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The SPURS Algorithm for Resampling
an Irregularly Sampled Signal
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Abstract— We present an algorithm for resampling a
function from its values on a non-Cartesian grid onto a
Cartesian grid. This problem arises in many applications
such as MRI, CT, radio astronomy and geophysics. Our
algorithm, termed SParse Uniform ReSampling (SPURS),
employs methods from modern sampling theory to achieve
a small approximation error while maintaining low computa-
tional cost. The given non-Cartesian samples are projected
onto a selected intermediate subspace, spanned by integer
translations of a compactly supported kernel function. This
produces a sparse system of equations describing the rela-
tion between the nonuniformly spaced samples and a vector
of coefficients representing the projection of the signal onto
the chosen subspace. This sparse system of equations
can be solved efficiently using available sparse equation
solvers. The result is then projected onto the subspace in
which the sampled signal is known to reside. The second
projection is implemented efficiently using a digital linear
shift invariant (LSI) filter and produces uniformly spaced
values of the signal on a Cartesian grid. The method can be
iterated to improve the reconstructionresults.We then apply
SPURS to reconstruction of MRI data from nonuniformly
spaced k-space samples. Simulations demonstrate that
SPURS outperforms other reconstruction methods while
maintaininga similar computationalcomplexity over a range
of sampling densities and trajectories as well as various
input SNR levels.

Index Terms— Nonuniform sampling, irregular sampling,
generalized sampling, MRI reconstruction, sparse system
solvers, LU factorization, gridding, non-uniform FFT.

I. INTRODUCTION

RECONSTRUCTION of a signal from a given set of
nonuniformly spaced samples of its representation in the

frequency domain is a problem encountered in a vast range
of scientific fields: radio astronomy, seismic and geophysical
imaging such as geophysical diffraction tomography (GDT)
and ground penetrating radar (GPR) [1], SAR imaging [2]
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and medical imaging systems including magnetic resonance
imaging (MRI), computerized tomography (CT) and diffrac-
tion ultrasound tomography [3].

In the last decades nonuniform sampling patterns have
become increasingly popular amongst MRI practitioners.
In particular, radial [4] and spiral [5] trajectories allow faster
and more efficient coverage of k-space, thereby reducing scan
time and giving rise to other desirable properties such as lower
motion sensitivity [6]. Other notable non-Cartesian sampling
patterns in MRI are stochastic [7] and rosette [8] trajectories
which benefit from less systematic shifting or blurring arti-
facts. A popular approach for recovering the original image
is to resample the signal on a Cartesian grid in k-space and
then use the inverse fast Fourier transform (IFFT) in order to
transform back into the image domain. It has been shown [9]
that this approach is advantageous in terms of computational
complexity.

In MRI, one of the most widely used resampling algo-
rithms is convolutional gridding [10], [11], which consists of
four steps: 1) pre-compensation for varying sampling density;
2) convolution with a Kaiser-Bessel window onto a Cartesian
grid; 3) IFFT; and 4) postcompensation by dividing the image
by the transform of the window.

Two other notable classes of resampling methods employed
in medical imaging are the least-squares (LS) and the
nonuniform-FFT (NUFFT) algorithms. LS techniques, in par-
ticular URS/BURS [12], are methods for calculating the LS
solution for the equation describing the relationship between
the acquired nonuniformly spaced k-space samples and their
uniformly spaced counterparts, as given by the standard sinc-
function interpolation of the sampling theorem. These methods
invert this relationship using the regularized pseudoinverse by
means of a singular value decomposition. Finding a solution
to problems of common sizes using URS is computationally
intractable. BURS offers an approximate tractable solution to
the LS problem.

The NUFFT [13], [14] is a computationally efficient family
of algorithms for approximating the Fourier transform, its
inverse and its transpose of a function sampled on a Cartesian
grid in one domain onto non-Cartesian locations in the other
domain. A nonuniform Fourier matrix A [15] is approxi-
mated efficiently by performing the following three operations
consecutively: 1) Pre-compensation/weighting of the samples
taken on the Cartesian grid; 2) FFT/IFFT onto an oversampled
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Cartesian grid; 3) interpolation from this uniform grid to the
nonuniform sample locations using a compactly supported
interpolation kernel. The Hermitian adjoint of A, denoted A∗,
which is approximated by performing the Hermitian conjugate
of operations 1–3 in reverse order,1 is used along with A
to solve the inverse problem — transforming from the non-
Cartesian onto the Cartesian grid. This is usually performed
using variants of the conjugate gradient method which operates
with A and A∗ alternately until convergence.

In recent years the concepts of sampling and reconstruction
have been generalized within the mathematical framework
of function spaces [16]–[18]. Methods were developed for
reconstructing a desired signal, or an approximation of this
signal, beyond the restrictions of the classic Shannon-Nyquist
sampling theorem.

In this paper we apply these concepts to the reconstruction
of a function from non-uniformly spaced samples in the
spatial frequency domain. Resampling is performed onto a
Cartesian grid in a computationally efficient manner while
maintaining a low reconstruction error. First, the given non-
Cartesian samples are projected onto an intermediate subspace,
spanned by integer translations of a compactly supported
kernel function. A sparse system of equations is produced
which describes the relation between the nonuniformly spaced
samples and a vector of coefficients representing the projection
of the signal onto the auxiliary subspace. This sparse system
of equations is then solved efficiently using available sparse
equation solvers. The result is next projected onto the subspace
in which the sampled signal is known to reside. The second
projection is implemented efficiently using a digital linear
shift invariant (LSI) filter to produce uniformly spaced values
of the signal on a Cartesian grid in k-space. Finally, the
uniform samples are inverse Fourier transformed to obtain the
reconstructed image.

Our algorithm, termed SParse Uniform ReSampling
(SPURS), allows handling large scale problems while main-
taining a small approximation error at a low computational
cost. We demonstrate that the reconstruction error can be
traded off for computational complexity by controlling the
kernel function spanning the auxiliary subspace and by over-
sampling the reconstruction grid.

SPURS is applied to the problem of MR image reconstruc-
tion from nonuniformly spaced measurements in k-space, and
is compared using numerical simulations with other preva-
lent reconstruction methods, both iterative and non-iterative,
namely convolutional gridding, rBURS and NUFFT. Perfor-
mance of the different reconstruction methods is compared
in terms of accuracy, computational burden and behavior in
the presence of noise and over a range of sampling densities.
The results demonstrate that a single iteration of SPURS
outperforms other interpolation methods over a range of
sampling densities and trajectories as well as various input
SNR levels. This is achieved with no additional computational
cost. Augmenting SPURS with an iterative scheme further
improves the results and permits adequate reconstruction at

1It can be shown that the operation performed by convolutional gridding is
equivalent to A∗.

Fig. 1. Geometrical interpretation. (a) An oblique projection in a perfect
reconstruction scenario; (b) The SPURS scheme.

much lower sampling densities where the other methods fail.
This allows for the employment of faster scan trajectories
using less sampling points.

We provide a freely available package [19], which con-
tains Matlab (The MathWorks, Inc., Natick, MA, USA) code
implementing the SPURS algorithm along with examples
reproducing some of the results presented herein.

This paper is organized as follows. Section II introduces
generalized sampling methods which are employed through-
out the paper. Section III formulates the non-Cartesian MRI
resampling problem. In Section IV the basic SPURS algorithm
is presented and then extended in Section V. Numerical
simulations and their results are provided in Section VI and
further discussed in Section VII.

II. GENERALIZED SAMPLING METHODS

This section reviews some concepts and methods which
generalize the classic approach to sampling and reconstruction
of signals and are used throughout the paper.

Unless noted, the notations are given for a 1D problem;
the extension to higher dimensions is straightforward using
separable functions.

In the classic approach to signal sampling a signal f̂ is
represented by measurements which are its values at given
sampling points. In recent years [16], [20] this idea was
extended and generalized within a function-space framework.
The processes of sampling and reconstruction can be viewed
as an expansion of a signal onto a set of vectors that span a
signal subspace A of a Hilbert space H:

f̂ =
∑

n

d [n] an = Ad, (1)

where d ∈ �2, and A : �2 → H is a set transform
corresponding to a set of vectors {an} which span the subspace
A and constitute a Riesz basis or a frame. Thus, applying A is
equivalent to taking linear combinations of the set of vectors
{an}. Measurements are expressed as inner products of the
function f̂ with a set of vectors {sm} that span the sampling
subspace S ⊆ H. Using this notation, the vector of samples
b is given by b = S∗ f̂ where b[m] = 〈sm , f̂ 〉 and S∗ is the
adjoint of S. Note that knowing the samples b[m] is equivalent
to knowing the orthogonal projection of f̂ onto S, denoted
by f̂S :

f̂S = PS f̂ = S(S∗S)−1S∗ f̂ = S(S∗S)−1b, (2)
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where
PS = S(S∗S)−1 S∗, (3)

is the orthogonal projection operator defined by its range space
R(PS ) = S and its null space N (PS ) = R(PS )⊥.

A standard sampling problem is to reconstruct a signal
f̂ ∈ A from its vector of samples b = S∗ f̂ . Geometrically, this
amounts to finding a signal in A with the projection f̂S onto
S (see Fig. 1(a)). In order to be able to reconstruct any f̂ in A
from samples in S it is required that A and S⊥ intersect only
at zero. Otherwise, any non-zero signal in the intersection of
A and S⊥ will yield zero samples and cannot be recovered.
For a unique solution we also need A and S to have the same
numbers of degrees of freedom. These two requirements are
fulfilled by the direct-sum condition

H = A ⊕ S⊥, (4)

which implies that A and S⊥ are disjoint, and together span
the space H.

The reconstructed signal ĝ is constructed to lie in the signal
subspace A. Any signal ĝ ∈ A can be represented by ĝ = Ad̃,
where d̃ ∈ �2. Restricting attention to linear recovery methods,
we can write d̃ = H b for some transformation H : �2 → �2,
such that

ĝ = Ad̃ = AH b = AH S∗ f̂ = AH S∗Ad, (5)

where we use (1). Perfect reconstruction means that ĝ = f̂ .
Our problem then reduces to finding H which satisfies

ĝ = AH S∗Ad = Ad = f̂ (6)

for any f̂ ∈ A, i.e., for any choice of d. It is easily seen that
choosing H = (S∗ A)−1 [21] satisfies this equation, where (4)
ensures that the inverse exists. In this case,

ĝ = A
(

S∗ A
)−1

S∗ f̂ . (7)

The operator in (7) is the oblique projection [22] onto A
along S⊥:

EAS⊥ = A
(

S∗ A
)−1

S∗. (8)

An operator E is a projection if it satisfies E2 = E . The
oblique projection operator (8) is a projection operator that
is not necessarily Hermitian. The notation EAS⊥ denotes an
oblique projection with range space R(EAS⊥) = A and null
space N (EAS⊥) = S⊥. If A = S, then EAS⊥ = PA.
A geometric interpretation of the perfect reconstruction
scheme of (7) is illustrated in Fig. 1(a).

When (4) is not satisfied, we use the Moore-Penrose
pseudoinverse [23] in (8), denoted by (S∗ A)†. When (S∗ A)†

is invertible, we have (S∗ A)† = (S∗ A)−1. For the sake of
generality, we shall use the pseudoinverse henceforth.

A desired property of a reconstructed signal ĝ is that it obeys
the consistency condition which requires that injecting ĝ back
into the system must result in the same measurements as the
original system, i.e., S∗ ĝ = b. Even when the input does not
lie entirely in A, for example, due to mismodeling or noise
and regardless of S, the property S∗EAS⊥ = S∗ ensures that ĝ
is consistent.

The consistency principle may be employed to perform
reconstruction into a subspace, say Q, which differs from A.

In this case, perfect reconstruction can no longer be achieved.
Instead, we may seek a signal f̂Q ∈ Q which satisfies
the consistency condition: S∗ f̂Q = b. It is easily seen that
the desired f̂Q can be obtained using EQS⊥ , the oblique
projection onto Q along S⊥,

f̂Q = Q
(

S∗Q
)−1

S∗ f̂ . (9)

The consistency property of the oblique projection was intro-
duced in [16]. It was later extended in [18], [21] to a
broader framework, alongside a geometric interpretation of the
sampling and reconstruction schemes, and is employed below.

The generalized approach to sampling and reconstruction
allows for increased flexibility in the recovery process. This
will be utilized in this paper to develop a computationally
efficient implementation for the reconstruction of f̂ from a
given set of non-uniformly spaced k-space samples b, at the
cost of a small approximation error.

III. THE MRI PROBLEM

An MRI image is represented by a gray level function f (x),
where x denotes the spatial coordinate in 2 or 3 spatial
dimensions. The Fourier transform of the image is denoted
f̂ (k), where k is the spatial frequency domain coordinate,
termed “k-space”:

f̂ (k) =
∞∫

−∞
f (x) e− j2πkx dx . (10)

Herein, the hat symbol is used to denote functions in the
k-space.

The MRI tomograph collects a finite set of k-space raw
data samples { f̂ (κm)}, m = 1, · · · , M . The set of sampling
points {κm} may be nonuniformly distributed in 2D or 3D
k-space. The vector of samples is denoted by b, with,
b[m] = 〈sm , f̂ 〉 = f̂ (κm), where

sm(k) = δ (k − κm) . (11)

The sampling subspace is denoted S = span{sm}.
The field of view (FOV) in the image domain is limited,

which implies that the k-space function of the image, f̂ (k), is
spanned by a set of shifted sinc functions

an (k) = sinc (k/� − n) , n ∈ Z, (12)

where FOV � 1/�. We denote the signal subspace by
A = span{an}. We seek a computationally efficient solution
to the reconstruction problem: Given a set of nonuniformly
spaced k-space samples of an unknown image and the corre-
sponding sampling coordinates, find a good approximation of
the function on a Cartesian grid in k-space from which we
can subsequently reconstruct an approximation of the image,
using the IFFT.

A straightforward approach to reconstruction is to employ
(7) within the framework described above which results in
perfect reconstruction of f̂ . It is easily shown that this solution
is equivalent to the URS scheme [12] mentioned above.
In practical MRI scenarios, this solution requires inverting a
huge full matrix of sinc coefficients which represents S∗ A.
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Storing this matrix on the computer, not to mention calculating
its inverse, is intractable due to the sheer size of the matrices
involved. Instead, we suggest using an auxiliary subspace and
a series of two projections: an oblique projection onto the
auxiliary subspace followed by an orthogonal projection onto
the signal subspace. The first projection is implemented by
solving a sparse system of equations whereas the second is
implemented using an LSI filter, rendering both steps compu-
tationally efficient. The details are presented in the following
section.

IV. SPARSE UNIFORM RESAMPLING ALGORITHM

In this section we present the main ideas underlying our
reconstruction method as well as the detailed steps performed
by the algorithm. We also discuss the resulting approximation
error.

A. SPURS Reconstruction

The straightforward reconstruction approach, performed by
implementation of EAS⊥ is computationally prohibitive for
typical MRI problems. Our algorithm, termed SParse Uni-
form ReSampling (SPURS) trades off reconstruction error
for computational complexity, i.e., perfect reconstruction is
sacrificed for the sake of efficiency, by relying on the notion
of consistency introduced in Section II.

The pivot of the new algorithm is an interim subspace Q
which is designed to enable efficient reconstruction of f̂ .
We choose Q as a shift invariant subspace spanned by a
compactly supported kernel, designed to be close to the signal
subspace A. The reconstruction process is comprised of two
projections. The first is an oblique projection onto Q, which
recovers a consistent approximation of f̂ in Q, denoted f̂Q.
Consistency in this context implies that sampling f̂Q with S∗
yields the original samples b. The second projection is an
orthogonal projection onto A, which recovers the closest signal
in A to the signal f̂Q. It will be shown that the introduction
of the interim subspace Q is instrumental in achieving low
computational complexity while keeping the approximation
error at bay. This is accomplished by ensuring that (S∗Q)†

is easy to compute.
We begin by introducing an intermediate subspace Q ∈ H

which is spanned by the set {qn}, comprising integer transla-
tions of a compactly supported function q(k), i.e.,

qn (k) = q (k/� − n) , n ∈ Z. (13)

We seek a consistent reconstruction of f̂ in Q, represented
by f̂Q = Qc which is given by an oblique projection onto Q
along S⊥, i.e.,

f̂Q = Qc = Q
(

S∗ Q
)†b = Q

(
S∗ Q

)†
S∗ f̂ = EQS⊥ f̂ . (14)

Consistency in this context implies that sampling f̂Q using S∗
produces the original samples: S∗ f̂Q = b. As we show below,
the compact support of q(k) allows for efficient computation
of f̂Q. Choosing Q = A results in perfect reconstruction (7),
however, since A is spanned by a non-compact kernel (12) the
computational burden is prohibitive in practical scenarios.

We obtain c by formulating and solving the equation which
relates the nonuniform samples b to the coefficient vector c:

b = S∗ Qc. (15)

Using c, which defines f̂Q, and given the knowledge that
f̂ ∈ A, we next project f̂Q onto A. The closest solution
in the L2 sense is an orthogonal projection of f̂Q onto A,
denoted PA. Due to the fact that both A and Q are shift-
invariant subspaces PA f̂Q can be calculated efficiently by
employing an LSI filter, as discussed below.

Summarizing, the SPURS reconstruction process comprises
a sequence of two projections:

ĝ = A
(

A∗ A
)†

A∗
︸ ︷︷ ︸

PA

Q
(

S∗Q
)†

S∗
︸ ︷︷ ︸

EQS⊥

f̂ . (16)

A geometric interpretation of (16) is depicted in Fig. 1(b).
Let us split the sequence of operators in (16) into two steps.

First, given the vector of samples b, the vector of coefficients c
is calculated by solving (15) in the least squares sense:

c = (S∗Q
)†b. (17)

Subsequently, the vector c is used to calculate the coeffi-
cients d, given by

d = (A∗ A
)†(

A∗Q
)
c. (18)

Reconstruction is then given by ĝ = Ad. Here A, S and
Q are the set transforms (1) corresponding to an(k) =
sinc(k/� − n), sm(k) = δ(k − κm) and qn(k) = q(k/� − n).

We next address the practical implementation details of each
step, and show how the steps are implemented efficiently.

B. Projection Onto the Subspace Q
In order to calculate c let us first formulate (15) explicitly

for sm(k) defined in (11):

b [m] =∑
n

c [n] q (κm − kn), (19)

where we are given the locations in k-space of the nonuni-
formly distributed sampling points {κm} as well as the Carte-
sian reconstruction locations {kn = �n}. Due to the compact
support of the function q , only a small number of coefficients
c[n] in (19) contribute to the calculation of each value b[m].
Therefore, (19) represents a sparse relation between the coef-
ficient vectors b and c, which can be expressed by an M × N
sparse matrix �, with elements

{�}m,n = {S∗ Q
}

m,n = q (κm − kn), (20)

where M and N are the number of coefficients in the vectors
b and c, respectively.

In order to find the vector c, we formulate a weighted
regularized least squares problem

c = arg min
c′
∥∥�̄
(
b − �c′)∥∥2 + ρ

∥∥c′∥∥2
, (21)

where ‖·‖ denotes the �2 norm of the vector, ρ > 0 is a
Tikhonov regularization parameter [24], �̄ = �

1
2 and � is

an M × M diagonal weighting matrix with weights wi > 0.
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The regularization is required in order to prevent overfitting
and to cope with the possible ill-posedness of the problem
which is common in real life situations where the samples
are contaminated by measurement noise. The weights, wi ,
may contribute in cases when the noise density varies in
k-space and can improve the numerical stability when facing
challenging sampling patterns.

By taking the derivative of (21) we obtain the well-known
normal equations,

(
�T �� + ρI

)
c = �T �b. (22)

To solve (22) we note that although � is sparse, there is no
guarantee regarding the sparsity of �T ��. In fact, it could
easily become a full matrix. A useful sparsity conserving for-
mulation of the normal equations is given by the sparse tableau
approach [25] also referred to as the Hachtel augmented matrix
method [26]. We extend this formulation to accommodate for
the weights and the regularization. By defining a residual term
r = �̄(b − �c) we reformulate (22) as

(
�̄b
0

)
=
(

I �̄�

�T �̄
T −ρI

)(
r
c

)
= �

(
r
c

)
. (23)

In this formulation � maintains the sparsity of �.
The solution of this system of equations by means of

directly inverting � is of complexity O((M × N)3) and easily
becomes computationally prohibitive; so is the amount of
computer memory required to store the non-sparse matrix �−1

which is of order O((M × N)2). Moreover, even if �−1

were known, it would still require O((M × N )2) operations
to compute c from b in (23). Instead, sparse equation solvers
are employed to calculate the LU factors of �. This fac-
torization reduces both the memory requirements and the
computational effort employed for the solution to the order
of O(NNZ(�)) [27], [28], where NNZ(�) is the number of
non-zero elements in the sparse matrix � and NNZ(�) 
(M × N) (see Section V-C). This process enables a computa-
tionally efficient solution of (23) that yields c.

In practice (23) is solved in two steps: In the first step,
the sparse solver package UMFPACK [29], [30] is used to
calculate the LU factorization of �. In particular, the matrix �

is factored as:
P
(

R−1�
)

Q = LU, (24)

where P and Q are permutation matrices, R is a diagonal
scaling matrix that helps to achieve a sparser and more stable
factorization, and L, U are lower and upper triangular matrices
respectively. For further details refer to [31]. It is important to
emphasize that the factorization process is performed offline
only once for a given sampling pattern or trajectory defined by
the set of sampling locations {κm}. The LU factors maintain
the sparsity of � up to a small amount of zero fill-in (entries
which change from an initial zero to a non-zero value during
the execution of the algorithm), and can be stored for later use
with a new sampling data set taken over the same trajectory.

In the second step, given a set of samples b, calculation
of c using L and U is done by means of forward sub-
stitution and backward elimination, operations which typi-

cally achieve a memory usage and computational complexity
which is linear in the number of non-zero elements of the
sparse L, U matrices.

C. Calculation of the Values of f̂ on a Cartesian Grid

Once the vector of coefficients c is calculated, we proceed to
compute the vector d in (18). Since both Q and A correspond
to integer shifts of a kernel function, Q and A are SI subspaces
and, therefore, (18) can be implemented efficiently using an
LSI filter [18]:

HLSI

(
e jω
)

= RAQ
(
e jω
)

RAA
(
e jω
) . (25)

Here

RAQ
(

e jω
)

= DTFT
{

raq [n]
} =

∑

n∈Z

raq [n] e− jωn (26)

is the discrete-time Fourier transform (DTFT) of the sampled
correlation sequence

raq [n] = 〈a (k) , q (k + n�)〉 =
∫ ∞

−∞
a (k) q (k + n�)dk,

(27)
resulting in

RAQ
(

e jω
)

= 1

�

∑

n∈Z

A

(
ω

�
− 2πn

�

)
Q

(
ω

�
− 2πn

�

)
,

(28)
and RAA(e jω) is similarly defined. The function Q(ω) in (28)
is the continuous-time Fourier transform (CTFT) of q(k/�)

Q (ω) = CTFT {q (k/�)} =
∫ ∞

−∞
q (k/�) e− jωkdk, (29)

where A(ω) is similarly defined. Since f̂ resides in the spatial
frequency domain, the filter (25) is defined in the spatial
domain (the image space), using the change of variables

ω → 2πx

FOV
= 2π�x . (30)

The vector of coefficients d is given by

d [n] =
∑

k∈Z

c [n] hL S I [n − k], (31)

which, by the convolution property of the DTFT,
is equivalent to

D
(

e jω
)

= HLSI

(
e jω
)

C
(

e jω
)

, (32)

where C(e jω) and D(e jω) are the DTFTs of c and d, respec-
tively. Once d is calculated, it is used to reconstruct ĝ by

ĝ (k) = Ad =
∑

n

d [n] sinc (k/� − n). (33)

For kn = n�, d[n] = ĝ(kn), which is a vector of the function
values on a Cartesian grid in k-space.

The reconstruction process is next completed by inverse
Fourier transforming back into the image domain e =
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Fig. 2. SPURS system block diagram with filtering implemented as
convolution in k-space.

Fig. 3. SPURS system block diagram with filtering implemented as
point-wise multiplication in the image domain.

IFFT{d}. The estimate of the uniformly sampled image is then
given by g(xn) = e[n], where

xn = FOV

N
n = n

�N
, n ∈ [−N/2, N/2) ∩ Z. (34)

The entire reconstruction process is depicted in Fig. 2, where

hLSI [n] = IDTFT {HLSI} = 1

2π

∫ π

−π
HLSI

(
e jω
)

e jωndω.

(35)
We note that rather than performing the filtering operation
of (25) in k-space, we can employ the convolution property
of the Fourier transform and implement it as a point-wise
multiplication in the image domain following the IFFT. In this
case the values of the filter HLSI at the image grid coordinates
{xn}, i.e. HLSI(e jω)|ω=2π�xn are used, as depicted in Fig. 3.

D. SPURS Algorithm Summary

To summarize, the SPURS algorithm is divided into two
stages; an offline stage which is performed only once for
a given sampling trajectory, and an online stage which is
repeated for each new set of samples.
Phase 1 – Offline preparation and factorization:

The sparse tableau system matrix � of (23) is prepared and
its LU factorization computed. See Algorithm 1.
Phase 2 – Online solution:

The sparse system of equations (23) is solved for a given
set of k-space samples b. The result is subsequently filtered
using the digital correction filter HLSI(e jω) of (25) producing
the vector of coefficients d which represent estimates of the
function on the uniform reconstruction grid ĝ(kn). The result
is transformed to the image domain using the IFFT giving
g(xn). See Algorithm 2.
Algorithm outputs: d, g(xn).

E. Selection of the Kernel Function Spanning Q
The selection of the function q(k) which spans Q and its

support, have a considerable effect on the quality of the recon-
structed image. It is well known that the selection of the ker-
nel function influences significantly the performance of both
NUFFT [14] and convolutional gridding [10], [11]. In princi-
ple, any support limited kernel can be used for SPURS recon-
struction. In this work we use basis splines (B-splines [32])

Algorithm 1 SPURS-Offline Preparation and Factorization
Input:

• {km, m = 1, . . . , M} : nonuniform sampling grid.
• {kn = n�, n = 1, . . . , N } : uniform reconstruction grid.
• q(·) : a compactly supported kernel (e.g. B-spline).
• � : an M × M diagonal weighting matrix, �̄ = �

1
2 .

• ρ > 0 : a regularization parameter.
Algorithm:

1: Construct the sparse M × N system matrix �, with
{�}m,n = q(κm − kn).

2: Construct the (M + N ) × (M + N) sparse tableau
matrix:

� =
(

I �̄�

�T �̄
T −ρI

)
.

3: Factorize � so that P(R−1�)Q = LU.
4: Calculate the LSI filter for use in the online stage:

HLSI

(
e jω
)

= RAQ
(
e jω
)

RAA
(
e jω
) .

Output: HLSI(e jω) and L, U, P, Q, R.

Algorithm 2 SPURS - Online Solution
Input:

• L, U: sparse (M + N )× (M + N ) lower and upper diag-
onal matrices.

• P, Q, R: (M + N ) × (M + N ) permutation and scaling
matrices.

• �: an M × M diagonal weighting matrix, �̄ = �
1
2 .

• b: an M × 1 vector of nonuniformly spaced k-space
sample values of f̂ , where b[m] = f̂ (κm).

• HLSI(e jω).
Algorithm:

1: Construct the (M + N) × 1 vector b̌ =
(

�̄b
0

)
.

2: Scale b̌ by R and permute the result using P.
Store it in the full length vector y = PR−1b̌.

3: Solve Lz = y and Uw = z by forward substitution and
backward elimination.

4: Permute w by Q and store the results in the (M+N)×
1 vector č, where č = Qw =

(
r
c

)
.

5: Filter the N × 1 vector c using hLSI of (35) and
store the results in d.

6: Compute e = IFFT{d}.
Output: d and the image g(xn) = e[n].

which have gained popularity in signal processing applica-
tions [33]. They are commonly used in image processing
because of their ability to represent efficiently smooth signals
and the low computational complexity needed for their evalu-
ation at arbitrary locations. Increasing the degree of the spline
increases its order of approximation and improves the image
quality at the expense of increased computational burden, as
a result of the larger support. It can be shown [33] that as
the order of the spline increases, the subspace Q tends to A,
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subsequently, decreasing ‖PQ⊥ f̂ ‖ in (60).
For q(k) = β p(k) and a(k) = sinc(k) the LSI filter (25)

can be expressed explicitly by evaluating

Q (ω) = CTFT

{
β p
(

k

�

)}
= �sincp+1

(
�

ω

2π

)
, (36)

A (ω) = CTFT

{
sinc

(
k

�

)}
= �rect

(
�

ω

2π

)
, (37)

where,

rect(ξ) =
{

1, |ξ | < 1
2

0, |ξ | ≥ 1
2

, sinc(ξ) =
{

sin(πξ)
πξ , ξ �= 0

1, ξ = 0.

(38)

Plugging Q(ω) and A(ω) into (28) results in

HLSI

(
e jω
)

=
∑

n∈Z

rect
(

ω
2π − n

)
sincp+1

(
ω

2π − n
)

∑
n∈Z

rect
(

ω
2π − n

) . (39)

Reconstruction in the image domain is calculated on the
Cartesian grid {xn}, as defined in (34). When performing the
filtering operation in the image domain, {g(xn)} is obtained by
multiplying the IFFT result of c with the values of HLSI(e jω)
at locations ωn = 2π�xn . Since all {xn} as defined in (34) are
within the FOV, (39) reduces to

HLSI

(
e j2π�xn

)
= sincp+1

( n

N

)
, n ∈ [−N/2, N/2) ∩ Z.

(40)
The sparse matrix � defined in (20), is given by {�}m,n =

β p(κm − kn), for a given set of sampling and reconstruction
coordinates. The number of non-zero elements in the matrix
� is a function of the support of the kernel function and the
number of samples M . For the 2D case this amounts to

NNZ (�) ≤ M (p + 1)2 , (41)

where the 2D separable B-spline kernel function of degree p
is assumed to have a square support with side (p + 1) around
each uniform grid point. Therefore, each non-uniformly spaced
sample is located within the support region of no more than
(p + 1)2 uniformly spaced grid points.

V. EXTENSIONS OF SPURS

A. Dense Grid Interpolation

An expression for the SPURS approximation error is derived
in the Appendix, in the supplementary material. Equation (60)
shows that the intermediate subspace Q introduces an error
into the reconstruction process. The approximation error can
be reduced by resampling onto a denser uniform grid in k-
space. This is done by scaling � in (13) by an oversampling
factor σ > 1, i.e., � → �/σ ; the set transforms S, A
and Q in (16), are now associated with {δ(k − κm)}m∈Z,
{a(k/� − n)}n∈Z and {q(kσ/� − n)}n∈Z, respectively. The
oversampling increases N , the total number of Cartesian
reconstruction points in k-space, as well as the FOV recon-
structed in the image domain, by a factor of σ for each
dimension of the problem, i.e., N → Nσ dim, where dim is the
problem dimension. Increasing σ reduces the approximation

error with a penalty of increasing the computational load.
From a geometric viewpoint increasing the density in the
reconstruction subspace Q, now spanned by {q(kσ/� − n)},
causes the subspace to become larger and consequently closer
to A and to S thereby decreasing the approximation error (60).

For σ > 1, the reconstruction filter (25) needs to be
modified accordingly:

HLSI

(
e jω
)

=
⎧
⎨

⎩

RAQ
�

e jω�

RAA(e jω)
, RAA

(
e jω
) �= 0

0, RAA
(
e jω
) = 0,

(42)

with

RAQ
(
e jω
)

RAA
(
e jω
) =

∑
n∈Z

rect
(

σω
2π − σn

)
sincp+1

(
σω
2π − σn

)

∑
n∈Z

rect
(

σω
2π − σn

) ,

(43)
where the image domain region beyond the original FOV is
set to 0.

It should be noted that both convolutional gridding and
NUFFT employ an oversampling factor σ to improve per-
formance at the expense of increased computational com-
plexity [34]. In most cases it was found sufficient to use an
oversampling factor of σ = 2.

B. Iterating SPURS

Another way to improve the reconstruction results is to use
a simple iterative scheme. In a single iteration of SPURS we
obtain d which is a vector of coefficients from which we can
reconstruct the continuous function ĝ(k) = Ad. By operating
with the sampling operator S∗ to resample the reconstructed
function ĝ(k) on the nonuniform grid we obtain b̃ = S∗ ĝ,
which approximates the original set of samples b = S∗ f̂ .
We define an error vector εεε = b̃ − b. Achieving εεε = 0 means
that a function ĝ ∈ A has been found which is consistent with
the given vector of samples b.

In [35] it was proven that for a function f̂ , known to belong
to a class of spline-like spaces2 A, the exact reconstruction of
f̂ from its samples b[m] = f̂ (κm) can be achieved, provided
that the sampling set {κm} is “sufficiently dense” [36], [37].
A reconstruction process was proposed and proven to converge
to f̂ by iteratively operating with an interpolator and a
bounded projector onto the spline-like space A. It was noted
that the interpolator can be generalized to any set {qn =
q(k − n)} which forms a bounded uniform partition of unity,
i.e.,

∑
n q(k − n) = 1. The convergence of the result to f̂

was proven among others in the L p-norm and in the sup-
norm which implies uniform convergence. In this section we
utilize SPURS to employ a fast iterative algorithm which fits
into the framework proposed in [35]. By iteratively operating
with EQS⊥ and PA from (16), and as long as the sampling
set is dense enough, ĝ converges to f̂ .

The first step of the algorithm, operates on the vector of
samples b with the operator G = (A∗ A)† A∗Q(S∗ Q)† to
produce the vector of coefficients d. This first iteration is
designated d0 = Gb0 = Gb (i.e., b0 = b) which is performed

2Bandlimited functions are a limiting case for this class.
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Fig. 4. Iterative SPURS algorithm block diagram.

by (17) and (18). Using d0 we evaluate the function ĝ0 = Ad0
which is the first approximation of f̂ . Let us define the
continuous error function

εp = f̂ − ĝp, εp ∈ A, (44)

which can be evaluated on the sampling points for each
iteration p

εp [m] = εp (κm) = f (κm) − ĝp (κm) = {b − S∗ Adp
}

m .
(45)

We now proceed to the second iteration. Using the error
vector εεε0, the new measurement vector b1 = b0 + αεεε0
is calculated, where α controls the iteration step size, and
d1 = Gb1. Continuing the iterations leads to

b0 = b
dp = Gbp

bp+1 = bp + αp

⎛

⎜⎜⎝b −
b̃p︷ ︸︸ ︷

S∗ Adp︸ ︷︷ ︸
εεεp

⎞

⎟⎟⎠ .
(46)

The complete iterative process is depicted in Fig. 4.
According to [35], a sufficient condition for convergence

of ĝp to f̂ is that the sampling set {κm} is γ0-dense3, which
implies that the maximal distance between a sampling point
and its nearest neighbor is 2γ0. Moreover, for γ0 sufficiently
small, ‖εp+1‖ ≤ η‖ε p‖ where η < 1, therefore ‖ε p‖ → 0.
From (44), ‖εp‖ → 0 is equivalent to ĝp(k) → f̂ (k) for all k
as p → ∞. The contraction factor η is a decreasing function
of the density, which means that the algorithm converges more
rapidly for denser sets.

The scalar αp controls the iteration step size. For a constant
αp the convergence rate might be slow. In order to improve
the convergence rate αp may be chosen at each iteration
such that the norm of the error ‖εεεp‖ is minimized, where
εεεp = b − S∗ Adp. The error progression between iterations is
εεεp+1 = (I − αp S∗ AG)εεεp, leading to an optimal step size

αp = arg min
α

∥∥(I − αS∗ AG
)
εεεp
∥∥2 = εεε∗

pS∗ AGεεεp
∥∥S∗ AGεεεp

∥∥2 . (47)

3A set {κm} is γ0-dense in R
d if R

d = ∪
m

Bγ (κm), ∀γ > γ0, where Bγ is

a ball of radius γ with center κm .

In our simulations, presented in Section VI, we evaluated
the performance of SPURS both as a direct method and as an
iterative method.

C. Computational Complexity

The computational complexity of SPURS is proportional to
the number of non-zeros (NNZ) in the LU factors of � which
is constructed according to (23) from �, � and ρ. The number
of non-zeros in the (M + Nσ )×(M + Nσ ) matrix � is twice
the NNZ of � as given in (41) for the case of 2D imaging and
a B-spline kernel, plus an additional M + Nσ dim non-zeros on
the main diagonal. This amounts to

NNZ (�2D) � 2M[(p + 1) σ ]2 + M + Nσ 2, (48)

where for the more general case,

NNZ (�) � 2M
[
supp(q)σ

]dim + M + Nσ dim. (49)

Here M and Nσ dim are the number of non-Cartesian and
Cartesian grid points, respectively, dim is the problem dimen-
sion, σ is the oversampling factor and supp(q) is the support
of the kernel function q , e.g., for B-splines of degree p,
supp(β p) = p + 1.

In practice, when � is sparse, its L and U factors which are
used to recover c preserve a similar degree of sparsity, with
a certain increase in NNZ termed “fill-in”. The computational
complexity of the forward and backward substitution stage
is O[NNZ(L + U)] which, despite the fill-in, is of the same
order of magnitude as NNZ(�) given in (49). Assuming
that the filtering stage is performed in the image domain, it
adds a complexity of O(N), whereas the IFFT stage adds
a complexity of O[Nσ dim log(N1/dimσ)] for an image with
N1/dim pixels in each dimension. Thus, the online solution
phase of SPURS has computational complexity

O
[

M(supp(q)σ )dim + Nσ dim log
(

N1/dimσ
)]

. (50)

It can be shown that (50) is comparable to that of convolutional
gridding or of a single iteration of the NUFFT.

In the iterative scheme, an additional stage of calculating
b̃p = S∗ Adp is performed. This adds O(M × Nσ dim)
operations to each iteration. Therefore, iterative SPURS has
computational complexity

O
[

M(supp(q)σ )dim + Nσ dim
[

M + log
(

N1/dimσ
)]]

(51)
per iteration. In practical situations, N and M are of a similar
order of magnitude, therefore, the leading term in (51) is
O(M Nσ dim). It is noteworthy to compare this to the leading
term of (50), O[Nσ dim log(N1/dimσ )], which is considerably
smaller. The latter is also the leading term in the complexity of
convolutional gridding, rBURS or a single iteration of NUFFT.
Therefore, the improved performance exhibited by additional
iterations of SPURS comes with a certain penalty in terms of
the computational burden as compared with a similar number
of iterations of NUFFT.
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Fig. 5. SNR and MSSIM as a function of M for an analytical brain phantom sampled on a spiral trajectory with ISNR =30 dB.

VI. NUMERICAL SIMULATION

In this section we perform image reconstruction from
numerically generated k-space samples of analytical phantoms
and compare the performance of SPURS to that of other
methods. The simulation employs a realistic analytical MRI
brain phantom [38], of dimensions 256×256, i.e., N = 65536.
The numerical experiments are implemented in Matlab (the
code is available online at [19]). Computer simulations are
used to compare the performance of SPURS with that of
convolutional gridding [10], rBURS [12], and the (inverse)
NUFFT method [13] as implemented by the NFFT pack-
age [39] specifically using the application provided for MRI
reconstruction [40].

The NUFFT uses a Kaiser-Bessel window with cut-off
parameter m = 6 (i.e., support = 12), Voronoi weights for
density compensation, and oversampling factor of σ = 2.
Convolutional gridding uses the same parameters and is imple-
mented as a single iteration of NUFFT. In rBURS δκ = 1.2,
�k = 3 are used, with two values of oversampling (σ = 1, 2,
denoted rBURS and rBURSx2 respectively). Unless specified
otherwise the SPURS kernel used is a B-spline of degree 3
(i.e., support = 4) with an oversampling factor of σ = 2. The
results for SPURS are presented for a single iteration and for
the iterative scheme.

For sampling, we use a spiral trajectory which comprises
a single arm Archimedean constant-velocity spiral with M
sampling points along the trajectory, and k-space coordinates
given by:

(
κx , κy

)
j = N

2

√
j

M

(
cos ω j , sin ω j

)
, j = 0, . . . , M − 1,

(52)

where, ω j = 2π
√

j/π ensures that the k-space sampling
density is approximately uniform. Other trajectories and phan-
toms, in particular, a radial trajectory and the Shepp-Logan
phantom, were demonstrated in a preliminary version of this
work [41].

White Gaussian noise is added to the samples to achieve
a desired input signal to noise ratio (ISNR). For each exper-
iment the SNR of the reconstructed image is calculated with
respect to the true phantom image. The SNR measure assesses
the pixel difference between the true and the reconstructed
phantom image, and is defined by

SNR [g (xn) , f (xn)]

= 10 log
1
N

∑N
n=1 [ f (xn)]2

1
N

∑N
n=1 [g (xn) − f (xn)]2

[d B] , (53)

where f (xn) are the pixel values of the original image and
g(xn) of the reconstructed image. The SNR measure does
not take into account structure in the image, and along
with other traditional methods such as PSNR and mean
squared error (MSE) have proven to be inconsistent with the
human visual system (HVS). The Structural Similarity (SSIM)
index [42] was designed to improve on those metrics. SSIM
provides a measure of the structural similarity between the
ground truth and the estimated images by assessing the visual
impact of three characteristics of an image: luminance, contrast
and structure. For each pixel in the image, the SSIM index is
calculated using surrounding pixels enclosed in a Gaussian
window with standard deviation 1.5:

SSIM [ f (xn) , g (xn)] = (2μ f μg + c1)(2σ f g + c2)

(μ2
f + μ2

g + c1)(σ
2
f + σ 2

g + c2)
,

(54)

where μ f is the average of f (xn) in the Gaussian window,
σ 2

f is the variance of f (xn) in the Gaussian window,
σ f g is the covariance betwenn f (xn) and g(xn) in the
Gaussian window, and c1 and c2 are two variables to sta-
bilize the division with weak denominator. In our results we
present the mean of the SSIM value over the whole image,
denoted MSSIM.

In the first experiment the number of samples M on the
spiral trajectory as described by (52) is varied by increments
of 5000 between 10000 and 85000. Noise was added to the
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Fig. 6. Results for an analytic brain phantom sampled on a spiral trajectory with M = 30000, ISNR = 30 dB. Lower row: magnified detail from
reconstructed images; middle row: reconstructed images; upper row: profile plots of image row 113. The dashed lines represent the original image
profile. Columns, from left to right, SNR and MSSIM values in parenthesis: SPURS using β3 (19.57 dB, 0.93), NUFFT (9.15 dB, 0.61), rBURS with
σ = 2 (12.55 dB, 0.69), rBURS with σ = 1 (9.40 dB, 0.61), convolutional gridding (7.38 dB, 0.61).

Fig. 7. Left - SNR; Right - The number of non zeros in the L and U matrices which factor Ψ . Both as a function of the oversampling factor σ and
the spline degree for a spiral sampling trajectory with M = 30000 and ISNR =30 dB.

samples to achieve an ISNR of 30 dB. Figure 5 presents the
SNR and MSSIM of the reconstructed image as a function
of M , the number of sampling points in k-space. For recon-
struction methods which can be iterated, results are shown for
both a single iteration (dashed line) and the final result after
the algorithm has converged (solid line).

Figure 6 exhibits the reconstruction results with the
spiral trajectory with ISNR = 30 dB for M = 30000. The

reconstructed images are displayed alongside magnified views
of a detail from the reconstructed images and profile plots
of row 113.

Figure 7 demonstrates the influence of the oversam-
pling factor σ and the degree of the B-spline kernel
function on the approximation error and on the num-
ber of non zeros in the L and U matrices which
factor � for the analytical brain phantom sampled
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Fig. 8. SNR and MSSIM as a function of ISNR for an analytical brain phantom sampled on a spiral trajectory with M = 30000 samples.

Fig. 9. SNR and MSSIM as a function of ISNR for an analytical brain phantom sampled on a spiral trajectory with M = 60000 samples.

on a spiral trajectory with M = 30000 and ISNR
of 30 dB.

Figures 8 and 9 show the influence of the input SNR on the
reconstruction result for the analytical brain phantom sampled
on a spiral trajectory with M = 30000 and M = 60000
respectively. The ISNR value is varied between 0 dB
and a noiseless input (on the right hand side of the
plot).

VII. DISCUSSION

The first experiment compares the performance of the
different reconstruction algorithms as a function of the number
of measurement points M . As expected, the performance of
all methods deteriorates as the number of samples is reduced.

Comparing the MSSIM and SNR values for high val-
ues of M , it is easy to see that a single iteration of
SPURS performs better than all the other methods over the
entire range of M and ISNR values. This is achieved by

SPURS at either a comparable or a lower computational
cost. It is important to notice how the performance gap
between SPURS and the other algorithms increases as the
ISNR decreases. These results show that SPURS has better
noise performance then the other reconstruction techniques
tested.

When sampling on a spiral trajectory with low values of M ,
SPURS demonstrates superior performance over the other
algorithms. For M values high enough, SPURS, NUFFT and
rBURS with σ = 2 achieve very good results, but the perfor-
mance curve for each method levels off for different values
of M (Fig. 5). The performance curve of NUFFT and of a
single iteration of SPURS levels off at around M = 50000. For
M = 50000 and higher, a single iteration of SPURS produces
better results than those of NUFFT, which requires about 10
iterations to converge. Among the other non-iterative methods,
both rBURS with σ = 2 and convolutional gridding perform
similarly well for M > 50000, however the results are still
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inferior to those of a single iteration of SPURS, all of which
have similar computational complexity. In contrast to the other
techniques, iterative SPURS levels off for values as low as
M = 20000, requiring about 10 iterations to converge to its
best result. For these low M values, significant artifacts appear
in the reconstructed image produced by all methods excluding
SPURS as presented in Fig. 6 for M = 30000. The non-
iterative convolutional gridding and rBURS, as well as iterative
NUFFT, all exhibit ring-shaped aliasing artifacts which are
typical for spiral undersampling [43] as well as decreased
contrast. These artifacts are much less prominent in double-
density rBURS. The SPURS image, in contrast, produces an
artifact-free crisp image with a full dynamic range.

Similar trends are exhibited in Figs. 8 and 9, which demon-
strate the noise performance at a given number of sampling
points M . It is shown once again that a single iteration
of SPURS outperforms the other methods and that in some
cases the results can be further improved by iterating SPURS.
Figure 9 shows the noise performance for a large number of
sampling points M = 60000. For high values of ISNR, the
performance of a single iteration of SPURS is similar to that
of NUFFT, however, at low values of ISNR the advantage of
SPURS over the other algorithms is apparent.

Figure 7 shows the influence of the oversampling factor
σ and the support of the kernel function q on the perfor-
mance of SPURS. It can be seen that the SNR levels off at
σ = 1.2. Moreover, the degree of the B-spline has a relatively
small impact on the performance; in particular, even using a
B-spline of degree 1 (which has a support of 2 k-space samples
and is equivalent to linear interpolation) incurs merely a 0.1 dB
penalty in SNR with respect to higher degree splines. As pre-
sented in Section V-C, both σ and the spline support affect
the computational complexity in a way that it is advantageous
to keep them at a minimum. For example, in Fig. 6 a spiral
trajectory with M = 30000 and ISNR = 30 dB is employed,
with SPURS using σ = 2 and β3. The reconstruction result has
SNR = 19.57 dB. According to Fig. 7, selecting σ = 1.2 and
β1 decreases NNZ(L + U) and thus the storage requirements
by more than tenfold and the total number of operations by a
factor of about 3. The penalty in performance is negligible, and
in our experiment we obtain SNR = 19.47 dB. These results
are significantly better than those of all the other algorithms
presented in Fig. 6.

The SPURS reconstruction setup presented herein assumes a
priori that the signal lies in the signal subspace A, typically the
subspace of support limited functions. Additional constraints
can be imposed on the reconstruction by adding a regulariza-
tion term to the process, in order to impose smoothness or
other constraints on the recovered image. One possible way
to incorporate such constraints is by seeking the solution to
the problem:

d = arg min
d′

∥∥d′ − HLSI c
∥∥2

2 + λ
∥∥Wd′∥∥p

p, (55)

where ‖·‖p denotes the �p norm of the vector and HLSI is
the matrix representation of hL S I in (31). The tuning factor
λ balances between the first term — the data consistency
term—which represents how well the k-space samples d fit

the approximation obtained from the measured data pro-
jected onto Q, and the appended regularization term which
embodies the constraint. In a typical scenario, a smoothness
prior on the reconstructed image is implemented, such as
the total variation (TV) prior [44], in which case the matrix
W comprises the product of the TV derivative matrix and
an inverse Fourier matrix which transforms the k-space vec-
tor d into the image domain, used along with an �1 norm.
Other regularization terms, such as second order TV, Total
Generalized Variation (TGV) or wavelet transforms, could
be similarly employed. Equation (55) is typically solved by
iterative methods and can be incorporated into the SPURS
framework by substituting (55) for (31), since both equations
represent approaches for translating the vector c (representing
f̂Q ∈ Q) into the vector d. Thus, the solution of (55) may
replace the LSI filter blocks in both Fig. 2 and Fig. 4.

VIII. CONCLUSION

A new computationally efficient method for reconstruction
of functions from a non-Cartesian sampling set is presented
which derives from modern sampling theory. In the algorithm,
termed SPURS, a sequence of projections is performed, with
the introduction of an interim subspace Q comprised of integer
shifts of a compactly supported kernel. A sparse set of linear
equations is constructed, which allows for the application of
efficient sparse equation solvers, resulting in a considerable
reduction in the computational cost. After performing the
offline data preparation step, which is only performed once for
a given set of sampling locations, the computational burden of
the online stage of SPURS is on par with that of convolutional
gridding or of a single iteration of NUFFT. The purposed
method is employed for reconstruction of images sampled
nonuniformly in k-space, such as in medical imaging: MRI or
CT. SPURS can also potentially be used to replace convolu-
tional gridding or NUFFT in multi-coil imaging scenarios and
in other problems which reconstruct a signal from a set of non-
Cartesian samples, especially those of considerable dimension
and size.

In terms of the quality of the reconstructed images, it is
demonstrated that the performance of a single iteration of
the new algorithm, for different sampling SNR ratios and
for various trajectories, exceeds that of both convolutional
gridding, rBURS and NUFFT at no additional computational
cost. Iterations can further improve the results at the cost
of higher computational complexity allowing to cope with
reconstruction problems in which the number of available
samples and the SNR are low. These scenarios are of utmost
importance in modern fast imaging techniques.

In this paper we used B-spline functions as the support-
limited kernel function spanning the intermediate subspace Q.
No attempt was made to optimize this kernel function. Sig-
nificant research has been performed in order to optimize the
kernel functions employed by other reconstruction methods
such as convolutional gridding [10], [11] and NUFFT [14].
Future research may possibly improve the performance of the
SPURS algorithm by optimizing the kernel.

Finally, we note that the sparse equation solvers used in
the present research employed the default control parameters
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which were provided with the software package. The factor-
ization of the sparse system matrix can possibly be improved
to run faster and produce sparser factors by tuning the control
parameters of the problem or by evaluating other available
solvers.
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