this by using the fact that for ξ > 10,
ξ4e−ξ 2 /4 < 1. If m̃ > 3, 20 log m̃ > 18 > 10 and hence this bound
holds over the entire region of integration.

E[(ãi)41 − (ãtrunc
i )41 ] = 2

∫ ∞
√

20 log m̃
ξ4 e−ξ 2 /2
√

2π
dξ

≤ 2
∫ ∞
√

20 log m̃

e−ξ 2 /4
√

2π · 2
√

2dξ

=
√

2 Pr(|x| >
√

9 log m̃/2) ≤ √2
2

m̃4.5

if m̃ > 3. Here x is a standard Gaussian r.v.. The last inequality used
Fact A.3, item 4.

Next consider the (j, j)-th entry for j > 1. This can be bounded
using a similar trick.

E[(ãi)21(ãi)2j − (ãtrunc
i )21(ãtrunc

i )2j ]

≤ 2
∫

ξ 2
1 ≥20 log m̃

ξ2
1 ξ2

2 exp(−(ξ2
1 + ξ2

2 )/2)
1
2π

dξ1dξ2

= 2
∫

ξ 2
1 ≥20 log m̃

ξ2
1 exp(−ξ2

1 /2)
1√
2π

dξ1

≤ 2
∫

ξ 2
1 ≥20 log m̃

exp(−ξ2
1 /4)

√
2√

2π2
dξ1 ≤ 2

√
2

m̃4.5
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Thus, w.p. ≥ 1 − 4/m̃8 ,

‖Y g − E[Y g ]‖ ≤
√

8000
r log4 m̃

m̃
+

4
m̃4.5 .

If m̃ > cr log4 r/ε2
5 , then the above bound is below 2ε5 . To see this

notice that for m̃ = cr log4 r/ε2
5 , log4 m̃

m̃ ≤ cε2
5/r; and (log4 m̃)/m̃

is an increasing function (for m̃ large). �

APPENDIX D
EXPERIMENT DETAILS FOR FIG. 1

We used real videos that are approximately low rank and CDP
measurements of their images. Each image (arranged as a 1D vector)
corresponds to one xk and hence the entire video corresponds to the
matrix X . We show results on a moving mouse video and on a moving
airplane video (shown in Fig. 1). We show two results with “low-
rankified videos”9 and one result with the original airplane video. The
airplane images were of size n1 × n2 with n1 = 240, n2 = 320; the
mouse images had n1 = 180, n2 = 319. Thus, n = n1n2 = 76800
and n = 57420 respectively. Mouse video had q = 90 frames and
airplane one had q = 105 frames.

The CDP measurement model can be understood as follows [11].
First, note that it allows m to only be an integer multiple of n;
so let m = nL for an integer L. Let yk denote the vector con-
taining all measurements of xk . Then yk = |Ak

′xk |2 where Ak =
[(F M k,1)′, (F M k,2)′, . . . , F (M k,L )′]; each M k,l is a diagonal
n × n mask matrix with diagonal entries chosen uniformly at random
from the set {1,−1,

√−1,−√−1}, and F = F 1D,n1 ⊗ F 1D,n2

where F 1D,n is the n-point discrete Fourier transform (DFT) matrix
and ⊗ denotes Kronecker product. Thus, (F xk ) is the vectorized
version of the 2D-DFT of the image corresponding to xk

In this experiment, n and m are very large and hence the mem-
ory complexity is very large. Thus, the algorithm cannot be imple-
mented using matrix-vector multiplies. However, since the measure-
ments are masked-Fourier, we can implement its “operator” version
as was also done in the TWF code [11]. All matrix-vector multi-
plies are replaced by “operators” that use 2D fast Fourier transform
(2D-FFT) or 2D-inverse-FFT (2D-IFFT) functions, preceded or fol-
lowed by applying the measurement masks. This is a much faster
and memory efficient implementation. Only the masks need to be
stored. The EVD in the initialization step is implemented by a block-
power method that uses 2D-FFT. The LS step is implemented us-
ing the operator-version of conjugate gradient LS (CGLS) taken
from http://web.stanford.edu/group/SOL/software/cgls/. TWFproj
and LRPR1 are implemented similarly.

For this experiment, we used 50 outer loop iterations in each algo-
rithm. Also, 50 iterations of the block-power method were used. For
LRPR2, 3 iterations of CGLS were used. We display the NormErr for
LRPR2, LRPR1, TWF (TWF-init+TWF) and TWFproj (TWFproj-
init+TWFproj) in Table III. Execution times are again shown in
parentheses. Three frames of the results corresponding to the last
row of this table are shown in Fig. 1 in Sec. II. As can be seen,
LRPR2 has the smallest error in all cases. LRPR2 is also the slowest;
it is at least r times slower than TWF. But, TWF and TWFproj do
not work when m = nL is small: notice that the error is much more
than one even for L = 3. LRPR1 is slower than TWF and TWFproj
but is much faster than LRPR2. Notice also that, when LRPR2 error
is more than 0.1, LRPR1 error is not too much larger than that of
LRPR2; in the regime when LRPR2 error is below 0.001, LRPR1
error is 100–1000 times larger. Thus, if just a good approximate solu-
tion is needed, LRPR1 offers a better compromise between speed and

9The original video data matrix Xor ig was made exactly low rank by pro-
jecting it onto the space of rank-r matrices where r was chosen to retain 90%
of the singular values’ energy.

TABLE III
RESULTS FOR VIDEOS WITH CDP MEASUREMENTS: THE TABLE IS DISPLAYED

AS NORMERR (TIME IN SECONDS)

performance with fewer measurements. If a very accurate solution is
needed but speed is not a concern, LRPR2 is a better idea.
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