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Abstract—We address the problem of robust multiuser down-
link beamforming under the assumption that the transmitter has
partial covariance-based channel state information (CSI). In our
approach, the uncertainty on the channel covariance matrices is
assumed to be confined in an ellipsoid of given size and shape,
where prior knowledge about the statistical distribution of the
CSI mismatch is taken into account. The goal is to minimize
the transmitted power under the worst-case quality-of-service
(QoS) constraints. We extend the developed robust problem to
downlink beamforming in cognitive radio (CR) networks where
QoS constraints apply to the users of the secondary network (SN)
and interference leaked to the primary users (PUs) is required
to be below a given interference threshold. We avoid the coarse
approximations used by previous solutions and obtain exact
reformulations for both worst-case problems based on Lagrange
duality. The resulting problems can then be approximated using
semidefinite relaxation (SDR). Further, we consider a popular
alternative robust approach that is based on probabilistic QoS
and interference constraints and show that both approaches are
generally equivalent. Computer simulations show that the pro-
posed techniques provide substantial performance improvements
over earlier robust downlink beamforming techniques for both
the conventional and the CR scenarios.

Index Terms—Downlink beamforming, cognitive radio, convex
optimization, user quality-of-service.

I. INTRODUCTION

T HE increasing demand for wireless services has urged re-
searchers to seek an efficient way of utilizing the avail-

able radio spectrum. The reliability and throughput of wireless
communication systems can be improved by employing mul-
tiple antennas at the transmitter and/or receivers which helps in
efficiently controlling multiuser interference by exploiting the
spatial domain. With the introduction of advanced multiantenna
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standards, like WiMAX, LTE and LTE-A and efficient multi-
antenna base stations, multiuser downlink beamforming has be-
come an active area of research in recent years (see [1] and the
references therein). The performance improvements brought by
the use of downlink beamforming can be realized if accurate
channel state information (CSI) is available at the transmitter.
In such a scenario, using precoding at the multiantenna trans-
mitters, the beam-pattern can be adjusted to mitigate multiuser
interference and improve user quality-of-service (QoS) [2].
Several beamforming techniques have been developed as-

suming perfect CSI. In the scheme of [2], the availability of in-
stantaneous CSI at the transmitter is considered while the tech-
niques in [3] and [4] rely on perfect covariance-based CSI at
the transmitter. In both cases the assumption of exact CSI is,
however, not practical. In real cellular systems, the CSI is ei-
ther estimated at the receiver using training sequences and then
signaled back to the transmitter via feedback channels or, al-
ternatively, the CSI may be determined in the uplink, i.e., in
time division duplexing (TDD) systems, assuming channel reci-
procity. Estimation errors are inevitable in these cases [5]. Due
to the limited capacity of the feedback channels [6], CSI is also
prone to quantization errors. Furthermore, due to latencies in
channel state feedback and short channel coherence time, CSI
at the transmitter may be imprecise. Since the methods devel-
oped assuming perfect CSI are quite sensitive to such channel
uncertainties, several recent works have focused on the design
of downlink beamforming techniques that are robust to CSI er-
rors; see [7]–[9] for instantaneous CSI based approaches and
[10]–[12] for methods utilizing covariance-based CSI. Since the
second order statistics of the channel change slowly compared
to the channel itself, the feedback requirements for covariance-
based CSI are significantly lower compared to instantaneous
channel feedback. Therefore, the use of covariance based CSI
is generally more practical, especially in fast fading channels.
The aforementioned robust approaches are based on worst-

case error considerations. These methods assume that the CSI
errors are within an ellipsoid of a given size without making any
assumption on the distribution of the error. The goal then is to
design beamformers that satisfy the constraints for all possible
errors within this ellipsoid. Another approach for developing ro-
bust techniques, used in both transmit and receive beamforming,
is based on the design of the outage probabilities [13]–[18]. In
this case, the distribution of the CSI errors is assumed to be
known and the worst-case constraints are replaced by proba-
bilistic constraints. The beamformers are designed such that the
outage probability of the constraints is below a predefined value.
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Providing reliable indoor service coverage is a major chal-
lenge in current cellular systems. In modern state of the art
wireless standards like UMTS, LTE and LTE-A, femtocells
are deployed in homes, offices and buildings to improve the
indoor service coverage; see [19], [20] and references therein.
A femtocell base station may use the same frequency band as
the surrounding macro network. One major problem with the
deployment of femtocells is that, unlike macrocells, careful
cell planning cannot be carried out. Therefore, there exists a
strong demand to control interference caused by femtocells so
that macrocell users are not adversely affected. In this setup
the macrocell is treated as being privileged over the femtocell,
so that an underlay cognitive radio (CR) framework can be
adopted where the femtocell acts as the secondary network
(SN) in which the secondary users (SUs) are served [21]. The
macrocell network refers to the primary network (PN) and
its users are the primary users (PUs) that according to the
underlay paradigm are assumed to be non-cooperative. The
use of multiple antennas at the transmitter of the SN, enables
spatial processing to enhance QoS at the SN users and to
control interference at the PN users. From a mathematical point
of view, the CR beamforming problem can be viewed as a con-
ventional beamforming problem with additional constraints on
the interference to the PUs [21]–[23]. Several CR beamforming
techniques have been developed which assume the availability
of perfect CSI, see [23]–[26]. Methods considering erroneous
CSI are considered in [27]–[32]. The authors of [27] extended
the technique of [10] to the CR beamforming problem. How-
ever, there are several approximations used in both [10] and
[27]. In particular, conservative modifications of the QoS and
PU interference constraints are applied that use some coarse
approximations. Moreover, these approaches ignore the posi-
tive semidefinitness constraints on the mismatched downlink
channel covariance matrices. In [12], an improved conventional
downlink beamforming approach is presented that avoids the
conservative modifications used in [10]. The techniques of [28]
and [31] extend the idea of [12] for the CR beamforming case.
The method of [28], however, uses a conservative design that
does not consider the positive semidefinitness constraints on
the mismatched covariance matrices.
In this paper, we propose new worst-case optimization-based

robust techniques for both the conventional and CR beam-
forming problems. In our approach, we use the weighted
Frobenius norm to bound the channel uncertainties instead of
the conventional Frobenius norm as in practical systems the
covariance matrix errors follow specific distributions that can,
e.g., be estimated at the transmitter or the receivers. This can
lead to significant improvements in practical implementations.
We also avoid the aforementioned approximations used in
[10], [27] and [28]. In particular, our formulations explicitly
take into account the positive-semidefinitness property of the
downlink covariance matrices. We use Lagrange duality to
reformulate the QoS and PU interference constraints exactly.
We then apply semidefinite relaxation (SDR) to convert the
resulting problems into convex semidefinite programming
(SDP) problems. We further consider an alternative robust
beamforming approach using the popular probabilistic model.
Interestingly, after some manipulations and simplifications, we
show that the final problem formulations for both the worst-case

and probabilistic approaches are mathematically equivalent. A
similar relationship has been derived for receive beamforming
problems in [18].
In our simulations, the solutions to the resulting SDP prob-

lems are generally rank-one which implies that the obtained
SDR solutions are optimal. In this paper, we provide a class
of specific examples, with large uncertainty thresholds and/or
high symmetries among users channel covariance matrices, in
which all solutions violate the rank-one constraint. However, by
analyzing these examples we conclude that in randomly fading
channels and under reasonable assumptions regarding the size
of the uncertainty sets, the probability that these cases occur is
comparably low. This analysis provides a new insight to the ro-
bust beamforming problem, as this result is fundamentally dif-
ferent from the non-robust case where for a small number of
interference constraints rank one solutions can always be
obtained [33]. We also demonstrate that, concerning problem
feasibility and transmitted power, the proposed beamformers
obtain substantial performance improvements in comparison to
those of [10] and [27].
The rest of the paper is organized as follows. We present the

general system model and problem formulations for the non-ro-
bust downlink beamformers in both the conventional and CR
scenarios in Section II. In Section III, robust problem formu-
lations for the downlink beamformers are derived and com-
pared to the approaches of [10] and [27]. In Section IV, the pro-
posed robust approaches for the downlink beamforming prob-
lems are developed that are free from any coarse approxima-
tions. In Section V, we develop a technique based on the outage
probability and show its relationship to the proposed worst-case
based approach. Then, in Section VI, we discuss a class of spe-
cial cases in which higher rank solutions are obtained from the
SDR technique to gain further insight into the SDR solution. Fi-
nally, simulation results are presented in Section VII that show
improved performance of our techniques compared to earlier
methods.

II. BEAMFORMING FOR CONVENTIONAL AND CR SCENARIOS

In this section, we present the non-robust CR downlink beam-
forming problem that has been addressed in [27]. This problem
can be viewed as an extension of conventional downlink beam-
forming [4] for the operation of a SN base station, where addi-
tional PU interference constraints apply.
Consider a CR network where the SN consists of a single base

station with transmit antennas and single antenna SUs.
The corresponding PN is assumed to comprise single antenna
PUs. At time instance , the SN base station transmits the
vector

(1)

where and are the intended signal and the com-
plex weight vector for the th SU, respectively. The signal re-
ceived by the th SU is given by

(2)

where is the channel vector between the SN base
station and the th SU and is the Hermitian transpose. The
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noise of the th SU, denoted , is assumed to be zero-mean
circularly symmetric white Gaussian with variance .
The received SINR of the th SU can be expressed as [10]

(3)

where is the downlink channel covariance ma-
trix for the th SU. The transmissions from the SN base station
cause interference at the PUs. The interference at the th PU can
be written as

(4)

where is the channel covariance ma-
trix between the SN base station and the th PU, and is the
corresponding channel vector.
The non-robust CR beamformer design problem in [27] is

formulated under the assumption that the channel covariance
matrices are perfectly known. The downlink
beamformers are then designed to minimize the total trans-
mitted power at the SN base station, subject to individual
QoS constraints for the SUs, while forcing the interference to
the PUs to fall below a predefined maximum. The resulting
beamforming problem can be written as

(5)

where denotes the Euclidean norm of a vector or the
Frobenius norm of a matrix, is the minimal acceptable SINR
of the th SU, and is the maximum allowable interference
power caused by the SN base station at the th PU. Note that
the beamformers obtained from problem (5) are matched to the
second order statistics of the channel vectors and not to their
instantaneous values. Additionally, without the PU interference
constraints (i.e., for ), the CR downlink beamforming
problem (5) reduces to the conventional beamforming problem
considered in [4].
To solve (5), the authors of [27] extend the SDR approach

developed in [4] by introducing the variable transformation

(6)

and relaxing the non-convex constraints
. As a result the original problem (5) is relaxed to the

following convex form:

(7)

where denotes the trace of a matrix. It has been shown
in [10], for conventional downlink beamforming , that
the semidefinite program (7) always has at least one rank-one
solution for . For the case of CR downlink beamforming,
the authors of [33] showed that when , a rank-one so-
lution of (7) can always be constructed from higher rank so-
lutions. When a rank-one is obtained from problem (7),
problems (5) and (7) become equivalent and, therefore, the op-
timum beamforming vectors can be obtained from the prin-
cipal eigenvectors of .

III. THE ROBUST BEAMFORMING PROBLEM FOR

CONVENTIONAL AND CR SCENARIOS

In practical scenarios, the CSI available at the base station
is often subject to uncertainty. Therefore, we consider a robust
extension of the conventional and CR downlink beamforming
problems. As the true covariance matrices and are
unknown, the beamformers generated by solving (5) may not
satisfy the constraints in (5) when applied to the true covariance
matrices. We model the estimates of the true channel covariance
matrices, available at the transmitter, for the th SU and th PU
as and , respectively.
Let the Hermitianmatrices and model the cor-
responding uncertainties in these estimates. Depending on the
CSI estimation methods or the feedback quantization scheme,
the uncertainty matrices and follow specific random
distributions. We consider the case that the channel covariance
matrices are subject to colored noise. Let denote the op-
erator that stacks the columns of the matrix to form a vector.
We assume that

(8)

denotes the colored covariance matrix of the CSI error vector
. Assume that is the eigenvector of

with the corresponding eigenvalue . Due to the col-
oring of the CSI errors, the errors along the dominant eigenvec-
tors corresponding to the largest eigenvalues are more promi-
nent than the errors along the minor eigenvectors. To take the
effect of the colored CSI errors into account the uncertainty set
is appropriately described by an ellipsoid with elliptic radii pro-
portional to the square root of the eigenvalues , as
specified below.
Consider e.g., the weighting matrix defined as

(9)

where is a constant such that . Then we define
the -weighted Frobenius norm, for some positive-semidefinite
matrix as

(10)

In our beamforming approach we ensure robustness for all mis-
match matrices that are bounded by ellipsoids of known elliptic
radii, i.e., and . We re-

mark that if denotes the th eigenvalue of the weighting
matrix and , then the th elliptic radius is
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given by . In this sense, we consider the cases in
which the true channel covariance matrices lie in the set of ma-
trices defined as

and .
In case of uniform weighting, hence , this approach of
modeling the uncertainties becomes similar to the non-weighted
techniques of [10] and [27].
Next, we follow a worst-case approach to design the down-

link beamformers such that the QoS and interference targets at
the SUs and PUs, respectively, are met for all mismatched co-
variance matrices. Taking into account that the true covariances
are positive-semidefinite, the robust CR beamforming problem
corresponding to (5) can be formulated as

(11)

The robust modifications of the conventional beamformer in
[10] and CR beamformer in [27] are similar to (11) with

, i.e., the Frobenius norm is used instead
of the weighted Frobenius norm. However, in contrast to (11),
the positive definiteness constraints on the mismatched covari-
ance matrices have been ignored in [10] and [27], which could
in fact result in worst-case approaches that are unnecessarily
conservative. The robust beamforming solutions proposed in
[10] and [27] involve several additional conservative approx-
imations that adversely affect the performance of the beam-
formers. In particular, the worst-case QoS constraints of (11)
are replaced in [10] and [27] by

(12)

The approximation (12) results in strengthening of the QoS con-
straints in (11) and, therefore, when the constraints (12) are sat-
isfied, it is guaranteed that the QoS constraints in (11) will also
be satisfied. The reverse statement is however not true. Simi-
larly, the modification of the PU interference constraints in [27]
is also unnecessarily strict. These constraints are replaced by

(13)

Both approximations may lead to suboptimal beamforming so-
lutions or even infeasibility of the strengthened problem.

Replacing the QoS and PU interference constraints in (11) by
(12) and (13), respectively, the authors of [27] reformulate the
robust CR beamforming problem as

(14)

The latter problem is mathematically similar to (5) and, there-
fore, can be solved in the same way, i.e., using SDR. For the
conventional beamformer case , problem (14) reduces
to the robust modification presented in [10].
An improved robust downlink beamforming approach for the

conventional scenario has been presented in [12], that takes
into account the positive semidefinitness constraints on the mis-
matched covariance matrices and avoids the above mentioned
conservative modifications of QoS constraints. For the CR case,
the authors of [28] extend the idea of [12], however, without
including the positive semidefinitness constraints on the mis-
matched covariance matrices, which, in contrast were consid-
ered in our approach [31].
In the next sections, we develop an alternative approach to

solve the robust worst-case beamforming problems for both the
conventional and CR scenarios. Our technique avoids the afore-
mentioned conservative approximations and, hence, offers a ro-
bust beamformer design with improved feasibility and reduced
transmitted power. In our approach, we use Lagrange duality,
similar to the approaches of [12], [28] and [31], to solve the
inner minimizations, appearing in the constraints of (11), ex-
actly, taking the positive semidefinitness of the downlink co-
variance matrices into account. As we later show in simulations,
this results in an improved performance in terms of feasibility
and transmitted power.

IV. THE PROPOSED ROBUST BEAMFORMERS

In this section we provide an exact reformulation of the robust
downlink beamforming problem (11).

A. The Proposed Conventional Downlink Beamformer

We first consider the conventional beamforming problem and
reformulate the QoS constraints in (11) as a separate optimiza-
tion problem. Introducing the compact matrix notation

(15)

the th QoS constraint can be written as

(16)
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The minimization on the left side of (16) corresponds to the
following optimization problem:

(17)

For a given matrix in (15), problem (17) is convex in ,
and can be replaced by its Lagrange dual. The Lagrange dual
function for problem (17) can be written as

(18)

and, and are the Lagrange variables. To find
the infimum in (18), we equate the respective derivative to zero,
hence

(19)

where the function takes a vector as input
and returns a matrix such that . Here, we
have also accounted for the fact that the matrices ,
and are all Hermitian. From (19), we get

(20)

Taking the -weighted Frobenius norm on both sides, we ob-
tain from (20) the expression for the optimal Lagrange multipler
as

(21)

Next, inserting (20) in the first term of (18), the Lagrange dual
function (18) becomes

(22)

where we have used the fact that
. Inserting the optimal from (21)

in (22), we obtain

(23)

and the dual problem corresponding to (17) can be written as

(24)

Recall that the subproblem (17) is convex and clearly it is
bounded below. Furthermore, there always exist error matrices,
i.e., with , that are strictly
feasible. Therefore, using ([34]. Th. 1.7.1), we can conclude that
strong duality between (17) and (24) holds. This allows us to
replace the th QoS constraint (16) by the equivalent constraint

(25)

We observe that (16) and (25) are satisfied if there exists some
for which

(26)

The QoS constraints (16) can, therefore, also be replaced by (26)
for .
Using (26), along with the definition in (6), problem (11), for

the case , can be modified as

(27)

It is proven in Appendix A that is a
solution of (27). To solve the remaining problem, we follow the
SDR approach and drop the rank-one constraint, resulting in

(28)

Problem (28) is a convex SDP and can be solved in polynomial
time using interior-point algorithms [35], [36]. In Section VI,
we discuss the rank of the solutions obtained from (28) and a
procedure to find a rank-one approximation from the solution
of (28).
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B. The Proposed CR Beamformer

Next, we solve the CR beamforming problem. To modify
the PU interference constraints in (11), avoiding the conserva-
tive approach of (13), we introduce the auxiliary matrix

. The th PU interference constraint in (11) can be
written as

(29)

The maximization on the left side of (29) corresponds to the
following optimization problem:

(30)

Problem (30) is convex for a given matrix . Following the
same steps as used for the QoS constraints, the dual problem
corresponding to the problem (30) can be written as

(31)

Note that the problem (30) is convex and bounded below. Fur-
thermore, there always exist error matrices
with that are strictly feasible. There-
fore, using ([34]. Th. 1.7.1), it can be concluded that strong du-
ality between (30) and (31) holds. Using the fact that and

, we can define the eigendecomposition of
similar to , as given in Appendix A. Note that in this
case all eigenvalues are non-negative. Then using the arguments
similar to the arguments in Appendix A, it can be shown that

solves (31). Thus, the PU interference constraints
(29) can be equivalently written as

(32)

Using (26) and (32), along with the definition in (6), problem
(11) can be modified as

(33)

Similar to the problem (27), it can be proven that
at the optimum of (33). Following the SDR ap-

proach, we can drop the non-convex rank-one constraints, re-
sulting in

(34)

Problem (34) is a convex SDP problem and can be solved in
polynomial time using interior-point algorithms [35], [36] (see
Section VI for obtaining a rank-one solution from the solution
of (34)).
We remark that our analysis in this section and in Appendix A

reveals that for the conventional and the cognitive robust down-
link problem at optimum the Lagrange multipliers and
corresponding to the positive definiteness constraints in (17)
and (30), respectively, are zero. This means that at optimum the
positive definiteness constraints are inactive. In this sense our
analysis rigorously proves the non-trivial result that the positive
definiteness constraints can be neglected in the original problem
(11) without introducing any conservative approximation.
Comparing the QoS constraints of the robust problem (34)

with those of its non-robust counterpart (7), we observe that the
term is added in the robust formulation. Similarly,
the term is added to the PU interference con-
straints in the robust case. These terms strengthen the constraints
and can be viewed as a penalty for making the problem robust.
These penalty terms, as we show later in Section VI, may lead
to higher rank solutions of the relaxed optimization problem
in (34). Further, for colored CSI errors and the weighting ma-
trices defined according to (9), the errors along the dom-
inant eigenvectors of are more prominent than the errors
along the minor eigenvectors. Correspondingly, the penalty for
robustness is also higher or smaller depending on the magnitude
of the corresponding eigenvalues.

V. RELATION TO THE PROBABILISTIC COGNITIVE
BEAMFORMING APPROACH

Next, we derive the downlink beamformers using a proba-
bilistic model and relate the results to the worst-case approach.
To this end, we replace the QoS and PU interference constraints
in (11) with probabilistic constraints. The robust problem can
then be formulated as

(35)

where denotes probability taken with respect to
and, and are predefined

probability thresholds.
We assume that the real-valued diagonal and complex-valued

upper or lower triangle elements of are zero-mean random
with the covariance matrices as defined in (8). We define new
real-valued random variables

(36)

(37)

Then

(38)

(39)
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The variance of can be computed as

(40)

Similarly, the variance of can be computed as

(41)

Suppose that the random variables and have prob-
ability density functions and , respectively.
Then, we can rewrite

(42)

and

(43)

where

(44)

Using (42) and (43), the probabilistic constraints in (35) can be
modified as

(45)

(46)

In the following we investigate, as an example, the special
case, that the real-valued diagonal and complex-valued upper
or lower triangle elements of are
zero-mean jointly Gaussian random variables. Then
and take the form (47) and (48), respectively [see
below]. Using the fact that , the QoS and
PU interference constraints in (35) become

(49)

(50)

After simple manipulations, we can modify (49) and (50) as

(51)

(52)

where and
.

Using (51) and (52), and applying SDR, (35) can be rewritten
as

(53)

We observe that the outage probability based problem (53) is
mathematically equivalent to the worst-case formulation (34)
for proper choices of and . The norm-bound coeffi-
cients and in (34), are replaced by the constants and

in (53), that reflect the outage probability, respectively.

(47)

(48)
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VI. RANK PROPERTIES OF THE RESULTING SDP

The solutions to the SDR-based problems are not rank-one
in general. In such cases, so-called randomization techniques
[37] can be used to obtain an approximate solution of the orig-
inal problem from the solution of the relaxed problem. How-
ever, in the case of (28), (34), and (53), standard randomiza-
tion techniques cannot be directly applied. In the randomization
approach the candidate vectors are scaled up to meet the con-
straints but simple scaling in (28), (34), and (53) generally re-
sults in the violation of the QoS and PU interference constraints.
Nevertheless, our simulation results show that we generally ob-
tain rank-one solutions for and, consequently, the weight
vectors can be retrieved exactly from the principal eigenvec-
tors of . However, there exist specific scenarios with highly
symmetric channels or very large channel uncertainties in which
higher rank solutions are obtained. When a higher rank solu-
tion is obtained, the corresponding rank-one solution can be
approximated using the principal eigenvectors of . The re-
sulting solution, however, will not guarantee that all the con-
straints are satisfied. We remark that based on the results of this
paper and [31], an efficient iterative robust beamforming tech-
nique can be applied that extends the popular power iteration
methods [2]–[4], to compute feasible rank-one solutions (when
convergent). For details we refer to [32].
In the following we provide a simple example and illustrate

under which conditions such higher-rank solutions may be ob-
tained. Consider the case of , and with
covariance matrices

(54)

where denotes a diagonal matrix. In Appendix B, it is
shown that in this case the solution has the diagonal structure

(55)

and either or , and must be non-zero for the QoS con-
straints to be satisfied. The solution (55) is generally of higher
rank if either of and are non-zero. Further it is shown
that if these values are zero, which, according to Appendix B,
is, e.g., the case for , then the solution has the form

(56)

where the values of and depend on the parameters of (34)
and . We also show in Appendix B that larger values
of the uncertainty thresholds and favor a higher rank so-
lution while smaller values result in a rank-one solution. This
observation is intuitively clear as the norm term ,
with defined in (15), becomes dominant in the QoS con-
straints in (34) for increased and this term favors the higher
rank solutions.
In Appendix C, we show that the simple class of diagonal

channel covariances in (54), for which higher rank solutions are
obtained, can be extended to more general, however still highly
symmetric, channel cases.

Fig. 1. Feasibility percentage versus angular separation .

Fig. 2. Total transmitted power versus angular separation .

VII. SIMULATION RESULTS

In this section, we present simulation results for both the con-
ventional and the cognitive beamforming approaches. First, in
Figs. 1–7, we compare the performance of the proposed ro-
bust approach for the conventional downlink beamforming to
the non-robust and robust approaches of [4] and [10], respec-
tively. In Figs. 8–11, we compare the proposed robust CR beam-
forming approaches with the non-robust and robust CRmethods
of [27].
For the conventional beamforming, we first consider the same

scenario as in [4]. The base station is equipped with a uniform
linear array of sensors spaced half a wavelength apart
and single-antenna users are assumed. One of the users
is located at relative to the array broadside, while the
other two are located at , and is varied from
6 to 12 . The users are assumed to be surrounded by a large
number of local scatterers corresponding to an angular spread
of , as seen from the base station. The channel covari-
ance matrices are calculated in the same way
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Fig. 3. Histogram of normalized QoS constraints .

Fig. 4. Total transmitted power versus the condition number of the error co-
variance matrix.

as in [4]. Throughout the simulations, the sensor noise at the
receivers is assumed to be additive white Gaussian with vari-
ances . To model the mismatch ma-
trices , we considered the practically im-
portant case that the channel covariance matrices are estimated
in the presence of colored noise, e.g., resulting from interfer-
ence from neighboring base stations, such that the errors have
a particular spatial signature. In this case the weighted Frobe-
nius norm shall essentially whiten the estimation errors. In our
simulations, we generate errors that are randomly distributed
within ellipsoids with orientations and shapes corresponding
to the eigenvectors and eigenvalues of interference-plus-noise
covariance matrices from the neighboring cells, respectively.
Let denote the interference-plus-noise covariance matrix
present during the estimation of with eigendecomposition

. Then we model the mismatch matrix as

where denotes a random ma-

trix with and . Choosing the

Fig. 5. Feasibility percentage versus required SINR .

Fig. 6. Total transmitted power versus required SINR .

Fig. 7. Histogram of normalized QoS constraints ( dB).
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weighting matrix with ,
where denotes the Kronecker matrix product, it can be shown

that
, where we made use of the property

for arbitrarymatrices , and of comfort-
able dimensions. For a fair performance comparison of the ro-
bust schemes with both weighted and non-weighted Frobenius
norms, we chose for the non-weighted robust scheme a bound

, which follows from the observation that
implies ,

where is the maximum eigenvalue of . In our first
simulation example the colored interference-plus-noise covari-
ance matrices are composed of an interference part ac-
cording to the covariance model [4], with angles 50 , 22 and

, and an additive white noise term with variance 0.1.
We assume that and , for all

. A total number of 500 Monte-Carlo runs has been
used. In all simulations on conventional beamforming, the pro-
posed robust technique is compared to the robust technique of
[10]. As a benchmark we also display the results for the non-ro-
bust technique of [4].
In Fig. 1, we show the feasibility percentage, i.e., the per-

centage of channel realizations for which the different schemes
under consideration yield feasible solutions. A beamforming so-
lution is considered as feasible, if it satisfies all the constraints
in (5) (for ) for the true covariance matrices. The simula-
tions are performed for dB. We observe that the proposed
robust approach with both weighted and non-weighted Frobe-
nius norms outperforms the non-robust and robust approaches
of [4] and [10], respectively, in terms of feasibility percentage.
Note, that the feasibility of the non-robust approach is highly
dependent on the structure of the error matrices and can
change with the variations in the considered error distribution.
Fig. 2 displays the transmitted power of all the techniques for
the same scenario. For better comparison, here we consider only
the cases for which the robust scheme of [10] yields feasible so-
lutions. We remark that in all these instances the proposed ap-
proach is always feasible. Our robust approach is more power
efficient compared to the robust approach of [10]. Recall that
the proposed approach avoids the conservative approximations
of [10] and, therefore, this result is in line with the expectations.
From Fig. 2, the non-robust approach of [4] appears to be more
power efficient but, as can be observed from Fig. 1, it does not
always provide a feasible solution.
For further comparison, we plot the histogram of the achieved

normalized QoS in Fig. 3 for . We define the normal-
ized QoS as

(57)

Due to the normalization (57), a value greater than one in
Fig. 3 corresponds to satisfied QoS constraints. The proposed
approach and the robust approach of [10] both satisfy all the
constraints, as expected, but in the case of the non-robust
approach of [4], a considerable number of constraints is not
satisfied.

In order to further illustrate the benefits of using the weighted
Frobenius norm, we show in Fig. 4 the transmitted power ob-
tained for elliptic uncertainty sets with increasing eccentricity.
We compare the performance of our weighted and non-weighted
robust schemes. We fix the noise variance to 0.5 and vary the
power of the interference part in the noise and interference ma-
trix from 0.01 to 5, in order to obtain error covariance ma-
trices with increasing eigenvalue spread.
Next, we consider the case with sensors at the base

station and single-antenna users fixed at locations 10 ,
40 , 55 , and 70 relative to the array broadside, while the QoS
target is varied from dB to 4 dB.
Here, we assume the angular spread of and

, for all . Similar as in the previous
example, colored interference-plus-noise covariance matrices

corresponding to angles 60 , 60 , 40 , and 43 are as-
sumed with an angular spread of . The variance of the
interfering signals is 0.25 and the variance of the noise is 0.1.We
plot the feasibility percentage of all the schemes in Fig. 5 and
observe that the proposed robust approach outperforms both the
non-robust and robust approaches of [4] and [10], respectively,
in terms of the feasibility percentage. In Fig. 6, we plot the cor-
responding transmitted power for all these techniques for the
cases when the robust technique of [10] is feasible. The pro-
posed approach remains more power efficient compared to the
robust approach of [10] for this scenario as well. The non-robust
approach of [4] exhibits reduced transmitted power but, as men-
tioned above, it cannot guarantee a feasible solution. In order to
elaborate on this issue further, we plot the histogram of the nor-
malized QoS constraints in Fig. 7 for dB. We observe
from Fig. 7 that the non-robust approach does not satisfy all the
constraints while all the constraints are satisfied for both the ro-
bust approaches.
In Figs. 8–11, we present simulation results for the CR

beamformer. To reveal that in our proposed robust approach
performance gains are obtained irrespective of the introduced
weighting, we consider the case that the CSI errors are white
and that the uncertainty sets are modeled by the non-weighted
Frobenius norm. We compare the proposed robust approach
to the non-robust and robust techniques of [27]. We assume

, and . The channel covariance matrices
for the SUs and PUs, and , are generated in the same
way as in the case of the conventional beamformer above.
The SUs are located at 10 , 40 , 55 , and 70 relative to the
array broadside, while the PUs are located at 25 , 83 , and 86
relative to the array broadside. The users are assumed to be
surrounded by a large number of local scatterers corresponding
to an angular spread of in the case of SUs and

for the PUs, as seen from the base station. The error
matrices and are randomly generated in a sphere
centered at zero with radii and , respectively. The re-
sulting error matrices are then added to the covariance matrices
to obtain the estimated covariance matrices and ,
respectively. If or contain negative eigenvalues, then
the corresponding eigenvalues are replaced by 0. We assume
that and dB,
for all and . A total number of 500
Monte-Carlo runs has been performed.
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Fig. 8. Feasibility percentage of the CR beamforming schemes.

Fig. 9. Total transmitted power versus SINR required by SUs.

In Fig. 8, we plot the feasibility percentage of all the schemes
for targets varying from dB to 3 dB. Similar to the con-
ventional beamforming case, a solution is considered as fea-
sible, if it satisfies all the constraints in (5) for the true co-
variance matrices. We observe that the percentage of feasible
runs for both the robust approaches decreases monotonously
as the target SINR increases. The proposed robust approach
shows an increased feasibility percentage as compared to both
the robust and non-robust approaches of [27]. It is important to
note that similar to the case of the conventional beamforming
problem, the feasibility percentage of the non-robust CR ap-
proach is highly dependent on the considered error distribution
for matrices and . Fig. 9 displays the corresponding
transmitted power versus the SINR required by the SUs for the
three schemes under consideration. Similar to the conventional
beamforming case, we consider only those cases for which the
robust scheme of [27] yields feasible solutions. We remark that
in all these cases, the proposed approach is always feasible. Our
method is more power efficient compared to the robust approach

Fig. 10. Histogram of normalized QoS constraints ( dB).

Fig. 11. Histogram of normalized PU interference constraints ( dB).

of [27]. The non-robust approach of [27] appears to be more
power efficient, but the solutions it provides are not feasible
when CSI errors are taken into account.
For further insight, we plot the histogram of the achieved nor-

malized QoS and normalized PU interference power in Figs. 10
and 11, respectively for dB. The normalized QoS is
defined as in (57), while the normalized PU interference power
is defined as

(58)

From (57), a value greater than one in Fig. 10 implies that the
corresponding QoS constraint is satisfied. Similarly, from (58),
in Fig. 11, a value less than one corresponds to satisfied PU inter-
ference constraint. The proposed robust approach and the robust
approach of [27] both satisfy all the constraints, as expected, but
for the non-robust approach of [27], a considerable number of
constraints is left unsatisfied.
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VIII. CONCLUSION

In this paper we have considered the problem of worst-case
robust multiuser downlink beamforming using second order
covariance-based CSI. In addition we have treated the robust
downlink beamforming problem in a CR scenario with addi-
tional constraints for limiting the interference leaked to the PUs.
We have derived exact reformulations of worst-case QoS and
PU constraints using Lagrange duality. We have then converted
the resulting problems into convex SDP problems by applying
SDR. The final problem formulations have additional terms in
the QoS and PU constraints that show the penalty being paid
for achieving the robustness. Additionally, we have shown that
solving the aforementioned downlink beamforming problems
using the probabilistic constraints leads to the same solutions.
Although generally rank-one solutions are obtained from the
resulting SDPs, we have discussed some special cases under
which higher rank solutions are obtained. We have verified the
improvements in terms of the transmitted power and feasibility
of the problem in the simulations.

APPENDIX A
PROOF OF

Let the optimal matrices solving (27) be given by
. In order to show that is op-

timal for (27), we define where matrix is
in the space spanned by the eigenvectors of , and is in
the null space of . We then define the eigendecomposition
of as

(59)

where

(60)

thematrices and contain the positive and ab-
solute values of the negative eigenvalues of on the main
diagonal. The matrices containing the corresponding eigenvec-
tors are denoted by and , respectively. Similarly, the
matrices and contain the eigenvalues and corre-
sponding eigenvectors of , respectively.
In the followingwewant to prove by contradiction. Assuming

first that , we can reformulate the first constraint in (27)
as

(61)

Now we consider that . If at optimum has any
rank-one component in the direction of a column of ,
then the corresponding would have increased entries as
compared to the case where . The non-zero component
in would thus result in a loosened QoS constraint, as can be
observed from the last inequality in (61). This contradicts opti-
mality as we could then always find a solution with a reduced
cost by scaling down without violating other constraints.
This argument naturally extends to the case of higher rank com-
ponents in the space spanned by . Therefore, we conclude
that has no components in the space spanned by .
Next, if an arbitrary rank-one component of in the di-

rection of a column of is nonzero at optimum, then we
could always find a different matrix similar as , but with
that particular eigenvalue of set to zero. In this case we
could find an optimum counterpart similar to where
the corresponding component is reduced accordingly such that

. The resulting would yield a reduced
objective function as without violating
other constraints in (27). This contradicts to the optimality as-
sumption. This clearly can be extended for higher rank compo-
nents and we conclude that has no components in the space
spanned by .
From the last inequality in (61), it can be observed that any

component of orthogonal to , i.e., , would only make
the first and fourth terms more negative. This implies that at
optimum all entries of must be zero as otherwise these
could be reduced, resulting in a loosened QoS constraint. Again,
this contradicts optimality as we could always find a solution
with a reduced cost by scaling down without violating other
constraints.

APPENDIX B
EXAMPLE WITH HIGHER RANK SOLUTION

In this Appendix, we show that, for the covariance matrices
in (54), there exist conditions under which the solution of (28)
has higher rank. For simplicity, we consider the non-weighted
Frobenius norm to model the error matrices, i.e., . In
this case, the inequality QoS constraints for the first and second
users in (28), respectively, become

(62)

(63)

Let the solution of (28) be

(64)

Then the cost function in (28) is given by

(65)

and the terms in the constraint (62) become

(66)
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and

(67)

The off-diagonal entries of and do not affect
and the cost function (65). However,

these entries make the norm term (67) larger, which is required
to be as small as possible. Similarly, it can also be shown for
the second QoS constraint (63) that the off-diagonal entries
of and do not affect and , but
make the norm term larger. Therefore, at
the optimum, the off-diagonal entries of matrices and
must compensate each other, to reduce the terms (67) and

. This implies that, if possible, we should have

(68)

(69)

One solution of the (68) and (69) is with .
For general and , both (68) and (69) are satisfied only if

for . Therefore, the solution has the form

(70)
The QoS constraints (62) and (63), respectively, are then

modified as

(71)

(72)

From (71), it is clear that when (28) is feasible, either or
must be positive as these are the only positive terms on the

left side of (71). Similarly from (72), the term must also
be positive. Thus, for the case when, at optimum, either of the
terms , and become non-zero, a higher rank solution
is obtained for (28).
Let us further investigate the case when ,

and . We first prove that for , we have
, and at the optimum. Towards this aim, let us

assume that, at the optimum, and .
If we choose and , for some

, and replace by and by , then the value of
(71) remains unchanged while the cost function (65) decreases.
Next, we note that

(73)

If we have , then . From
(72) we observe that and

denote a feasible point with lower value of
cost function (65) as compared to
and . This contradicts optimality and,
therefore, we can conclude that at optimum for
. Using similar arguments, it can easily be shown that both

and at the optimum in this scenario. There-
fore, for , the solution has the form

(74)

We next derive conditions under which, for
, we still obtain higher rank solutions. From (74) we

can see that . Let us assume that at optimum
where is a constant. Then, we can introduce the

parameterization such that

(75)

From (74), it is obvious that only or 1 corresponds to a
rank-one solution. The value of can affect both the norm term
and the term . Using (74) and the parameterization
(75), the QoS constraint (62) modifies as

(76)

Similarly, the QoS constraint (63) becomes

(77)

It can easily be shown that at optimum both the QoS constraints
(62) and (63) will be satisfied at equality. Therefore, setting (76)
and (77) equal to zero we get the optimal and , respec-
tively, as

(78)

(79)

Next, inserting (79) in (76) and (78) in (77), and then setting
both (76) and (77) to zero, respectively, we get the decoupled
equations as

(80)

(81)

In order to find the optimal , we numerically solve both (80)
and (81) by varying from 0 to 1, and then choose the for
which the transmitted power is minimized. In Fig. 12,
we plot the value of the cost function for different values of
(we consider ) as is varied from 0 to 1. For this
plot we use and

. Theminimum for each curve is markedwith a circle. As
can be observed from Fig. 12, the optimal parameter varies
from 1 (rank-one solution) towards 0.5 (higher rank solution) as
the uncertainty parameter is increased. This implies that for
larger values of error, higher rank solutions will be favored. In
Fig. 13, the value of is varied from 1 to 1.8 with .
In this case the optimal varies from 0.5 towards 1 as is
increased, implying that as the covariance matrices become less
symmetric, the rank-one solution is favored.
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Fig. 12. Value of cost function vs with varying .

Fig. 13. Value of cost function vs with varying .

APPENDIX C
GENERALIZATION OF SOLUTIONS

For simplicity, we consider the case that the non-weighted
Frobenius norm is used to model the error matrices. Let us as-
sume that is the solution of the problem
(34) with covariance matrices . Keeping the
remaining parameters of problem (34) unchanged, we introduce
a new set of covariance matrices

(82)

where is a unitary matrix. The QoS and PU interference con-
straints of (34), respectively, become

(83)

(84)

Defining the matrices

(85)

we obtain that and . Also,
the cost function remains unchanged as

. We can modify the QoS constraints (83) and
the PU interference constraints (84) as

(86)

(87)

This means that the solution for the problem with the modified
covariance matrices (82) is given by .
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