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Abstract—An important sensing operation is to detect the pres-
ence of specific signals with unknown transmission parameters.
This task, referred to as “link acquisition,” is typically a sequen-
tial search over the transmitted signal space. Recently, the use of
sparsity in similar estimation or detection problems has received
considerable attention. These works typically focus on the benefits
of compressed sensing, but not generally on the cost brought by
sparse recovery. Our goal is to examine the tradeoff in complexity
and performance when using sparse recovery with compressed or
uncompressed samples. To do so, we propose a compressive spar-
sity aware (CSA) acquisition scheme, where a compressive multi-
channel sampling (CMS) front-end is followed by a sparsity reg-
ularized likelihood ratio test (SR-LRT) module. The CSA scheme
borrows insights from the models studied in sub-Nyquist sampling
and finite rate of innovation (FRI) signals. We further optimize
the CMS front-end by maximizing the average Kullback–Leibler
distance of all the hypotheses in the SR-LRT. We compare the
CSA scheme vis-à-vis other popular alternatives in terms of per-
formance and complexity. Simulations suggest that one can use the
CSA scheme to scale down the implementation cost with greater
flexibility than other alternatives. However, we find that they both
have overall complexities that scale linearly with the search space.
Furthermore, it is shown that compressive measurements used in
the SR-LRT lead to a performance loss when noise prevails, while
providing better performance in spite of the compression when
noise is mild.

Index Terms—Compressed sensing, detection and estimation,
Kullback-Leibler distance, multiuser communications.

I. INTRODUCTION

O NE of the critical receiver tasks in a multiuser scenario,
referred to as link acquisition, is that of detecting the

presence of signals, and identifying the link parameters (e.g.,
delays, carrier offsets) of an unknown subset of active com-
ponents out of possible sources. Similar to [1], [2], we con-
sider the case where the active users transmit known and dis-
tinct training preambles to the destination. Usually these
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preambles are designed to be fairly long so that their energy
harvested at the receiver can rise above the noise. Being com-
pletely agnostic about the existing sources, the receiver tests the
received signal in the initial phase until it detects the pres-
ence of such signals in order to establish the active links. This
requires accumulating observations and repeating the test se-
quentially. The signal features extracted from the link informa-
tion are essential for the receiver to determine if it can decode
data [3], [4] and refine the link parameters using mid-ambles
and decoded data after the initial training phase.

A. Related Works on Link Acquisition of Multiuser Signals

We can categorize link acquisition algorithms into three main
groups. The first category acquires a sufficient statistic by di-
rectly sampling at (or above) the Nyquist rate. Given the
set of active users , the likelihood function associated with the
sufficient statistic is then exploited to detect the presence of sig-
nals and determine the link parameters. We refer to such tech-
niques as Direct Sampling (DS) methods (e.g. [5]–[8]).
A second approach [4], [9], [10] facilitates the search of both

the active set and link parameters by Matched Filtering (MF).
This approach compares the filtered outputs of from a bank
of filters constructed by shifting and modulating the preamble

, each of which matches a sufficiently wide col-
lection of points in the full parameter set where and
are the delay and Doppler spread respectively. MF is a preva-
lent choice in hardware implementations because of its sim-
plicity. The MF approach can be implemented in the digital do-
main, where samples are projected onto the sampled version of

, or in the analog domain, where the receiver per-
forms filtering operations onto the templates di-
rectly in hardware. Specific details on these architectures are
provided in Section III.
Classical algorithms take little advantage of the low dimen-

sionality of the received signal space in storing and processing
the observations to improve the performance or reduce com-
plexity. Recently, there have been advances in exploiting spar-
sity, or the low dimensionality of the signal space, to improve
receiver performance. One class of papers suggests using sparse
signal recovery for the purpose of either detection or estima-
tion. For instance, assuming that the signal is present, the re-
sults in [1], [2], [4], [11] deal with identification of the ac-
tive users and/or estimation of signal parameters by creating
a dictionary from the known templates and viewing the
signal as a sparse linear combination of these templates.
Without knowledge of signal presence, the proposed detection
schemes in [12]–[16] use generic compressed measurements to
detect the presence of certain signals within a specific observa-
tion window, starting from an abstract discrete model. We refer
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to this general class of methods as the Sparsity-Aware (SA) ap-
proach. In these papers, delays and carrier offsets are not explic-
itly considered and the discrete observations are treated inde-
pendently as a single snapshot from certain linear models, upon
which SA algorithms are applied.

B. Multiuser Signals With Finite Rate of Innovation (FRI)

What is often neglected in existing DS and SA approaches
is the acquisition of informative low rate discrete samples from
the analog domain. As we mentioned, preamble sequences are
usually fairly long and the receiver needs to sample the signal

at a fast rate and store these samples prior to processing.
This can become a bottleneck in designing preambles so that
they have the appropriate energy gain to rise above noise.
Reducing the sampling rate and the associated overhead in-

curred at the analog-to-digital (A/D) front-end is the concern of
another line of studies [17]–[21] on signals with Finite Rate of
Innovations (FRI) [22]. In general, an FRI signal has a sparse
parametric representation. Given the preamble for each
user traveling through channels, the class of signals

lies in a subspace with no more than dimensions,
where each dimension has three unknowns (e.g., delay, carrier
offset, channel coefficient), irrespective of its bandwidth and du-
ration. The premier objective of FRI sampling is A/D conver-
sion at sub-Nyquist rates for signal reconstructions. This objec-
tive is different from the interest of link acquisition in statistical
inference. In this paper, we wish to harness similar benefits of
the FRI architecture, whilemitigating the detection performance
losses due to reduced observations in the presence of noise.
We formulate the link acquisition problem as a Sparsity Reg-

ularized Likelihood Ratio Test (SR-LRT) using samples from
a Compressive Multi-channel Sampling (CMS) architecture. To
enhance acquisition performance, we optimize the front-end by
choosing sampling kernels that maximize a probability diver-
gence measure of all the hypotheses in the test. We refer to
the proposed scheme as the Compressive Sparsity Aware (CSA)
scheme. Specifically, we discuss in this paper:
1) a unified low-rate A/D conversion front-end using the pro-
posed CMS architecture;

2) a SR-LRT that uses compressive samples from the CMS
architecture for sequential joint detection and estimation;

3) the optimization of the CMS architecture for maximum
average Kullback-Leibler (KL) distance of the SR-LRT;

4) the comparison of the proposed CSA scheme with the DSA
and MF scheme in terms of performance and costs.

Our work bridges the results pertaining to sparsity-aware esti-
mation/detection [1], [2], [4], [12]–[16] the literature on analog
compressed sensing and sub-Nyquist sampling [4], [8], [10],
[17], [18], [23] and FRI sampling [19], [20], [22] such that sam-
pling and acquisition operations are considered jointly.
To measure the benefits of the proposed CSA scheme, we an-

alyze the practical trade-off between the implementation costs
in physically acquiring samples and those invested computa-
tionally in sparse recovery. This is important to clarify the po-
tential benefits of sub-Nyquist architectures in communication
receivers. These methods often benefit from the denoising ca-
pabilities of SA algorithms (as demonstrated in [1], [2], [4],

[12]–[16]) but must lose sensitivity due to the fact that they do
not use sufficient statistics for the receiver inference.
The question we consider is, therefore, what is there to gain:

implementation costs or performance? Our numerical experi-
ments indicate that the main advantage of the proposed scheme
is that it enables the designer to find an adequate operating point
for link acquisition such that processing requirements and com-
plexity of the receiver can be reduced to an acceptable level
without significantly sacrificing acquisition performance com-
pared with the MF architecture. We also confirm numerically
that the optimized CMS architecture acquires highly informa-
tive samples for the SR-LRT in terms of estimation and detec-
tion performance.

C. Notation and Paper Organization

We denote vectors and matrices by boldface lower-case and
boldface upper-case symbols and the set of real (complex)
numbers by . We denote sets by calligraphic symbols,
where the intersection and the union of two sets and are
written as and respectively. The operator
on a discrete (continuous) set takes the cardinality (measure)
of the set. The magnitude of a complex number is denoted
by , where is the conjugate. The transpose,
conjugate transpose, and inverse of a matrix are denoted
by , and , respectively. The symbol represents
Kronecker product. The inner product between two vectors

and between two continuous functions
in are defined accordingly as and

. The -weighted -norm
of a vector with a positive definite matrix is denoted by

, and the conventional -norm is written as
. The -norm of a continuous-time signal

is .
The paper is organized as follows. Section II introduces the

received signal model. We discuss related works on link acqui-
sition in Section III. The CMS architecture we propose is intro-
duced in Section IV. Using the compressive samples obtained
from the CMS architecture, we develop the SR-LRT module for
CSA link acquisition in Section V. We then optimize the CMS
front-end in Section VI. Simulations demonstrating the perfor-
mance are presented in Section VII. The CSA scheme is com-
pared against the MF scheme in terms of storage and computa-
tional costs in Section VIII.

II. SIGNAL MODEL FOR LINK ACQUISITION

In every communication standard, a key control sequence in
the training phase is the initial preamble. Each user from
the unknown active set transmits a specific preamble to the
receiver. This transmission is followed by the mid-ambles and
payload. A common preamble in multiuser communications is
a linearly pulse modulated sequence with a chip rate close
to the signal bandwidth

(1)

Here is the pulse shaping filter (chip) and is
typically a long preamble sequence for each user.
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A. Received Signal Model

The observation at the receiver can be written as

(2)

where is the unknown propagation delay of the th user
in the th multipath, is the Doppler frequency
upper bounded by the maximum Doppler spread , and

is the channel coefficient. Without loss of generality, we
assume that the maximum multipath order is known and
the noise component is a white Gaussian process with

. Our problem is to detect the
presence of the active user set and the corresponding link
parameters for and .
Since the propagation delays are unknown and possibly

large, the typical A/D front-end for link acquisition is sequen-
tial. The acquisition scheme produces test statistics every
units of time, where is the shift in the time reference for de-
tections. At every shift , the receiver decides whether
the signal is present at or after . For convenience,
we denote as the delay of the first ar-
rival path among all users. Let

(3)

be the shift that matches best with signal arrival and

(4)

be the composite delay, where and is the
composite delay spread. Note that ,
where the first term is the fractional delay within while
the second term is a multipath delay relative to the first arrival
path, which is bounded by the channel delay spread . This
implies that . Given the multipath delay spread

and the shift size , we can obtain the composite delay
spread as the search space to fully capture
the signal at least in the th shift.
This allows us to express (2) equivalently as

(5)

After these considerations, it is clear that the search spaces of
delays and Doppler frequencies for each shift are respectively

and .

B. Goal of Link Acquisition

Link acquisition is typically formulated as composite hypoth-
esis tests with unknown link parameters, where the likelihood
ratio between the signal hypothesis and the noise hypothesis is
the test statistic for the detection task. Note that there could be
multiple values of that lead to valid positive detections,
where for a given , the relative composite delay with respect to
the th shift would be

(6)

Therefore, when the signal is captured in an earlier shift
, the relative composite delay would be greater than , and
if it is captured in a later shift the relative composite
delay would be smaller than . In order to single out the best
reference shift, the receiver will have to compare a sequence of

test statistics after the first positive detection at ,
and choose the particular shift that maximizes the likelihood
ratio. We call themaximum likelihood ratio (MLR) shift. The
look-ahead horizon can be chosen considering the type of
sampling kernels, the preambles ’s, and the delay spread

, making reasonable approximations about the duration of
the signals.
Definition 1: Link acquisition refers to
1) locating the MLR shift ;
2) identifying the set of active users in the th shift;
3) resolving the delay-Doppler pairs for and

.
Usually, the preamble signals have large energy, so that

they can rise above the receiver noise. Given that the average
power is constant, the typically last much longer (i.e.,
is large) than subsequent mid-ambles or spreading codes that
modulate data. For a typical wireless application such as GPS or
IS-95/IMT-2000, transmitters continuously send out preamble
sequences with length on the order of [24]
or [25], respectively. This means that in order
to detect the presence of such preambles and acquire the syn-
chronization parameters, architectures using DS, MF or SA ap-
proaches would have to store a large amount of data to process in
a sequential manner. This phase is crucial to properly initialize
any channel tracking that ensues. In Section III, we provide de-
tails on the A/D architectures and the corresponding post-pro-
cessing for conventional link acquisition. We then present the
proposed CMS architecture and the CSA acquisition scheme in
Section IV.

III. EXISTING ARCHITECTURES FOR LINK ACQUISITION

For future use, we let the Nyquist rate of the signal be
with being the maximum single-

sided bandwidth of , .

A. Direct Sampling (DS)

In DS schemes, the received analog signal is sampled
at rate , resulting in samples

. Then DS schemes use the most
recent Nyquist samples for every shift of

(7)

to perform detection. This is a sliding window operation of
samples where in each shift, the most obsolete samples are
replaced with the latest samples, where we choose
such that no samples are missed between shifts.
Based on (2), the samples can be expressed as

(8)

where the parameters

(9)
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(10)

(11)

represent the residual delays, Doppler and channel coef-
ficients corresponding to the set of users in the
th shift. The set of active users varies with depending on
which user component is captured in that shift. We omit the ar-
gument tomake the notations lighter. The vector contains
the noise samples , and is
a sub-matrix of the complete matrix ,
from which we extract columns . The full matrix
is defined by

where is the duration of the pulse on one side1.
Using the th shift of observations, link acquisition amounts

to the following composite hypothesis test

with unknown parameters , , and . The Generalized
Likelihood Ratio Test (GLRT) is typically used, which requires
solving a non-linear least squares (NLLS) problem

over all possible , , to
compute the generalized likelihood ratio

(12)

with estimates obtained at every shift .
The expression of the generalized likelihood ratio is given
in [26] for cases with known or unknown noise variance .
Without loss of generality, we consider the most general case
where is unknown. In this case, the ratio is obtained as

(13)

Using this ratio as the test statistics, the receiver checks if
the statistic satisfies for some properly chosen
threshold . Denote the first shift that passes the GLRT as

(14)

The MLR shift is then given by

(15)

1A pulse has finite durations only if is not bandlimited. If the pulse is
bandlimited, the pulse consists of side-lobes of length . The parameter
in this case is chosen to provide modest approximation errors.

The test above is intractable in general because there are
hypotheses at each shift to explore, and there is an NLLS

problem to solve for each hypothesis. Therefore in practice,
DS schemes either deal with the known user case or
assume the full set during detection, followed
by NLLS for that specific user set. When the active users
are unknown, alternatives are Matched Filtering (MF) and
Sparsity-Aware (SA) approaches, as described next.

B. Matched Filtering (MF)

The MF receiver is widely used in practice. It correlates the
signal with a filterbank constructed from theMF templates

. Since the size of the filterbank has to be finite, it is
usually assumed that and for some
integers and with a certain resolution
and . The search spaces for the MF receiver
then become and ,
which is the discrete counterpart of the continuous search space

.
The MF obtains the decision statistics by passing

through a bank of MF templates, and sampling the
outputs every . To be consistent with the sequential structure
in (5) and the DS method, the MF shifts its templates every

, and samples the outputs every .
The MF output corresponding to the th user at the th discrete
frequency is obtained as

(16)

Oftentimes, the filtering process is implemented in the digital
domain using the samples in (7). For consistency, we
proceed with the description in the analog domain. At the th
shift, the samples used for detection can be stacked into an

exhaustive MF output array

...
...

...
...

...
...

(17)

Then, the MF receiver uses as test statistics and detects
the active user set at the th shift as

where is the chosen detection threshold for each user. The
shift that triggers the first positive detection is denoted as

(18)

The MLR shift is obtained by locating the maximum output
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Given the multipath order , the delay-Doppler pairs at the
th shift are pinpointed by the strongest outputs for all de-
tected users over the search space and . For
convenience, we denote the strongest path by for the
th user and rank the outputs by magnitudes

(19)

for each user . The delay-Doppler pairs are identified as

(20)

which give the following link parameters

Although the MF approach shows an advantage in its post-
processing and implementation, it has a few drawbacks:
i) the size of the MF filterbank scales with the number of
users and the parameter set ;

ii) digital implementation requires high rate processing, in-
creasing storage and pipelining2 cost;

iii) the MF samples contain interference from different
users and multipath components;

Usually the effect of interference (iii) is mitigated by using
wideband pulses . During data detection, multipath inter-
ferences are dealt with using RAKE type receivers and the
multiuser interference is tackled either by using linear multiuser
receivers or, in some cases, successive interference cancelation
(SIC) or even maximum likelihood multiuser detection [3].
Typically, the complexities of these schemes for data detection
grow rapidly with the size of the MF filterbank (i) and the
sampling rate (ii). Since data detection is conducted after link
acquisition, the uncertainties about the set of active users, their
delays and Doppler frequencies have already been resolved and
therefore, these tasks become more manageable.
The MF receiver is a popular choice for multiuser acquisition

[3], for example, in GPS receivers [27] or CDMA receivers [25].
Its comparison with the CSA scheme using the CMS architec-
ture we propose in this paper is insightful because, although the
MF front-end requires a large filterbank, the post-processing of
its outputs is very simple. One could certainly perform more
complex post-processing to enhance its performance. For in-
stance, the Orthogonal Matching Pursuit (OMP) algorithm used
in our CSA scheme can be applied on the MF outputs for better
results. However, in that case, as illustrated in Section VIII, the
resulting scheme will have much higher storage cost and com-
putational complexity, which render the merits of the MF ap-
proach meaningless. More importantly, the OMP algorithm can
be applied to the Nyquist samples as in SAmethods, making the
MF stage superfluous3.

2Pipelining refers to timely processing of the samples that stream into the
system per unit of time.
3Strictly speaking, the OMP technique performs a MF stage in its first itera-

tion. The subsequent iterations can be viewed as applying successive interfer-
ence cancellation (SIC) in multiuser communications.

C. Sparsity Aware (SA) Approach

Instead of simply observing the MF outputs, many recent
works have proposed the idea of compressed sensing or sparse
recovery to solve estimation and detection problems. For the
purpose of user identification and parameter estimation, one ap-
proach is to approximate (8) by a sparse model with a dictionary
constructed from the ensemble of possible templates [1],
[4] and/or discretized delays [2], [28] (similar to the MF tem-
plates), where the joint recovery of active users and unknown
parameters is relaxed as a sparse estimation problem. These
sparse methods, which we call theDirect Sparsity Aware (DSA)
scheme, usually require Nyquist samples and assume that the
signal is already present (i.e., the MLR shift is known). For
clarity, DSA scheme should not be confused with DS schemes,
because DS schemes do not resort to sparsity approach based
on discretization of analog parameters and require a non-linear
search over the parameter space .
On the other hand, aiming at signal presence detection rather

than identifying the active users and recovering the parameters,
[12]–[16] reduce the number of samples required for the test by
using a linear compressor on the block of given discrete obser-
vations. The compressor used in this class of detection schemes
can in fact be implemented using our proposed CMS archi-
tecture in the digital domain, therefore we also categorize this
method as the CSA scheme discussed in this paper to avoid con-
fusion. Last but not least, the DSA scheme can also be regarded
as a special case of the proposed CSA schemewith a compressor
that is an identity matrix.
A distinctive difference between the CSA scheme we pro-

pose and those in [12]–[16] is that our CSA scheme unifies
the sequential signal detection, user identification and param-
eter estimation by using the compressive samples obtained from
a flexible multi-rate A/D architecture. On the other hand, the
CSA schemes in [12]–[16] directly start from an abstract dis-
crete model that is already sampled. Furthermore, the sampling
kernels in the proposed CMS architecture are optimized with
respect to the estimation and detection performance in terms of
the average KL distance of the hypotheses in the SR-LRT.

IV. COMPRESSIVE SEQUENTIAL LINK ACQUISITION

A. Compressive Multichannel Sampling (CMS)

We propose to use the A/D front-end in Fig. 1, typical in FRI
sampling [17], [19], [20], [22], [23]. The signal is sampled every

by a -channel filterbank

(21)

We call this architecture the Compressive Multichannel
Sampling (CMS) module, which forms the A/D conversion
front-end of the proposed CSA acquisition scheme.
Note that (21) can also be implemented in the digital domain

by performing linear projections of the discrete signal
in (8). This means that the CMS architecture becomes part
of the post-processing of the Nyquist samples of , which
lowers the storage and computation requirements as illustrated
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in Section VIII. Similar derivations can be done in discrete
time, but the advantage of using the analog description is that
we do not necessarily have to target bandlimited signals. In the
FRI literature [17]–[20], [22], [23], in the absence of noise,
the sampling rate required for the unique reconstruction of
the signal in (5) is the number of degrees of freedom of the
signal per shift , equal to the number of unknowns

. This amounts to ,
which can be much less than what is needed in the MF ap-
proach when the number of active users
is not large , or the number of multipaths is much
less than the dimension of the search space for Doppler .
However, since the estimation and detection are performed in
the presence of noise, the value of needs to be increased in
general to enhance the sensitivity of the receiver. This gives
the option of trading off accuracy with storage cost and com-
putational complexity, by adjusting the number of samples
to process between .
Note that for different schemes, we need different post-pro-

cessing to produce final decisions for different receivers. For
instance, the MF scheme has very simple post-processing at the
cost of handling exhaustiveMF samples, while the CSA scheme
can tune the number of measurements to handle less data by
spending a higher premium for sparse recovery. Therefore, we
discuss this trade-off in detail in Section VIII.

B. CMS Observation Model

Similar to [1], [2], we follow the analog description of (5) but
discretize the parameters as in the MF approach. For notational
convenience, we introduce the triple-index coefficient

(22)

for as an indicator of whether the th user is
transmitting and whether there exists a link at a certain delay

with a certain carrier offset in the window.
Note that except when and for

. Denoting theMF template as ,
the signal in (5) can be approximated as

(23)

Clearly, has at most active components due to the
sparsity of . To facilitate notations in our derivations, we
introduce the triplet index and define the length-
link vector at the th shift as

(24)

(25)

for any , and .We define the associated
delay-Doppler set for the th user at the th shift

(26)

Fig. 1. The compressive samples obtained in the CMS architecture and the
SR-LRT in the proposed CSA acquisition scheme.

from which we extract the delays and carrier
offsets for the active users if .
We consider sampling kernels that are linear combina-

tions of MF templates [23]. We specify the observation model
for the CMS architecture in Fig. 1 using the link vector in
the theorem below.
Theorem 1: Suppose that we choose sampling kernels

as linear combinations of the MF templates

(27)

The length- sample vector taken
at shift , can then be expressed as

(28)

where is the link vector at the th shift and

1) is a matrix with ;
2) is an matrix with

where

and is the ambiguity
function

(29)

3) with

(30)

4) is the filtered Gaussian noise
vector with zero mean and covariance

(31)

Proof: See Appendix A.
The freedom in choosing allows us to optimize acquisition

performance. Before discussing the details of optimization in
Section VI, we further simplify the model in Theorem 1.

C. CMS Sequential Acquisition Model

Theorem 1 describes the general model of the samples
obtained in the th shift with respect to the link vector .
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However, the exact shift is unknown to the receiver. As men-
tioned earlier, determining the exact shift is not necessary to re-
cover the link parameters, as long as the shift is properly aligned
with the signal and produces a positive detection maximizing
the likelihood ratio. In the following, we transform the obser-
vation model in Theorem 1 to an equivalent model. The
equivalent model is stated with respect to a modified link vector

at the th shift, which contains entries that are shifted with
a relative placement of in relation to . The reason
for this is that we can use a time-invariant system matrix instead
of a time-variant one for the purpose of sequential
detection.
Theorem 2: Let for some integer . The

outputs of the compressive samplers can be re-written as

(32)

where and is the th shift link vector

(33)

Proof: See Appendix B.
Corollary 1: Let the delay-Doppler sets at the th shift be

(34)

for . Then for any at the th shift (26),
we have at the th shift.
Using the modified sets , the number of delay-Doppler

pairs included at the th shift equals . It is obvious
that for any . At the th shift, if a positive
detection is declared and for all , then the
modified link vector carries equivalent link information as
the link vector at the th shift. Therefore, we use the model
in Theorem 2 and re-state the goal of link acquisition
1) locating the MLR shift ;
2) identifying the set of active users indicated by the delay-
Doppler set ;

3) resolving the delay-Doppler pairs in the th window
for .

For better representation and comparison of the individual
support set in relation to the original support set , we
introduce the full user-delay-Doppler sets for the link vectors

and respectively

(35)

(36)

In the following sections, we express the link vector explicitly
with respect to the full user-delay-Doppler set and combine
the phase rotation matrix at the th shift as

(37)

We call the modified link vector and
note that it is also a -sparse vector.

V. SPARSITY REGULARIZED LIKELIHOOD RATIO TEST

We now develop an SR-LRT detection algorithm that tackles
the link acquisition problem exploiting the compressive obser-
vation model given in Theorem 2. The goal of link acquisition
is to pinpoint the true set by performing a multiple
composite hypothesis test

(38)

over all possible at every shift . Note that the de-
tection of signal presence is incorporated in this test by set-
ting as the null hypothesis. Given a set , the am-
plitudes and noise variance are unknown and treated
as nuisance parameters. Link acquisition is to detect the full
user-delay-Doppler set for all possible . Following the
GLRT rationale, the test finds the set that gives the maximum
log-likelihood associated with each hypothesis

(39)
in the presence of unknown parameters and .
Note that when , the samples are equivalent to

the outputs of the MF approach. This implies that the samples
obtained in the CMS architecture, using only sampling

kernels in (27), are equivalent to a linearly compressed version
of the exhaustive MF output. The difference is that the samples
here are obtained directly from the A/D architecture, instead of
linearly compressing the exhaustive MF filterbank outputs as in
[14], [15], where the latter would be much more complex. On
the other hand, the difference in post-processing between the
MF and CMS architectures is that MF allows to simply pick the
hypothesis corresponding to the largest magnitude in the output

as the detection result, while a more sophisticated detection
scheme is necessary when using the compressive samples .

A. Sequential Estimation for Link Acquisition

The GLRT requires estimating and for every possible
at every shift . For every hypothesis , the

estimate of under colored Gaussian noise with covari-
ance is

(40)

The “hat” notation on the vector refers to the estimates
of the amplitudes on the support . The total number of such
estimates scales with the number of hypothesis which in this
case is , resulting in an NP-hard combinatorial estima-
tion problem. Instead, we solve this combinatorial problem in a
“soft” fashion at every shift similar to [2]

(41)

where is some regularization parameter and or
are the sparsity regularization constraint. If the

constraint is imposed, then the problem is approximately
solved via greedy methods such as orthogonal matching pur-
suit (OMP) [29]. When norm is used, this problem can be
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solved via convex programs [30]. Generally speaking, as dis-
cussed in [2] and [30], the required number of samples for
sparse recovery in the noiseless case scales logarithmically with
the length- link vector , which in-
creases if discretizations are made finer.
From the solution of (41), we extract the full user-delay-

Doppler set as explained in Section V-B. With the estimated
set of active users and individual delay-Doppler set , we
have the truncated estimate of the link vector and the esti-
mated noise variance

(42)

Since the formulation in (41) is no longer maximum likelihood
due to the sparsity regularization, we call it the Sparsity-Regu-
larized Likelihood Ratio Test (SR-LRT).

B. User-Delay-Doppler Set Extraction

Given the soft estimate in (41) at every shift , the
estimated user-delay-Doppler set is extracted depending on
the application scenarios below.
1) Unknown, Random Number of Active Users : In random

access communications the receiver has no knowledge of who is
active, nor any expectation on the number of active components.
Using the estimate , we identify the active users

(43)

where is a chosen threshold for that specific user to be con-
sidered present, usually set as a fraction of the magnitude of the
amplitudes in . Then for each detected active user , we
take strongest paths in with respect to and to
be the active set for each user .
2) Partial Knowledge on Active Users : This scenario cor-

responds to environments where all users are active, however
only a certain subset is likely to be detectable by the receiver.
GPS receivers are an example. Specifically, there are a total of

quasi-stationary GPS satellites moving around the earth
and the active satellites in the field-of-view of a specific GPS re-
ceiver are unknown. However, the GPS receiver is informed that
at any point in space there should be strongest signals
from satellites, and it attempts to find such signals, along with
their delay-Doppler parameters for triangularization. In this case
a positive detection corresponds to having at least four compo-
nents detected and we can interpret this case as fixing for
the receiver detection. In general, we identify the users
as those with the strongest amplitudes with respect
to in . Then we take strongest paths in
with respect to and to be the active set for each user

.
3) Known Active Users : This is the simplest scenario in-

cluding multi-antenna and cooperative systems, where the re-
ceiver is aware of the active sources, i.e., is known. This case
is trivial because we do not need to identify the active users. The
active set for each user chosen as the strongest
components in with respect to and .

C. Sequential Detection for Link Acquisition

Substituting and back to (39), the generalized like-
lihood ratio can be computed as

Denote the first window that passes the above test as

(44)

As mentioned in (15), the MLR window is located as the
window that maximizes the likelihood ratio

(45)

Accordingly, from the link vector in the th window, we
can extract the delay-Doppler pairs

(46)

VI. OPTIMIZATION OF COMPRESSIVE FRONT-END

The link acquisition performance depends on the ability of the
SR-LRT to differentiate between different hypotheses . In
this section, we seek a criterion to optimize the sampling kernels

in the CMS architecture by designing the matrix .
The metric we exploit is the weighted average of the Kullback-
Leibler (KL) distances between any in (38). Since every
possible pattern for is independent of , here we omit the
subscript for convenience.

A. Motivation of Maximizing the Average KL Distance

In choosing the KL distance we are motivated by the Cher-
noff-Stein’s lemma [31], whose statement indicates that the
probability of confusing and decreases exponentially
with the pair-wise KL distance between them. By defining

, the pair-wise KL distance
between any and depends on as

(47)

The minimum pair-wise KL distance determines the worst-case
performance in terms of missed detection error in the Neyman-
Pearson framework. Furthermore, when the received noise is
Gaussian, the pair-wise KL distance has the same expression as
the Chernoff information under the Bayesian framework. Thus
the minimum KL distance is also an effective measure for the
Bayesian detection error. As a result, a sufficient condition to
guarantee detection performance is to maximize the minimum
of all the pair-wise KL distances

(48)

According to (47) and [30], the above criterion is equivalent to
maximizing the lower bound on the Restricted Isometry Prop-
erty (RIP) of the matrix , which is intractable to analyze
and difficult to solve for. Therefore, we maximize the average
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KL distance as an alternative, because it is a necessary condi-
tion to maximize the minimum pair-wise KL distance.
To define the average KL distance, we associate each pair of

sets with the weight . Furthermore, we associate
the nuisance amplitudes with a continuous weighting func-
tion for any . Under these assumptions, the weighted
average of all pair-wise KL distances is defined as

Proposition 1: Given a set of normalized weights for
every distinct pair , and a continuous weighting func-
tion over the amplitudes with

and , the
average KL distance is equal to

(49)

Proof: See Appendix C.
The way we choose the weights and weighting func-

tions is equivalent to assuming a uniform distribution
on the users, delays and Dopplers together with i.i.d. Gaussian
priors on the amplitudes in in a Bayesian framework.
According to [32], the pair-wise KL distance has the same
expression as the Chernoff information, which determines the
Bayesian detection error exponent. However, if any of the
pair-wise KL distance is zero, then the two hypotheses and

are indistinguishable for that particular pair of and .
A non-zero pair-wise KL distance between arbitrary pairs of
and with requires , where

is the kruskal rank of a matrix.
We note that the average KL distance metric defined here

does not automatically ensure that for all
. In fact, it is possible that specific choices of the number

of samplers and the dictionary (i.e., the
Gram matrix ) lead to indistinguishable sparsity patterns [30]
such that . In other words, the design
of cannot cure intrinsic problems caused by the choice of
or the Gram matrix , which are given in the optimization.
Intrinsic problems caused by the Gram matrix is typically
handled by optimizing the transmit sequences irrespec-
tive of the receiver such that becomes diagonally dominated.
This implies a well localized ambiguity function for each of the

and low cross-correlation between ’s with different
delays and Doppler. Gold sequences used in GPS and M-se-
quences used in spread spectrum communications, for example,
are known to have good properties in this regard. The design of
these sequences is well investigated [33] and we do not aim to
cover here.

B. Optimization of Compressive Samplers

Given and , we propose an optimal that maximizes
the average KL distance if there is a unique solution to the
optimization; when there are multiple solutions that yield iden-
tical average KL distance , we choose the matrix that gives
the least occurrence of events . We use the
results in the following lemma for our optimization.

Lemma 1: (Ratio Trace Maximization [34]) Given a pair of
positive semi-definite matrices and an full

column rank matrix , the ratio trace problem is

(50)

The optimal is given by the gener-
alized eigenvectors corresponding to largest gen-
eralized eigenvalues of the pair with .
The optimal is identified in the following theorem4:
Theorem 3: Let the eigendecomposition be

where is the eigenvalue matrix in
descending order and is the eigenvector matrix of . Denote
the principal eigenvectors as

(51)

(52)

Let be an arbitrary non-singular matrix. When is
unique, the matrix is chosen to maximize the av-
erage KL distance .When is not unique, we choose

to maximize the average KL distance
and minimize the occurrence of events for

.
Proof: See Appendix D.

Note that, as long as the preamble sequences do not change,
the optimal matrix and the corresponding sampling kernels

are pre-computed only once and their design does not con-
tribute to the running cost of the receiver operations. If the pro-
jections on the sampling kernels are implemented in the digital
domain instead of being analog filters, then the samples of
are placed in the static memory that contains the receiver signal
processing algorithms.
If the principal eigenvectors are unique, the choice of

spreads out the pairwise KL distances, but
is possible for some choice of and . If
and , then it is ensured that is maximized and

for with . On the
other hand, an extreme example where the eigenvectors are not
unique is when form an orthogonal basis
such that . In this case, Theorem 3 is analogous to the
fundamental criterion in compressed sensing that aims to find a
matrix with that guarantees the recovery
of any -sparse vectors.
Remark: The number of possible eigen-decompositions

of the given matrix may be quite large. For the extreme case
when , an arbitrary unitary matrix will be a possible
choice. Fortunately, it is well known in compressive sensing
that partial unitary matrices (such as the partial DFT matrix)
have good compressive sensing properties (mutual coherence),
thus this would not entail much loss if the matrix does not have
exactly the maximum spark. On the other hand, as long as the
number is small, a finite search is also possible. More im-
portantly, this task only needs to be done once and off-line.

4Note that the computation of the weights is done offline, and does not add
complexity to the online processing.
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VII. NUMERICAL RESULTS

In this section, we compare the CSA acquisition scheme
using the CMS architecture against alternative methods. The
first alternative is the DSA approach discussed in Section III-C,
which processes the uncompressed Nyquist-rate samples

using sparse recovery methods. The comparison with
the DSA scheme can also be viewed as a comparison with
[2], [28], which propose the SA method for CDMA users
using direct sampling.5 Another alternative is the MF receiver
discussed in Section III-B, which also processes uncompressed
samples but does not exploit the underlying signal sparsity.
To benchmark CSA against the DSA and MF approaches, we

simulate the link acquisition of a single receiver plugged in a
network populated by users, out of which
are randomly chosen to be actively transmitting. The user sig-
nature codes, ’s in (1), belong to a set of M-sequences
[35], which are quasi-orthogonal BPSK sequences of length

with unit power . Due to the user
dislocation, mobility and possible scattering, each path of this
asynchronous multi-user channel is characterized by the triplet

with , where are Rayleigh
distributed, , and uncorrelated normal-
ized fading coefficients

. The random delays are the sum of: (i) a time of
arrival that is uniformly distributed over an in-
terval that spans the duration of the preamble ,
and of (ii) multipath delays that are uniformly distributed within
an interval where is the multipath channel
delay spread. Consequently, all the arrival times are within a
window of duration . The random frequency off-
sets are uniformly distributed, ,
over a range delimited at each side by the maximum Doppler
spread . As we simulate underspread channel conditions,
we choose such that . Thus, for a mul-
tipath delay spread of , the choice of

is comparable to a 25 kHz offset for 1 MHz sig-
nals.
We compare CSA with DSA and MF at the same resolution:

and and thus
. Given a multipath delay spread of

and a shift of size , the delay space accounts for
a composite delay spread of and
therefore . This parameter discretization leads
to amulti-user time-frequency grid of elements
for the CSA and DSA schemes.
We test the CSA using three different numbers of sampling

channels . The DSA uses Nyquist-rate sam-
ples per shift, which corresponds to using the whole spreading
code duration of 255 samples. The MF scheme uses a
-channel filterbank and performs projec-

tions per shift with samples on each branch. In the simu-
lations, the CSA compressive samples are generated from the
same Nyquist-rate samples used for the other receivers, by pro-
jecting them onto the digitized version of the sampling kernels

5There are some subtle differences in the model. For example, the online se-
quential detection and unknown frequency offsets were not considered in [2],
[28]. Hence, strictly speaking DSA is a generalized version of [2], [28], where
the same basic idea is expanded to handle a larger set of hypotheses.

Fig. 2. ROC curves for the order unaware receiver using CSA with
channels (left), DSA using uncompressed Nyquist observations (middle),
and MF (right); tested at dB.

, , . The CSA simula-
tion recovers the link parameters by solving (41) with the OMP
algorithm [29], which is a popular choice to approximate the
solution of a sparse problem [36]. To motivate our selection of
OMP, we refer to Section VIII for an empirical evaluation of the
OMP against two well-known minimizers, SpaRSA [37] and
-Homotopy [38], [39].

A. Signal Detection Performance

We first test the case of completely unknown active user sets,
as discussed in Section V-B-1. In Fig. 2, all receivers are un-
aware of the random set of active users. Specifically, receivers
consider as active components those that are found to have a
signal strength that is at least 30% of the strongest components
they estimate, i.e. in (43) . If no pos-
sible component meets this requirement, the channel is declared
idle. To first compare the sensitivity of the different receivers
to active components, we define a signal hypothesis corre-
sponding to all the non-idle channel hypotheses, i.e. .
Then, the detection sensitivity is measured in terms of the re-
ceiver operating characteristic (ROC) curve, tracing the prob-
ability of detection , against
the probability of false alarm
when the channel is actually idle. Note that a positive detec-
tion may correspond to an incorrect identification of the spe-
cific users that are active. Thus, Section VII-B shows the rate of
correct detection of active components for the same simulation
scenario.
As can be observed, although the CSA receiver exploits less

than of the Nyquist-rate samples, the
results from Fig. 2 show a modest degradation of the ROC com-
pared to the MF receiver (less than 0.1 measured at

and ). As expected, since the DSA can
leverage the additional observations to enhance its sensitivity,
a growing gap is observable as the SNR
increases (measured at ) between the

and the curves.
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Fig. 3. (a) User identification rate in the order aware scenario for the MF (blue) receiver, the DSA receiver (red), the CSA receiver (grey shades) with
. (b) User identification rate in the order unaware scenario for the MF (blue) receiver, the DSA receiver (red), or the CSA receiver

(grey shades) with . (c) against SNR for the CSA scheme (grey shades) with , by the DSA (red) or by the MF
(blue). (d) against SNR for the CSA scheme (grey shades) with , by the DSA (red) or by the MF (blue).

B. User Identification and Parameter Estimation Performance

In the simulations shown in Figs. 3(a) and 3(b), we measure
the detection performance of by the rate of successful identi-
fication . In these simulations, the threshold is set
to a level such that , and thus we trace the curve
at the point on the figures. The two sets of fig-
ures correspond to, respectively, the case where a receiver has
partial knowledge of the active user components (as in the GPS
receiver discussed in Section V-B-2) and the exact same case
examined previously in Fig. 2, where the receivers are unaware
of the user . In the second case, for successful detection, not
only the elements of the sets have to be consistent but
also their cardinality needs to be identical . Instead for
the first case, if the receiver has partial knowledge of the active
components, then what matters is that the components are cor-
rectly identified, but their number is known ahead of time.

With a relatively short training sequence, we can see in
Fig. 3(a) that the CSA in the first case identifies the active user
set with large probability (0.96 at ). The MF has
worse performance due to the multi-user interference and to
the presence of unresolvable paths. In fact, the MF receiver is
unable to isolate the multi-path arrivals that fall within the same
symbol period and, due to the presence of different Dopplers,
its side-lobes may contribute negatively to the correlation,
masking other active components. In contrast, the OMP algo-
rithm in the CSA scheme cancels the contributions from paths
detected in previous iterations, before updating the projections
to search for other components (the OMP processing steps are
summarized in Section VIII). It is evident, however, that a low
SNR, the CSA scheme suffers from a loss due to the compres-
sion ( dB at the rate 0.6 with ). This is understood
by observing the performance of the DSA receiver as well.
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Fig. 4. (a) ROC curve at and user identification rate of the CSA scheme, against the MF receiver and different choices of ’s. (b)
Delay and Doppler estimation RMSE of the CSA scheme, against different random designs of and the MF.

By processing uncompressed samples with sparse recovery,
the DSA curve combines the best of both worlds and, thus, its
performance bounds the user identification rate for both the MF
and the CSA receivers in both examples. As shown in Fig. 3(b),
the performance degrades when the receivers do not have side
information on (a difference of 0.13 for the CSA receiver
against 0.3 of the MF at ). This is due to the
cardinality mismatch, , that occurs while estimating
the order.
The accuracy of the recovered set is evaluated by the root

mean square error (RMSE) of and that are associated
with the correctly identified users . Thus,

are the average RMSE of the delay parameters the Doppler fre-
quencies respectively.
To verify the accuracy of the parameter estimates of and
, we trace the RMSE’s of the order-aware case. Once again

we observe, from Fig. 3(c) and Fig. 3(d), that the performance
of and is enhanced by the detector that
better leverages the presence of the multi-path. In fact, at

, the accuracy of the CMS, with , and
the DSA approach the grid resolution, i.e.
and . Oppositely, the contribution of the
unresolvable paths to the correlation, in either frequency or
time, adversely affects the parameter selection. Not canceling
the previously selected components contributes to a large
error after the selection of the dominant paths as the same
arrivals are likely to be selected more than once by the presence
of correlated components. These errors impact the highest

resolution since at : and
. Instead, at low SNR, the performance

is bounded by the maximum error given by the search space
which is a function of and , respectively, due to the
early detection resulting from heavy noise.

C. Optimality of Compressive Samplers

In this subsection, we briefly compare the performances of the
CSA scheme using a -channel CMS architecture with
the optimal samplers versus other random projection schemes in
compressed sensing. The ROC curve and the user identification
rate in Fig. 4(a) show that the optimal sampling
kernel, denoted by CSA-KL, exhibits better performance than
random designs of using matrices whose entries are Gaussian
(CSA-G), Bernoulli (CSA-B), or randomly selected rows of a
DFTmatrix (CSA-F). It can also be observed from Fig. 4(b) that
the RMSE of the delay and Doppler estimates are improved.

VIII. COST ANALYSIS

In this section, we analyze the implementation costs of the
MF and the proposed CSA scheme in terms of storage require-
ment and computational complexity. The analysis is performed
in two regimes respectively: the analog implementation, that
corresponds to what the paper describes mathematically in de-
tail, and a digital implementation, which would be necessary
if the compressive samplers cannot be implemented as
analog filters. The CMS architecture in this case emulates our
simulations, where Nyquist samples of are projected onto
digital filters matched to the samples of .
The metric to evaluate storage requirements is chosen as the

A/D hardware cost, measured as the size of the filterbank which
is also the buffer size of the A/D samples. The computational
complexity is evaluated by the total number of additions and
multiplications, and by the average run time (a 64-bit i7 920
CPU at 2.67 GHz). In the following, we first settle on the sparse
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Fig. 5. (a) Average CPU run time for the CSA receiver using different sparse recovery solvers (OMP, SpaRSA, -Homotopy), as a function of . (b) Average
CPU runtime of the CSA receiver using compressed observations against the MF receiver. The average runtime is measured against the
preamble length .

recovery solver for the SR-LRT in the CSA scheme, and then
continue our comparison using the chosen solver.

A. Sparse Recovery Solver: The OMP Algorithm

The CSA receiver spends its greatest effort in solving the op-
timization (41). Fast minimizers like SpaRSA [37] or -Ho-
motopy [38], [39] are often the methods of choice. The former
greatly reduces the complexity by approximating the Hessian
of the gradient descent by a diagonal matrix, whereas the latter
inverts a system of equations whose number of unknowns, at
each iteration, remains restricted to the non-zero elements of
the sparse vector estimate. Greedy algorithms like the OMP
[29], are efficient approximations to the solution of sparse prob-
lems as well [36]. The OMP algorithm iteratively detects the
strongest element in the sparse vector and removes its contribu-
tion in the next iteration; thus, the number of iterations required
by OMP is bounded by the maximum components that can pos-
sibly exist, which in our case is .
The average CPU run time spent in solving (41) with dif-

ferent solvers is illustrated in Fig. 5(a) traced against , where
the OMP algorithm shows significantly less computation time.
Thus, in Fig. 5(b) we further compare the average CPU run time
of the CSA receiver using OMP against the MF receiver, the im-
plementation details of which will be discussed in the following
subsection. OMP has smaller complexity primarily because it
stops as soon as all the strong entries have been detected. In
contrast, -Homotopy and SpaRSA do not limit the search to
a single set, but rather explore the feasible set by selecting and
de-selecting elements of the support vector ( -Homotopy), or
by shrinking it through a gradient descent (SpaRSA), until a de-
sired convergence criterion has been met.

TABLE I
COMPLEXITY OF ALGORITHM 1 FOR THE CSA RECEIVERS

TABLE II
COMPLEXITY OF ALGORITHM 2 FOR THE MF RECEIVERS

B. Complexities of the CSA Scheme v.s. MF Scheme

Using the OMP algorithm for sparse recovery, we summarize
the steps of the CSA and MF schemes in Algorithms 1 and 2 re-
spectively. The CSA scheme has 4 stepsCSA.1 CSA.4 and the
MF scheme has 3 steps MF.1 MF.3. Based on the algorithm
descriptions, we provided the order of storage cost and com-
putational complexities in Tables I and II. Storage accounts for
a data path storage component, dynamically updated with the
streaming data that correspond to new observations to be pro-
cessed, and for a static component, that stores filters or sampling
kernels parameters needed to perform signal processing on the
data.
It is seen in Tables I and II that both the CSA receiver and

MF receiver have computational complexities that scale linearly
with the dimension of the search space . However, the
data path storage of the CSA receivers is greatly reduced. An-
other storage gain is found in the case of digital implementation,
because there are fewer projections to be made on the streaming
samples. Thus, unless the sampling kernels are synthesized on
the fly, a smaller amount of static memory is required to store
the samples of .
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Algorithm 1: CSA Scheme

(CSA.1) obtain compressive samples at the th shift;

(CSA.2) initialize , , , ,
and run the OMP algorithm;

(OMP.1) remove interference ;

(OMP.2) projection , ;

(OMP.3) detection with

(OMP.4) update and ;

(OMP.5) update the link vector

(53)

(54)

(OMP.6) stop if either or , and
set .

(CSA.3) Evaluate the likelihood ratio and check if
it exceeds .

(CSA.4) If yes, then extract components accordingly
(order-aware, order-unaware).

Algorithm 2: MF Scheme

(MF.1) obtain the sample array in (17) from the MF
filterbank;

(MF.2) identify the maximum output and check if it exceeds
for all ;

(MF.3) If yes, then extract the delay-Doppler set for each
active user as in Section III.

When implemented in the digital domain, the CSA receiver
also leads to a great reduction in computational complexity, with
an approximate ratio with the MF receiver complexity of

(55)

When the preamble sequence is long and the search space is
large , this ratio becomes less than 1 and the
CSA architecture leads to computational savings while, as seen
in simulations, maintaining comparable performance. This ex-
plains why the CSA receiver in the simulation (see Fig. 5(b))
considerably outperforms the MF receiver in terms of average
run time for large with ,80,100. On the
other hand, when is small (e.g. in Section VII), the
MF receiver has less computation time for against

,80,100 as in Fig. 5(b), but such a short preamble does
not provide sufficient processing gain for reliable link acquisi-
tion, as can be clearly seen from the numerical results (e.g., see
Fig. 3(a)). Thus, when is small, the gain of the CSA receiver
also lies in the superior acquisition performance demonstrated
by the numerical results, except for the low SNR region where
the CSA is not sufficiently sensitive.

IX. CONCLUSIONS

In this paper, we proposed the CSA link acquisition scheme
using a unified CMS architecture and a SR-LRT module for
multiuser signals. This scheme uses a sequential SR-LRT that
jointly detects signal presence and recovers the active users with
their link parameters. We optimized the CMS architecture to
maximize the average Kullback-Leibler distance among the hy-
potheses tested in the SR-LRT and show that, with the optimal
compressive samplers we propose, the receiver detection out-
performs those with conventional compressed sensing alterna-
tives. Furthermore, through the numerical comparison of the
proposed architecture with the DSA scheme and the MF ap-
proach, we have shown that the CSA receiver can scale down
its processing storage and complexity with greater flexibility,
while maintaining satisfactory performance.

APPENDIX A
PROOF OF THEOREM 1

Substituting (23) into (21), we have

(56)

Define the matrix

(57)

(58)

and denote as the sample of filtered
noise, whose covariance can be obtained as

using . Therefore, the noise vector

has a covariance matrix obtained as
where

is the Gram matrix of the kernels ’s.

Denote as the length- vector
containing the samples acquired from the CMS filterbank at
time . Given the link vector
at the th shift as (24), we then have the observation model

(59)
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Using a sampling kernel constructed as

(60)

the cross-correlation in (57) is given as

(61)

where

With a change of variable , the correlation
can be expressed as

(62)

where is the ambiguity function

(63)

From (61), in (57) can be re-written as

(64)

where

Then the observation model can be re-written as

(65)

Finally, the Gram matrix of ’s is obtained accordingly as

(66)

which gives the noise covariance as .

APPENDIX B
PROOF OF THEOREM 2

From (56), each sample from the CMS architecture
can be expressed as

(67)

The summation
can be adjusted with respect to the relative time index
by re-writing the correlation in (62) as

(68)

Without loss of generality, let . With a change
of variable and substituting the equivalent
correlation in (68), we have

With the re-formulation, (67) is re-written as below

By letting and defining the shifted link vector
at the th shift as

(69)

the observation model can be equivalently re-written as

(70)

APPENDIX C
PROOF OF PROPOSITION 1

The pair-wise KL distance in (47) can be re-written with the
trace operator below

where . Then the average
pair-wise KL distance becomes

where and is the averaged
covariance matrix of over the amplitudes
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Given with
and , the averaged matrix

is diagonal. Furthermore, if the set of weights are
constant for all and the individual weighting function

is identical for all , it also satisfies
because the summation over is symmetric, and hence
produces equal sum. Thus the result follows.

APPENDIX D
PROOF OF THEOREM 3

By analogywith Lemma 1, we have and
in (49). Let

(71)

where is a length- column vector with . In
this setting, according to Lemma 1, the optimal is chosen
as the generalized eigenvector of the matrix pair such
that . Using the eigen-decomposition of

and the property , we have

(72)

If we choose , where is the th column in the matrix
, then the above relationship holds for all as long

as because . This gives

with generalized eigenvalue , where is the
th eigenvalue in and is the canonical basis with 1 in
the th entry and 0 otherwise. Denote the principal eigenvalue
and eigenvector matrix as and . Then the optimal is
chosen as

(73)

where is an arbitrary non-singular matrix. According
to (49), this choice gives

which is independent of . If the principal eigenvectors
are unique, the above maximizes the average KL distance
. This choice of in general spreads out the individual KL
distance, while the occurence of the events
is analyzed below. So is the case when is not unique.
Now we examine the occurrence of . Let

be a sparse vector with ,
and . Substituting back to (47) and
simplifying the expression, the individual KL distance is

(74)

(75)

Since is a -sparse vector, thus is
bounded away from zero as long as any -sparse vectors do
not fall into the null space of the matrix , which implicitly
implies . In order to minimize the occurrence of the
event given a certain level of signal
sparsity , it is equivalent to maximizing the kruskal rank of
the matrix such that the matrix can recover any -sparse
vector with as large as possible. This is consistent with
the popular results in compressed sensing, therefore when the
solution obtained from the optimization is not unique, one can
use this as a criterion to choose the best candidate from the
solutions of that maximize the average KL distance.
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