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On the 2D Phase Retrieval Problem
Dani Kogan, Yonina C. Eldar, Fellow, IEEE, and Dan Oron

Abstract—The recovery of a signal from the magnitude of its
Fourier transform, also known as phase retrieval, is of fundamental
importance in many scientific fields. It is well known that due to
the loss of Fourier phase the problem in one-dimensional (1D) is
ill-posed. Without further constraints, there is no unique solution
to the problem. In contrast, uniqueness up to trivial ambiguities
very often exists in higher dimensions, with mild constraints on the
input. In this paper, we focus on the 2D phase retrieval problem
and provide insight into this uniqueness property by exploring the
connection between the 2D and 1D formulations. In particular, we
show that 2D phase retrieval can be cast as a 1D problem with
additional constraints, which limit the solution space. We then
prove that only one additional constraint is sufficient to reduce
the many feasible solutions in the 1D setting to a unique solution
for almost all signals. These results allow to obtain an analytical
approach (with combinatorial complexity) to solve the 2D phase
retrieval problem when it is unique.

Index Terms—Phase retrieval, 2D autocorrelation, uniqueness.

I. INTRODUCTION

R ECOVERY of a signal from the modulus of its Fourier
transform, also known as phase retrieval [1], [2], is of

paramount importance in many scientific fields such as optics
[3], X-ray crystallography [4], astronomy [5], computational bi-
ology [6], speech recognition [7] and more [8], [9]. Generally,
the phase retrieval problem has no unique solution since any
choice of the Fourier phase will generate a valid solution which
can be far from the original signal [10], [11]. If the unknown
input is compactly supported and the frequency domain is over-
sampled by a factor of two, then the phase retrieval problem
can be equivalently stated as that of retrieving a vector from its
autocorrelation function.

To study uniqueness in the 1D discrete case, Bruck and Sodin
[12] considered the z-transform of the autocorrelation sequence.
The fact that 1D polynomials can always be factored, leads to
the conclusion that in general there is no uniqueness in 1D
phase retrieval. This is true even when we ignore trivial ambi-
guities which include a global phase shift, conjugate inversion
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and spatial shift. Furthermore, there are generally as many as
2N −2 vectors of length N that share the same autocorrelation
sequence [13]. An exception is when prior knowledge on the
signal is available. One example is when the signal is minimum
phase so that all the zeros of its z-transform are known to lie
within the unit circle [14]. For higher dimensions, and espe-
cially in 2D, Bruck and Sodin argued that since multivariate
polynomials cannot in general be factored, phase retrieval has a
unique solution for almost all signals.

Despite the uniqueness guarantees in 2D, there is no general
solution method available to find the unknown signal from its
Fourier magnitude [15]. Over the years, several approaches have
been suggested for solving the phase retrieval problem algorith-
mically. The most popular techniques are based on alternating
projections, pioneered by Gerchberg and Saxton [16] and ex-
tended by Fienup [17]–[19]. More recent approaches include
semi-definite programming (SDP) algorithms [20]–[22], gradi-
ent techniques with appropriate initialization such as Wirtinger
flow [23], or truncated amplitude flow [24], and greedy methods
with a sparsity prior [25], [26].

In this work we study the 2D discrete phase retrieval prob-
lem with the goal of obtaining further insight into its unique-
ness properties, and understanding the intrinsic differences and
relationships between the 1D and 2D formulations. In particu-
lar, it is natural to attempt to describe the 2D autocorrelation
matrix R of an N × N matrix X in terms of the 1D auto-
correlation r of its vectorized version x with length N 2 . We
will see that we can indeed compute r from R, but the reverse
computation is not possible. Namely, the 2D autocorrelation
R provides more knowledge on X than the 1D autocorrela-
tion of its vectorized version. Nonetheless, we can formulate
the 2D phase retrieval problem in terms of the 1D autocorre-
lation r and (N − 1)2 additional constraints which correspond
to knowledge of certain autocorrelation values of X. Next we
show that to ensure uniqueness for almost all signals, it is suffi-
cient to remove most of these constraints, and add a single con-
straint beyond knowing the autocorrelation sequence r. More
specifically, for almost all matrices X, knowing the 1D auto-
correlation r of its vectorized version together with the addi-
tional constraint R(N − 1,−(N − 1)) = x[N − 1]x[N 2 − N ]
is sufficient to reduce the many non-trivial solutions of the 1D
problem and guarantee uniqueness. Finally, we illustrate how to
use these results to construct the unique recovery when it exists.

This paper is organized as follows. In Section II, we mathe-
matically set up the phase retrieval problem and discuss unique-
ness in one and two dimensions. We then show how 2D phase
retrieval can be recast as a 1D phase retrieval problem with ad-
ditional constraints in Section III. In Section IV we prove that
only one additional constraint from the reformulated problem
is sufficient to guarantee uniqueness for almost all signals. We
provide several examples to demonstrate the results.
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II. PHASE RETRIEVAL IN ONE AND TWO DIMENSIONS

We begin by formulating the 1D and 2D phase retrieval prob-
lems, and discussing their basic uniqueness properties.

A. 1D Phase Retrieval

The 1D phase retrieval problem is to recover a vector x from
the magnitude of its Fourier transform. To set up the problem
mathematically, let x ∈ RN be a real length-N vector. Its dis-
crete Fourier transform (DFT) of length M ≥ N is defined as

x̂[k] =
N −1
∑

n=0

x[n]e−j 2 π k
M , 0 ≤ k ≤ M − 1. (1)

Since the DFT is a linear transformation it can be represented
by a matrix-vector multiplication FM,N x, where FM,N is the
M × N matrix consisting of the first N columns of the M -point
DFT matrix

FM,N =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 . . . 1

1 φ φ2 . . . φN −1

...
...

...
...

...

1 φM −1 φ2(M −1) . . . φ(N −1)(M −1)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

(2)
and φ = e−j2π/M . With these definitions we can state the 1D
phase retrieval problem as

find x

subject to y = |FM,N x|2 (3)

where y are the given measurements and the absolute value
operation is taken element-wise.

Assuming M ≥ 2N − 1, phase retrieval can equivalently be
formulated as the problem of reconstructing a signal from its
autocorrelation measurements

r[�] =
N −1−�
∑

i=0

x[i]x[i + �], 0 ≤ � ≤ N − 1, (4)

with r[�] = r[−�]. For shorthand notation, we denote by r =
x � x the autocorrelation operator. We can then write problem
(3) as

find x

subject to r = x � x. (5)

Due to the loss of phase, problem (3) is ill posed and gen-
erally there are many possible solutions. First, there are trivial
ambiguities that result from the fact that the following three
operations conserve the Fourier magnitude:

1. Global phase shift x[n] → ±x[n]
2. Inversion x[n] → x[−n]
3. Spatial shift x[n] → x[n + n0 ].

Even up to trivial ambiguities, the 1D problem is not unique. In
particular, any two sequences of length N that lead to the same
autocorrelation sequence will have the same Fourier magnitude.
In [27] the authors show that there are as many as 2N −2 signals

that share the same autocorrelation and are not trivially related.
To see this, we analyze the roots of r̂[k], the DFT of r[�].

Let Pr(z) be the associated polynomial to r̂[k]:

Pr(z) :=
2N −2
∑

n=0

r[n − N + 1]zn . (6)

Since r[�] is symmetric, the zeros of Pr(z) appear in reflected
pairs (γi, γ

−1
i ) with respect to the unit circle and there are N − 1

such zero pairs. The associated polynomial can therefore be
factored as

Pr(z) = r[N − 1]
N −1
∏

i=1

(z − γi)
(

z − γ−1
i

)

. (7)

On the unit circle we have

r̂[k] = r[N − 1]
N −1
∏

i=1

(

e−j2πk/M − γi

)(

e−j2πk/M − γ−1
i

)

.

(8)
Recalling that r̂[k] = |x̂[k]|2 , it follows that given r̂[k], we can-
not determine whether a zero γi or its conjugate reciprocal γ̄−1

i

is a root of x̂[k] which leads to the non-uniqueness in phase
retrieval.

More specifically, each vector x ∈ RN with autocorrelation
sequence r and with x[0], x[N − 1] �= 0 has an associated poly-
nomial of the form (up to a phase factor):

Px(z) =
N −1
∑

i=0

x[i]zi

=

⎡

⎣|r[N − 1]|
N −1
∏

j=1

|βj |−1

⎤

⎦

1
2 N −1
∏

j=1

(z − βj ) (9)

where the parameters βj in (9) can be chosen as βj ∈ {γj , γ̄
−1
j }.

Aside from trivial ambiguities each solution is characterized by
a different zero set B : {β1 , . . . , βN −1}. Obviously as βj is
allowed to either be γj or γ−1

j we can construct up to 2N −1 dif-
ferent zero sets. It can be shown (see [27, corollary 3.3]) that if a
signal x of the form (9) has a zero set {β1 , . . . , βN −1} then the
conjugate reflected signal of x has a zero set {β−1

1 , . . . , β−1
N −1}.

Thus we conclude that there are up to 2N −2 non-trivially differ-
ent vectors x with the same autocorrelation r.

B. 2D Phase Retrieval

We now turn to discuss the 2D phase retrieval problem. In
this case our unknown is an N × N real matrix X. We assume
we are given the magnitude-square of the 2D Fourier transform
Y = |FM,N XFT

M ,N |2 . Our problem can then be written as

find X

subject to vec (Y) = | (FM,N ⊗ FM,N ) vec (X) |2 , (10)

where ⊗ denotes the Kronecker product and vec is the vector-
ization of a matrix. Assuming once again that M ≥ 2N − 1, we
can reformulate this problem in terms of the 2D autocorrelation
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of the matrix X, where the 2D autocorrelation is defined by

R(i, j) =
N −1−|i|
∑

m=0

N −1−|j |
∑

n=0

X(m,n)X(m + i, n + j),

0 ≤ i, j ≤ N − 1,

R(i, j) =
N −1−i
∑

m=0

N −1
∑

n=−j

X(m,n)X(m + i, n + j),

i > 0,−(N − 1) ≤ j ≤ −1, (11)

and R(−i,−j) = R(i, j). As in the 1D case, we use the notation
R = X � X to describe (11). We can then write (10) as

find X

subject to R = X � X. (12)

Similarly to the 1D setting, the ambiguities of the 2D phase
retrieval problem depend on the factorization of a multivari-
ate algebraic polynomial into irreducible polynomials [10].
Since almost all 2D polynomials are irreducible, namely the re-
ducible polynomials form a set of measure zero in the space of all
polynomials [28], almost every 2D signal can be uniquely recov-
ered from its 2D Fourier magnitude. Therefore, the uniqueness
properties in 1D and 2D Fourier phase retrieval are markedly
different. Our goal in this paper is to obtain further insight into
this difference from the point of view of the autocorrelation
sequences rather than the traditional algebraic viewpoint.

III. REFORMULATING THE 2D PROBLEM

In order to understand the essential differences between the
2D and 1D phase retrieval problems, it is intuitive to try and
write the 2D problem in terms of a vector x representing the
matrix X. A natural approach is to vectorize X and then attempt
to express the correlations in (12) in terms of the vector x. To
be explicit, we will focus on the choice x = vec(XT) which
vectorizes X row-wise. Two immediate questions arise in this
context:

1) Can we express the 2D autocorrelation R = X � X in
terms of the 1D autocorrelation r = x � x?

2) Is the 1D autocorrelation r together with a small number
of constraints sufficient to obtain uniqueness for almost
all matrices X?

In this section we focus on the first question and show that
R contains more information than r. In other words, knowing
r is not enough to recover R. Beyond r we will need an addi-
tional (N − 1)2 constraints to fully characterize R. The second
question will be discussed in Section IV where we show that
knowledge of r together with only one additional constraint that
involves a specific value of R is sufficient to ensure uniqueness
for almost all 2D signals.

A. From 2D to 1D

A first step towards reformulating the 2D problem into a
1D counterpart is to vectorize the matrix X so we effectively
retrieve the same object as one would in a 1D setting. As noted

above we will do that via x=vec(XT) which implies that

x[mN + n] = X(m,n), 0 ≤ m,n ≤ N − 1. (13)

The next step is to understand the relationship between the 2D
autocorrelation R of X and the 1D autocorrelation r of x. This
relationship is expressed in the following proposition.

Proposition 1: Let X be a real valued N × N matrix and
let x = vec(XT ) be its row vectorized representation of length
N 2 . Let R = X � X be the 2D autocorrelation matrix of X and
let r = x � x be the 1D autocorrelation sequence of x. Then for
values 0 ≤ � ≤ N 2 − 1 we have

r(�)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

R(i, 0) � = iN,

R(N − 1, j) N(N − 1) < � ≤ N 2 − 1

R(i, j) + R(i + 1, j − N) otherwise, (14)

where 0 ≤ i, j ≤ N − 1 are the unique values satisfying � =
iN + j, namely, i = ��/N	 and j = � mod N .

Proof: Substituting (13) into (11) the 2D autocorrelation
takes the form

R(i, j) =
N −1−|i|
∑

m=0

N −1−|j |
∑

n=0

x[mN + n]x[(m + i)N + n + j]

=
N −1−|i|
∑

m=0

N −1−|j |
∑

n=0

x[mN + n]x[mN + n + �], (15)

for 0 ≤ i, j ≤ N − 1 where � = iN + j. Similarly, for i >
0,−(N − 1) ≤ j ≤ −1 we have

R(i, j) =
N −1−|i|
∑

m=0

N −1
∑

n=−j

x[mN + n]x[mN + n + �]. (16)

Since the summand in R(i, j) depends only on �, any valid
choice of i, j that leads to the same value of � = iN + j will
have the same summand. In particular, the pairs (i, j) and (i + 1,
j − N) result in the same �. Therefore, for every 0 < i ≤ N − 2
and 0 < j ≤ N − 1 there is a corresponding value j′ = j − N
in the range −(N − 1) ≤ j ≤ −1 with the same �. For this
choice of i, j′ we have

R(i + 1, j − N) =
N −2−i
∑

m=0

N −1
∑

n=N −j

x[mN + n]x[mN + n + �].

(17)
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Adding (15) and (17) for 0 < i ≤ N − 2, 0 < j ≤ N − 1
gives

R(i, j) + R(i + 1, j − N)

=

⎛

⎝

N −2−i
∑

m=0

N −1
∑

n=N −j

+
N −1−i
∑

m=0

N −1−j
∑

n=0

⎞

⎠x[mN + n]x[mN + n + �]

=
N −2−i
∑

m=0

N −1
∑

n=0

x[mN + n]x[mN + n + �]

+
N −1−j
∑

n=0

x[(N − 1 − i)N + n]x[(N − 1 − i)N + n + �].

(18)

We next substitute k = mN + n in the first term of (18) and
s = (N − i − 1)N + n in the second term which results in

R(i, j) + R(i + 1, j − N)

=
(N −i−1)N −1

∑

k=0

x[k]x[k + �] +
(N −i−1)N +N −1−j

∑

s=(N −i−1)N

x[s]x[s + �]

=
N 2 −1−(iN +j )

∑

k=0

x[k]x[k + �]

=
N 2 −1−�
∑

k=0

x[k]x[k + �]. (19)

The expression in (19) is precisely the autocorrelation sequence
of x for values of � = iN + j with 0 < i ≤ N − 2, 0 < j ≤
N − 1. This corresponds to all values 0 ≤ � ≤ N(N − 1) − 1
excluding � = Ni.

It remains to determine r(�) for � = Ni and N(N − 1) < � ≤
N 2 − 1. We begin with � = Ni which corresponds to j = 0.
Substituting these values into (15) results in

R(i, 0) =
N −1−|i|
∑

m=0

N −1
∑

n=0

x[mN + n]x[mN + n + �]

=
(N −1−|i|)N +N −1

∑

k=0

x[k]x[k + �]

=
N 2 −1−�
∑

k=0

x[k]x[k + �] = r[�], (20)

where we defined k = mN + n. Next, the values N(N − 1) <
� ≤ N 2 − 1 correspond to i = N − 1 and 0 ≤ j ≤ N − 1.
Plugging into (15) leads to

R(N − 1, j) =
N −1−j
∑

n=0

x[n]x[n + �]

=
N 2 −1−�
∑

k=0

x[k]x[k + �] = r[�], (21)

since � = (N − 1)N + j. �

Proposition 1 establishes that the 1D autocorrelation provides
less knowledge on X than the 2D autocorrelation. Indeed, know-
ing r provides information on R(i, j) for −(N − 1) ≤ j ≤ −1
only through the sum of these values with matching autocorre-
lation values. Therefore, in order to be able to recover R from
r we must obtain these values separately, namely we require an
additional (N − 1)2 constraints on R. This observation com-
bined with Proposition 1 leads to the following theorem, which
establishes that the 2D phase retrieval problem can be cast as a
1D problem with additional constraints.

Theorem 2: Let X be a real valued N × N matrix and let
x = vec(XT ) be its row vectorized representation. Let R =
X � X be the 2D autocorrelation matrix of X and let r = x � x
be the 1D autocorrelation sequence of x. Then the 2D phase
retrieval problem

find X

subject to R = X � X

is equivalent to the 1D problem with (N − 1)2 additional
constraints:

find x

subject to r = x � x

R(i, j) =
N −1−i
∑

m=0

N −1
∑

n=−j

(22)

x[mN + n]x[mN + n + �]

for i > 0,−(N − 1) ≤ j ≤ −1 where � = iN + j and
0 ≤ � ≤ N 2 − 1. The values of r(�) are determined from R(i, j)
via (14).

To summarize, the general procedure for reformulating a 2D
problem as a 1D problem is as follows:

1) Define the vector x that is generated by vectorizing the
matrix XT , i.e x = vec(XT ).

2) Extract the 1D autocorrelation sequence of x from the 2D
autocorrelation matrix of X via Proposition 1.

3) Using the extracted 1D autocorrelation, recast the 2D
phase retrieval problem on X as a 1D phase retrieval prob-
lem on x with additional (N − 1)2 constraints as stated
in Theorem 2.

B. An Example

We now provide an example demonstrating the steps above
in order to reformulate a simple 2D problem.

Let X be the 2 × 2 matrix given by

X =

(

−24 26

−9 1

)

. (23)

In a phase retrieval experiment we measure the 2D autocorrela-
tion of the matrix X:

R =

⎛

⎜

⎝

R(−1,−1) R(−1, 0) R(−1, 1)

R(0,−1) R(0, 0) R(0, 1)

R(1,−1) R(1, 0) R(1, 1)

⎞

⎟

⎠ . (24)
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The autocorrelation matrix R has 5 unique values corresponding
to the 5 constraints

X(0, 0)2 + X(0, 1)2 + X(1, 0)2 + X(1, 1)2 = R(0, 0)

X(0, 0)X(0, 1) + X(1, 0)X(1, 1) = R(0, 1)

X(0, 0)X(1, 0) + X(0, 1)X(1, 1) = R(1, 0)

X(0, 0)X(1, 1) = R(1, 1)

X(0, 1)X(1, 0) = R(1,−1). (25)

Computing these values results in

R =

⎛

⎜

⎝

−24 242 −234

−633 1334 −633

−234 242 −24

⎞

⎟

⎠ . (26)

Therefore, the 2D phase retrieval problem can be stated as:

find X =

(

X(0, 0) X(0, 1)

X(1, 0) X(1, 1)

)

subject to

X(0, 0)2 + X(0, 1)2 + X(1, 0)2 + X(1, 1)2 = 1334

X(0, 0)X(0, 1) + X(1, 0)X(1, 1) = −633

X(0, 0)X(1, 0) + X(0, 1)X(1, 1) = 242

X(0, 0)X(1, 1) = −24

X(0, 1)X(1, 0) = −234. (27)

Next we show how to reformulate (27) as a 1D problem with
one additional constraint using the steps described at the end of
the previous section:

1) Define the vector x = vec(XT ) = [X(0, 0),X(0, 1),
X(1, 0),X(1, 1)] by vectorizing the matrix XT .

2) Using Proposition 1 extract the 1D autocorrelation r of x
which results in

r = [R(0, 0), R(0, 1) + R(1,−1), R(1, 0), R(1, 1)]

= [1334,−867, 242,−24]

for the nonnegative part of r.
3) From Theorem 2 we can now recast the 2D phase

retrieval problem as a 1D phase retrieval problem with
(N−1)2 =1 additional constraints:

find x

subject to

x � x = [−24, 242,−867, 1334,−867, 242,−24]

x[1]x[2] = −234. (28)

IV. AMBIGUITY REDUCTION

In Section III we established how to recast 2D phase retrieval
as a 1D problem with (N − 1)2 additional constraints. We now
show that, for almost all signals, a single constraint is sufficient
to reduce the many feasible solutions of the 1D formulation to

one solution (up to trivial ambiguities). In particular, we prove
the following theorem.

Theorem 3: Let X be a real valued N × N matrix and let
x = vec(XT ) be its row vectorized representation. Let R =
X � X be the 2D autocorrelation matrix of X and let r = x �
x be the 1D autocorrelation sequence of x defined by (14).
Then the constraint R(N − 1,−(N − 1)) = x[N − 1]x[N 2 −
N ] alone is sufficient to reduce the non-trivial ambiguities of the
1D phase retrieval problem on x. Specifically, the solution to

find x

subject to r = x � x

R(N − 1,−(N − 1)) = x[N − 1]x[N 2 − N ]

is unique for almost all vectors x.
Theorem 2 implies that the problem of recovering a matrix X

from the magnitude of its 2D Fourier transform can be recast as
a 1D phase retrieval problem on the vector vec(XT ) with addi-
tional constraints. Theorem 3 proves that it is sufficient to choose
the constraint R(N − 1, 1 − N) to resolve the non-trivial am-
biguities in the 1D problem on vec(XT ). These insights can be
used to retrieve a 2D signal from its Fourier magnitude using
the following four steps:

1) Extract the 1D autocorrelation r = x � x of x = vec(XT )
from the 2D autocorrelation R of the matrix X using (14).

2) Construct the associated polynomial (6) of r. Using the
factorization (7) and (9) find all non-trivially different
vectors with autocorrelation r.

3) Search for the vector that fulfills the constraint R(N −
1, 1 − N) = x[N − 1]x[N 2 − n]. Theorem 3 suggests
that almost always there will be exactly one such
vector.

4) Reshape the vector back into a matrix. This matrix is
the unique solution to the 2D phase retrieval problem
considered.

Note that the steps above have combinatorial complexity and
therefore are practical primarily for small system sizes. How-
ever, they provide an analytic approach to solving 2D phase
retrieval which can be of interest.

A. Proof of Theorem 3

Our derivations below rely on the results of [27] and [29].
In Theorem 2 we showed that the 2D phase retrieval prob-

lem with respect to X is equivalent to 1D phase retrieval of
x with (N − 1)2 additional constraints. One of these con-
straints is on the value of x[N − 1]x[N 2 − N ] which must be
equal to R(N − 1, 1 − N). This constraint follows from sub-
stituting i = N − 1, j = 1 − N and � = (N − 1)2 into the ex-
pression for R(i, j) in the theorem. For this choice, m = 0
and n = N − 1 so that the sum reduces to the single element
x[N − 1]x[N 2 − N ]. We now show that, for almost all signals,
there is only one trivially non-different vector that fulfills this
constraint.

We begin by considering the 1D problem r = x � x where x
has length N 2 . We define the autocorrelation vector of r as
the vector of zeros γ = [γ1 , . . . , γN 2 −1 ]. Any autocorrelation
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sequence can be uniquely defined by one of its autocorrelation
vectors up to scale. In Section II-A we have seen that knowing r
is equivalent to knowing the polynomial Pr(z) of (7) where now
there are N 2 − 1 pairs of zeros (γj , γ

−1
j ). In addition, we assume

that there are at most 2N 2 −2 distinct possible ways to factor this
polynomial as in (9) such that the corresponding vectors are not
trivially related. Denote by A = {y1 , . . . ,yL} with L ≤ 2N 2 −2

the set of all real vectors yi ∈ RN 2
with autocorrelation r =

x � x that are non-trivially different, and let y ∈ A be a vector
with zero set B = {β1 , . . . , βN 2 −1} and associated polynomial

Py(z) = y[0] + y[1]z + . . . + y[N 2 − 1]zN 2 −1

=

⎡

⎣

∣

∣r[N 2 − 1]
∣

∣

N 2 −1
∏

j=1

|βj |−1

⎤

⎦

1
2 N 2 −1

∏

j=1

(z − βj ). (29)

We next rely on Vieta’s formula [30] which relates a poly-
nomial’s coefficients to sums and products of its roots. Vieta’s
result then implies that

y[N 2 − 1 − k]
y[N 2 − 1]

=

⎛

⎝

∑

1≤i1 ≤i2 ≤...≤ik ≤N 2 −1

βi1 βi2 . . . βik

⎞

⎠ .

(30)
Choosing k = N − 1 leads to

y[N 2 − N ] = y[N 2 − 1]

⎛

⎝

∑

Ñ 2

βi1 βi2 . . . βiN −1

⎞

⎠ , (31)

where
∑

Ñ 2 =
∑

1≤i1 <i2 <...<iN −1 ≤N 2 −1 . Let y(I ) be the vector
with associated polynomial

Py ( I ) (z) =

⎡

⎣

∣

∣r[N 2 − 1]
∣

∣

N 2 −1
∏

j=1

|βj |

⎤

⎦

1
2 N 2 −1

∏

j=1

(z − β
−1
j )

=
N 2 −1
∏

j=1

(−ei arg βj )
(

y[N 2 − 1] + . . . + y[0]zN 2 −1
)

= (−1)N 2 −1
(

y[N 2 − 1] + . . . + y[0]zN 2 −1
)

. (32)

In the last transition we used the fact that the coefficients of
the polynomial are real and hence the roots of (32) come in
conjugate pairs. The vector y(I ) is the flipped version of the
vector y where y(I ) [i] = y[N 2 − 1 − i].

For simplicity of notation, we assume that N is odd so that
the phase factor (−1)N 2 −1 is equal +1. If N is even, then
the treatment below is identical up to a minus sign and the
conclusions remain the same. Using Vieta’s formula we have
for y(I ) [N 2 − N ] = y[N − 1],

y(I ) [N 2 − N ] = y(I ) [N 2 − 1]
∑

Ñ 2

β−1
i1

. . . β−1
iN −1

. (33)

The product of (31) and (33) is given by:

y[N 2 − N ]y[N − 1] = y[N 2 − N ]y(I ) [N 2 − N ]

=
∣

∣[r[N 2 − 1]
∣

∣

⎛

⎝

∑

Ñ 2

βi1 . . . βiN −1

⎞

⎠

⎛

⎝

∑

Ñ 2

β−1
i1

. . . β−1
iN −1

⎞

⎠ ,

(34)

where we used the fact that from (29) and (32),

y[N 2 − 1]y(I ) [N 2 − 1]

=

⎡

⎣

∣

∣r[N 2 − 1]
∣

∣

N 2 −1
∏

j=1

|βj |

⎤

⎦

1
2
⎡

⎣

∣

∣r[N 2 − 1]
∣

∣

N 2 −1
∏

j=1

|βj |−1

⎤

⎦

1
2

= |r[N 2 − 1]|. (35)

Since βi ∈ {γi, γ
−1
i }, the value y[N 2 − N ]y[N − 1] defines

a function fy(γ) = y[N − 1]y[N 2 − N ] in the autocorrelation
vector γ. Assuming y is real, any complex roots come in conju-
gate pairs. Suppose, without loss of generality, that y1 = x and
that the zero set of y1 is given by B = {γ1 , . . . , γN 2 −1}. The
function fy1 (γ) then becomes

fy1 (γ) = y1 [N − 1]y1 [N 2 − N ]

=
∣

∣[r[N 2 − 1]
∣

∣

⎛

⎝

∑

Ñ 2

γi1 . . . γiN −1

⎞

⎠

⎛

⎝

∑

Ñ 2

γ−1
i1

. . . γ−1
iN −1

⎞

⎠ .

(36)

Suppose that we are given a specific autocorrelation se-
quence γ0 for which the signal x cannot be uniquely recov-
ered up to trivial ambiguities with the additional constraint
R(N − 1,−(N − 1)) alone. Then there exists a second solu-
tion of the form y ∈ A\{y1} with a zero set defined by B(Γ) ,
where

B(Γ) =

{

γ−1
j , forj ∈ Γ,

γj , otherwise
(37)

and Γ is a nonzero subset of the index set S = {1, . . . , N 2 − 1}.
For this choice,

Fy1 ,y(γ0) = fy1 (γ0) − fy(γ0) = 0. (38)

This implies that the number of functions Fy1 ,y i
(γ0), 1 < i ≤ L

that are zero for this given autocorrelation corresponds to the
number of non-trivially different solutions with the same value
R(N − 1, 1 − N).

Let us now define Λ as the set of all autocorrelations for which
the function Fy1 ,y(γ) is zero, i.e,

Λ =
{

γ ∈ D

∣

∣

∣

∣

Fy1 ,y(γ) = 0
}

, (39)

where D is the domain on which the function is defined (see
the Appendix for more details). The following theorem, whose
proof is provided in the Appendix, shows that for almost all
autocorrelations the function is not zero.

Theorem 4: The zero set Λ of Fy1 ,y(γ) has measure zero.
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From Theorem 4 we conclude that the probability that for
a given autocorrelation (a given γ ∈ D) there is at least one
function Fy1 ,y i

(γ) = 0 , 1 < i ≤ L is zero. This shows that for
almost all signals the constraint R(N − 1,−(N − 1)) alone is
sufficient to guarantee uniqueness.

B. An Example

In the example in Section III we considered a simple 2 × 2
matrix and showed how to recast the corresponding 2D phase
retrieval problem into 1D phase retrieval. The reformulated 1D
problem we obtained was:

find x

subject to

x � x = [−24, 242,−867, 1334,−867, 242,−24]

x[1]x[2] = −234. (40)

The solution to this problem without the additional constraint
x[1]x[2] = −234 can be found by considering the associated
polynomial of the autocorrelation sequence (6) and its factor-
ization (7):

Pr(z) =
6
∑

n=0

r[n − N 2 + 1]zn

= −24 + 242z − 633z2 + 1334z3 − 633z4 + 242z5 − 24z6

= −24(z − 2)(z − 3)(z − 4)(z − 1/2)(z − 1/3)(z − 1/4).
(41)

The autocorrelation vector of r is given by γ0 = [2, 3, 4].
There are 24−1 = 8 different vectors with autocorrelation

r (up to global phase and a shift) which can be found
by considering all associated polynomials with zero sets
B = {β1 , β2 , β3} where β1 ∈ {2, 1/2}, β2 ∈ {3, 1/3}, β3 ∈
{4, 1/4}. Using (9), the associated polynomials are given by:

Py1 (z) = −24 + 26z2 − 9z + z3

Py2 (z) = −6 + 29z − 21z2 + 4z3

Py3 (z) = −8 + 30z − 19z2 + 3z3

Py4 (z) = −2 + 15z − 31z2 + 12z3

Py5 (z) = −12 + 31z − 15z2 + 2z3

Py6 (z) = −3 + 19z − 30z2 + 8z3

Py7 (z) = −4 + 21z − 29z2 + 6z3

Py8 (z) = −1 + 9z − 26z2 + 24z3 . (42)

Solutions y8,...,5 are just a flipped version of y1,...,4 (times–1)
and are therefore trivially different. We conclude that the phase
retrieval problem has 24−2 = 4 non-trivially different solutions

Fig. 1. The vectors v1 , v2 , v3 , v4 . Since all values are finite each one of the
additional constraints guarantees uniqueness.

given by
⎛

⎜

⎜

⎜

⎜

⎝

y1

y2

y3

y4

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

−24 26 −9 1

−6 29 −21 4

−8 30 −19 3

−2 15 −31 12

⎞

⎟

⎟

⎟

⎟

⎠

. (43)

The additional constraint in (40) states that x[1]x[2] = −234.
It is easy to see that only the vector y1 satisfies this constraint.
Therefore, this vector uniquely solves (40). By reshaping y1
into its matrix form we conclude that the unique solution to
(40) is

X =

(

−24 26

−9 1

)

. (44)

C. Extensions

In our derivation of Theorem 3 we considered the specific
constraint R(N − 1,−(N − 1)). We chose this constraint since
it involves only two elements of the vector x and is therefore
simple to work with. However, in random simulations, the con-
clusions appear to hold true for any of the other (N − 1)2 con-
straints, as we now demonstrate. We randomly generated 100
valid autocorrelation vectors (specifically, we randomly gener-
ated 100 1D vectors r) of lengths 17, 31 and 49. We achieve
this by first generating 100 random vectors with corresponding
lengths of 9, 16 and 25, and then computing their corresponding
autocorrelation sequences. We check the values of the addi-
tional constraints in (22) for each of the non-trivially different
vectors that share the same autocorrelation sequence. For all
the autocorrelation sequences we tested, the constraints of each
non-trivially different vector had a unique value.

In Fig. 1 we consider the case in which N = 3. The equivalent
1D problem has dimension N 2 = 9. We consider one of the ran-
domly generated autocorrelation sequences we tested. There are
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2N 2 −2 = 128 non-trivially different vectors yi , 0 ≤ i ≤ 127
that share this autocorrelation sequence. For N = 3 the ad-
ditional constraints in Theorem 2 are given by:

Ri(1,−2) = yi [2]yi [3] + yi [5]yi [6]

Ri(1,−1) = yi [1]yi [3] + yi [2]yi [4] + yi [4]yi [6] + yi [5]yi [7]

Ri(2,−2) = yi [2]yi [6]

Ri(2,−1) = yi [1]yi [6] + yi [2]yi [7]. (45)

We define the vectors d1 , d2 , d3 , d4 with elements d1 [i] =
c1R�1 (i)(1,−2), d2 [i] = c2R�2 (i)(1,−1), d3 [i] = c3R�3 (i)(2,
−2) and d4 [i] = c4R�4 (i)(2,−1) for 0 ≤ i ≤ 127, so that the
�j (i) (1 ≤ j ≤ 4) are injective mappings from the index set
0 ≤ i ≤ 127 to the same index set. The mappings are defined
in such a way, that the vectors dj are ordered in ascending
order (i.e dj [i] < dj [i + 1] for all relevant i, j). The constants
cj are defined such that dj [127] = 1 for 1 ≤ j ≤ 4. In Fig. 1
we plot the vector vj where vj [i] = log(dj [i + 1] − dj [i]) for
0 ≤ i ≤ 126 and for 1 ≤ j ≤ 4. Clearly the entries of dj have
distinct values. Therefore, prior knowledge on the value of one
of the additional constraints in (45) guarantees uniqueness in
these examples.

V. CONCLUSION

In this work we considered 2D phase retrieval and showed
that it can be restated as a 1D phase retrieval problem with
additional constraints. We then proved that one additional con-
straint is sufficient to reduce the many feasible solutions of
the complementary 1D phase retrieval problem to a single so-
lution for almost all 2D cases. This approach can be used to
obtain an explicit solution for almost all 2D phase retrieval
problems.

APPENDIX

In this appendix we prove Theorem 4. In particular, we show
that the zero set of Fy1 ,y(γ) has measure zero.

As a first step, we prove the following proposition.
Proposition 5: The function Fy1 ,y(γ) = fy1 (γ) − fy(γ) is

not the zero function.
Proof: Let y be the vector set B(Γ) defined in (37) and

S = {1, . . . , N 2 − 1}. To show that Fy1 ,y(γ) is not the zero
function it is enough to show that it is not zero at a single point.
Select one index i1 ∈ S\Γ and one index i2 ∈ Γ, and consider
the autocorrelation defined by γ̃i1 = α, γ̃−1

i2
= α and γ̃i = 1 for

i ∈ S\{i1 , i2} where we choose α � 1. Using simple combi-
natorics it can be shown that up to a phase factor

fy1 (γ̃) = α2

⎡

⎣

(

N 2 − 3

N − 2

)2

+ O(α−1)

⎤

⎦ , (46)

and

fy(γ̃) = α2

[(

N 2 − 3

N − 3

)(

N 2 − 3

N − 1

)

+ O(α−1)

]

. (47)

For α � 1 we have

fy1 (γ̃) − fy(γ̃)

=

(

N 2 − 3

N − 2

)2 [

1 −
(

N − 2
N 2 − N

)(

N 2 − N − 1
N − 1

)]

α2 .

(48)

Since (N −2
N −1 )(N 2 −N −1

N 2 −N ) �= 1 the above expression is not zero
and therefore the function Fy1 ,y(γ) is not identically zero. �

We now analyze the function fy(γ). The domain and the
image of this function are defined such that fy : CN 2 −1 \G
→ C where G is the set for which γi = 0 for at least
one i ∈ {1, . . . , N 2 − 1}. If we instead define γ = [�γ1 ,
γ1 , . . . ,�γN 2 −1 ,γN 2 −1 ] then fy : R2(N 2 −1)\G → C.

We restrict ourselves to real vectors so that any complex
roots γi appear in conjugate pairs. Thus, we may define a set
of functions, that represent the function fy(γ), that are defined
as fy ,n : RN 2 −1 \G → Rwith 0 ≤ n ≤ �(N 2 − 1)/2	where n
denotes the number of pairs of the roots that are not real valued.
To understand how, we provide a simple example. Consider the
case N = 2. The function fy1 (γ) is then given by (up to a global
phase factor):

fy1 (γ) = r[3] (γ1 + γ2 + γ3)
(

γ−1
1 + γ−1

2 + γ−1
3
)

. (49)

In this case the number of pairs of complex roots can either

be n = 0 or n = 1. If n = 1 then we must have γ2 = γ1 . Ex-
pressing each root in terms of its real and complex part we have
γj = aj + ibj , 1 ≤ j ≤ 3 and the vector of variables becomes
d = [a1 , b1 , a3 ]. The function takes the form

fy1 ,1(d) = r[3]
2a1b

2
1 + a3b

2
1 + 2a3

1 + 5a3a
2
1 + 2a2

3a1

a3 (a2
1 + b2

1)
. (50)

On the other hand if all the roots are real we have bj = 0, 1 ≤
j ≤ 3 and the requirement that γ2 = γ1 no longer needs to be
fulfilled. The vector γ becomesd = [a1 , a2 , a3 ] and the function
takes the form

fy1 ,0(d) = r[3]
(a1 + a2 + a3) (a2a3 + a1 (a2 + a3))

a1a2a3
. (51)

For this case the function fy1 (γ) which is defined on C6 \G can
be fully represented by the two functions fy1 ,0(d) and fy1 ,1(d)
that are defined on R3 \G.

For our problem the function F
(n)
y1,y(d) : fy1 ,n (d) − fy ,n (d)

where d ∈ RN 2 −1 can be written as

F (n)
y1 ,y(d) =

g1(d)
g2(d)

(52)

where g1(d) and g2(d) are some multivariate polynomials with
real coefficients in d. The zero set Vn of F

(n)
y1 ,y(d) is defined as
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Vn = {d ∈ RN 2 −1 \G |F (n)
y1 ,y(d) = 0}. The zero set of g1(d)

is given by W = {v ∈ RN 2 −1 |g1(v) = 0}. Since g1(d) is a
real analytic function, which is not the zero function (as shown
in Proposition 5), and is defined on an open and connected
set, the equation g1(d) = 0 defines a hyperplane on the real
space RN 2 −1 and its zero set is therefore of measure zero. For
a rigorous proof the reader is referred to [31, corollary 10, p.9]
for complex valued analytical functions and [32] for real valued
analytical functions. The function F

(n)
y1 ,y(d) is zero if and only

if g1(d) is zero so that Vn ⊆ W . Since W is a set of measure
zero, so is Vn . The zero set Λ of the function Fy1 ,y(γ) is given
by the union of all zero sets Vn ,

Λ =
�(N 2 −1)/2	

⋃

i=1

Vi. (53)

A countable union of sets of measure zero is still measure zero
and thus Λ defines a set of measure zero over the domain of
Fy1 ,y(γ).
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[30] M. Hazewinkel, “Viète theorem,” in Encyclopedia of Mathematics. New
York, NY, USA: Springer, 2001.

[31] R. C. Gunning and H. Rossi, Analytic Functions of Several Com-
plex Variables. Providence, RI, USA: Amer. Math. Soc., 2009,
vol. 368.

[32] B. Mityagin, “The zero set of a real analytic function,” 2015,
arXiv:1512.07276.

Dani Kogan received the B.Sc. degree from Ben-
Gurion University, Be’er Sheva, Israel, in 2014, and
the M.Sc. degree from the Weizmann Institute of Sci-
ence, Rehovot, Israel, in 2016, both in physics.



KOGAN et al.: ON THE 2D PHASE RETRIEVAL PROBLEM 1067

Yonina C. Eldar (S’98–M’02–SM’07–F’12) re-
ceived the B.Sc. degree in physics and the B.Sc.
degree in electrical engineering both from Tel-Aviv
University (TAU), Tel-Aviv, Israel, in 1995 and
1996, respectively, and the Ph.D. degree in elec-
trical engineering and computer science from the
Massachusetts Institute of Technology (MIT), Cam-
bridge, MA, USA, in 2002. From January 2002 to
July 2002, she was a Postdoctoral Fellow at the Dig-
ital Signal Processing Group at MIT. She is currently
a Professor in the Department of Electrical Engineer-

ing at the Technion, Israel Institute of Technology, Haifa, Israel, where she
holds the Edwards Chair in Engineering. She is also a Research Affiliate with
the Research Laboratory of Electronics at MIT and was a Visiting Professor
at Stanford University, Stanford, CA, USA. Her research interests include the
broad areas of statistical signal processing, sampling theory and compressed
sensing, optimization methods, and their applications to biology and optics. She
is author of the book Sampling Theory: Beyond Bandlimited Systems (Cam-
bridge University Press) and the co-author of the books Compressed Sensing
(Cambridge University Press) and Convex Optimization Methods in Signal Pro-
cessing and Communications (Cambridge University Press).

She received many awards for excellence in research and teaching, including
the IEEE Signal Processing Society Technical Achievement Award (2013), the
IEEE/AESS Fred Nathanson Memorial Radar Award (2014), and the IEEE Kiyo
Tomiyasu Award (2016). She was a Horev Fellow of the Leaders in Science and
Technology program at the Technion and an Alon Fellow. She received the
Michael Bruno Memorial Award from the Rothschild Foundation, the Weiz-
mann Prize for Exact Sciences, the Wolf Foundation Krill Prize for Excellence
in Scientific Research, the Henry Taub Prize for Excellence in Research (twice),
the Hershel Rich Innovation Award (three times), the Award for Women with
Distinguished Contributions, the Andre and Bella Meyer Lectureship, the Career
Development Chair at the Technion, the Muriel & David Jacknow Award for Ex-
cellence in Teaching, and the Technions Award for Excellence in Teaching (two
times). She received several best paper awards and best demo awards together
with her research students and colleagues and was selected as one of the 50 most
influential women in Israel. She is a member of the Young Israel Academy of
Science and Humanities and the Israel Committee for Higher Education. She is
the Editor-in-Chief of Foundations and Trends in Signal Processing, serves on
several IEEE committees. She served as an Associate Editor of IEEE TRANS-
ACTIONS ON SIGNAL PROCESSING, the EURASIP Journal of Signal Processing,
the SIAM Journal on Matrix Analysis and Applications, and the SIAM Journal
on Imaging Sciences.

Dan Oron received his B.Sc. in physics and math-
ematics from the Hebrew University of Jerusalem,
Jerusalem, Israel, in 1994, the M.Sc. degree in physics
in hydrodynamic instability from Ben-Gurion, Beer
sheva, Israel, in 1998, and his Ph.D. in physics from
the Weizmann Institute of Science on ultrafast phe-
nomena (2005). Following postdoctoral studies in the
Hebrew University of Jerusalem he joined the depart-
ment of Physics of Complex System at the Weizmann
Institute, where he is currently a professor and serves
as department head. His research focuses on the

development of novel imaging modalities and on the optical properties of col-
loidal nanocrystals.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


