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Abstract—We present a reduced-dimension multiuser detector
(RD-MUD) structure for synchronous systems that significantly
decreases the number of required correlation branches at the re-
ceiver front end, while still achieving performance similar to that of
the conventional matched-filter (MF) bank. RD-MUD exploits the
fact that, in some wireless systems, the number of active users may
be small relative to the total number of users in the system. Hence,
the ideas of analog compressed sensing may be used to reduce the
number of correlators. The correlating signals used by each corre-
lator are chosen as an appropriate linear combination of the users’
spreading waveforms. We derive the probability of symbol error
when using two methods for recovery of active users and their
transmitted symbols: the reduced-dimension decorrelating (RDD)
detector, which combines subspace projection and thresholding to
determine active users and sign detection for data recovery, and
the reduced-dimension decision-feedback (RDDF) detector, which
combines decision-feedback matching pursuit for active user de-
tection and sign detection for data recovery. We derive probability
of error bounds for both detectors, and show that the number of
correlators needed to achieve a small probability of symbol error is
on the order of the logarithm of the number of users in the system.
The theoretical performance results are validated via numerical
simulations.

Index Terms—Compressed sensing, demodulation,multiuser de-
tection.

I. INTRODUCTION

M ULTIUSER detection (MUD) is a classical problem in
multiuser communications and signal processing (see,

e.g., [1]–[3] and the references therein.) In multiuser systems,
the users communicate simultaneously with a given receiver
by modulating information symbols onto their unique signature
waveforms. The received signal consists of a noisy version of
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the superposition of the transmitted waveforms. MUD has to
detect the symbols of all users simultaneously.
Despite the large body of work on MUD, it is not yet widely

implemented in practice, largely due to its complexity and high-
precision analog-to-digital (A/D) requirements. The complexity
arises both in the A/D as well as in the digital signal processing
for data detection of each user. A conventional MUD structure
consists of a matched-filter (MF) bank front end followed by a
linear or nonlinear digital MUD. The MF-bank is a set of cor-
relators, each correlating the received signal with the signature
waveform of a different user. The number of correlators is there-
fore equal to the number of users. In a typical communication
system, there may be thousands of users. We characterize the
A/D complexity by the number of correlators at the receiver
front end, and measure data detection complexity by the number
of real floating point operations required per decision bit [4]
from the MF-bank output.
Verdú, in the landmark paper [5], established the maximum

likelihood sequence estimator (MLSE) as the MUD detector
minimizing the probability of symbol error for data detection.
However, the complexity per bit of MLSE is exponential in the
number of users when the signature waveforms are nonorthog-
onal. To address the complexity issue, other low-complexity
suboptimal detectors have been developed, including the non-
linear decision feedback (DF) detector [6] and linear detectors.
The nonlinear DF detector is based on the idea of interference
cancellation, which decodes symbols iteratively by subtracting
the detected symbols of strong users first to facilitate detection
of weak users. The DF detector is a good compromise between
complexity and performance (see, e.g., [6]). We will therefore
analyze the DF detector below as an example of a nonlinear dig-
ital detector, but in a reduced dimensional setting.
Linear detectors apply a linear transform to the receiver

front-end output and then detect each user separately. They
have lower complexity than nonlinear methods but also worse
performance. There are multiple linear MUD techniques. The
single-user detector is the simplest linear detector; however, it
suffers from user interference when signature waveforms are
nonorthogonal. A linear detector that eliminates user inference
is the decorrelating detector, which, for each user, projects the
received signal onto the subspace associated with the signature
waveform of that user. This projection amplifies noise when
the signature waveforms are nonorthogonal. The decorre-
lating detector provides the best joint estimate of symbols
and amplitudes in the absence of knowledge of the complete
channel state information [4]. The minimum mean-square-error
(MMSE) detector takes into account both background noise
and interference, and hence to some extent mitigates the noise
amplification of the decorrelating detector in low and medium
SNR [6]. Because of the simplicity and interference elimination
capability of the decorrelating detector, we will focus on this
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detector as an example of a linear detector in the reduced-di-
mensional setting.
In many applications, the number of active users can be

much smaller than the total number of users [7], [8]. This
analog signal sparsity allows the use of techniques from analog
compressed sensing [9], [10] in order to reduce the number of
correlators. While such sparsity has been exploited in various
detection settings, there is still a gap in applying these ideas to
the multiuser setting we consider here. Most existing work on
exploiting compressed sensing [11], [12] for signal detection
assumes discrete signals and then applies compressed sensing
via matrix multiplication [8], [13]–[16]. In contrast, in MUD,
the received signal is continuous. Another complicating factor
relative to previous work is that here noise is added in the
analog domain prior to A/D conversion at the front end, which
corresponds to the measurement stage in compressed sensing.
Therefore, A/D conversion will affect both signal and noise.
Due to the MFs at the front end, the output noise vector is in
general colored. Furthermore, it cannot be whitened without
modifying the MF coefficient matrix, which corresponds to
the measurement matrix in compressed sensing. In the discrete
compressed sensing literature, it is usually assumed that white
noise is added after measurement. An exception is the work
of [17]. Finally, typically in compressed sensing, the goal is to
reconstruct a sparse signal from its samples, whereas in MUD,
the goal is to detect both active users and their symbols. To
meet the goal of MUD, we therefore adapt algorithms from
compressed sensing for detection and develop results on the
probability of symbol error rather than on the mean-squared
error (MSE).
In this study, we develop a low-complexity MUD struc-

ture which we call a reduced-dimension multiuser detector
(RD-MUD) exploiting analog signal sparsity, assuming
symbol-rate synchronization. The RD-MUD reduces the
front-end receiver complexity by decreasing the number of
correlators without increasing the complexity of digital signal
processing, while still achieving performance similar to that
of conventional MUDs that are based on the MF-bank front
end. The RD-MUD converts the received analog signal into
a discrete output by correlating it with correlating
signals. We incorporate analog compressed sensing techniques
[9] by forming the correlating signals as linear combinations
of the signature waveforms via a (possibly complex) coeffi-
cient matrix . The RD-MUD output can thus be viewed as
a projection of the MF-bank output onto a lower dimensional
detection subspace. We then develop several digital detectors
to detect both active users and their transmitted symbols, by
combining ideas from compressed sensing and conventional
MUD. We study two such detectors in detail: the reduced-di-
mension decorrelating (RDD) detector, a linear detector that
combines subspace projection and thresholding to determine
active users with a sign detector for data recovery [18], [19],
and the reduced-dimension decision-feedback (RDDF) de-
tector, a nonlinear detector that combines decision-feedback
matching pursuit (DF-MP) [20], [21] for active user detection
with sign detection for data recovery in an iterative manner.
DF-MP differs from conventional MP [20], [21] in that in each
iteration, the binary-valued detected symbols, rather than the

real-valued estimates, are subtracted from the received signal
to form the residual used by the next iteration.
We provide probability-of-symbol-error performance bounds

for these detection algorithms, using the coherence of the
matrix in a nonasymptotic regime with a fixed number
of total users and active users. Based on these results, we
develop a lower bound on the number of correlators needed
to attain a certain probability-of-symbol-error performance.
When is a random partial discrete Fourier transform (DFT)
matrix, the required by these two specific detectors is on
the order of as compared to correlators required for
conventional MUD. We validate these theoretical results via
numerical examples. Our analysis is closely related to [22].
However, Ben-Haim et al. [22] considers estimation in white
noise, which differs from our problem in the aforementioned
aspects. Our work also differs from prior results on compressed
sensing for MUD, such as Applebaum et al. [7] and Fletcher et
al. [8], [23], where a so-called on-off random access channel
is considered. In these references, the goal is to detect which
users are active, and there is no need to detect the transmitted
symbols as we consider here. Neither of these works consider
front-end complexity.
In this paper, we focus on a synchronousMUD channelmodel

[4], where the transmission rate of all users is the same and
their symbol epochs are perfectly aligned. This user synchro-
nization can be achieved using GPS as well as distributed or
centralized synchronization schemes (see, e.g., [24] and [25]).
Such methods are commonly used in cellular systems, ad hoc
networks, and sensor networks to achieve synchronization. Part
of the MUD problem is signature sequence selection, for which
there has also been a large body of work (see, e.g., [26]). Here,
we do not consider optimizing signature waveforms so that our
results are parameterized by the cross-correlation properties of
the signature waveforms used in our design.
The rest of this paper is organized as follows. Section II

discusses the system model and reviews conventional detectors
using the MF-bank front end. Section III presents the RD-MUD
front end and detectors. Section IV contains the theoretical
performance guarantee of two RD-MUD detectors: the RDD
and RDDF detectors. Section V validates the theoretical results
through numerical examples.

II. BACKGROUND

A. Notation

The notation we use is as follows. Vectors and matrices are
denoted by boldface lower case and boldface upper case letters,
respectively. The real and complex numbers are represented by
and , respectively. The real part of a scalar is denoted as
, and is its conjugate. The set of indices of the nonzero

entries of a vector is called the support of . Given an index set
, denotes the submatrix formed by the columns of a ma-
trix indexed by , and represents the subvector formed
by the entries indexed by . The identity matrix is denoted by
. The transpose, conjugate transpose, and inverse of a ma-
trix are represented by , , and , respectively,
and denotes its value. The norm is denoted by

, and the norm of a vector is given by
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. The minimum and maximum eigen-
values of a positive-semidefinite matrix are represented by

and , respectively. The trace of a square ma-
trix is denoted as . The notation de-
notes a diagonal matrix with on its diagonal. We use
to denote the identity matrix and to denote an all-one vector.
The function is defined such that only when

and otherwise is equal to 0. The sign function is defined
as , if , , if , and otherwise
is equal to 0. The expectation of a random variable is denoted
as and the probability of an event is represented as
. The union, intersection, and difference of two sets and
are denoted by , , and ,

respectively. The complement of a set is represented as
. The notation means that set is a subset of

. The inner product (or cross correlation) between two real
analog signals and in is written as

, over the symbol time . The norm of
is . Two signals are orthogonal if their
cross correlation is zero.

B. System Model

Consider a synchronous multiuser system [1] with users.
Each user is assigned a known unique signature waveform from
a set . Users modu-
late their data by their signature waveforms. There are ac-
tive users out of possible users transmitting to the receiver.
In our setting, we assume that active users modulate their sig-
nature waveforms using binary phase shift keying modulation
with the symbol of user denoted by , for ,
where contains indices of all active users. The amplitude of
the user’s signal at the receiver is given by , which is de-
termined by the transmit power and the wireless channel gain.
For simplicity, we assume ’s are real (but they can be neg-
ative), and known at the receiver. The nonactive user can be
viewed as transmitting with power , or equivalently
transmitting zeros: , for . The received signal

is a superposition of the transmitted signals from the active
users, plus white Gaussian noise with zero mean and vari-
ance

(1)

with , , and , . The duration
of the data symbol is referred to as the symbol time, which is
also equal to the inverse of the data rate for binary modulation.
We assume that the signature waveforms are linearly inde-

pendent. The cross correlations of the signature waveforms are
characterized by the Gram matrix , defined as

(2)

For convenience, we assume that has unit energy:
for all so that . Due to our assump-

tion of linear independence of the signature waveforms, is
invertible. In addition, the signatures typically have low cross
correlations so that the magnitudes of the off-diagonal elements
of are much smaller than 1.

Fig. 1. Front end of (a) the conventional MUD using MF-bank and (b)
RD-MUD.

Our goal is to detect the set of active users, i.e., users with in-
dices in , and their transmitted symbols . In prac-
tice, the number of active users is typically much smaller than
the total number of users , which is a form of analog signal
sparsity. As we will show, this sparsity enables us to reduce the
number of correlators at the front end and still be able to achieve
performance similar to that of a conventionalMUD using a bank
of MFs. We will consider two scenarios: the case where is
known, and the case where is bounded but unknown. The
problem of estimating can be treated using techniques such
as those in [27].

C. Conventional MUD

A conventional MUD detector has an MF-bank front-end fol-
lowed by a digital detector. We now review this architecture.
1) MF-Bank Front-End: For general single-user systems,

the MF multiplies the received signal with the single-user
waveform and integrates over a symbol time. TheMF-bank
is an extension of the MF for multiple users, and has MFs
in parallel: the branch correlates the received signal with
the corresponding signature waveform , as illustrated in
Fig. 1(a). The output of the MF-bank is a set of sufficient statis-
tics for MUD when the amplitudes are known [1]. Using (1),
the output of the MF-bank can be written as

(3)

where , , is
a diagonal matrix with , and

, where . The vector is
Gaussian distributedwith zeromean and covariance

(for derivation, see [1]).
2) MF-Bank Detection: Conventional MUD detectors based

on the MF-bank output can be classified into two categories:
linear and nonlinear, as illustrated in Fig. 2. In the literature, the
synchronousMUDmodel typically assumes all users are active,
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Fig. 2. Diagram of (a) the linear detector and (b) nonlinear detector.

i.e., , and hence, the goal of the MUD detectors
is to detect all user symbols. The linear detector applies a linear
transform to the MF-bank output [illustrated in Fig. 2(a)]

(4)

and detects each user’s symbol separately using a sign detector

(5)

Several commonly used linear detectors are the single-user
detector, the decorrelating detector, and the MMSE detector.
The single-user detector [4] is equivalent to choosing
in (4) and (5). By applying a linear transform in (4),
the decorrelating detector can remove the user interference and
recover symbols perfectly in the absence of noise; however, it
also amplifies noise when . The MMSE detector min-
imizes the MSE between the linear transform of the MF-bank
output and symbols, and corresponds to
in (4)[1].
Nonlinear detectors, on the other hand, detect symbols

jointly and (or) iteratively, as illustrated in Fig. 2(b). Examples
include MLSE and the successive interference cancellation
(SIC) detector [1]. The MLSE solves the following optimiza-
tion problem:

(6)

However, when the signature waveforms are nonorthogonal,
this optimization problem is exponentially complex in the
number of users [1]. The SIC detector first finds the active
user with the largest amplitude, detects its symbol, subtracts its
effect from the received signal, and iterates the aforementioned
process using the residual signal. After iterations, the SIC
detector determines all users.

III. RD-MUD

The RD-MUD front end, illustrated in Fig. 1(b), correlates
the received signal with a set of correlating signals ,

, where is typically much smaller than . The
front-end output is processed by either a linear or nonlinear de-
tector to detect active users and their symbols; the design of
these detectors is adapted to take the analog sparsity into ac-
count.

A. RD-MUD Front End

Design of the correlating signals is key for RD-MUD
to reduce the number of correlators. To construct these signals,

we rely on the ideas introduced in [9] to construct multichannel
filters that sample structured analog signals at sub-Nyquist rates.
Specifically, we use the biorthogonal signals with respect to

, which are defined as

(7)

These signals have the property that , for
all , . Note that when are orthogonal, and

.
The RD-MUD front end uses as its correlating signals the

functions

(8)

where are (possibly complex) weighting coefficients. De-

fine a coefficient matrix with and

denote the column of as ,
. We normalize the columns of so that .

The design of the correlating signals is equivalent to the de-
sign of for a given . Evidently, the performance of
RD-MUD will depend on . We will use coherence as a mea-
sure of the quality of , which is defined as

(9)

As we will show later in Section IV-A, it is desirable that is
small to guarantee small probability of symbol error. This re-
quirement also reflects a tradeoff in choosing howmany correla-
tors to use in the RD-MUD front end. With more correlators, the
coherence of can be lower and the performance of RD-MUD
improves. Choosing the correlating signals (8) and using the re-
ceive signal model (1), the output of the correlator is given
by

(10)

where the output noise is given by

. Denoting
and , we can express the RD-MUD output
(10) in vector form as

(11)

where is a Gaussian random vector with zero mean and co-
variance (for derivation, see [28] and [29]). The
vector can be viewed as a linear projection of the MF-bank
front-end output onto a lower dimensional subspace which we
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call the detection subspace. Since there are at most active
users, has at most nonzero entries. The idea of RD-MUD
is that when the original signal vector is sparse, with proper
choice of the matrix , the detection performance for based
on of (11) in the detection subspace can be similar to the per-
formance based on the output of the MF-bank front end of (3).

B. RD-MUD Detection

We now discuss how to recover from the RD-MUD
front-end output using digital detectors. The model (11) for
RD-MUD has a similar form to the observation model in the
compressed sensing literature [13], [22], except that the noise
in the RD-MUD front-end output is colored. Hence, to recover
, we can combine ideas developed in the context of com-
pressed sensing and MUD. The linear detector for RD-MUD
first estimates active users using support recovery techniques
from compressed sensing. Once the active users are estimated,
we can write the RD-MUD front-end output model (11) as

(12)

from which we can detect the symbols by applying a linear
transform to . The nonlinear detector for RD-MUD detects ac-
tive users and their symbols jointly (and/or iteratively).
We will focus on recovery based on two algorithms: 1) the

RDD detector, a linear detector that uses subspace projection
along with thresholding [13], [19] to determine active users and
sign detection for data recovery; 2) the RDDF detector, a non-
linear detector that combines DF-MP for active user detection
and sign detection for data recovery. These two algorithms are
summarized in Algorithms 1 and 2.

Algorithm 1 RDD Detector

1:Input: An matrix , a vector and the
number of active users .

2:Detect active users: find that contains indices of the
largest .

3:Detect symbols: for , and
for .

Algorithm 2 RDDF Detector

1:Input: An matrix , a vector and number
of active users .

2:Initialize: is empty, , .

3:Iterate Steps 4–6 for :

4:Detect active user: .

5:Detect symbol: , for ,

and for .

6:Update: , and .

7:Output: , .

1) RDD Detector: A natural strategy for detection is to com-
pute the inner product and detect active users by choosing
indices corresponding to the largest magnitudes of these inner
products

(13)

This corresponds to the thresholding support recovery algorithm
in compressed sensing (e.g., [13]). To detect symbols, we use
sign detection

(14)

In detecting active users (13) and their symbols (14), we take
the real parts of the inner products because the imaginary part
of contains only noise and interference, since we assume
that symbols and amplitudes are real and only can be
complex. When and , the RDD detector be-
comes the decorrelator in conventional MUD.
To compute the complexity per bit of the RDD detector, we

note that computing requires floating point opera-
tions when is real (or operations when is complex)
for detection of bits (since equivalently we are de-
tecting . Hence, the complexity per bit of RDD
is proportional to . Since in RD-MUD, the com-
plexity-per-bit of RDD (and other RD-MUD linear detectors as
well) is lower than that of the conventional decorrelating linear
MUD detector. Furthermore, RDD and other linear RD-MUD
detectors require much lower complexity in the analog front
end.
When the number of users is not known, we can replace Step

2 in Algorithm 1 by

(15)

where is a chosen threshold.We refer to this method as the
RDD threshold (RDDt) detector. The RDDt detector is related
to the OST algorithm for model selection in [30]. The choice of
depends on , , , , , and the maximum eigenvalue

of . Bounds on associated with error probability bounds
will be given in Theorem 1. In Section V, we explore numerical
optimization of , where we find that to achieve good perfor-
mance, should increase with or , and decrease with .
2) RDDF Detector: The RDDF detector determines active

users and their corresponding symbols iteratively. It starts with
an empty set as the initial estimate for the set of active user ,
zeros as the estimated symbol vector , and the front-end
output as the residual vector . Subsequently, in each
iteration , the algorithm selects the column
that is most highly correlated with the residual as the
detected active user in the iteration

(16)

which is then added to the active user set .
The symbol for user is detected with other detected symbols
staying the same

(17)
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Fig. 3. MUD detector with noise whitening transform.

The residual vector is then updated through
The residual vector represents the part of that has yet to be
detected by the algorithm along with noise. The iteration repeats
times (as we will show, with high probability, DF-MP never

detects the same active user twice), and finally, the active user
set is given by with the symbol vector ,

. When and , the RDDF detector
becomes the successive interference cancellation technique in
the conventional MUD.
The complexity per bit of RDDF is proportional to .

Since , this implies that the complexity for data detec-
tion of RDDF is lower than that of the conventional DF detector
(the complexity per bit of the DF detector is proportional to

). Note that RDDF is similar to MP in compressed sensing
but with symbol detection.
We canmodify the RDDF detector to account for an unknown

number of users by iterating only when the residual does not
contain any significant “component,” i.e., when
for some threshold . We refer to this method as the

RDDF threshold (RDDFt) detector. The choice of depends
on , , , , , and the maximum eigenvalue of . As
with the threshold , bounds on to ensure given error proba-
bility bounds, and its numerical optimization, are presented in
Theorem 1 and Section V, respectively. As in the RDDt, here
we also found in numerical optimizations that should increase
with or , and decrease with .
3) Noise Whitening Transform: The noise in the RD-MUD

output (11) is in general colored due to the matched filtering at
the front end.We can whiten the noise by applying a linear trans-
form before detecting active users and sym-
bols, as illustrated in Fig. 3. The whitened output is given by

(18)

where is a Gaussian random vector with zero mean and co-
variance matrix . If we define a new measurement matrix

(19)

then the RDD and RDDF detectors can be applied by replacing
with and with in (13), (14), (16), and (17). While

whitening the noise, the whitening transform also distorts the
signal component. As we demonstrate via numerical examples
in Section V-6, noise whitening is beneficial when the signature
waveforms are highly correlated.
4) Other RD-MUD Linear Detectors: By combining ideas

developed in the context of compressed sensing and conven-
tional linear MUD detection, we can develop alternative linear
detectors in the reduced-dimension setting.
Reduced-dimension MMSE (RD-MMSE) detector: Similar

to the MMSE detector of the conventional MUD, a linear

detector based on the MMSE criterion can be derived for
(12). The RD-MMSE detector determines active users through
the support recovery method of (13), and then uses a linear
transform that minimizes to estimate the
symbols. Here, the expectation is with respect to the vector of
transmitted symbols and the noise vector . Following the
approach for deriving the conventional MMSE detector [1],
assuming that is uncorrelated with and ,
we obtain the linear transform for the reduced-dimension
MMSE (RD-MMSE) detector as (see Appendix A for details):

. The symbols are
then determined as

(20)

Similarly, we can modify RDDF by replacing symbol detection
by (20) on the detected support in each iteration.
Reduced-dimension least squares (RD-LS) detector: In the re-

duced-dimensional model (12), the matrix introduces in-
terferencewhenwe detect the symbols. Borrowing from the idea
of conventional MUD decorrelator, we can alleviate the effect
of interference using the method of least squares, and estimate
the symbols by solving . We call
this the RD-LS detector. Since ,
RD-LS detects symbols by

(21)

Similarly, we can modify RDDF by replacing symbol detection
by (21) on detected support in each iteration.
5) Reduced-Dimension Maximum Likelihood (RD-ML) De-

tector: The RD-ML detector finds the active users and symbols
by solving the following integer optimization problem:

(22)

where corresponds to the user being inactive. Sim-
ilar to the conventional maximum likelihood detector, the com-
plexity per bit of the RD-ML is exponential in the number of
users. We therefore do not consider this algorithm further.

C. Choice of

In Sections III-B1 and III-B2, we have shown that both the
RDD and RDDF detectors are based on the inner products be-
tween and the columns of . Since consists of corre-
sponding to the active users plus noise, intuitively, for RDD and
RDDF to work well, the inner products between columns of ,
or its coherence as defined in (9), should be small. Several com-
monly used random matrices in compressed sensing that have
small coherence with high probability are the following.
1) Gaussian randommatrices, where entries are indepen-
dent and identically distributed (i.i.d.) with a zeromean and
unit variance Gaussian distribution, with columns normal-
ized to have unit norm.



3864 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 6, JUNE 2013

2) Randomly sampled rows of a unitary matrix. For instance,
the random partial DFT matrix, which is formed by ran-
domly selecting rows of a DFTmatrix :
and normalizing the columns of the submatrix.

3) Kerdock codes [31]: these codes have dimension restricted
to , where with an odd integer
greater than or equal to 3. They have very good coherence
properties, with which meets the Welch lower
bound on coherence. The Welch bound imposes a general
lower bound on the coherence of any matrix [32]
leading to , when is large relative to and
is much larger than 1.

Among these three possible matrix choices, the random par-
tial DFT matrix has some important properties that simplify
closed-form analysis in some cases. In practice, if we choose
the number of correlators to be equal to the number of users,
i.e., , then there is no dimension reduction, and the per-
formance of RD-MUD should equal that of the MF-bank. When

, the random partial DFT matrix becomes the DFT ma-
trix with the property that , i.e., . In
this case, the set of statistics that RDD and RDDF are
based on has the same distribution as the decorrelator output.
To see this, write

, where is a Gaussian random variable with
zero mean and covariance . In
contrast, the Gaussian random matrix does not have this prop-
erty. Therefore, in this setting, the performance of RD-MUD
using a Gaussian random matrix is worse than that using the
random partial DFT matrix. This is also validated in our nu-
merical results in Section V-3. We will also see in Section V-3
that Kerdock codes outperform both random partial DFT and
Gaussian random matrices for a large number of users. This is
due to their good coherence properties. However, as discussed
previously, Kerdock codes have restricted dimensions and are
thus less flexible for system design.

IV. PERFORMANCE OF RD-MUD

We now study the performance of RD-MUD with the RDD
and RDDF detectors. We begin by considering the case of a
single active user without noise as a motivating example.

A. Single Active User

When there is only one active user in the absence of noise,
the RDD detector can detect the correct active user and symbol
by using only two correlators, if every two columns of are
linearly independent. Later, we will also show this is a corollary
(Corollary 2) of the more general Theorem 1.
Assume there is no noise and only one user with index

is active. In this case, and . In
RD-MUD, with two correlators, the RDD detector determines
the active user by finding

(23)

From the Cauchy–Schwarz inequality

(24)

with equality if and only if
for both with some

constant . If every two columns of are linearly indepen-
dent, we cannot have two indices such that
for . Also recall that the columns of are normalized,

. Therefore, the maximum is achieved
only for and , which detects the correct
active user. The detected symbol is also correct, since

(25)

B. Noise Amplification of Subspace Projection

The projection onto the detection subspace amplifies the vari-
ance of noise. When the RDD and RDDF detectors detect the

user, they are affected by a noise component . Con-
sider the special case with orthogonal signature waveforms, i.e.,

, and chosen as the random partial DFT matrix. In this
case, the noise variance is given by
so that it is amplified by a factor . In general, with
subspace projection, the noise variance is amplified by a factor
of [17]. In the following, we capture this noise
amplification more precisely by relating the noise variance to
the performance of the RD-MUD detectors.

C. Coherence-Based Performance Guarantee

In this section, we present conditions under which the RDD
and RDDF detectors can successfully recover active users and
their symbols. The conditions depend on through its coher-
ence and are parameterized by the cross correlations of the sig-
nature waveforms through the properties of the matrix . Our
performance measure is the probability of symbol error, which
is defined as the probability that the set of active users is detected
incorrectly, or any of their symbols are detected incorrectly

(26)

We will show in the proof of Theorem 1 that the second term of
(26) is dominated by the first term when (13) and (16) are used
for active user detection. Define the largest and smallest channel
gains as

(27)

Also define the largest channel gain as . Hence,
and . Our main result is the

following theorem.
Theorem 1: Let be an unknown deterministic

symbol vector, , , and , ,
. Denote the RD-MUD front-end output by

, where and are known,
is a Gaussian random vector with zero mean and covariance

and . Let

(28)
for a given constant .



XIE et al.: REDUCED-DIMENSION MULTIUSER DETECTION 3865

1) Assume that the number of active users is known. If the
coherence (9) of satisfies the following condition:

(29)

for some constant , then the probability of symbol
error (26) for the RDD detector is upper bounded by

(30)

2) Assume is an upper bound for the number of active
users. If the coherence (9) of satisfies (29) for ,
and we choose a threshold that satisfies

(31)

then the probability of symbol error (26) for the RDDt de-
tector is upper bounded by the right-hand side of (30).

3) Assume that the number of active users is known. If the
coherence (9) of satisfies the following condition:

(32)

for some constant , then the probability of symbol
error (26) for the RDDF detector is upper bounded by the
right-hand side of (30).

4) If the coherence (9) of satisfies (32) and we choose a
threshold such that

(33)

then the probability of symbol error (26) for the RDDFt
detector is upper bounded by the right-hand side of (30).
Proof: See Appendix B.

The main idea of the proof is the following. We define an
event

(34)

for defined in (28), and prove that occurs with high prob-
ability. This bounds the two-sided tail probability of the noise.
Then, we show that under (29), whenever occurs, the active
users can be correctly detected. On the other hand, we show
that under a condition weaker than (29), whenever occurs,
the user data symbols can be correctly detected. A similar but
inductive approach is used to prove the performance guarantee
for the RDDF detector.
A special case of Theorem 1 is when ,

, and . This is true when is
the random partial DFT matrix and the signature waveforms are
orthogonal. If we scale by , then the right-hand sides
of (29) and (32) are identical to the corresponding quantities in
Theorem 4 of [22]. Hence, in this case, Theorem 1 has the same
conditions as those of Theorem 4 in [22]. However, Theorem
4 in [22] only guarantees detecting the correct sparsity pattern
of (equivalently, the correct active users), whereas Theorem
1 guarantees correct detection of not only the active users but
their symbols as well. Theorem 1 is also applied to more general
colored noise.

Remarks:
1) The term on the right-hand side of (29) and (32) is bounded
by .

2) There is a noise phase-transition effect. Define the min-
imum signal-to-noise ratio (SNR) as

(35)

where captures the noise amplification effect
in the subspace projection due to nonorthogonal signature
waveforms. Conditions (29) and (32) suggest that for the
RDD and RDDF detectors to have as small as (30), we
need at least

(36)

This means that if the minimum SNR is not sufficiently
high, then these algorithms cannot attain small probability
of symbol error. We illustrate this effect via numerical ex-
amples in Section V-5 (a similar effect can be observed in
standard MUD detectors).

3) In Theorem 1, the condition of having a small probability
of symbol error for the RDDF detector is weaker than for
the RDD detector. Intuitively, the iterative approach of DF
removes the effect of strong users iteratively, which helps
the detection of weaker users.

D. Bounding Probability of Symbol Error of RDD and RDDF

Theorem 1 provides a condition on how small has to be to
achieve a small probability of symbol error. We can eliminate
the constant and rewrite Theorem 1 in an equivalent form that
gives explicit error bounds for the RDD and RDDF detectors.
Define

(37)

For the RDD detector, we have already implicitly assumed that
, since the right-hand side of

(29) in Theorem 1 is nonnegative. For the same reason, for the
RDDF detector, we have assumed that . By
Remark (1) and (37), and . We can prove the
following corollary from Theorem 1 (see [28] for details).
Corollary 1: Under the setting of Theorem 1, with the defini-

tions (35) and (37), the probability of symbol error for the RDD
detector is upper bounded by

(38)

with , and the probability of
symbol error for the RDDF detector is upper bounded by

(39)

with .
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For the decorrelating detector in a conventionalMUD, a com-
monly used performance measure is the probability of error of
each user [4], which is given by

(40)

where is the Gaussian tail prob-
ability. Using (40) and the union bound, we obtain

(41)

where we also used the fact that
and is decreasing in , as well as the bound

[1] Since conventional MUD is not concerned with active user
detection and the errors are due to symbol detection, it only
makes sense to compare (41) to (38) and (39) when
and . Under this setting, and , and the
bounds on (38) of RDD and (39) of RDDF are larger than
the bound (41) of the decorrelating detector. This is because
when deriving bounds for symbol detection error in the proof of
Theorem 1, we consider the probability of (34), which requires
two-side tail probability of a Gaussian random variable. In con-
trast, in a conventional MUD, without active-user detection,
only the one-sided tail probability of the Gaussian random vari-
able is required because we use binary modulation.
Nevertheless, obtaining a tighter bound for a symbol detection
error is not necessary in RD-MUD because when ,
the active user detection error dominates the symbol detection
error.
By letting the noise variance go to zero in (38) and (39)

for the RDD and RDDF detectors, we can derive the following
corollary from Theorem 1 (a proof of this corollary for the RDD
detector has been given in Section IV-A).
Corollary 2: Under the setting of Theorem 1, in the absence

of noise, the RDD detector can correctly detect the active users
and their symbols if , and the
RDDF detector can correctly detect the active users and their
symbols if . In particular, if , with
correlators, for the RDDF detector, and if furthermore

, for the RDD detector (which has also
been shown in Section IV-A).

E. Lower Bound on the Number of Correlators

Theorem 1 is stated for any matrix . By substitution of the
expression for coherence of a given in terms of its dimen-
sions and into Theorem 1, we can obtain a lower bound
on the smallest number of correlators needed to achieve a
certain probability of symbol error. For example, the coherence
of the random partial DFT matrix can be bounded in probability
(easily provable by the complex Hoeffding’s inequality [33]):
Lemma 1: Let be a random partial DFT matrix.

Then, the coherence of is bounded by

(42)

with probability exceeding , for some constant .
Lemma 1 together with Theorem 1 implies that for the partial

DFT matrix to attain a small probability of symbol error, the
number of correlators needed by the RDD and RDDF detectors
is on the order of . This is much smaller than that required
by the conventional MUD using an MF-bank, which is on the
order of .
Corollary 2 together with the Welch bound imply that, for

the RDD and RDDF detectors to have perfect detection, the
number of correlators should be on the order of
. In the compressed sensing literature, it is known that the

bounds obtained using the coherence property of a matrix have
a “quadratic bottleneck” [32]: the number ofmeasurements is on
the order of . Nevertheless, the coherence property is easy to
check for a given matrix, and it is a convenient measure of the
user interference level in the detection subspace, as we demon-
strated in the proof of Theorem 1.

V. NUMERICAL EXAMPLES

As an illustration of the performance of RD-MUD,we present
some numerical examples. We first generate partial random
DFTmatrices and choose the matrix that has the smallest coher-
ence as . Then, using the fixed , we obtain results from

Monte Carlo trials. For each trial, we generate a Gaussian
random noise vector and random bits: ,
with probability 1/2. In this setting, the conventional decorre-
lating detector has equal to that of the RDD when .
1) Versus , as Increases: Fig. 4 shows the of the

RDD, RDDF, RDDt, and RDDFt detectors as a function of ,
for fixed , and different values of . The amplitudes

for all , the noise variance is , and ,
which corresponds to . For each combination
of and , we numerically search to find the best values for
parameters and . The values of range from 0.78 to 0.92,
increase for larger and decrease for larger for the RDDt
detector. The values of range from 0.50 to 0.80, increase for
larger and decrease for larger for the RDDFt detector. The
RDD and RDDF detectors can achieve small for much
smaller than ; the RDDt and RDDFt have some sacrifice in
performance due to their lack of knowledge of . This degra-
dation becomes more pronounced for larger values of .
2) Versus , as Increases: Fig. 5(a) demonstrates

the of the RDD, RDDF, RDDt, and RDDFt detectors as a
function of , for a fixed , and different values of .
For each combination of and , we numerically search to
find the best values for the parameters and . Here, ranges
from 0.68 to 0.80 and ranges from 0.32 to 0.70. The amplitudes

for all , the noise variance is , and ,
which corresponds to . Clearly, the number of
correlators needed to obtain small increases as increases.

3) Comparison of Random Matrices : We compare the
of the RDD and RDDF detectors when the Gaussian random
matrices, the random partial DFT matrices, or the Kerdock
codes are used for . In Fig. 6(a), the of the Gaussian
random matrix converges to a value much higher than that
of the partial DFT matrix, when increases to . In this
example, , , the amplitudes for all ,
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Fig. 4. versus for and different . The amplitudes
for all , the noise variance is , and , which corresponds to

. (a) RDD and RDDt, where the solid lines correspond to
RDD and the dashed lines correspond to RDDt. (b) RDDF and RDDFt, where
the solid lines correspond to RDDF and the dashed lines correspond to RDDFt.

the noise variance is , and . In Fig. 6(b), Ker-
dock codes outperform both the partial DFT and the Gaussian
random matrices because of their good coherence properties.
This behavior can be explained as follows. For larger and
relatively small , it becomes harder to select a partial DFT
matrix with small coherence by random search, whereas the
Kerdock codes can be efficiently constructed and they obtain
the Welch lower bound on coherence by design. For fixed
and , Kerdock codes can support a large number of active
users, as demonstrated in Fig. 7. In this example, the coherence
of the Kerdock code is , which is much smaller
than the coherence obtained by choosing from
random partial DFT matrices. Kerdock codes are tight frames
[31], [34] meaning that so that no prewhitening
is needed.

Fig. 5. versus for and different . The amplitudes
for all , the noise variance is , and . (a) RDD and RDDt,
where the solid lines correspond to RDD and the dashed lines correspond to
RDDt; and (b) RDDF and RDDFt, where the solid lines correspond to RDDF
and the dashed lines correspond to RDDFt.

4) Versus , as Changes: Consider a case where
changes by fixing , for all , and varying

(see Fig. 8). For comparison, we also consider the conven-
tional decorrelating detector, which corresponds to the RDD de-
tector with . Assume and . Note that
there is a noise phase-transition effect in Fig. 5, which is dis-
cussed in the Remarks of Section IV-C.
5) Near-Far Problem, : To illustrate the performance

of the RDD and RDDF detectors in the presence of the near-far
problem, we choose uniformly random from for ac-
tive users. Assume , , and . In Fig. 9,
RDDF significantly outperforms RDD.
6) Versus , Performance of the Noise Whitening

Transform: Next, we consider practical signature waveforms
in CDMA systems. There are many choices for signature
sequences and the Gold code is one that is commonly used
[35]. For signature sequences , the signature waveforms
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Fig. 6. (a) versus of the RDD and RDDF detectors using random par-
tial DFT versus Gaussian random matrices for and (Ker-
dock codes require dimensions of for and hence are
not presented here). (b) versus of the RDD and RDDF detectors using
Gaussian random matrices, random partial DFT matrices, and Kerdock codes
of size 16 256 (arbitrarily select 32 columns for 32 users), for and

. In both examples, the amplitudes for all , the noise variance
is , and .

are generated by , where is
the sequence length, is the chip duration, and the
sequences are modulated by unit-energy chip waveform

with and ,
. For Gold codes, we choose (with length

and 1025 possible codewords) [36].
We use 100 Gold codes to support users. The Gram
matrix of the Gold code is given by

(43)

which has two distinct eigenvalues. In this example,
, ,

, and hence, the signature wave-
forms are nearly orthogonal. We also consider a simulated

Fig. 7. Performance of RDD and RDDF detectors, when using Kerdock codes
for with , versus for various when amplitudes uni-
formly random in , , and .

for a ran-
domly generated unitary matrix , and hence

which is much larger than that of the Gold
codes. In Fig. 10(a) and (b), when the signature waveforms
are nearly orthogonal, the noise whitening transform does not
reduce much. Fig. 10(c) and (d) shows that the performance
of the RDD and RDDF detectors can be significantly improved
by the noise whitening transform for large . We also verified
that using the noise whitening transform cannot achieve the
probability of error that is obtained with orthogonal signature
waveforms . This is because the noise whitening trans-
form distorts the signal component.
7) Versus , RD-MUD Linear Detectors: To compare

performance of the RD-MUD linear detectors, we consider two
sets of schemes. The first are one-step methods: using (13) for
active user detection followed by symbol detection using (14)
(corresponds to RDD), (20) (corresponds to RD-MMSE), or
(21) (corresponds to RD-LS), respectively. The second set of
schemes detects active users and symbols iteratively: the RDDF
detector, the modified RDDF detector, modified by replacing the
symbol detection by the RD-LS detector (21) on the detected
support in each iteration , and the modified RDDF detector,
modified by replacing the symbol detection by the MMSE de-
tector (20) on the detected support in each iteration . As-
sume , , for all , and .
Again we consider Gold codes as defined in Section V-6. As
showed in Table I, iterative methods including RDDF outper-
form the one-step methods including RDD. However, the differ-
ence between various symbol detection methods is very small,
since active user detection error dominates the symbol detec-
tion error. By examining the conditional probability of symbol
error , in Fig. 11, we see that both RD-LS and
RD-MMSE detectors have an advantage over sign detection.

VI. CONCLUSION AND DISCUSSIONS

We have developed an RD-MUD structure, assuming
symbol-rate synchronization, which decreases the number of
correlators at the front end of an MUD receiver by exploiting
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Fig. 8. Performance of RDD and RDDF detectors when for all ,
, and various , where we denote .

The dashed lines show for the conventional decorrelating detectors at the
corresponding .

the fact that the number of active users is typically much smaller
than the total number of users in the system. The front end of
the RD-MUD is motivated by analog CS and it projects the
received signal onto a lower dimensional detection subspace by
correlating the received signal with a set of correlating signals.
The correlating signals are constructed as linear combinations
of the signature waveforms using a coefficient matrix , which
determines the performance of RD-MUD and is our key design
parameter. Based on the front-end output, RD-MUD detectors
recover active users and their symbols in the detection sub-
space.
We studied in detail two such detectors. The RDD detector,

which is a linear detector that combines subspace projection
along with thresholding for active user detection and RDDF de-
tector, which is a nonlinear detector that combines DF-MP for
active user detection. We have shown that to achieve a desired
probability of symbol error, the number of correlators used by

Fig. 9. Comparison of RDD and RDDF in the presence of near-far problem,
with amplitudes uniformly random in , , ,

, and . The solid lines correspond to RDD and the dashed lines
correspond to RDDF.

Fig. 10. Comparison of RDD and RDDF detectors with and without noise
whitening when , , amplitudes uniformly random
in , and the following settings for and : (a) Gold codes with

, , (b) same Gold codes as in (a) but
, (c) simulated with , , and (d)

same simulated as in (c) but .

RD-MUD can be much smaller than that used by conventional
MUD, and the complexity per bit of the RD-MUD detectors
are not higher than their counterpart in the conventional MUD
setting. In particular, when the random partial DFT matrix is
used for the coefficient matrix and the RDD and RDDF de-
tectors are used for detection, the RD-MUD front end requires a
number of correlators proportional to log of the number of users,
whereas the conventional MF-bank front end requires a number
of correlators equal to the number of users in the system. We
obtained theoretical performance guarantees for the RDD and
RDDF detectors in terms of the coherence of , which are val-
idated via numerical examples.
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Fig. 11. Comparison of for RDD, RD-LS, and RD-MMSE
in the same setting as that in Fig. 10.

TABLE I
VERSUS , ,

In contrast to other work exploiting compressed sensing tech-
niques for multiuser detection, our work has several distinctive
features: 1) we consider analog received multiuser signals; 2)
we consider front-end complexity, which is the number of fil-
ters/correlators at the front end to perform the analog-to-discrete
conversion; 3) the noise is added in the analog domain prior
to processing of the front end so that the output noise vector
can be colored due to front-end filtering; and 4) we modify sev-
eral conventional compressed sensing estimation algorithms to
make them applicable for symbol detection and study their prob-
ability-of-symbol-error performance.
Our results are based on binary modulation and can be ex-

tended to higher order modulation with symbols taking more
possible values. In this case, however, the conditions to guar-
antee correct symbol detection may be stronger than the con-
ditions to guarantee correct active user detection. We have also
assumed that the signature waveforms are given. Better perfor-
mance of RD-MUD might be obtained through joint optimiza-
tion of the signature waveforms and the coefficient matrix .
Our results assume a synchronous channel model. Extending
the ideas of this work to asynchronous channels, perhaps using
the methods developed in [37] for time-delay recovery from
low-rate samples, is a topic of future research.

APPENDIX A
DERIVATION OF RD-MUD MMSE

Given the active user index set obtained from (13), we de-
fine , and .

We want to show that . Using
the same method for deriving the conventional MMSE detector
of the MF-bank [1], we assume that has a distribution that is
uncorrelated with the noise and that . Based on
, we refer to the model (12), and write the MSE as

. Now we expand

(44)

It can be verified that . Hence, from (44),
we have

(45)

Since is a positive semidefinitematrix, the trace of the second
term in (45) is always nonnegative. Therefore, thematrix that
minimizes the MSE is .

APPENDIX B
PROOF OF THEOREM 1

The proof of Theorem 1 for both the RDD and RDDF detec-
tors is closely related. We therefore begin by proving several
lemmas that are useful for both results.
First, we prove that the random event defined in (34) occurs

with high probability, where is defined in (28). Then, we show
that when occurs, both algorithms can detect the active users
and their symbols. The proofs follow the arguments in [22] with
modifications to account for the fact that is colored noise,
and the error can also be caused by incorrect symbol detection.
However, as we will show, the error probability of active user
detection dominates the latter case.

Lemma 2: Suppose that is a Gaussian random vector
with zero mean and covariance . If

for some , then the event of (34)
occurs with probability at least one minus (30).

Proof: The random variables are jointly
Gaussian, with means equal to zero, variances equal to

. Define

(46)

and an event . Using Sidak’s
lemma [38], we have

(47)
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Since is a Gaussian random variable with zero mean
and variance , the tail probability of the colored noise can be
written as

(48)

Using the bound on : ,
(48) can be bounded as

where . Define

,

. Since
by the definition of , we have

. It is easy to
show that increases as increases. Hence, .
When , we can use the inequality
when and substitute the value of to write (47) as

(49)

which holds for any and . Next, we show that
. Note that

(50)

From inequality (50) and definitions (28) for and (46) for ,
we obtain . Hence

(51)

Combining (49) and (51), we conclude that is greater than
one minus the expression (30), as required.
The next lemma shows that, under appropriate conditions,

ranking the inner products between and is an effective
method of detecting the set of active users. The proof of this
lemma is adapted from Lemma 3 in [22] to account for the
fact that the signal vector here can be complex as can be
complex. Since the real part contains all the useful informa-
tion, to prove this lemma, we follow the proof for Lemma 3
in [22] while using the following inequality whenever needed:

for , and
. The proofs are omitted due to space limitations. Details

of the proof can be found in [28].
Lemma 3: Let be a vector with support which con-

sists of active users, and let for a Gaussian
noise vector with zero mean and covariance . De-
fine and as in (27), and suppose that

(52)

Then, if the event of (34) occurs, we have
. If, rather than (52), a weaker condition holds

(53)

Then, if the event of (34) occurs, we have
.

The following lemma demonstrates that the sign detector can
effectively detect transmitted symbols for the RDD and RDDF
detectors. This lemma bounds the second term in that has not
been considered in [22].

Lemma 4: Let be a vector with , for
and otherwise, and let for a Gaussian noise
vector with zero mean and covariance . Suppose
that

(54)

Then, if the event occurs, we have

(55)

If, instead of (54), a weaker condition

(56)

holds, then under the event , we have
for

(57)

Proof: To detect correctly, for , has to be
positive, and for , has to be negative.
First assume . We expand , find the lower

bound and the condition such that the lower bound is positive.
Substituting in the expression for , using the inequality that

, under the event , we obtain

(58)

From (58), for if (54) holds and .
Similarly, we can show for , under event , if (54)

holds, . Hence, if (54) holds, we obtain (55).
Recall that is the index of the largest gain: .

Due to (57), we have

(59)

We will show that under the event , once (56) holds, then
leads to a contradiction to (59). First

assume . If , then

(60)
So, the expression inside the operator of (60) must be neg-
ative. Since , we must have

(61)
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Multiplying the left-hand side of (59) by , and using the
equality , we obtain

(62)

Due to (60), the last line of (62) inside the operator is
negative. Using the fact that and (61), and the identity

when and ,
under the event , we obtain that

(63)
On the other hand, multiply the right-hand side of (59) by
. Similarly, using the equality and triangle

inequality, under the event , we obtain

(64)
Combining (63) and (64), we have that once (56) holds,

if , then leads to
, which contradicts (59), and hence,
. A similar argument can be made for

, which completes the proof.
We are now ready to prove Theorem 1. The proof for the

RDD detector is obtained by combining Lemmas 2–4. Lemma
2 ensures that the event occurs with probability at least as
high as one minus (30). Whenever occurs, Lemma 3 guar-
antees, by using (13), that the RDD detector can correctly de-
tect active users under the condition (29), i.e., .
Finally, whenever occurs, Lemma 4 guarantees that, based
on the correct support of active users, their transmitted sym-
bols can be detected correctly under the condition (54), i.e.,

. Clearly, condition (54) is weaker than
(29), since (29) can be written as

, and hence, if (29) holds, then (54) also
holds. In summary, under condition (29),
, and , which is

greater than one minus (30), which concludes the proof for the
RDD detector.
The proof for RDDt is similar to that for an RDD detector and

inspired by the proof of Theorem 1 in [30]. Using similar argu-
ments to Lemma 3, we can demonstrate that, when the number
of active users , when occurs

(65)

and

(66)

If (52) holds for , we can choose a threshold such that
. Then,

and , and hence,
for such , the RDDt detector can correctly detect the active
users with high probability. Since when (52) holds, (54) is true,
from Lemma 4 we know the symbol can be correctly detected
with high probability as well.
We now prove the performance guarantee for the RDDF de-

tector adopting the technique used in proving Theorem 4 in
[22]. First, we show that whenever occurs, the RDDF detector
correctly detects an active user in the first iteration, which fol-
lows from Lemmas 2 and 3. Note that (32) implies (53), and
therefore, by Lemma 3, we have that by choosing the largest

, the RDDF detector can detect a correct user in set
. Second, we show that whenever occurs, the RDDF de-
tector correctly detects the transmitted symbol of this active
user. Note that (32) also implies (56), since (32) can be written
as , which implies

, and hence,
,

since . Therefore, by
Lemma 4, using a sign detector, we can detect the symbol cor-
rectly. Consequently, the first step of the RDDF detector cor-
rectly detect the active user and its symbol, i.e.,

.
The proof now continues by induction. Suppose we are cur-

rently in the iteration of the RDDF detector, ,
and assume that correct users and their symbols have been
detected in all the previous steps. The step is to detect
the user with the largest . Using the same nota-
tions as those in Section III-B2 and by definition of , we
have

(67)

where . This vector has support
and has at most nonzero elements, since con-
tains correct symbols at the correct locations for ac-
tive users, i.e., , for . This is a
noisy measurement of the vector . The data model in
(67) for the iteration is identical to the data model in the
first iteration with replaced by (with a smaller sparsity

rather than ), replaced by , and re-

placed by . Let . By assump-
tion, active users with largest gains have been correctly
detected in the first rounds, and hence, .
Since

(68)

we have that under condition (32), this model (67) also sat-
isfies the requirement (53). Consequently, by Lemma 3, we
have that under the event ,

. Therefore, in the
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iteration, the RDDF detector can detect an active user correctly,
i.e., , and no index of active users that has
been detected before will be chosen again. On the other hand,
since (32) can be written as ,
from (68), this implies , and
hence, , and consequently,

. Consequently,
condition (56) is true for (67). Then, by Lemma 4, we have
that under the event , , i.e.,

. By induction, since no active users will be
detected twice, it follows that the first steps of the RDDF
detector can detect all active users and their symbols, i.e.,

(69)

Note that condition (53) is weaker than (32), since (32) can be
written as , which implies

. This further implies
, since and

. Consequently, under condition (32), from (69),
, and

which is greater than one minus (30), which concludes the proof
for the RDDF detector.
The proof for RDDFt follows the aforementioned proof for

RDDFwith onemore step. Note that whenwe have correctly de-
tected all active users in rounds, from (67), the residual
contains only noise. Hence, when occurs,

, from Lemma 2. On the
other hand, in the th round, , from (67), we have
that when occurs

(70)

(71)

The expression in (71) is positive, when (32) holds (recall that
(32) is also required to detect correct active users): because
when , since ,

, and hence,
. Therefore when (32) holds, we can

choose .
Therefore, under the condition (32), when occurs, we can
choose , so that

, , and .
Finally, using similar arguments as for RDDF that (32) guar-
antees (56), RDDFt can also correctly detect the symbols with
high probability.
This completes the proof of Theorem 1.
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