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Abstract—Spectrum sensing and direction of arrival (DOA) es-
timation have both been thoroughly investigated. Estimating the
support of a set of signals and their DOAs is crucial to many signal
processing applications, such as cognitive radio (CR). A challeng-
ing scenario, faced by CRs, is that of multiband signals, composed
of several narrowband transmissions spread over a wide spectrum
each with unknown carrier frequency and DOA. The Nyquist rate
of such signals is high and constitutes a bottleneck for both ana-
log and digital processing. To alleviate the sampling rate issue,
several sub-Nyquist sampling methods, such as multicoset or the
modulated wideband converter (MWC), have been proposed in the
context of spectrum sensing. In this paper, we first suggest an al-
ternative sub-Nyquist sampling and signal reconstruction method
to the MWC, based on a uniform linear array (ULA). We then ex-
tend our approach to joint spectrum sensing and DOA estimation
and propose the CompreSsed CArrier and DOA Estimation (CaS-
CADE) system, composed of an L-shaped array with two ULAs. In
both cases, we derive conditions for perfect recovery of the signal
parameters and the signal itself and provide two reconstruction
algorithms. The first is based on the ESPRIT method and the sec-
ond on compressed sensing techniques. Both our joint carriers and
DOA recovery algorithms overcome the well-known pairing issue
between the two parameters. Simulations demonstrate joint car-
rier and DOA recovery from CaSCADE sub-Nyquist samples. In
addition, we show that our alternative spectrum sensing system
outperforms the MWC in terms of recovery error and design com-
plexity.

Index Terms—Sensor arrays, Compressed sensing, Direction-of-
arrival estimation, Cognitive radio, Sampling methods.

I. INTRODUCTION

BOTH traditional tasks of spectrum sensing and direction
of arrival (DOA) estimation have been thoroughly inves-

tigated in the literature. For the first, several sensing schemes
have been proposed, such as energy detection [1], matched fil-
ter [2] and cyclostationary detection [3], assuming known or
identical DOAs. Well known techniques for DOA estimation
include MUSIC [4], [5] and ESPRIT [6], followed by more
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computationally efficient algorithms such as [7], [8]. Here, the
signal frequency support is typically known. However, many
signal processing applications may require or at least benefit
from the two combined, namely joint spectrum sensing and
DOA estimation.

Cognitive Radio (CR) [9] is one such application, which aims
at solving the spectrum scarcity issue by exploiting its sparsity.
Spectral resources, traditionally allocated to licensed or pri-
mary users (PUs) by governmental organizations, are becoming
critically scant but at the same time have been shown to be
underutilized [10], [11]. These observations led to the idea of
CR, which allows secondary users to opportunistically access
licensed frequency bands left vacant by their primary owners,
increasing spectral efficiency [9], [12]. Spectrum sensing is an
essential task for CRs [13], [14], which need to constantly mon-
itor the spectrum and detect the PUs’ activity, reliably and fast
[15], [16]. DOA recovery can enhance CR performance by al-
lowing exploitation of vacant bands in space in addition to the
frequency domain.

The 2D-DOA problem, which requires finding two unknown
angles for each transmission and pairing them, is considered in
[17], [18]. The authors suggest a modification to the traditional
ESPRIT [6], which is used to estimate a single angle. However,
this approach only allows the recovery of two angles and solves
a separable problem. This cannot be directly extended to joint
angle and frequency estimation, which is not separable. Joint
DOA and carrier frequency estimation has been considered in
[19], [20], where the authors developed a joint angle-frequency
estimation (JAFE) algorithm. JAFE is based on an extension of
ESPRIT which allows for multiple parameters to be recovered.
However, this method requires additional joint diagonalization
of two matrices using iterative algorithms to pair between the
carrier frequencies and the DOAs of the different transmissions.
In [21], the authors consider multiple interleaved sampling
channels, with a fixed delay between consecutive channels.
They propose a two-stage reconstruction method, where first
the frequencies are recovered and then the DOAs are computed
from the corresponding estimated carriers. The works described
above all assume that the signal is sampled at least at its Nyquist
rate, and do not consider signal reconstruction.

Many modern applications deal with wideband signals lead-
ing to high Nyquist rates. For instance, to increase the chance
of finding unoccupied spectral bands, CRs have to sense a wide
spectrum, leading to prohibitively high Nyquist rates. Moreover,
such high sampling rates generate a large number of samples to
process, affecting speed and power consumption. To overcome
the rate bottleneck, several sampling methods have recently
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been proposed [14], [22], [23] that reduce the sampling rate in
multiband settings below Nyquist.

The multicoset or interleaved approach adopted in [22] suf-
fers from practical issues, as described in [23]. Specifically, the
signal bandwidth can exceed the analog bandwidth of the low
rate analog-to-digital converter (ADC) by orders of magnitude.
Another practical issue stems from the time shift elements since
it can be difficult to maintain accurate time delays between the
ADCs at such high rates. The modulated wideband converter
(MWC) [23], an analog front-end composed of several chan-
nels, was designed to overcome these issues. In each channel,
the analog wideband signal is mixed by a periodic function, low-
pass filtered and sampled at a low rate. The MWC solves carrier
estimation and spectrum sensing from sub-Nyquist samples, but
does not address DOA recovery.

A few works have recently considered joint DOA and spec-
trum sensing of multiband signals from sub-Nyquist samples.
In [24], the authors consider both time and spatial compres-
sion by selecting receivers from a uniform linear array (ULA)
and samples from the Nyquist grid using multicoset sampling.
They exploit a mathematical relation between sub-Nyquist and
Nyquist samples over a certain sensing time and recover the
signal’s power spectrum from the compressed samples. The fre-
quency support and DOAs are then estimated by identifying
peaks of the power spectrum, corresponding to each one of the
uncorrelated transmissions. Since the power spectrum is com-
puted over a finite sensing time, the frequency supports and
angles are obtained on a grid defined by the number of sam-
ples. In [25], an L-shaped array with two interleaved (or mul-
ticoset) channels, with a fixed delay between the two, samples
the signal below the Nyquist rate. Then, the carrier frequencies
and the DOAs are recovered from the samples. However, the
pairing between the two parameter is not discussed. Moreover,
this delay-based approach suffers from the same drawbacks
as the multicoset sampling scheme when it comes to practical
implementation.

In this work, we first consider spectrum sensing of a multi-
band signal whose transmissions are assumed to have known
or identical DOAs. For this scenario, we present an alternative
sub-Nyquist sampling scheme to the MWC, based on a ULA of
sensors. We then extend this approach to the case where both
the carrier frequencies and DOAs of the transmissions compos-
ing the input signal are unknown. In this case, we propose the
CompreSsed CArrier and DOA Estimation (CaSCADE) sys-
tem, consisting of an L-shaped array, and perform joint DOA
and carrier recovery from sub-Nyquist samples.

In the first scenario, we consider a ULA where each sensor
implements one MWC channel. This configuration has two main
advantages over the MWC. First, it allows for a simpler design
of the mixing functions which can be identical in all sensors.
Second, the ULA based system outperforms the MWC in low
signal to noise ratio (SNR) regimes. This is due to the fact
that since all MWC channels belong to the same sensor, they
are all affected by the same additive sensor noise. In contrast,
each channel of the ULA system has a different sensor with
uncorrelated sensor noise between channels, allowing for noise
averaging that increases SNR.

Using the ULA configuration, we are able to formulate sub-
Nyquist spectrum sensing as the well known sum-of-exponents
problem, which can be solved by various known methods. Here,
we present two approaches to recover the carrier frequencies of
the transmissions composing the input signal. The first is based
on compressed sensing (CS) [26] algorithms and assumes that
the carriers lie on a predefined grid. In the second technique, we
drop the grid assumption and use ESPRIT [6] to estimate the
frequencies. Once these are recovered, we show how the signal
itself can be reconstructed. We demonstrate that the minimal
number of sensors required for perfect reconstruction in noise-
less settings is identical for both recovery approaches and that
our system achieves the minimal sampling rate derived in [22].

Next, we extend our approach to joint spectrum sensing and
DOA estimation from sub-Nyquist samples, using CaSCADE,
which implements the modified MWC over an L-shaped ar-
ray. Specifically, we consider several narrowband transmissions
spread over a wide spectrum, impinging on an L-shaped ULA,
each from a different direction. The array sensors are composed
of an analog mixing front-end, implementing one channel of
the MWC [23], as before. We suggest two approaches to jointly
recover the carrier frequencies and DOAs of the transmissions.
The first is based on CS techniques and allows recovery of
both parameters assuming they lie on a predefined grid. The CS
problem is formulated in such a way that no pairing issue arises
between the carrier frequencies and their corresponding DOAs.
The second approach, inspired by [17], [18], extends ESPRIT
to the joint estimation of carriers and DOAs, while overcoming
the pairing issue. Our 2D-ESPRIT algorithm can be applied to
sub-Nyquist samples, as opposed to previous work which only
considered the Nyquist regime.

Once the carriers and DOAs are recovered, the signal itself
is reconstructed, similarly to the previous scenario. We provide
sufficient conditions on our sampling system for perfect recon-
struction of the carriers and DOAs, and of the signal itself, in
noiseless settings. We compare our reconstruction algorithms
to the Parallel Factor (PARAFAC) analysis method [27], pre-
viously proposed for the 2D-DOA problem [28], [29] in the
Nyquist regime. The adaptation of PARAFAC to the joint spec-
trum sensing and carrier estimation from sub-Nyquist samples
problem has been presented in the conference version of this
paper [30].

This paper is organized as follows. In Section II, we formu-
late the signal model and spectrum sensing goal. Section III
presents the ULA-based sub-Nyquist sampling and reconstruc-
tion schemes assuming known and identical DOA. The joint
spectrum sensing and DOA estimation problem is considered
in Section IV. We present the CaSCADE system along with
its sampling scheme and reconstruction techniques. Numerical
experiments for both systems are shown in Section V.

II. SPECTRUM SENSING PROBLEM FORMULATION

A. Signal Model

Let u (t) be a complex-valued continuous-time signal, ban-
dlimited to F =

[−fNyq/2 ,
fNyq/2

]
and composed of up to

M uncorrelated transmissions si (t) , i ∈ {1, 2, . . . ,M}. Each
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Fig. 1. The different stages of the analog mixing front-end at the nth sensor.
(a) The input signal in the frequency domain U (f ) with M = 3 different
source signals. (b) Each replicated source signal (after mixing). (c) Replicated
input signal Ỹn (f ) (after mixing). (d) Baseband signal Yn (f ) after LPF.

transmission si (t) is modulated by a carrier frequency fi ∈ R,
such that

u (t) =
M∑

i=1

si (t) ej2πfi t . (1)

Assume that si (t) are bandlimited to B =
[−1/2T , 1/2T

]
and

disjoint, namely mini �=j {|fi − fj |} > B, where B = |B|. For-
mally, the Fourier transform of u(t), defined by

U(f) =
∫ ∞

−∞
u(t)e−j2πf tdt =

M∑

i=1

Si(f − fi), (2)

where Si (f) is the Fourier transform of si (t), is zero for every
f /∈ F . All source signals are assumed to have identical and
known angles of arrival (AOA) θ �= 90◦. A typical source sig-
nal u(t) is depicted in the frequency domain in Fig. 1(a). The
corresponding signal set is defined formally in the following
definition.

Definition 1: The set M1 contains all signals u (t), such that
the support of the Fourier transform U (f) is contained within
a union of M disjoint intervals in F . Each of the bandwidths
does not exceed B and all the transmissions composing u (t)
have identical and known AOA θ �= 90◦.

We wish to design a sampling and reconstruction system
for signals from the model M1 which satisfies the following
properties:

1) The system has no prior knowledge on the carrier frequen-
cies.

2) The sampling rate should be as low as possible.
Let s(t) = [s1(t), s2(t), · · · , sM (t)]T be the source signals

vector, S(f) = [S1(f), S2(f), · · · , SM (f)]T the signal Fourier
transform vector, and f = [f1 , f2 , · · · , fM ]T the carrier fre-
quencies vector. Our goal is then to design a sampling and
reconstruction method in order to recover f and s(t) from sub-
Nyquist samples of u(t). In the reconstruction phase, we address
two separate objectives:

1) Frequency recovery, i.e. recovering only f .
2) Full spectrum recovery, i.e. recovering both f and s(t).

Fig. 2. MWC system.

Fig. 3. ULA configuration with N sensors, with distance d between two
adjacent sensors. Each sensor includes an analog front-end composed of a
mixer with the same periodic function p (t), a LPF and a sampler, at rate fs .

B. Multicoset Sampling and the MWC

It was previously shown in [22], that if MB <
fNyq

2 , then the
minimal sampling rate to allow blind reconstruction of u (t) is
2MB, namely twice the Landau rate [31]. Concrete algorithms
for blind recovery achieving the minimal rate were developed
in [22] based on multicoset sampling and in [23] based on the
MWC. Unfortunately, the implementation of multicoset sam-
pling is problematic due to the inherent analog bandwidth of
the ADCs and the required synchronization between time shift
elements [23].

The MWC achieves the minimal sampling rate and has been
implemented in practice [23], [32]. This system is composed
of N parallel channels. Each channel consists of an analog
mixing front-end in which u(t) is multiplied by a periodic mix-
ing function pn (t), 1 ≤ n ≤ N . This multiplication aliases the
spectrum, such that each spectral band appears in baseband. We
denote by Tp the period of pn (t) and require fp = 1/Tp ≥ B.
The signal then goes through a low-pass filter (LPF) with cut-off
frequency fs/2 and is sampled at rate fs ≥ fp . Finally, u(t) is
reconstructed from the low rate samples using CS techniques.
An illustration of the MWC is shown in Fig. 2.

A known difficulty of the MWC is choosing appropriate peri-
odic functions pn (t) so that their Fourier coefficients fulfill CS
requirements [33]. In this work, we suggest an alternative im-
plementation of the MWC, based on a ULA, which overcomes
this difficulty, and satisfies the properties described above. In
addition, our ULA based system, shown in Fig. 3, is more ro-
bust to noise, as we demonstrate via simulations. In Section IV,
we show that the system can also be used for DOA recovery.
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III. ULA BASED MWC

A. System Description

Our sensing system consists of a ULA composed of N sen-
sors, with two adjacent sensors separated by a distance d, such
that d < c

| cos(θ)|fNyq
, where c is the speed of light. All sensors

have the same sampling pattern implementing a single channel
of the MWC; the received signal is multiplied by a periodic
function p(t) with period Tp = 1/fp , low-pass filtered with a
filter that has cut-off frequency fs/2 and sampled at the low
rate fs . The system is illustrated in Fig. 3. The only requirement
on p(t) is that none of its Fourier series coefficients within the
signal’s Nyquist bandwidth are zero.

In the next section, we show how we can recover both the car-
rier frequencies f and s(t), which uniquely determine the signal
u(t), from the samples at the output of Fig. 3. We demonstrate
that the minimal number of sensors required by both our recon-
struction methods is N = 2M , with each sensor sampling at the
minimal rate of fs = B to allow for perfect signal recovery. This
leads to a minimal sampling rate of 2MB, as shown in [22],
which is assumed to be less than fNyq. With high probability,
the minimal number of sensors reduces to M + 1.

In the remainder of this section, we describe our ULA based
sampling scheme and derive conditions for perfect recovery of
the carrier frequencies f and the transmissions s(t). We then
provide concrete recovery algorithms.

B. Frequency Domain Analysis

We start by deriving the relation between the sample se-
quences from the nth sensor and the unknown transmissions
si(t) and corresponding carrier frequencies f . To this end, we
introduce the following definitions

Fp �
[−fp/2 ,

fp/2
]
, Fs �

[−fs/2 ,
fs/2

]
. (3)

Consider the received signal un (t) at the nth sensor of the
ULA

un (t) =
M∑

i=1

si(t + τn )ej2πfi (t+τn ) ≈
M∑

i=1

si(t)ej2πfi (t+τn ) ,

(4)
where

τn =
dn

c
cos (θ) (5)

is the accumulated phase at the nth sensor with respect to the
first sensor. The approximation in (4) stems from the narrowband
assumption on the transmissions si (t). The Fourier transform
of the received signal un (t) is then given by

Un (f) =
M∑

i=1

Si (f − fi) ej2πfi τn . (6)

In each sensor, the received signal is first mixed with the
periodic function p(t) prior to filtering and sampling. Since p(t)
is periodic with period Tp = 1/fp , it can be represented by its

Fourier series

p(t) =
∞∑

l=−∞
cle

j2π lfp t , (7)

where

cl =
1
Tp

∫ Tp

0
p(t)e−j2π lfp tdt. (8)

The Fourier transform of the analog multiplication ỹn (t) =
un (t)p(t) is evaluated as

Ỹn (f) =
∫ ∞

−∞
un (t) p (t) e−j2πf tdt

=
∞∑

l=−∞
clUn (f − lfp) . (9)

The mixed signal Ỹn (f) is thus a linear combination of fp−
shifted and cl− scaled copies of Un (f). Since U (f) = 0, ∀f

/∈ F , the sum in (9) contains at most
⌈

fNyq

fp

⌉
nonzero terms, for

each f . Figs. 1(b)–(c) depict each transmission and the resulting
signal after mixing, respectively.

Substituting (6) into (9), we have

Ỹn (f) =
∞∑

l=−∞
cl

M∑

i=1

Si (f − fi − lfp) ej2πfi τn .

Denote by h(t) and H(f) the impulse and frequency responses
of an ideal LPF with cut-off frequency fs , respectively. After
filtering ỹn (t) with h(t), we have

Yn (f) = Ỹn (f) H (f)

=

{∑∞
l=−∞ cl

∑M
i=1 Si (f − fi − lfp) ej2πfi τn , f ∈ Fs

0, f /∈ Fs .

Note that Yn (f) only contains frequencies in the interval Fs ,
due to the lowpass operation. Therefore, it is composed of a
finite number of aliases of Un (f). Consequently, we can write

Yn (f) =
L0∑

l=−L0

cl

M∑

i=1

Si (f − fi − lfp) ej2πfi τn

=
M∑

i=1

ej2πfi τn

L0∑

l=−L0

clSi (f − fi − lfp)

=
M∑

i=1

S̃i (f) ej2πfi τn ,

where L0 is the smallest integer such that the sum contains all

nonzero contributions, i.e. L0 =
⌈

fNyq+fs

2fp

⌉
− 1, and

S̃i(f) �
L0∑

l=−L0

clSi(f − fi − lfp), f ∈ Fs . (10)

The corresponding Yn (f) after filtering is depicted in Fig. 1(d).
Note that in the interval Fp , S̃i (f) is a cyclic shifted and scaled
(by known factors {cl}) version of Si (f), as shown in Fig. 4.
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Fig. 4. The left pane shows the original source signals at baseband (before
modulation). The right pane presents the output signals at baseband S̃ (f ) after
modulation, mixing and filtering.

After sampling, the discrete-time Fourier transform (DTFT)
of the nth sequence xn [k] � yn (kTs) is expressed as

Xn

(
ej2πf Ts

)
=

M∑

i=1

Wi

(
ej2πf Ts

)
ej2πfi τn , f ∈ Fs , (11)

where we define wi [k] � s̃i (kTs) and Wi

(
ej2πf Ts

)
=

DTFT {wi [k]}. It is convenient to write (11) in matrix form
as

X (f) = AW (f) , f ∈ Fs . (12)

Here, X (f) is of length N with nth element Xn (f) =
Xn

(
ej2πf Ts

)
, the unknown vector W (f) is of length M , with

its ith entry Wi (f) = Wi

(
ej2πf Ts

)
and the matrix A depends

on the unknown carrier frequencies vector f , and is defined by

A =

⎛

⎜
⎜
⎜
⎝

ej2πf1 τ1 · · · ej2πfM τ1

...
...

ej2πf1 τN · · · ej2πfM τN

⎞

⎟
⎟
⎟
⎠

. (13)

In the time domain, we have,

x[k] = Aw[k], k ∈ Z, (14)

where x[k] has nth element xn [k] and w[k] is a vector of length
M with ith element wi [k].

In the next section, we derive sufficient conditions for (14)
to have a unique solution, namely for perfect recovery of the
carrier frequencies f and the transmissions s (t) from the low
rate samples x [k].

C. Choice of Parameters

In order to enable perfect blind reconstruction of both the car-
rier frequencies f and transmissions s (t) in noiseless settings,
we first require (14) to have a unique solution. In addition,
we need to ensure that s (t) can be uniquely recovered from
w[k], k ∈ Z. Theorem 1 presents sufficient conditions for (14)
to have a unique solution. Then, Theorem 2 specifies sufficient
conditions for perfect recovery of s (t).

1) Carrier Frequency Recovery: We first consider sufficient
conditions on the ULA to allow for perfect reconstruction of f .

Theorem 1: Let u (t) be an arbitrary signal in M1 and con-
sider a ULA with spacing d < c

| cos(θ)|fNyq
and steering matrix A.

If:
� (c1) N > 2M − dim (span (w))
� (c2) dim (span (w)) ≥ 1,
then (14) has a unique solution (f ,w).
Proof: From the assumption of disjoint transmissions, we

have fi �= fj , for i �= j. Thus, if d < c
| cos(θ)|fNyq

, then it holds

that d �= ck
|cos(θ)| · 1

|fi −fj | , ∀k ∈ Z, ∀i �= j, and ej2πfi τn �=
ej2πfj τn for 1 ≤ n ≤ N − 1, with τn defined in (5). It fol-
lows that A is a Vandermonde matrix with M ≤ N , and thus,
rank (A) = M , that is A is full column rank.

Since d < c
| cos(θ)|fNyq

, we have that 2πfiτ1 ∈ (−π, π]. The
proof then follows directly from Proposition 2 in [34].

Proposition 1 (Proposition 2, [34]): If (f ,w) is a solution
to (14), and

N > 2M − dim (span (w)) , dim (span (w)) ≥ 1

then (f ,w) is the unique solution of (14). �
Note that dim (span (w)) < 1 iff u(t) ≡ 0, that is the received

signal does not contain any transmission.
2) Signal Recovery: While Theorem 1 guarantees the

uniqueness of (f ,w), some additional conditions need to be
imposed in order to uniquely derive s (t) from w, as w is a
sampled permutation of s (t). Obviously, in order to be able to
achieve perfect reconstruction of s (t), the preprocessing of the
signal (i.e mixing with p(t) and filtering with h (t)) should not
cause any loss of information. The following lemma presents
conditions on p(t) and H(f) so that each entry of the processed
signal vector S̃(f) is a cyclic shift (up to scaling by known
factors {cl}) of the matching entry of the original source signal
vector S(f), as shown in Fig. 4. In particular, the transformation
between S(f) and S̃(f) should be invertible so that the former
can be recovered from the latter.

Lemma 1: If fs ≥ fp ≥ B and cl �= 0 for all l ∈
{−L0 , . . . , L0}, where cl is defined in (8), then for all f ′ ∈ Fp ,
there exists a unique k ∈ Z, such that

S̃i (f ′) = ckSi (f ′ − fi − kfp) . (15)

Proof: Consider the ith transmission. In the interval Fp , the
output of the LPF H(f), namely S̃i (f), is given by

S̃i (f) =
L0∑

l=−L0

clSi (f − fi − lfp) , f ∈ Fp . (16)

Since fp ≥ B, the sum in (16) is over disjoint bands and only
one of its elements is nonzero for each f . Equation (15) is
true for k that satisfies f ′ − fi − kfp ∈ Fp , since for any other
k′ �= k, f ′ − fi − k′fp /∈ Fp and S̃i (f ′ − fi − k′fp) = 0. �

If fs ≥ fp ≥ B, then the sampling rate obeys the Nyquist rate
of S̃i (f). Together with Lemma 1 this ensures that s (t) can be
reconstructed from the low rate samples x[k], as incorporated
in the following theorem.
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Theorem 2: Let u(t) and the ULA be as in Theorem 1 and
let (f ,w) be the unique solution of (14). If:

� (c1) cl �= 0 for all l ∈ {−L0 , . . . , L0}, where cl is defined
in (8)

� (c2) fs ≥ fp ≥ B,
then {si (t)}M

i=1 can be uniquely recovered from x [k].
Proof: Consider the ith transmission and let f ′ ∈ B ⊆ Fp .

Since si(t) is bandlimited to B, it holds that

Wi

(
ej2πf ′Ts

)
= S̃i (f ′) = cla Si (f ′ − fi − la · fp) , (17)

where the last equality follows from Lemma 1. Since cla �= 0,
we have

Si (f ′ − fi − la · fp) =
1

cla

Wi

(
ej2πf ′Ts

)
, (18)

or, after a change of variables,

Si (f ′) =
1

cla

Wi

(
ej2π (f ′+fi + la ·fp )Ts

)
, (19)

where la is given by

la =
⌊

fi + f ′ + fp/2
fp

⌋
, (20)

completing the proof. �
Note that la , defined in (20), can only be the index of one

of the two fp -bins that may overlap with the ith transmission’s
support.

3) Minimal Sampling Rate: It was previously proved in [22]
that the minimal sampling rate for perfect blind reconstruction
of a signal in the model M1 is 2MB. The sampling rate in
our ULA based scheme is governed by B and dim (span (w)),
where 1 ≤ dim (span (w)) ≤ M . Therefore, in the worst case,
the minimal sampling rate that can be achieved is 2MB, in
accordance with [22]. With high probability, dim (span (w)) =
M and the minimal rate becomes as low as (M + 1) B.

If our sole objective is carrier frequency recovery, then we
can further reduce the sampling rate of each channel fs below
B. However, in this case, the signal Wi

(
ej2πf Ts

)
is an aliased

version of S̃i (f). A possible, though unlikely, consequence of
the aliasing is that for some transmission, the folded versions
of S̃i (f) cancel each other and result in Wi

(
ej2πf Ts

) ≡ 0. In
such a case, Wi

(
ej2πf Ts

)
and the corresponding ith column of

the steering matrix will not appear in (14). Nevertheless, this
unlikely scenario will not affect the recovery of the other sig-
nals carrier frequencies. Carrier recovery is possible for each
si(t) such that Wi

(
ej2πf Ts

) �= 0 for some f ∈ Fs , even if
Wi

(
ej2πf Ts

)
suffers from loss of information due to folding.

D. Reconstruction Methods

To solve (14), one can use any adequate DOA algorithm to
recover the carriers directly from the low rate samples. In this
section, we propose two such reconstruction methods, provided
as representatives of subspace and CS [26] techniques. Once the
carriers are estimated, the transmissions s(t) may be found by
inverting (14) and using the relation in (19).

Algorithm 1: ESPRIT.
Input:

� Q snapshots of the sensors measurements x[k]
Output:

� f̂ - estimated carriers frequencies
Algorithm:

1) Estimate the sample covariance R =
∑Q

k=1 x[k]xH [k]
2) Decompose R using the singular value decomposition:

R = UΣVH

3) Extract signal subspace: Us =
[
u1 , . . . ,uM

]
, the first

M left singular vectors of R
4) Define: U1 =

[
u1 , . . . ,uM −1

]
, U2 =

[
u2 , . . . ,uM

]

5) Perform least squares recovery:
a) Ψ = U†

1U2

b) f̂ =
∠(eig(Ψ))c

2πd cos(θ)

1) ESPRIT Approach: One practical method to obtain a so-
lution (f̂ , ŵ) is by using the ESPRIT algorithm [6] on the mea-
surement set x[k], as in [34] (Section C.). We can either assume
that the number of source signals M is known or first estimate
it using the minimum description length (MDL) algorithm [6],
for example.

One of the conditions needed to use ESPRIT is that the cor-
relation matrix Rw =

∑
k∈Z w[k]wH [k] is positive definite.

From [34] (Proposition 3), if dim (span (w)) = M , then Rw 
0. Therefore, the authors in [34] distinguish between two cases.
The first, where Rw  0, is referred to as the uncorrelated case.
Here, ESPRIT is directly applied on R =

∑Q
k=1 x[k]xH [k],

with Q is the number of snapshots. The main steps of ESPRIT
are summarized in Algorithm 1. In the algorithm description,
∠(·) denotes the phase of its argument and eig (Ψ) is a vector
of the eigenvalues of Ψ.

If dim (span (w)) < M , then the rank of the correlation ma-
trix R is less than M . In this case, an additional step is im-
plemented to construct a smoothed correlation matrix of rank
M , before applying ESPRIT. This scenario is referred to as the
correlated case [34]. The smoothed correlation matrix is given
by

R̄ =
1
V

V∑

l=1

Q∑

k=1

xl [k]xH
l [k] , (21)

where V � N − M and

xl [k] � [xl [k] , xl+1 [k] , · · · , xl+M [k]]T , 1 ≤ l ≤ V.
(22)

Note that in order to be able to construct the smoothed corre-
lation matrix, we require N > 2M − dim (span (w)), which is
exactly condition (c2) in Theorem 1.

Once the carrier frequencies fi are recovered, the steering
matrix A, defined in (13) is constructed. The vector W(f) is
then obtained by inverting the steering matrix,

W(f) = A†X(f), (23)

and the source signal vector is computed using (19).
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2) CS Approach: Suppose that the carrier frequencies fi lie
on a grid {δl}L

l=−L , with L = fNyq

2δ . Here, δ is a parameter of the
recovery algorithm that defines the grid resolution. Equation
(14) then becomes

x[k] = Gw[k], k ∈ Z, (24)

where G is a N × (2L + 1) matrix with (n, l) element Gnl =
ej2πτn lδ . The nonzero elements of the sparse (2L + 1) × 1 vec-
tor w[k] have unknown indices li = fi

δ for 1 ≤ i ≤ M .
The set of equations (24) represents an infinite number of

linear systems with joint sparsity. Such systems are known as
infinite measurement vectors (IMV) in the CS literature [35].
We use the support recovery paradigm from [22] that produces
a finite system of equations, called multiple measurement vec-
tors (MMV) from an infinite number of linear systems. This
reduction is performed by what is referred to as the continuous
to finite (CTF) block [26], [35].

From (24), we have

R = GRg
wGH (25)

where R =
∑

k∈Z x[k]xH [k] is an N × N matrix and Rg
w =∑

k∈Z w[k]wH [k] is an M × M matrix. We then construct a
frame V such that R = VVH . Clearly, there are many possible
ways to select V. We construct it by performing an eigende-
composition of R and choosing V as the matrix of eigenvectors
corresponding to the nonzero eigenvalues. We then define the
following linear system

V = GU. (26)

From [22] (Propositions 2-3), the support of the unique sparsest
solution of (26) is the same as the support of the original set of
equations (24). Equation (26) can be solved using any MMV
CS algorithm, such as simultaneous orthogonal matching pursuit
(SOMP) [26].

Once the support S of U, namely the support of W(f), is
recovered, the carrier frequencies fi are computed using fi =
liδ, with li ∈ S, and the steering matrix A, defined in (13) is
constructed. The vectors w[k] and s(t) are then obtained using
(23) and (19), respectively.

Theorem 3 shows that the conditions for perfect recovery of
w[k] from (24) are identical to those derived in the previous
section.

Theorem 3: Let u(t) be an arbitrary signal within M1 and
consider a ULA with spacing d < c

| cos(θ)|fNyq
. The minimal num-

ber of sensors required for perfect recovery of w[k] in (24) in a
noiseless environment is N > 2M − dim(span(w)).

Proof: If d < c
| cos(θ)|fNyq

, then G is a Vandermonde matrix,

and therefore has full spark, namely spark(G) = M . From the
MMV recovery condition [36], we then have

M <
spark(G) − 1 + rank(V)

2
, (27)

where 1 ≤ rank(V) ≤ M . Finally, it holds that

rank(V) = dim(span(x)) = dim(span(w)), (28)

where the last equality follows from the fact that G is full
spark. �

TABLE I
MAIN PROPERTIES OF THE ULA BASED AND MWC SYSTEM

In the worst case, it holds that rank(V) = dim(span(w)) = 1
and the MMV processing does not improve the recovery ability
over the single measurement vector case. The required number
of sensors is then 2M , leading to a minimal sampling rate of
2MB. With high probability, rank(V) = dim(span(w)) = M
and the number of sensors needed is reduced to M + 1.

E. Comparison with the MWC

Both our ULA based system and the MWC [23] allow for re-
construction of multiband signals from samples obtained below
the Nyquist rate. The ULA approach adopts the same sampling
principle as the MWC but the two differ in several aspects. Both
systems use the same amount of mixers, LPFs and samplers.
However, the MWC uses one sensor composed of N analog
processing channels, whereas the ULA scheme uses N sen-
sors, each consisting of one channel. Since the MWC consists
of a single sensor, all the MWC channels are affected by the
same antenna noise. In the ULA system, each channel origi-
nates from a different sensor and therefore has different antenna
noise, uncorrelated with the others. Another difference between
the systems arises from the CS point of view. When using CS
reconstruction methods an important property is the restricted
isometry property (RIP) of the sensing matrix [26], [33]. In the
ULA scheme the sensing matrix is a Vandermonde matrix of
exponents, known to have poor RIP in general. In the MWC,
we design the sensing matrix by choosing the mixing functions
{pn (t)}, and thus control its RIP. Nevertheless, choosing ap-
propriate mixing functions can be difficult. Additionally, the
CS reconstruction approach for the ULA system uses a grid
for the carrier frequencies, while the MWC can retrieve carrier
frequencies from the continuous spectrum using CS algorithms.
As mentioned above, a known difficulty of the MWC is choos-
ing appropriate mixing functions {pn (t)} so that the original
signal can be reconstructed. The ULA scheme allows for all
sensors to use the same function p (t) and this function does
not have any limitation other than fp > B and cl �= 0 for all
l ∈ {−L0 , . . . , L0} making its design an easy task. Finally, the
ULA configuration can be extended to allow for joint carrier
and DOA recovery, as shown in Section IV. Table I summarizes
the main properties of each system.

IV. JOINT SPECTRUM SENSING AND DOA RECOVERY

We now show how our ULA based system can be expanded
to allow for joint recovery of the carrier frequencies and the
AOAs. This is the main advantage of our system with respect
to the MWC. We present the CaSCADE system, consisting of
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Fig. 5. Example of M = 3 source signals in the xz plane. Each transmission
is associated with a carrier frequency fi and AOA θi .

an L-shaped array composed of two orthogonal ULAs with an
identical sampling scheme.

Specifically, we consider the problem where the source sig-
nals si(t), 1 ≤ i ≤ M have both unknown and different car-
rier frequencies fi and AOAs θi . The main difference be-
tween this scenario and the one that has been discussed in
the previous sections is the additional unknown AOAs vec-
tor θ = [θ1 , θ2 , · · · , θM ]T . This problem can be treated as a
2D-DOA recovery problem, where two angles are traditionally
recovered. In our case, the second variable is the signal’s carrier
frequency instead of an additional angle. The 2D-DOA problem
requires both finding the two unknown angles and pairing them.
Previous work [17], [18] suggests a modification to the ESPRIT
algorithm, that achieves automatic pairing between the two es-
timated factors, by simultaneous singular value decomposition
(SVD) of two cross-correlation matrices. We further develop this
approach, derived in the Nyquist regime, to perform recovery
from sub-Nyquist samples.

A. Signal Model

In this scenario, for simplicity, we consider a statistical model.
Let u (t) and si (t) be defined as in the previous section, with
Fourier transforms U (f) and Si (f), accordingly. The signals
si (t) are considered to be within the xz plane and associated
with an AOA θi , where θi is measured from the positive side of
the x axis. All signals are assumed to be far-field, non coherent,
wide-sense stationary with zero mean and uncorrelated, i.e. for
all t, E [si (t) s̄j (t)] = 0 for i �= j, with σ2

i = E
[
s2

i (t)
] �= 0.

Fig. 5 illustrates our signal model. To ensure an array structure
deprived of ambiguity, we assume that the electronic angles,
namely fi cos (θi) and fi sin (θi), are distinct [37], [38], namely,
for i �= j,

fi cos (θi) �= fj cos (θj ), fi sin (θi) �= fj sin (θj ). (29)

Definition 2: The set M2 contains all signals u(t), such that
the support of the Fourier transform U(f) is contained within
a union of M disjoint intervals in F . Each of the bandwidths
does not exceed B and the transmissions composing u(t) are

Fig. 6. CaSCADE system: L-shaped array with N sensors along the x axis
and N sensors along the z axis including a common sensor at the origin.

wide-sense stationary, zero mean and uncorrelated and have
unknown and distinct AOAs |θi | < 90◦, such that (29) holds.

In this section, we wish to design a sampling and reconstruc-
tion system which allows for perfect blind signal reconstruction,
i.e. recovery of θ,f and s(t), where θ denotes the AOAs vector
defined above and f and s(t) are defined in Section II, without
any prior knowledge on these.

B. CaSCADE System Description

Each transmission si (t) impinges on an L-shaped array with
2N − 1 sensors (N sensors along the x axis and N sensors
along the z axis including a common sensor at the origin) in the
xz plane with its corresponding AOA θi , as shown in Fig. 6.
All the sensors have the same sampling pattern as described in
Section III-A. In the following sections, we demonstrate that in
this case the minimal number of sensors required is 2M + 1.
This leads to a minimal sampling rate of (2M + 1) B which
is assumed to be less than fNyq. The number of sensors is one
more than in the case of known θi , but the minimal sampling
rate at each channel is the same.

By treating the L-shaped array as two orthogonal ULAs, one
along the x axis and the other along the z axis, we form two
systems of equations, following the derivations of Section III-B.
For the ULA along the x axis, we obtain

X(f) = AxW(f), f ∈ Fs , (30)

where

Ax =

⎡

⎢
⎢
⎢
⎣

ej2πf1 τ x
1 (θ1 ) · · · ej2πfM τ x

1 (θM )

...
...

ej2πf1 τ x
N (θ1 ) · · · ej2πfM τ x

N (θM )

⎤

⎥
⎥
⎥
⎦

. (31)

Similarly, along the z axis,

Z(f) = AzW(f), f ∈ Fs , (32)

where Az is defined accordingly. Here, τx
n (θ) = dn

c cos (θ) and
τz
n (θ) = dn

c sin (θ). The matrices Ax and Az depend on both
the unknown carrier frequencies f and the AOAs θ, namely
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Ax = Ax (f ,θ) and Az = Az (f ,θ). In the time domain,

y[k] =
[
x[k]
z[k]

]
= Aw[k], k ∈ Z, A =

[
Ax

Az

]
, (33)

where x[k] and z[k] are the samples for the x and z axis, respec-
tively, and w[k] is a vector of length M with ith element wi [k].
In the following sections, we discuss two possible methods to
recover f and θ, present sufficient conditions to recover the
transmissions s (t) from w[k], and provide concrete reconstruc-
tion algorithms.

C. Joint ESPRIT Recovery

Our first approach is to extend ESPRIT to a 2D setting, in
order to jointly recover fi and θi , for each transmission. Once
these are estimated, the transmissions si(t) can be recovered
from (23) and (19) with the observation matrix A and the con-
catenated vector of measurements y[k] defined in (33).

Consider two sub-arrays of size N − 1 along each of the x and
z axis. The first sub-array along the x axis consists of sensors
{1, . . . , N − 1}. The second sub-array is composed of the last
N − 1 sensors along the same axis, i.e. sensors {2, . . . , N}. The
sub-arrays along the z axis are similarly defined. Dropping the
time variable k for clarity, we have

x1 = Ax1 w, x2 = Ax2 w

z1 = Az1 w, z2 = Az2 w, (34)

where x1 and Ax1 are the first N − 1 rows of x and Ax re-
spectively and x2 and Ax2 are the last N − 1 rows of x and
Ax , respectively. The vectors z1 , z2 and matrices Az1 , Az2 are
defined similarly.

Each couple of sub-array matrices along the same axis are
related as follows:

Ax2 = Ax1 Φ,

Az2 = Az1 Ψ, (35)

where

Φ � diag
[
ej2πf1 τ x

1 (θ1 ) · · · ej2πfM τ x
1 (θM )

]
,

Ψ � diag
[
ej2πf1 τ z

1 (θ1 ) · · · ej2πfM τ z
1 (θM )

]
. (36)

We can see from (36) that the carrier frequencies fi and AOAs
θi are embedded in the diagonal matrices Φ and Ψ. Our goal is
thus to jointly recover these matrices in order to be able to pair
the corresponding elements fiτ

x
1 (θi) and fiτ

z
1 (θi). Once Φ and

Ψ are found, the pairs (fi, θi) are calculated as:

θi = tan−1
(

∠Ψii

∠Φii

)
, fi =

∠Φii

2π d
c cos (θi)

, i = 1, · · · ,M.

(37)
To find Φ and Ψ, we apply the ESPRIT framework to

cross-correlation matrices between the sub-arrays of both axis.

Consider the following correlation matrices:

R1 � E
[
x1zH

1
]

= Ax1 RwAH
z1

,

R2 � E
[
x2zH

1
]

= Ax2 RwAH
z1

= Ax1 ΦRwAH
z1

,

R3 � E
[
x1zH

2
]

= Ax1 RwAH
z2

= Ax1 RwΨH AH
z1

. (38)

Since the transmissions si(t) are assumed to be uncorre-
lated, Rw is diagonal. In addition, since σ2

i �= 0, (Rw )ii �
E

[
w2

i [k]
] �= 0 and Rw is invertible. Using the fact that ΨH

is diagonal as well, we have

R3 = Ax1 RwΨH AH
z1

= Ax1 Ψ
H RwAH

z1
. (39)

Define the concatenated covariance matrix

R =

⎡

⎣
R1
R2
R3

⎤

⎦ = BRwAH
z1

, B =

⎡

⎣
Ax1

Ax1 Φ
Ax1 Ψ

H

⎤

⎦ . (40)

The matrices Φ,Ψ are found using the SVD decomposition of
R as described in Algorithm 2.

In Proposition 2 we show that R has full column rank, making
the solution Ψ,Φ unique. The SVD of R then yields

R = [U1U2 ]
[
Λ 0
0 0

]
VH . (41)

The columns of the matrix [U1U2 ] are the left singular vectors
of R, with U1 containing the vectors corresponding to the first
M singular values, Λ is a M × M diagonal matrix with the M
non zero singular values of R, and V contains the right singular
vectors of R. Our goal is to obtain Ψ,Φ from U1 . To this end,
we first show that there exists an invertible M × M matrix T
such that

U1 =

⎡

⎣
U11
U12
U13

⎤

⎦ = BT, (42)

where U1i are (N − 1) × M matrices. Proposition 2 provides
sufficient conditions for such a T to exist.

Proposition 2: Let u (t) be an arbitrary signal within M2
and consider an L-shaped ULA with N sensors and distance d
between two adjacent sensors. If:

� (c1) d ≤ c
fNyq

� (c2) N > M
then there exists an invertible M × M matrix T such that

(42) holds.
Proof: We begin by showing that under conditions (c1)–(c2),

R is full column rank. Note that Ax1 and Az1 are (N − 1) × M
Vandermonde matrices, and from (29) and condition (c1), they
have distinct columns. Hence, given condition (c2), Ax1 and
Az1 are full column rank. The M × M matrix Rw is diagonal
and invertible. It follows that R1 , R and B are full column rank.

The SVD decomposition of R yields (41). In particular, it
holds that RH U2 = 0, so that

Az1 RwBH U2 = 0.

Since Az1 Rw is full column rank, it follows that BH U2 =
0. Now, B and U1 are both 3(N − 1) × M matrices, with
column rank M . In addition, the 3(N − 1) × (3(N − 1) − M)
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matrix U2 is in the null space of BH and UH
1 . This implies

that range (B) = range (U1). Therefore, there exists an M ×
M invertible matrix T such that (42) holds. �

If the conditions of Proposition 2 hold, then we can write

Ax1 = U11T−1

U12 = Ax1 ΦT = U11T−1ΦT (43)

U13 = Ax1 Ψ
H T = U11T−1ΨH T.

In addition, since the (N − 1) × M matrix U11 satisfies U11 =
Ax1 T, where T is invertible and rank(Ax1 ) = M , we have that
rank(U11) = M and U†

11U11 = I.
Applying U†

11 on the left of (43) we get

U†
11U12 = T−1ΦT

U†
11U13 = T−1ΨH T. (44)

Therefore, we can obtain Φ and T using the eigenvalue de-
composition of U†

11U12 , up to permutation. Denote by Φ̂ and
T̂ the resulting matrices. We then compute Ψ̂ with the same
permutation as

Ψ̂H = T̂(U†
11U13)T̂−1 . (45)

If (45) is not diagonal, due to numerical errors or noise, then
we approximate it by taking only the diagonal elements of (45).
Since the electronic angles fi cos (θi) and fi sin (θi) are distinct,
the eigenvalues of Φ̂ and Ψ̂ are distinct as well and it follows
that both matrices have the same permutation. We thus obtain
proper pairing between the diagonal elements. The AOAs θi and
carrier frequencies fi are then given by (37).

Algorithm 2 summarizes the main steps of the joint 2D ES-
PRIT described above. In the algorithm description we exploit
the 4 cross-correlation matrices between the sub-arrays instead
of only 3 as defined in (38) to increase robustness to noise. In our
derivations, we assumed perfect knowledge of R. In practice, it
is estimated from Q snapshots, as shown in Algorithm 2.

Theorem 4 summarizes sufficient conditions for perfect blind
reconstruction of f and θ from the low rate samples x[k]
and z[k].

Theorem 4: Let u(t) be an arbitrary signal within M2 . Con-
sider an L-shaped ULA with 2N − 1 sensors, such that there are
N sensors along each axis with a common sensor at the origin.
Denote the distance between two adjacent sensors by d. If:

� (c1) d < c
fNyq

� (c2) N > M ,
then (30)–(32) has a unique solution (f ,θ,w).
Proof: From Proposition 2, under conditions (c1)–(c2), U11

is full column rank and thus left invertible. Therefore, Φ and
Ψ can be uniquely derived from (44), with the same permu-
tation T for both matrices. This follows from the assumption
that the electronic angles, and as a consequence the eigenval-
ues of Φ and Ψ, are distinct. Condition (c1) implies that both
2πf̂i

d
c cos (θ̂i) ∈ (−π, π] and 2πf̂i

d
c sin (θ̂i) ∈ (−π, π] namely

∠Ψi,i and ∠Φi,i , for 1 ≤ i ≤ M , are unique. Therefore, f ,θ
are unique as well and given by (37). Using (31) to compute

Algorithm 2: Joint ESPRIT.
Input:

� Q snapshots of the measurements x along the x axis
� Q snapshots of the measurements z along the z axis

Output:
� f̂ - estimated carriers frequencies
� θ̂ - estimated AOAs

Algorithm:
1) Define x1 and x2 as the first and last N − 1 rows of x

Define z1 and z2 as the first and last N − 1 rows of z
2) Estimate the cross covariance matrices:

a) R1 =
∑Q

k=1 x1 [k]zH
1 [k]

b) R2 =
∑Q

k=1 x2 [k]zH
1 [k]

c) R3 =
∑Q

k=1 x1 [k]zH
2 [k]

d) R4 =
∑Q

k=1 x2 [k]zH
2 [k]

3) Decompose R =
[
RT

1 RT
2 RT

3 RT
4
]T

using the
SVD: R = UΣVH

4) Set U1 to be the (4N − 4) × M matrix that contains
the M left singular vectors corresponding to the largest
singular values of R

5) Define:
a) U11 as the first N − 1 rows of U
b) U12 as the next N − 1 rows of U
c) Same for U13 , U14

6) Compute:
a) V1 = U†

11U12

b) V2 = U†
11U13

c) V3 = U†
11U14

7) Perform an eigenvalue decomposition of
1
3 (V1 + V2 + V3) = TΛT−1 , where Λ is a diagonal
matrix

8) Compute Φ̂ = T−1V1T and Ψ̂ =
(
T−1V2T

)H

9) Compute the carrier frequencies and AOAs using (37)

Ax and Az we can construct A as in (33) and w is uniquely
determined by w = A†y. �

In addition, if conditions (c1)–(c2) from Theorem 2 hold,
then si(t) is uniquely recovered from x[k] and z[k] using (23)
and (19) with the observation matrix A.

From Theorem 4, the minimal necessary number of sensors
in each axis, including a common sensor at the origin, to allow
perfect blind reconstruction is N ≥ M + 1. This leads to a total
number of sensors 2N − 1 ≥ 2M + 1. In addition, for perfect
reconstruction we require fs ≥ B as in Theorem 2. Thus, the
minimal sampling rate is bounded by (2M + 1)B using this
approach.

D. CS Approach

In this section, we derive an alternative joint carrier frequency
and AOA recovery approach based on CS methods. Consider
the measurements y[k] as in (33), and their correlation matrix

R = E
[
y[k]yH [k]

]
= ARwAH , (46)
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with A as in (33). In the following, we assume perfect knowl-
edge of R. In practice, it can be estimated from Q snapshots of
y[k] as R =

∑Q
k=1 y[k]y[k]H .

Denote αi = fi cos θi and βi = fi sin θi and suppose that
αi and βi lie on a grid {δl}L0

l=−L0
, with L0 = fNyq

2δ . As in
Section III-D2, δ defines the grid resolution. We can then write
(46) as

R = GRg
wGH , (47)

whereG is a (2N − 1) × L2 matrix with (n, l)th element Gnl =
ej2π d n

c αl 1 , for 0 ≤ n ≤ N − 1 and Gnl = ej2π
d (n −N + 1 )

c βl 2 , for
N ≤ n ≤ 2N − 1. Here, L = 2L0 + 1, l1 = (l mod L) − L0
and l2 = � l

L � − L0 . The nonzero elements of the L2 × L2 ma-
trix Rg

w are the M diagonal elements of Rw at the M in-
dices corresponding to {αi, βi}. With high probability, the
discretization conserves the unambiguous property, namely
spark(G) = N + 1. Formulating concrete conditions to ensure
the lack of ambiguity is very involved and thus this property is
traditionally assumed without justification [37].

Since Rg
w is diagonal, the observation model (47) can be

equivalently written in vector form as

vec(R) =
(
Ḡ � G

)
rg

w . (48)

Here, vec(R) is a column vector that vectorizes the matrix R by
stacking its columns, rg

w is the L2 × 1 vector that contains the
diagonal of Rg

w and� denotes the Khatri-Rao product. Our goal
is thus to recover the M -sparse vector rg

w from the (2N − 1)2

measurement vector vec(R).
The following theorem derives a necessary condition on the

minimal number of sensors 2N − 1 for perfect recovery of
αi, βi , i ∈ {1, . . . , M} in a noiseless environment.

Theorem 5: Let u(t) be an arbitrary signal within M2 . Con-
sider an L-shaped ULA with 2N − 1 sensors, such that there are
N sensors along each axis with a common sensor at the origin.
Denote the distance between two adjacent sensors by d. If:

� (c1) d < c
fNyq

� (c2) N > M
� (c3) spark(G) = N + 1,
then (48) has a unique M -sparse solution rg

w .
Proof: In order to recover the M -sparse vector rg

w from
vec(R), we require [26], [33]

spark
(
Ḡ � G

)
> 2M. (49)

From [39], it holds that

spark
(
Ḡ � G

) ≥ min{2(spark(G) − 1), L2 + 1}. (50)

Combining (c2) and (c3), we have

2(spark(G) − 1) > 2M. (51)

Finally, since L2 � N , (49) holds. �
To recover the sparse vector rg

w , we can use any CS recovery
algorithm [26]. Once the indices αi, βi , i ∈ {1, . . . , M} are
found, and assuming condition (c1), the corresponding fi and
θi are given uniquely by

θ̂i = tan−1
(

βi

αi

)
, f̂i =

αi

cos (θi)
. (52)

We conclude by noting that both ESPRIT and OMP are widely
used algorithms whose complexity analysis has been explored
in the literature. We did not optimize the algorithms in terms of
computational load, and more efficient implementations may be
used for this purpose.

V. NUMERICAL EXPERIMENTS

We now numerically investigate different aspects of our sys-
tems. First we consider the spectrum sensing problem presented
in Section II, and compare the performance of our ULA scheme,
shown in Fig. 3 with that of the MWC [23] of Fig. 2. We show
that at low SNRs, we outperform the MWC in terms of recov-
ery error. We explore the impact of SNR and number of sen-
sors/channels N on the signal reconstruction performance for
both architectures. We then move on to the joint spectrum sens-
ing and DOA estimation problem as presented in Section IV.
We investigate the performance of our system in terms of fre-
quencies and AOAs recovery error as a function of SNR and
number of sensors.

A. Spectrum Sensing

We begin by considering the spectrum sensing problem of
Section II. The setup described hereafter is used as a basis for
all simulations. Consider signals of the model M1 with M = 3,
fNyq = 10 GHz, θ = 0◦ and B = 50 MHz. The carrier frequen-

cies fi are drawn uniformly at random from [− fNyq−B
2 ,

fNyq−B
2 ].

In our ULA based system, the received signal at each sensor is
given by (4), and is corrupted by additive white Gaussian noise
(AWGN), uncorrelated between the different sensors. For the
MWC system, the received signal at the single sensor is the
sum of the transmissions with AWGN, that is then split to the
different MWC channels. Here, all channels are corrupted by
the same noise. Both system noises have the same variance.

In all the simulations, we use fs = fp = 1.3B. For the
ULA based system, we use a periodic function p (t) such that
P (f) =

∑∞
l=−∞ δ (f − lfp). In the MWC, pi(t) are chosen as

piecewise constant functions alternating between the levels ±1
with sequences generated uniformly at random. Performance is
measured by computing the MSE between the original and re-
constructed signals, i.e. MSE = ||u−û ||2

||u ||2 . In the simulations, we

estimate the correlation matrix as R =
∑Q

k=1 x[k]xH [k].
To set similar conditions for both systems (MWC and ULA),

we use the same parameters, i.e the number of source signals
M , number of snapshots Q, SNR, fp , fs , and N , which in the
ULA denotes the sensors number and in the MWC the chan-
nels number. Note that both systems require the same minimal
number of channels given in condition (c1) in Theorem 1 for
the ULA and equal to N ≥ 2M − dim (span (w)) [23]. For the
ULA based system, we show both the MMV CS approach, using
SOMP [26], and ESPRIT approach, described in Section III-D.

Fig. 7 presents the performance of the ULA based sys-
tem as a function of d. As shown in Theorem 1, we require
d ≤ c

| cos(θ)|·fNyq
, which in our setting translates to d ≤ 3·108

101 0 =
0.03[m]. This property of the system geometry is clearly demon-
strated in the figure, where we observe a monotonic decrease
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Fig. 7. Influence of the distance d between adjacent sensors. with M = 3,
N = 10, Q = 400, and SNR = 10 dB.

Fig. 8. Influence of the number of sensors N , with M = 3, Q = 300, SNR =
10 dB.

Fig. 9. Influence of SNR, with M = 3, N = 10, Q = 300.

in performance starting from d = 0.03, for both reconstruction
methods, MMV and ESPRIT. In the following simulations, d is
set to d = 0.03.

The next experiment examines the influence of the number
of sensors N . A large amount of sensors increases the system’s
robustness to noise and allows it to handle a greater amount
of source signals. This parameter is equivalent to the number
of channels in the MWC. From Fig. 8, it can be seen that the
reconstruction error decreases with more sensors.

In Fig. 9, we examine the reconstruction performance un-
der different SNR conditions. The simulations demonstrate that
our system outperforms the MWC, in particular in low SNR
regimes. In addition, in such settings, CS recovery outperforms
ESPRIT as expected. With increasing SNR, the recovery error
of ESPRIT decreases below that of CS. This is due to the fact
that CS recovery is limited to a predefined grid and the signal
carriers were not generated on a specific grid. Thus, in high SNR

Fig. 10. Influence of the number of sensors 2N − 1, with M = 3, Q = 300,
SNR = 10 dB.

regimes, ESPRIT outperform CS due to off grid errors of the
latter. In the presence of enough samples, obtained by increasing
the sampling rate fs , the number of sensors N or snapshots Q,
ESPRIT achieves better results.

B. Joint Spectrum Sensing and DOA Recovery

We next demonstrate the effect of different system parameters
on the joint spectrum sensing and DOA recovery performance.
Consider a complex-valued signal u (t) from M2 , with similar
parameters as above, and AOAs θi drawn uniformly at random
from [−85◦, 85◦]. The L-shaped array is composed of 2N − 1
sensors; N along each axis with a common sensor at the origin.
The received signal at each sensor in the L-shaped array is
corrupted with AWGN. The mixing and sampling rates are set
to fs = fp = 1.4B.

We compare 3 reconstruction methods: 1) Joint ESPRIT
summarized in Algorithm 2, 2) CS approach presented in
Section IV-D, 3) PARAFAC [27] based approach, as presented
in [30]. PARAFAC extends the bilinear model of factor analysis
to a trilinear model using the alternating least squares (ALS)
method. In [30], it is used to decompose the cross correlations
matrices defined in (38) into three matrices, isolating Φ and
Ψ. To apply the PARAFAC algorithm we use the COMFAC
MATLAB function implemented by [40].

In these simulations, we focus on the recovery of the carrier
frequencies fi and AOAs θi . Once these are recovered, full
signal reconstruction can be performed as shown in the first part
of this work (see (23) and (19)). The reconstruction performance
is measured by the following criteria: 1

M fNyq

∑m
i=1 |fi − f̂i | for

the frequencies, and 1
M 180◦

∑m
i=1 |θi − θ̂i | for the AOA. The

first simulation examines the recovery performance with respect
to the number of sensors 2N − 1. Fig. 10 presents the carrier
frequency and AOA reconstruction performance for different
values of the number of sensors, which affects both the noise
averaging and the total amount of samples available. The second
simulation, presented in Fig. 11, illustrates the impact of SNR
on the recovery performance.

The figures demonstrate similar behavior of CS and ESPRIT
as in the previous section. The PARAFAC algorithm, which is
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Fig. 11. Influence of SNR, with M = 3, 2N − 1 = 11, Q = 300.

more computationally complex and requires several iterations,
is shown to outperform both joint ESPRIT and CS except in the
regime of low SNR and small number of sensors. This stems
from the fact that PARAFAC does not fully exploit the problem’s
structure [30] and therefore, its performance decreases with few
or noisy measurements.

VI. CONCLUSION

In this paper, we considered two spectrum sensing scenarios
of multiband signals from sub-Nyquist samples: we first exam-
ined the task of frequency spectrum sensing and then extended
our approach to joint spectrum sensing and DOA recovery. For
the first scenario, we proposed a receiver composed of a ULA,
where each sensor contains an analog front-end equivalent to
one channel of the MWC. This system constitutes an alternative
sub-Nyquist sampling scheme that outperforms the MWC in
terms of performance in low SNR regimes and is less complex
to implement. For the joint spectrum sensing and DOA recovery
scenario, we extended our ULA configuration and presented the
CaSCADE system, an L-shaped array composed of two ULAs
with the same sampling scheme as above. In both cases, we de-
rived sufficient conditions for the recovery of the transmissions
carrier frequencies and AOAs, if relevant. We showed that the
minimal number of sensors for the first scenario is twice the
number of transmissions, namely 2M , in the worst case and
M + 1 with high probability, whereas in the second scenario,
it is 2M + 1 in the average case. Last, we provided two recon-
struction schemes for both scenarios: one based on the analytic
method ESPRIT and the second based on CS techniques. Sim-
ulations demonstrated the performance of the above algorithms
in comparison with existing methods.
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