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Exploiting Statistical Dependencies in Sparse
Representations for Signal Recovery
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Abstract—Signal modeling lies at the core of numerous signal
and image processing applications. A recent approach that has
drawn considerable attention is sparse representation modeling,
in which the signal is assumed to be generated as a combination
of a few atoms from a given dictionary. In this work we con-
sider a Bayesian setting and go beyond the classic assumption of
independence between the atoms. The main goal of this paper
is to introduce a statistical model that takes such dependencies
into account and show how this model can be used for sparse
signal recovery. We follow the suggestion of two recent works
and assume that the sparsity pattern is modeled by a Boltzmann
machine, a commonly used graphical model. For general depen-
dency models, exact MAP and MMSE estimation of the sparse
representation becomes computationally complex. To simplify the
computations, we propose greedy approximations of the MAP
and MMSE estimators. We then consider a special case in which
exact MAP is feasible, by assuming that the dictionary is unitary
and the dependency model corresponds to a certain sparse graph.
Exploiting this structure, we develop an efficient message passing
algorithm that recovers the underlying signal. When the model
parameters defining the underlying graph are unknown, we
suggest an algorithm that learns these parameters directly from
the data, leading to an iterative scheme for adaptive sparse signal
recovery. The effectiveness of our approach is demonstrated on
real-life signals—patches of natural images—where we compare
the denoising performance to that of previous recovery methods
that do not exploit the statistical dependencies.

Index Terms—Bayesian estimation, Boltzmann machine
(BM), decomposable model, denoising, greedy pursuit, image
patches, maximum a posteriori (MAP), message passing, MRF,
pseudo-likelihood, sequential subspace optimization (SESOP),
signal synthesis, sparse representations, unitary dictionary.

I. INTRODUCTION

S IGNAL modeling based on sparse representations is used
in numerous signal and image processing applications,

such as denoising, restoration, source separation, compression
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and sampling (for a comprehensive review see [1]). In this
model a signal is assumed to be generated as ,
where is the dictionary (each of the columns in is typically
referred to as an atom), is a sparse representation over this
dictionary, and is additive white Gaussian noise. Throughout
this work we shall assume that the dictionary is known and
fixed, and our derivations consider both arbitrary and unitary
dictionaries. Our goal is to recover the sparse representation
from , and by multiplying the outcome by we can achieve
denoising. We will use the term “sparse signal recovery” (or
just “sparse recovery” and “signal recovery”) to describe the
task of recovering from for both the case of arbitrary
dictionaries and unitary ones.
Various works that are based on this model differ in their

modeling of the sparse representation . The classical approach
to sparse recovery considers a deterministic sparse represen-
tation and signal recovery is formulated as a deterministic
optimization problem. Some examples include greedy pur-
suit algorithms like orthogonal matching pursuit (OMP) and
CoSaMP, and convex relaxations like basis pursuit denoising
and the Dantzig selector (for comprehensive reviews see [1],
[2]). Recent works [3]–[8] suggested imposing additional
assumptions on the support of (the sparsity pattern), which
is still regarded deterministic. These works show that using
structured sparsity models that go beyond simple sparsity can
boost the performance of standard sparse recovery algorithms
in many cases.
Two typical examples for such models are wavelet trees [3]

and block-sparsity [5], [6]. The first accounts for the fact that
the large wavelet coefficients of piecewise smooth signals and
images tend to lie on a rooted, connected tree structure [9]. The
second model is based on the assumption that the signal exhibits
special structure in the form of the nonzero coefficients occur-
ring in clusters. This is a special case of a more general model,
where the signal is assumed to lie in a union of subspaces [4],
[5]. Block-sparsity arises naturally in many setups, such as re-
covery of multiband signals [10], [11] and the multiple measure-
ment vector problem. However, there are many other setups in
which sparse elements do not fit such simple models. In [7] the
authors propose a general framework for structured sparse re-
covery and demonstrate how both block-sparsity and wavelet
trees can be merged into standard sparse recovery algorithms.
In many applications, it can be difficult to provide one de-

terministic model that describes all signals of interest. For ex-
ample, in the special case of wavelet trees it is well known that
statistical models, such as hidden Markov trees (HMTs) [12],
are more reliable than deterministic ones. Guided by this obser-
vation, it is natural to consider more general Bayesian modeling,
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in which the sparse representation is assumed to be a random
vector. Many sparsity-favoring priors for the representation co-
efficients have been suggested in statistics, such as the Laplace
prior, “spike-and-slab” (mixture of narrow and wide Gaussian
distributions) and Student’s distribution (for a comprehensive
review see [13]). However, the representation coefficients are
typically assumed to be independent of each other.
Here, we are interested in Bayesian modeling that takes into

account not only the values of the representation coefficients,
but also their sparsity pattern. In this framework sparsity is
achieved by placing a prior distribution on the support, and the
representation coefficients are modeled through a conditional
distribution given the support. The most simple prior for the
support assumes that the entries of the sparsity pattern are
independent and identically distributed (i.i.d.) (see, e.g., [14]).
However, in practice, atoms in the dictionary are often not used
with the same frequency. To account for this behavior, we can
relax the assumption that the entries are identically distributed
and assign different probabilities to be turned “on” for each
entry [15].
Besides the modeling aspect, another key ingredient in

Bayesian formulations is the design objective. Two popular
techniques are maximum a posteriori (MAP) and minimum
mean square error (MMSE) estimators. Typically these esti-
mators are computationally complex, so that they can only be
approximated. For example, approximate MAP estimation can
be performed using a wide range of inference methods, such
as the relevance vector machine [16] and Markov chain Monte
Carlo (MCMC) [17]. Such estimators are derived in [13] and
[18] based on sparsity-favoring priors on and approximate
inference methods. In [14] and [19] approximate MMSE esti-
mators are developed, based on an i.i.d prior on the support.
Finally, in the special case of a square and unitary dictionary,
assuming independent entries in the support and Gaussian
coefficients, it is well known that the exact MAP and MMSE
estimators can be easily computed [15], [20].
Independence between the entries in the support can be a

useful assumption, as it keeps the computational complexity
low and the performance analysis simple. Nevertheless, this as-
sumption can be quite restrictive and leads to loss of representa-
tion power. Real-life signals exhibit significant connections be-
tween the atoms in the dictionary used for their synthesis. For
example, it is well known that when image patches are repre-
sented using the discrete cosine transform (DCT) or a wavelet
transform, the locations of the large coefficients are strongly
correlated. Recent works [21]–[25] have made attempts to go
beyond the classic assumption of independence and suggested
statistical models that take dependencies into account. The spe-
cial case of wavelet trees is addressed in [21], where HMTs are
merged into standard sparse recovery algorithms, in order to im-
prove some of their stages and lead to more reliable recovery.
Another statistical model designed to capture the tree structure
for wavelet coefficients, was suggested in [22]. An approximate
MAP estimator was developed there based on this model and
MCMC inference.
Here, we consider more general dependency models based on

undirected graphs, which are also referred as Markov random
fields (MRFs), and focus on the special case of a Boltzmann

machine (BM). To the best of our knowledge a BM structure
for sparsity patterns was originally suggested in [23] in the con-
text of Gabor coefficients. MCMC inference was used there for
nonparametric Bayesian estimation. In [24], the authors also use
a BM structure, which allows them to introduce the concept of
interactions in a general sparse coding model. An approximate
MAP estimator is then developed by means of Gibbs sampling
and simulated annealing [17]. Finally, in [25] a BM prior on
the support is used in order to improve the CoSaMP algorithm.
We will relate in more detail to the recent works which used
BM-based modeling and emphasize differences between these
works and our approach in Section X.
The current paper is aimed at further exploring the BM-based

model proposed in [23]–[25]. Once we adopt the BM as a model
for the support, several questions naturally arise: how to perform
pursuit for finding the sparse representation, how to find the
model parameters, and finally how to combine these tasks with
dictionary learning. In this paper, we address the first two ques-
tions. For pursuit we suggest using a greedy approach, which
approximates theMAP andMMSE estimators and is suitable for
any set of model parameters. We then make additional modeling
assumptions, namely a unitary dictionary and a banded interac-
tion matrix, and develop an efficient message passing algorithm
for signal recovery which obtains the exactMAP estimate in this
setup. For learning the Boltzmann parameters we suggest using
a maximum pseudolikelihood (MPL) approach and develop an
efficient optimization algorithm for solving the MPL problem.
Finally, we use a block-coordinate optimization approach to es-
timate both the sparse representations and the model parameters
directly from the data. This results in an iterative scheme for
adaptive sparse signal recovery.
The paper is organized as follows. In Section II, we moti-

vate the need for inserting probabilistic dependencies between
elements in the support by considering sparse representations
of image patches over a DCT dictionary. In Section III, we
introduce useful notions and tools from the graphical models
field and explore the BM prior. Section IV defines the signal
model, along with the MAP and MMSE estimation problems.
In Section V, we develop several greedy approximations of the
MAP and MMSE estimators for the BM prior. We then present
setups where the MAP problem can be solved exactly and de-
velop an efficient algorithm for obtaining the exact solution in
Section VI. We explore the performance of these algorithms
through synthetic experiments in Section VII. Estimation of the
model parameters and adaptive sparse signal recovery are ad-
dressed in Section VIII. The effectiveness of our approach is
demonstrated on image patches in Section IX. Finally, we dis-
cuss relations to past works in Section X.

II. MOTIVATION

In this section we provide motivation for inserting proba-
bilistic dependencies between elements in the support. We con-
sider a set of of size 8-by-8 that are ex-
tracted out of several noise-free natural images. For each patch,
we perform a preliminary stage of DC removal by subtracting
the average value of the patch, and then obtain sparse repre-
sentations of these patches over an overcomplete DCT dictio-
nary of size 64-by-256 ( -by- ) using the OMP algorithm. We
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Fig. 1. Validity tests for several assumptions on the support vector: identical distributions, independency and block-sparsity. Left: A plot of , Middle: An image
of , Right: An image of .

consider a model error of , so that OMP stops when the
residual error falls below . We then compute the
empirical marginal distributions for each of the dictionary atoms
and for all pairs of atoms, namely we approximate ,

and , ,
where is a binary vector of size and denotes that
the th atom is being used. The empirical conditional probability

can then be computed as the ratio between
and .

We address several assumptions that are commonly used in
the sparse recovery field and suggest validity tests for each of
them. The first assumption is that the elements in the support
vector are identically distributed, namely for
all , where is some constant. This assumption can be
examined by comparing the marginal probabilities
for each atom. The second assumption is independency between
elements in the support. The independency assumption between
atoms and implies that .
Therefore, we can test for independency by comparing the mar-
ginal and conditional probabilities for each pair of atoms. Next
we turn to the block-sparsity assumption. Assuming that and
are in the same cluster implies that the conditional probabilities

and are near 1.
To examine the validity of each of the above-mentioned as-

sumptions, we compute the variables

(1)

where denotes the average probability of an entry to be turned
“on,” namely , is a vector of size
and are matrices of size -by- . We use , so

that for we get a value 1 in and
( and denote the row and column indices, respectively).

In each of the functions in (1) a near-zero result implies that the
corresponding assumption is valid; as we go further away from
zero the validity of the assumption decreases. The logarithms
are used to improve the visibility of the results.
The results are shown in Fig. 1. On the left we plot the values

in . This plot demonstrates that the individual frequencies can
be very far from the average one. Consequently, the DCT atoms
are used with varying frequencies. The matrix is displayed
in the middle. The black color, which corresponds to near-zero

values, is dominant. This illustrates that the independency as-
sumption is satisfactory for many pairs of DCT atoms. However,
some pairs exhibit significant interactions (see the white diag-
onals near the main diagonal and the bright spots). The image
on the right displays the matrix , which is dominated by the
white color, corresponding to near-one values. High values in
the entries or indicate that it is not reasonable to as-
sume that the corresponding atoms belong to the same cluster
in a block-sparse model (regardless of the block sizes). Since
this is the case for most pairs of DCT atoms, we conclude the
block-sparsity approach does not capture the dependencies well
in this example.
It is interesting to note that while the OMP algorithm reveals

different frequencies of appearance for the atoms and significant
correlations between pairs of atoms, it in fact makes no use of
these properties. Therefore, it seems plausible that a stochastic
model that will capture the different nature of each atom, as well
as the important interactions between the atoms, can lead to im-
proved performance. In this paper we will show how this can be
accomplished in a flexible and adaptive manner. In Section IX,
we will return to this very set of patches and show that the pro-
posed model and methods do better service to this data.

III. BACKGROUND ON GRAPHICAL MODELS

The main goal of this paper is using graphical models for
representing statistical dependencies between elements in the
sparsity pattern and developing efficient sparse recovery algo-
rithms based on this modeling. In order to set the ground for
the signal model and the recovery algorithms, we provide some
necessary notions andmethods from the vast literature on graph-
ical models. We begin by presenting MRFs and explain how
they can be used for describing statistical dependencies. We
then focus on the BM, a widely used MRF, explore its proper-
ties and explain how it can serve as a useful and powerful prior
on the sparsity pattern. For computational purposes we may
want to relax the dependency model. One possible relaxation,
which often reduces computational complexity and still bears
considerable representation power, is decomposable models. Fi-
nally, we present a powerful method for probabilistic inference
in decomposable models, coined belief propagation. Decom-
posability will be a modeling assumption in Section VI and the
algorithm we propose in Section VI-B will be based on belief
propagation techniques.

A. Representing Statistical Dependencies by MRFs

In this subsection we briefly review MRFs and how they
can be used to represent statistical dependencies. This review



PELEG et al.: EXPLOITING STATISTICAL DEPENDENCIES IN SPARSE REPRESENTATIONS FOR SIGNAL RECOVERY 2289

Fig. 2. Simple dependency model for 5 variables. This is a chordal graph with
3 missing edges. The interaction matrix in the corresponding BM is banded. (a)
Graph. (b) interaction matrix.

is mainly based on [26]. A graphical model is defined by its
structural and parametric components. The structural compo-
nent is the graph where is a set of nodes (vertices)
and is a set of undirected edges (links between the nodes).
In a graphical model there is a one-to-one mapping between
nodes and random variables .
Let stand for three disjoint subsets of nodes. We say
that is independent of given if separates from
, namely all paths between a node in and a node in

pass via a node in . Thus, simple graph separation is equiv-
alent to conditional independence. The structure can be used to
obtain all the global conditional independence relations of the
probabilistic model. By “global” we mean that conditional in-
dependence holds for all variable assignments and does not de-
pend on numerical specifications. For a visual demonstration
see Fig. 2(a); using the above definition it easy to verify for ex-
ample that is independent of given .
Turning to the parametric component, note that the joint

probability distribution is represented by a local parametriza-
tion. More specifically, we use a product of local nonnegative
compatibility functions, which are referred to as potentials.
The essence of locality becomes clearer if we define the notion
of cliques. A clique is defined as a fully-connected subset of
nodes in the graph. If and are linked, they appear together
in a clique and thus we can achieve dependence between them
by defining a potential function on that clique. The maximal
cliques of a graph are the cliques that cannot be extended
to include additional nodes without losing the property of
being fully connected. Since all cliques are subsets of one or
more maximal cliques, we can restrict ourselves to maximal
cliques without loss of generality. For example, in Fig. 2(a)
the maximal cliques are , and

. To each maximal clique we assign a nonneg-
ative potential . The joint probability is then given as
a product of these potentials, up to a normalization factor

(2)

If the potentials are taken from the exponential family, namely
, then ,

where is the energy of the system.

B. The Boltzmann Machine

In this subsection we focus on the BM, a widely used MRF.
We are about to show that this can serve as a useful and powerful
prior on the sparsity pattern. The BM distribution is given by

(3)

where is a binary vector of size with values in ,
is symmetric and is a partition function of the Boltzmann

parameters that normalizes the distribution. We can further
assume that the entries on the main diagonal of are zero,
since they contribute a constant to the function . In this
work, the BM will be used as a prior on the support of a sparse
representation: implies that the th atom is used for the
representation, whereas for this atom is not used.
The BM is a special case of the exponential family with an

energy function . The BM distri-
bution can be easily represented by an MRF—a bias is as-
sociated with a node and a nonzero entry in the interac-
tion matrix results in an edge connecting nodes and with
the specified weight. Consequently, the zero entries in have
the simple interpretation of missing edges in the corresponding
undirected graph. This means that the sparsity pattern of is
directly linked to the sparsity of the graph structure. From graph
separation we get that if then and are statistically
independent given all their neighbors . For
example, if the matrix corresponds to the undirected graph
that appears in Fig. 2(a) then . This
matrix is shown in Fig. 2(b).
The maximal cliques in the BM are denoted by

and we would like to assign potential func-
tions to these cliques that will satisfy the
requirement . One
possible choice is to assign each of the terms in using a
prespecified order of the cliques: is assigned to the clique
that consists of and appears last in the order and a nonzero
term is assigned to the clique that consists of
and appears last in the order.
Next, we turn to explore the intuitive meaning of the Boltz-

mann parameters. In the simple case of , the BM dis-
tribution becomes . Consequently,

are statistically independent. Using straightforward
computations we get
for . Since ,
has the following marginal probability to be turned “on”:

(4)

When is nonzero, (4) no longer holds. However, the simple
intuition that tends to be turned “off” as becomes more
negative, remains true.
We would now like to understand how to describe correla-

tions between elements in . To this end we focus on the simple
case of a matrix of size 2-by-2, consisting of one param-
eter , and provide an exact analysis for this setup. In order
to simplify notations, from now on we use to denote

. Using these notations we can write down
the following relation for the simple case of a pair of nodes:

(5)

where

(6)



2290 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 5, MAY 2012

From (5), we see that is a convex combination of
and . Hence, for we have

and for we have
.

For a general matrix these relations are no longer strictly
accurate. However, they serve as useful rules of thumb: for
an “excitatory” interaction and tend to be
turned “on” (“off”) together, and for an “inhibitory” interaction

and tend to be in opposite states. The intu-
ition into the Boltzmann parameters provides some guidelines
as to how the BM prior can be used for sparse representations.
If the values of the biases in the vector are negative “enough”
and there are few strong excitatory interactions, then the mean
cardinality of the support tends to be small. This reveals some
of the power of the BM as a prior on the support in the signal
model. It can achieve sparsity and at the same time capture sta-
tistical dependencies and independencies in the sparsity pattern.
To conclude this section, note that standard sparsity-favoring

models can be obtained as special cases of the BM model. For
and for all , which correspond to an

i.i.d. prior, the cardinality has a Binomial distribution, namely
. For a low value of the cardinalities are typ-

ically much smaller than , so that plain sparsity is achieved.
BM can also describe a block-sparsity structure: Assuming that
the first entries in correspond to the first block, the next
to the second block, etc., the interaction matrix should

be block-diagonal with “large” and positive entries within each
block. The entries in should be chosen as mentioned above to
encourage sparsity.

C. Decomposable Graphical Models

We now consider decomposability in graphical models [26],
[27]. A triplet of disjoint subsets of nodes is a decom-
position of a graph if its union covers all the set , separates
from and is fully-connected. It follows that a graphical

model is regarded as decomposable if it can be recursively de-
composed into its maximal cliques, where the separators are the
intersections between the cliques. It is well known that a de-
composable graph is necessarily chordal [28]. This means that
each of its cycles of four or more nodes has a chord, which is an
edge joining two nodes that are not adjacent in the cycle. Con-
sequently, for a given MRF we can apply a simple graphical test
to verify that it is decomposable.
In Section VI, we consider decomposable BMs. This assump-

tion implies that the matrix corresponds to a chordal graph.
We now provide some important examples for decomposable
graphical models and their corresponding interaction matrices.
Note that a graph which contains no cycles of length four is ob-
viously chordal as it satisfies the required property in a trivial
sense. It follows that a graph with no edges, a graph consisting
of nonoverlapping cliques and a tree are all chordal. The first
example is the most trivial chordal graph and corresponds to

. The second corresponds to a block-diagonal matrix and
as we explained in Section III-B it can describe a block-sparsity
structure. Tree structures are widely used in applications that are
based on a multiscale framework. A visual demonstration of the
corresponding matrix is shown in [27].

Fig. 3. Clique tree which is constructed for the graph that appears in Fig. 2.
In this case, the clique tree takes the form of a simple chain of size 3. Potential
functions are defined for each of the cliques and exact probabilistic inference is
performed by message passing.

Another common decomposable model corresponds to a
banded interaction matrix. In an th order banded matrix only
the principal diagonals consist of nonzero elements.
Assuming that the main diagonal is set to zero, we have that
there can be at most nonzero entries in an th
order banded , instead of nonzeros as in a general
interaction matrix. Consequently, the sparsity ratio of is
of order . This matrix corresponds to a chordal graph with
cliques , . For example,
the matrix in Fig. 2(b) is a second order banded matrix of
size 5-by-5. This matrix corresponds to a chordal graph (see
Fig. 2(a)) with three cliques.
Chordal graphs serve as a natural extension to trees. It is well

known [26] that the cliques of a chordal graph can be arranged
in a clique tree, which is called a junction tree. In a junction tree
each clique serves as a vertex and any two cliques containing

a node are either adjacent in or connected by a path made
entirely of cliques containing . For a visual demonstration see
Fig. 3, where a clique tree is constructed for the chordal graph
of Fig. 2(a). In this case where the interaction matrix is banded,
the clique tree is simply a chain. It can easily be verified that
this is in fact true for a banded interaction matrix of any order.
We now turn to describe belief propagation, a powerful

method for probabilistic inference tasks like computation of
single node marginal distributions and finding the most prob-
able configuration. Exact probabilistic inference can become
computationally infeasible for general dependency models as
it requires a summation or maximization over all possible con-
figurations of the variables. For example, in a general graphical
model with binary variables the complexity of exact infer-
ence grows exponentially with . However, when the graph
structure is sparse, one can often exploit the sparsity in order to
reduce this complexity. The inference tasks mentioned above
can often be performed efficiently using belief propagation
techniques [26]. More specifically, in a decomposable MRF
exact inference takes the form of a message passing algorithm,
where intermediate factors are sent as messages along the edges
of the junction tree (see, for example, the messages passed
along the chain in Fig. 3). For more details on message passing
see [26].
The complexity of exact inference via message passing

strongly depends on the tree-width of the graph. In a decom-
posable model this is defined as the size of the largest maximal
clique minus one. For example, in the special case of a BM
with an th order banded we have that the tree-width is
. We can conclude that for a decomposable model there is
an obvious tradeoff between computational complexity and
representation power. For example, in the special case of an
th order interaction matrix the computational complexity
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of exact inference decreases with , but at the same time the
graphical model captures fewer interactions. Nevertheless,
decomposable models can serve as a useful relaxation for a
general dependency model, as they can achieve a substantial
decrease in the complexity of exact inference, while still cap-
turing the significant interactions.

IV. BM GENERATIVE MODEL

In this section we use the BM for constructing a stochastic
generative signal model. We consider a signal which is mod-
eled as , where is the dictionary of size -by- ,
is a sparse representation over this dictionary and is additive
white Gaussian noise with variance . We denote the sparsity
pattern by , where implies that the index
belongs to the support of and implies that .
The nonzero coefficients of are denoted by , where is the
support of . Following [24] we consider a BM prior for and a
Gaussian distribution with zero mean and variance for each
nonzero representation coefficient . Note that the variances of
the nonzero representation coefficients are atom-dependent. It
follows that the conditional distribution of given the support
is

(7)

where is a diagonal matrix with diagonal elements
and is the cardinality of the support . Using

the assumption on the noise we can also write down the condi-
tional distribution for the signal given its sparse representation

(8)

The proposed generative model combines a discrete distri-
bution for and continuous distributions for given and
given , so that computations of posterior distributions should
be handled carefully. Notice that an empty support necessarily
implies , so that is a discrete distribution (it
equals ). However, for nonzero vectors we
have that is a continuous distribution. Using Bayes’
law we can deduce that just like , the posterior is
a mixture of a discrete distribution for and a continuous
distribution for all nonzero values of . Our goal is to recover
given . However, from the above discussion we have that

given , the representation vector equals zero with a nonzero
probability, whereas for any nonzero vector the event
occurs with probability zero. It follows that the MAP estimator
for given leads to the trivial solution , rendering it
useless.
The distribution however is a discrete one. There-

fore, we suggest to first perform MAP estimation of given
and then proceed with MAP estimation of given and the
estimated support [15]. This suggestion aligns with previous
approaches in the sparse recovery field. In fact, standard al-
gorithms for sparse recovery, such as OMP, take a similar ap-
proach—they first obtain an estimate for the support which min-
imizes the residual error and then rely on this estimate for signal
reconstruction. Indeed, even the celebrated -norm minimiza-
tion approach is often used as a means to find the support, fol-

lowed by a least-squares step for finding the final representation
values (this is known as debiasing).
We begin by developing an expression for by inte-

grating over all possible values of

(9)

where is a constant and

. This leads to the following estimator for the
support:

(10)

where and depends on through

for all , with denoting the indicator function. The
feasible set denotes all possible supports. In terms of ,
this is the set of all vectors satisfying for all . Note that
for an empty support the two first terms in (10) vanish. Once
we have an estimate of the support, we can compute
a MAP estimator of using the same formula as in the oracle
estimator (see [15])

(11)

We now turn to MMSE estimation of given . Here, we
have

(12)

where equals [15] (this is not true

in general, but rather for the specific distribution considered
here) and is computed using the oracle formula:

for the on support entries (and the off support entries
are set to zero).
In the sequel we first focus on the case where all model

parameters—the Boltzmann parameters , the variances
, the dictionary and the noise variances are

known. For a general dictionary and an arbitrary symmetric
interaction matrix the exact MAP and MMSE estimators
require an exhaustive search or sum over all possible
supports. To overcome the infeasibility of the combinatorial
search or sum, we consider two approaches. In the first, de-
veloped in Section V, we approximate the MAP and MMSE
estimators using greedy methods. An alternative strategy is to
make additional assumptions on the model parameters, namely
on and , that will make exact estimation feasible. This
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approach is addressed in Section VI, where we consider unitary
dictionaries and decomposable BMs. The more practical
setup where the model parameters are also unknown is con-
sidered in Section VIII, for which we derive efficient methods
for estimating both the sparse representations and the model
parameters from a set of signals.

V. GREEDY PURSUIT FOR APPROXIMATE MAP AND
MMSE ESTIMATION

Throughout this section we assume an arbitrary dictionary
and an arbitrary symmetric interaction matrix and make use of
the BM-based generative model to solve a fundamental sparse
coding problem—finding the sparse representation of a signal
from noisy observations. As we have seen in the previous sec-
tion, exact MAP and MMSE estimation in this setup require an
exhaustive search or sum over all possible supports. To sim-
plify the computations, we propose using a greedy approach.
In this section we suggest three greedy pursuit algorithms for
our model-based sparse recovery problem. The two first algo-
rithms are OMP-like and thresholding-like pursuits which ap-
proximate the MAP estimate of the support given the signal
. The third pursuit method is a randomized version of the pro-
posed OMP-like algorithm (similar to the rand-OMP method
[19]), which approximates the MMSE estimate of the represen-
tation vector given the signal .

A. OMP-Like MAP

We begin with the OMP-like algorithm and explain its core
idea. Our goal is to estimate the support which achieves themax-
imal value of the posterior probability . This means that
our objective function is the one that appears in (10). We start
with an empty support, which means that are all 1.
At the first iteration, we check each of the possible elements
that can be added to the empty support and evaluate the term
in (10). The entry leading to the largest value is chosen and
thus is set to be 1. Given the updated support, we proceed
exactly in the same manner. In every iteration we consider all
the remaining inactive elements and choose the one that leads
to the maximal value in (10) when added to the previously set
support. The algorithm stops when the value of (10) is decreased
for every additional item in the support.
In each iteration only one entry in changes—from 1 to 1.

This can be used to simplify some of the terms that appear in
(10)

(13)

where are constants that will not be needed in our
derivation. Consequently, in each iteration it is sufficient to find

Algorithm 1: Greedy OMP-like algorithm for approximating
the MAP estimator of (10)

Input: Noisy observations and model parameters
.

Output: A recovery for the support.
,

repeat
for

Evaluate using (14).
end for

,

until
Return:

an index (out of the remaining inactive indices) that maximizes
the following expression:

(14)

where is the support estimated in iteration with the
entry added to it, and is the th
row of . A pseudocode for the proposed OMP-like algorithm
is given in Algorithm 1.
We now provide some intuition for the expressions in (14).

The term is equivalent to the residual error

, where is the residual
with respect to the signal. To see this, notice that the following
relation holds:

(15)

Using the definition of it can be easily verified that the two
terms take a similar form, up to a regularization factor in the
pseudoinverse of . Next, we turn to the terms and
. The first corresponds to the sum of interactions between the
th atom and the rest of the atoms which arise from turning it
on (the rest remain unchanged). The second term is the separate
bias for the th atom. As the sum of interactions and the sepa-
rate bias become larger, using the th atom for the representation
leads to an increase in the objective function. Consequently, the
total objective of (14) takes into consideration both the residual
error with respect to the signal and the prior on the support. This
can lead to improved performance over standard pursuit algo-
rithms like OMP and CoSaMP, which are aimed at minimizing
the residual error alone.
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Algorithm 2: Greedy thresholding-like algorithm for
approximating the MAP estimator of (10)

Input: Noisy observations and model parameters
.

Output: A recovery for the support.
for

Evaluate using (14).
end for
Sort in a descending order and arrange the indices

according to this order.
for
Set to include the first elements in above order.
Compute .

end for

Return:

B. Thresholding-Like MAP

To simplify computations, we can consider a thresholding-
like version of Algorithm 1. Again we start with an empty sup-
port and compute using (14) for , just as we
do in the first iteration of Algorithm 1. We then sort the indices
according to in a descending order and consider can-
didate supports for solving the MAP estimation problem, where
the th candidate consists of the first elements in the above
order. Among these supports we choose the one that maximizes
the posterior probability . A pseudo-code for the pro-
posed thresholding-like algorithm is given in Algorithm 2.

C. Random OMP-Like MMSE

Another alternative is using a randomized version of Al-
gorithm 1 which approximates the MMSE estimate. The
algorithmic framework remains the same as before, except for
two changes. First, instead of adding to the support the element
that maximizes in each iteration, we make a random
choice with probabilities for all the candidates
, where is a constant that normalizes the probabilities.
Second, we perform runs of this algorithm and average the
resulting sparse representations that are computed
using (11) to obtain the final estimate for . A pseudo-code
for the proposed randomized greedy algorithm is given in
Algorithm 3.

D. Related Pursuit Methods

To conclude this section, we mention some related works.
First, note that for and equal biases for all , which
correspond to an i.i.d. prior, the proposed algorithms resemble
the fast Bayesian matching pursuit suggested in [14]. Second,
the recent work of [25] used a BM-based Bayesian modeling
for the sparse representation to improve the CoSaMP algorithm.
The inherent differences between our greedy approach and the
one suggested in [25] are explained in Section X.

Algorithm 3: Randomized version of Algorithm 1 for
approximating the MMSE estimator of (12)

Input: Noisy observations , model parameters
and number of runs .

Output: A recovery for the representation vector.
for to

,

repeat
for

Evaluate using (14).
end for
Choose at random with probabilities .

,

until
Compute using (11).

.
end for
Return:

VI. EXACT MAP ESTIMATION

A. Model Assumptions

In this section, we consider a simplified setup where exact
MAP estimation is feasible. A recent work [15] treated the
special case of a unitary dictionary for independent-based
priors, and developed closed-form expressions for the MAP
and MMSE estimators. We follow a similar route here and
assume that the dictionary is unitary.1 In this case we can make
a very useful observation which is stated in Theorem 1. A proof
of this theorem is provided in Appendix A.
Theorem 1: Let be a unitary dictionary. Then the BM dis-

tribution is a conjugate prior for the MAP estimation problem
of (10), namely the a posteriori distribution is a BM
with the same interaction matrix and a modified bias vector
with entries:

(16)
for all , where is the th column of .

1In this context we would like to mention that assuming a unitary dictionary
is equivalent to the case , where there is no dictionary, namely
is the identity matrix, and we have noisy observations of a signal with a BM

prior. To see that, multiply each of the sides in the signal equation
by . In the resulting equation , the noise has
the same distribution as the original noise and is the transformed signal.
We would like to thank Prof. Phil Schniter for this constructive observation.
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Notice in (16) that is linearly dependent on the original bias
and quadratically dependent on the inner product between the

signal and the atom . This aligns with the simple intuition
that an atom is more likely to be used for representing a signal
if it has an a priori tendency to be turned “on” and if it bears
high similarity to the signal (this is expressed by a large inner
product). From Theorem 1 the MAP estimation problem of (10)
takes on the form of integer programming. More specifically,
this is a Boolean quadratic program (QP)

(17)

This is a well-known combinatorial optimization problem [29]
that is closely related to multiuser detection in communication
systems, a long-studied topic [30]. The Boolean QP remains
computationally intensive if we do not use any approximations
or make any additional assumptions regarding the interaction
matrix . The vast range of approximation methods used for
multiuser detection, like SDP relaxation, can be adapted to our
setup. Another approximation approach, which is commonly
used for energy minimization in the BM, is based on a Gibbs
sampler and simulated annealing techniques [17]. Our interest
here is in cases for which simple exact solutions exist. We there-
fore relax the dependency model, namely make additional mod-
eling assumptions on .
We first consider the simple case of , which cor-

responds to an independency assumption on the entries of
. Using Theorem 1, we can follow the same analysis as in
Section III-B for by replacing the bias vector by .
Consequently, in this case we have

(18)

where for all . Notice that
if . This means that the th entry

of equals 1, namely is in the support, if . Using
(16) we obtain the following MAP estimator for

otherwise

(19)

where is defined in (4) and . These results

correspond to those of [15] for the MAP estimator under a uni-
tary dictionary.
To add dependencies into our model, we may consider two

approaches, each relying on a different assumption on . First,
we can assume that all entries in are nonnegative. If this as-
sumption holds, then the energy function defined by the Boltz-
mann parameters is regarded “submodular” and it can be
minimized via graph cuts [31]. The basic technique is to con-
struct a specialized graph for the energy function to be mini-
mized such that the minimum cut on the graph also minimizes
the energy. The minimum cut, in turn, can be computed by max
flow algorithms with complexity which is polynomial in . The
recent work [25] is based on this approach and we will relate to
it in more detail in Section X.

Here we take a different approach, which seems to be more
appropriate for our setup. This method makes an assumption on
the structural component of the MRF—we assume that the BM
is decomposable with a small tree-width. This type of MRF
was explored in detail in Section III-C. The above assumption
implies that the matrix has a special sparse structure—it cor-
responds to a chordal graph where the size of the largest max-
imal clique is small. As we have seen in Section III-C, decom-
posable models can serve as a very useful relaxation for gen-
eral dependency models. Another motivation for this assump-
tion arises from the results that were shown in Section II for
the special case of image patches and a DCT dictionary. It was
shown there that independency can be considered a reasonable
assumption for many pairs of DCT atoms. This observation has
the interpretation of a sparse structure for the interaction ma-
trix . Consequently, it seems plausible that a matrix with a
sparse structure can capture most of the significant interactions
in this case.
From Theorem 1, it follows that if the above assumption on

the structure of holds for the BM prior on it also holds
for the BM posterior (since both distributions correspond to the
same interaction matrix). We can therefore use belief propaga-
tion techniques to find the MAP solution. We next present in de-
tail a concrete message passing algorithm for obtaining an exact
solution to (17) under a banded matrix.
To conclude this subsection, note that the use of belief propa-

gation techniques [26] has recently become very popular in the
sparse recovery field [32]–[34]. However, these works provide a
very limited treatment to the structure of the sparsity pattern.We
will relate in more detail to these recent works and emphasize
the contribution of our work with respect to them in Section X.

B. The Message Passing Algorithm

Before we go into the details of the proposedmessage passing
algorithm, we make a simple observation that will simplify the
formulation of this algorithm. As we have seen in Section III-B,
a posterior BM distribution with parameters can be written
(up to a normalization factor which has no significance in the
MAP estimation problem) as a product of potential functions
defined on the maximal cliques in the corresponding graph

(20)

where is the number of maximal cliques. By replacing the
potentials with their logarithms, which are denoted
by , we remain with quadratic functions of the vari-
ables of

(21)

This can be very useful from a computational point of view as
there is no need to compute exponents, which can lead to large
values. Each product that appears in a standard message passing
algorithm is replaced by summation.
For concreteness we will focus on the special case of an
th order banded interaction matrix of size -by- , as
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described in Section III-C. In this case the maximal cliques are
, , so that all cliques are

of size and the tree-width is . The clique tree takes the
form of a simple chain of length . We denote the “inner-
most” clique in this chain by , where . We
choose an order for the cliques where the cliques at both edges
of the chain appear first and the “innermost” clique appears
last and set the clique potentials according to the rule of thumb
mentioned in Section III-B. Consequently, the logarithms of
the potentials are given by

(22)
is a function of . We pass messages “inwards”

starting from and until the clique receives mes-
sages from both sides

(23)

The arguments that correspond to each of the maximization op-
erators are denoted by , and ,

(these have the same form as the messages
with “max” replaced by “argmax”). Note that de-
pend on and on .
The MAP estimates are then computed recursively by

(24)

The message passing algorithm in this case is summarized in
Algorithm 4.
An important observation is that the complexity of the pro-

posed algorithm is exponential in and not in . More specif-
ically the complexity is . As the value of is part
of our modeling, even when is relatively large (and the ex-
haustive search which depends on is clearly infeasible), the
exact MAP computation is still feasible as long as remains
sufficiently small. If we have for example then
the complexity is , namely it is polynomial in .

Algorithm 4: Message passing algorithm for obtaining the
exact MAP estimator of (10) in the special case of a unitary
dictionary and a banded interaction matrix

Input: Noisy observations and model parameters
. is unitary and is an th order

banded matrix.

Output: A recovery for the sparsity pattern of .
Step 1: Set the bias vector for the BM posterior

distribution using (16).
Step 2: Assign a potential function for each

clique ,
using (16).

Step 3: Pass messages “inwards” starting from and
until the “innermost” clique receives

messages from both sides using (22).
Step 4: Obtain the MAP estimate for using (24).

VII. SIMULATIONS ON SYNTHETIC SIGNALS

In this section we assume that all the parameters of the
BM-based generative model are known and use this model
to create random data sets of signals, along with their sparse
representations. A standard Gibbs sampler is used for sampling
sparsity patterns from the BM. The sampled supports and
representation vectors are denoted by . Using
these synthetic data sets, we test the recovery algorithms that
were proposed in the two previous sections (see Algorithms
1–4) and compare their performance to that of two previous
sparse recovery methods.
The first method is OMP, a standard pursuit algorithm, which

serves as the default option that one would use for sparse ap-
proximation when no information is given about the structure.
The OMP algorithm is used only for identifying the support.
Then the recovered support is used to obtain an estimate for the
representation vector using (11), just as the MAP estimators.
The second is an approximate MAP estimator that is based on
Gibbs sampling and simulated annealing as suggested in [24].
Since we do not have access to the code and parameters of the al-
gorithm from [24], our implementation is not exactly the same.
Rather, we chose to set the number of rounds for the Gibbs sam-
pler so that its computational complexity is roughly the same as
the OMP-like MAP method (see Algorithm 1). This choice was
made after exploring the influence of the number of rounds for
the Gibbs sampler on its performance. We observed that if we
increase the number of rounds by a factor of 10 with respect to
the above suggestion, then performance improves only slightly.
This behavior is associated with the slow convergence of the
Gibbs sampler. As for annealing, we used a geometric schedule:

, where is the “temperature” used in the th
round. The initial “temperature” is set to be high (around 600)
and satisfies a final “temperature” of 1.
We begin by examining a setup that satisfies the simplifying

assumptions of Section VI. We assume that is an -by-
unitary DCT dictionary with and that is a 9th order
banded interaction matrix. The values of the model parameters
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Fig. 4. Normalized error in identifying the support (25) and relative recovery error (26) for the 64-by-64 unitary DCT dictionary and a 9th order banded interaction
matrix. Results are shown for a data set with average cardinality .

are in the following ranges: [ 1, 1] for the nonzero entries in
, for the biases and [15, 60] for the vari-

ances . In this case we can apply all of the algorithms
that were suggested in this paper. However, for concreteness we
chose to apply here only Algorithms 1, 3 and 4, leaving Algo-
rithm 2 for the second set of synthetic experiments. In Algorithm
3 we performed of the random greedy pursuit.
We compare the performance of the five algorithms for dif-

ferent noise levels— is in the range [2, 30]. For each of the
above-mentioned algorithms, we evaluate two performance cri-
teria. The first one is the average normalized error in identifying
the true support

(25)

Note that for the random greedy algorithm we evaluate the sup-
port error using the indices of the largest coefficients (in ab-
solute value) in the obtained solution as the recovered support
. The second criterion is the relative recovery error, namely the
mean recovery error for the representation coefficients normal-
ized by their energy:

(26)

The relative error is also evaluated for the Bayesian oracle es-
timator, namely the oracle which knows the true support. Note
that for a unitary dictionary the relative error for the representa-
tion coefficients is in fact also the relative error for the noise-free
signal, since for any vector . The results ap-
pear in Fig. 4.
Several observations can be made from the results in Fig. 4.

First, all BM-based pursuit methods outperform the OMP algo-
rithm. Notice that the message passing algorithm (exact MAP)
performswell and the performance of the OMP-like algorithm is
not too far off. Second, the OMP-like MAP outperforms Gibbs
sampling, for the same computational complexity. Finally, the
randomized version of the OMP-like method obtains a recovery

error which is roughly the same as exact MAP (recall that the
random greedy algorithm approximates the MMSE estimator).
We now provide some additional observations that were

drawn from similar sets of experiments which are not shown
here. We observed that the performance gaps between the exact
MAP and its approximations are associated more with the
“strength” of the interactions than with the average cardinality.
When we tested higher (less negative) biases and weaker
interactions, so that the average cardinality remains roughly the
same, the approximations align with the exact MAP (except
for the Gibbs sampler which still performs slightly poorer). As
for higher noise levels, we noticed that all algorithms exhibit
saturation in their performance. In this setup, the OMP tends to
choose an empty support. The convergence criterion for OMP
is , where is a constant which is close
to 1. This is a standard criterion used for denoising with OMP.
When is large, it happens often that the OMP stops before
using any atom.
Next, we turn to the case of a redundant dictionary and a

general (non-sparse) interaction matrix. We use the 64-by-256
overcomplete DCT dictionary. All the rest of model parameters
are the same as before, expect for the interaction matrix which is
no longer banded and its values are in the range [ 0.1, 0.1]. For
this setup exact MAP estimation is no longer possible and we
can use only the greedy approximations for MAP and MMSE
(see Algorithms 1–3). We evaluate the average normalized error
in the support (25) and the relative recovery error with respect
to the noise-free signal

(27)

The results are shown in Fig. 5. We see that both the OMP-
like MAP and the Gibbs sampler outperform the OMP algo-
rithm. However, there is a small performance gap in favor of
the OMP-like MAP. In terms of the recovery error, we can see
that this performance gap increases with the noise level. Notice
that the randomized version of the OMP-like method achieves
only a slightly better recovery error with respect to the original
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Fig. 5. Normalized error in identifying the support (25) and relative recovery error with respect to the noise-free signal (27) for the 64-by-256 overcomplete DCT
dictionary and a general interaction matrix. Results are shown for a data set with average cardinality .

one. Finally, the thresholding-like method is the worst for noise
levels below (even OMP performs better). However,
as the noise level increases its performance becomes close to
that of the OMP-like MAP. Consequently, this method seems
adequate for high noise levels.
To conclude this section, we discuss the use of the three

suggested greedy algorithms, in terms of their computational
complexity and recovery quality. The thresholding-like method
requires the least computational effort— , but leads to a
much inferior recovery, compared to the two other methods.
For the OMP-like algorithm the computational complexity
is increased by a factor of —the cardinality of the obtained
support—but the recovery improves significantly. The recovery
quality can be further improved using the random OMP-like
method, however this seems to be a minor improvement given
the resulting increase in computations by a factor of (10
in our case). In short, the OMP-like method provides the best
compromise to the observed tradeoff between computational
complexity and recovery quality.

VIII. ADAPTIVE SPARSE SIGNAL RECOVERY

In an actual problem suite, we are given a set of signals
from which we would like to estimate both the sparse

representations and the model parameters. We address the
joint estimation problem in this section by a block-coordinate
relaxation approach. This approach can be applied for both the
arbitrary and unitary dictionaries. The only difference is in the
pursuit algorithm we use. Note that throughout this section we
will assume that the noise variance is known. This is a a
typical assumption in denoising setups with Gaussian noise. We
also assume that the dictionary is fixed and known. Dictionary
learning is a common practice in the sparse recovery field
(see for example [35]). However, for concreteness we will not
address here how to merge dictionary learning into the adaptive
scheme and we leave this for future work.

A. Model Estimation

We begin with the model estimation problem. This means that
we have a data set of i.i.d. examples ,

from which we would like to learn the model parameters
. To estimate we suggest a maximum like-

lihood (ML) approach, and using the BM generative model we
can write

(28)
where

(29)

(30)

are the log likelihood functions for the model parameters. This
decomposition allows separate estimation of the variances

and the Boltzmann parameters .
Starting with the variances we have the close-form estimator

(31)

Similar estimators for the variances were also used in [24].
ML estimation of is computationally intensive due to

the exponential complexity in associated with the partition
function . Therefore, we turn to approximated ML esti-
mators. A widely used approach is applying Gibbs sampling and
mean-field techniques in each iteration of a gradient-based op-
timization algorithm. These methods were used in [24], which
is the only work that considered estimating the BM parameters
for sparsity models. However, we suggest using a different ap-
proach which seems to be much more efficient—MPL estima-
tion. This approach was presented in [36] and revisited in [37],
where it was shown that the MPL estimator is consistent. This
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means that in the limit of infinite sampling , the PL
function is maximized by the true parameter values.
The basic idea in MPL estimation is to replace the BM

prior by the product of all the conditional dis-
tributions of each node given the rest of the nodes :

. Each of these conditional distributions
takes on the simple form

(32)

where is the th row of and is a normalization con-
stant. Since this is a probability distribution for a single binary
node it follows that . Conse-
quently, we replace by

(33)

We define the log-PL by

(34)

where and the function operates on a
vector entry-wise. To explore the properties of the log-PL func-
tion it is useful to place all the Boltzmann parameters—there
are unknowns ( in the upper triangle
of and in )—in a column vector . For each example

in the data set, we can construct matrices so that
and .

Using these notations the log-PL function of (34) can be re-
formulated as

(35)

The gradient and the hessian of are given by

(36)

(37)

where and . Since
is a convex function, it follows that the log-PL function is con-
cave in . Therefore, as an unconstrained convex optimization
problem, we have many reliable algorithms that could be of use.
In [37], MPL estimation is treated by means of gradient as-

cent (GA) methods. These methods are very simple, but it is
well-known that they suffer from a slow convergence rate [38].
Another optimization algorithm which converges more quickly

Algorithm 5: A SESOP- algorithm for obtaining the MPL
estimator of the Boltzmann parameters

Input: A data set of supports .

Output: A recovery for the Boltzmann parameters.
Initialization: Set to zero and according to (39),

and construct from them a column vector .

repeat
Step 1: Evaluate and using (35), (36).
Step 2: Set the matrix using the current gradient

and previous steps .
Step 3: Determine the step sizes by Newton

iterations.
Step 4: .

until or
Return: extracted out of .

is Newton [38]. Note however that the problem dimensions here
can be very large. For example, when as in an 8-by-8
image patch and a unitary dictionary, we have un-
known parameters. Since Newton iterations requires inverting
the Hessian matrix, it becomes computationally demanding. In-
stead we would like to use an efficient algorithm that can treat
large-scale problems. To this end we suggest the sequential sub-
space optimization (SESOP) method [39], which is known to
lead to a significant speedup with respect to gradient ascent.
The basic idea in SESOP is to use the following update rule

for the parameter vector in each iteration

(38)

where is a matrix consisting of various (normalized) direc-
tion vectors in its columns and is a vector containing the step
size in each direction. In our setting, we use only the current
gradient and recent steps ,

, so that is a -by- matrix
for sufficiently large . We use the abbreviation SESOP- for
this mode of the algorithm. The vector is determined in each
iteration by an inner optimization stage. Since we use a small
number of directions, maximizing with respect to
is a small-scale optimization problem and we can apply Newton
iterations to solve it, using
and .
To initialize the algorithm we set the interaction matrix to

zero, namely we allow no interactions. We then perform a sepa-
rate MPL estimation of where is fixed to zero, which results
in

(39)

for all . We stop the algorithm either when the norm of
the gradient vector decreases below a predeter-
mined threshold , or after a fixed number of iterations . A
pseudo-code that summarizes the learning algorithm for the
Boltzmann parameters is provided in Algorithm 5.
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Fig. 6. Top—results of MPL estimation via GA and SESOP: The value of the log-PL objective and the average recovery error for the interaction matrix per entry
as functions of the number of iterations. Middle (from left to right): The true interaction matrix and MPL estimate via GA . Bottom (from left to right):
MPL estimate via SESOP , a banded version of it and a matrix consisting of the interactions in which are more likely to be revealed using the given
data set. We can see that the latter two are very close.

To demonstrate the effectiveness of MPL estimation via
SESOP, we now show some results of synthetic simulations.
We use a Gibbs sampler to generate support
vectors from a BM prior with the following parameters: is a
9th order banded matrix of size 64-by-64 with nonzero entries
drawn independently from and is a vector of
size 64 with entries drawn independently from . We
then use these supports as an input for the learning algorithm
and apply 50 iterations of both GA and SESOP-2 to estimate
the Boltzmann parameters. The results are shown in Fig. 6. We
can see on the top that SESOP outperforms GA both in terms
of convergence rate of the PL objective and recovery error for
the interaction matrix. This is also demonstrated visually on the
middle and bottom, where we can see that for the same number
of iterations SESOP reveals much more interactions than GA.
In fact, if we set to zero the entries in the true that correspond
to rarely used atoms (i.e., if the appearance frequency of atoms
or is very low then we set ), we can see that SESOP
was able to learn most of the significant interactions.2

B. Joint Model Estimation and Pursuit

We now turn to the joint estimation problem, where both
the sparse representations and the model parameters are un-

2An atom is labeled as “rarely used” if it is active in less than 0.3% of the data
samples. This is an arbitrary definition, but it helps in showing that the estimated
parameters tend to be close to correct.

known. We suggest using a block-coordinate optimization ap-
proach for approximating the solution of the joint estimation
problem,which results in an iterative scheme for adaptive sparse
signal recovery. Each iteration in this scheme consists of two
stages. The first is sparse coding where we apply one of the pur-
suit algorithms that were proposed throughout this paper to ob-
tain estimates for the sparse representations based on the most
recent estimate for the model parameters. If the dictionary is
unitary and the interaction matrix is banded we apply the mes-
sage passing scheme of Algorithm 4. Otherwise we use a greedy
pursuit (see Algorithms 1–3). This is followed by model update
where we reestimate the model parameters given the current es-
timate of the sparse representations. We use (31) for the vari-
ances and MPL estimation via SESOP (see Algorithm 5) for the
Boltzmann parameters.
For a setup where the interaction matrix is assumed to be

banded, we suggest performing a postprocessing of the MPL
estimate. More specifically, we define the energy of as the
norm for the entries in the banding zone. The basic idea is to

perform pairwise permutations in , namely switch the roles of
pairs of atoms, so that the energy will be maximal. A greedy ap-
proach can be used, so that in each iteration we replace the roles
of one pair of atoms, where this replacement is optimal in the
sense of maximizing the energy. The algorithm converges when
we cannot increase the energy anymore. At this point we set all
entries located outside the banding zone to zero. The suggested
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TABLE I
SUMMARY OF AVERAGE DENOISING RESULTS (ROOT-MSE PER PIXEL)

postprocessing stage serves as a projection onto the banding
constraint. Note that the estimated biases and variances should
also be modified to account for the changes in the atom roles.

IX. SIMULATIONS ON IMAGE PATCHES

The paper starts with a motivating example on image patches
of size 8-by-8 that are extracted out of natural images (see
Section II), showing that there are overlooked dependencies.
We now return to this very set of patches and show that the
proposed approach does better service to this data. We add
white Gaussian noise to these patches and apply the adaptive
BM-based sparse recovery scheme that was suggested in
the previous section on the noisy patches. We consider two
methods that follow this approach. In the first method we fix
the dictionary to be the 64-by-64 unitary DCT and assume
that the interaction matrix is 9th order banded. Therefore we
use message passing (Algorithm 4) for the sparse coding stage
and apply postprocessing on the learned model parameters to
satisfy the banding constraint. The second method uses a fixed
overcomplete DCT dictionary of size 64-by-256 and assumes
nothing on the interaction matrix. Here we use OMP-like
pursuit (Algorithm 1) for sparse coding.
To initialize the parameters of the adaptive BM-based

methods, we set all the variances to and use an i.i.d. prior
on the support, namely for all . This prior
is obtained by the Boltzmann parameters and

for all . Note that has the intuitive

meaning of the ratio where is our prior belief on the mean
cardinality of the support. We use a prior belief that the average
cardinality for image patches is . We then perform two
iterations for each of the adaptive schemes.
Note that we are not suggesting here an improved image

denoising algorithm, and in contrast to common denoising
methods, we do not exploit self-similarities in the image (see
for example [40]). Therefore our comparison is limited to de-
noising schemes that recover each patch separately. We focus
on denoising methods based on the OMP algorithm, since this is
the standard pursuit algorithm in patch-based image denoising
schemes, see for example [41]. For concreteness we also avoid
here comparing our approach with methods that are based on
dictionary learning (see for example [35]). For a comparison
with K-SVD denoising [41] which is based on sparse coding
via OMP and dictionary learning, see our recent paper [42].
We will not show here a comparison to other sturctured

sparsity methods, and for a reason. As we mention in Section I,
the two most common approaches for structured sparsity are
block-sparsity and wavelet trees. These two structures have
been successfully incorporated into standard sparse recovery

algorithms like CoSaMP, see, for example, [7]. However, in the
image patches experiments of Section II, the DCT coefficients
show neither a tree nor a block-sparsity structure. Therefore
in this case it is not even clear how to determine the block
structure or tree structure for the pursuit. The alternative is
to change the dictionary to a wavelet. Note however that the
common practice in wavelet denoising is to apply the wavelet
transform on large subimages, rather than small patches. For
this reason we feel that it would not have been fair to compare
our results on small patches with the ones obtained by a pursuit
method based on wavelet trees.
We compare our approach to two simple denoising schemes

which apply the OMP algorithm on the noisy patches using the
64-by-64 unitary DCT and the 64-by-256 overcomplete DCT
dictionaries. Throughout this section we use the abbreviations
“unitary OMP”, “unitary BM recovery”, “overcomplete OMP”
and “overcomplete BM recovery” to denote the four methods.
Average denoising errors per pixel are evaluated for the four
methods and for 6 noise levels: . A
summary of the denoising results is given in Table I, where the
best result for each noise level is highlighted.
These results show that the adaptive BM-based approach sug-

gested throughout this paper obtains better denoising perfor-
mance on noisy image patches than a standard sparse recovery
algorithm such as OMP. For the unitary DCT dictionary, the per-
formance gaps of BM recovery with respect to OMP vary from
0.84[dB] to 1.23[dB] for the different noise levels. When we
turn to the overcomplete DCT dictionary, the performance gaps
vary from 0.21[dB] to 0.96[dB]. Note that for both dictionaries
OMP obtains a similar performance, with a slight performance
gap in favor of the unitary dictionary. As for the BM recovery,
the message passing algorithm (used for the unitary case) out-
performs the OMP-like algorithm (used for the overcomplete
case) for all noise levels, except for , where the two
algorithms exhibit similar performance. This is associated, at
least in part, with the accuracy of the pursuit algorithm: exact
MAP for the unitary case versus approximate MAP for the over-
complete case. To take full advantage of the redundancy in the
dictionary, one should use dictionary learning. We leave this for
future work, where we intend to merge dictionary learning into
the adaptive scheme, in order to benefit from both the BM gen-
erative model and a dictionary which is better fitted to the data.

X. RELATION TO PAST WORKS

In this section, we briefly review several related works and
emphasize the contributions of our paper with respect to them.
We begin with recent works [23]–[25] that used the BM as
a prior on the support of the representation vector. In recent
years capturing and exploiting dependencies between dictionary
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atoms has become a hot topic in the model-based sparse re-
covery field. In contrast to previous works like [3], [7], [21], and
[22] which considered dependencies in the form of tree struc-
tures, [23]–[25] propose a more general model for capturing
these dependencies.
The authors of [23] use a BM prior on the sparsity pattern of

Gabor coefficients to capture persistency in the time-frequency
domain. They adopt a nonparametric Bayesian approach and ad-
dress the estimation problems by MCMC inference methods. In
their work the Boltzmann parameters are assumed to be known
and fixed. This is contrast to our work where we develop effi-
cient methods for estimating both the sparse representations and
the Boltzmann parameters.
The work of [24] makes use of a BM prior in the more gen-

eral context of a sparse coding model, which is represented by a
graphical model. They provide a biological motivation for this
modeling through the architecture of the visual cortex. We used
exactly the same graphical model in our work (see Section IV).
In [24]MAP estimation of the sparse representation is addressed
by Gibbs sampling and simulated annealing. These techniques
often suffer from a slow convergence rate, so that the algorithm
is stopped before the global maximum is reached. In the current
work we suggest alternative pursuit methods for MAP estima-
tion. As we have seen in the synthetic simulations of Section VII
our suggested pursuit methods outperform the one suggested in
[24].
For learning the Boltzmann parameters the authors of [24]

suggest Gibbs sampling and mean-field approximations for es-
timating the gradient of the likelihood function in every itera-
tion of a GA algorithm. In ourMPL-based algorithm we suggest
a simple update in each iteration, which is based on standard
convex optimization methods, instead of the more computation-
ally demanding Gibbs sampling process required in each itera-
tion of the approximate ML algorithm. Our evaluations suggest
that there is at least a factor of 10 in the complexity per iteration,
between the Gibbs sampler and a plain GA based on our MPL.
Since we have added acceleration (SESOP), the gap between the
two methods is in fact even higher, as we will probably need far
less iterations.
Next, we turn to [25]. This work adapts a signal model like

the one presented in [24], with several modifications. First, it
is assumed that all the weights in the interaction matrix
are nonnegative. Second, the Gaussian distributions for the
nonzero representation coefficients are replaced by parametric
utility functions. The main contribution of [25] is using the BM
generative model for extending the CoSaMP algorithm, a well
known greedy method. The extended algorithm, referred to as
lattice matching pursuit (LaMP), differs from CoSaMP in the
stage of the support update in each iteration, which becomes
more accurate. This stage is now based on graph cuts and this
calls for the nonnegativity constraint on the entries of . The
rest of the iterative scheme however remains unchanged and
is still based on “residuals”: in each iteration we compute the
residual with respect to the signal and the algorithm stops when
the residual error falls below a predetermined threshold.
There are several fundamental differences between our work

and the one reported in [25]. First, while LaMP exploits the
BM-based generative model only in its support update stage,

this model is incorporated into all of the stages of our greedy
algorithms, including the stopping rule. Our greedy algorithms
work for an arbitrary interaction matrix and in this sense they
are more general than LaMP. Furthermore, LaMP requires the
desired sparsity level as an input to the algorithm. In contrast,
our approach assumes nothing about the cardinality, and instead
maximizes the posterior with respect to this unknown. LaMP
also makes use of some auxiliary functions that need to be finely
tuned in order to obtain good performance. These are hard to
obtain for the generative model we are considering. Because
of all these reasons, it is hard to suggest a fair experimental
comparison between the two works.
We now turn to recent works [32]–[34] which considered

graphical models and belief propagation for sparse recovery. All
of these works represent the sparse recovery setup as a factor
graph [26] and perform sparse decoding via belief propagation.
Note however that the first two works use the typical inde-
pendency assumption on the representation coefficients. More
specifically, [32] assumes that the coefficients are i.i.d. with a
mixture of Gaussians for their distribution. Hence, themain con-
tribution of these works is exploiting the structure of the obser-
vations using graphical models. This is in contrast to our work
where we focus on structure in the sparsity pattern in order to
exploit dependencies in the representation vector.
The third work [34] suggests exploiting both the structure of

the observations and the structure of the sparsity pattern, using
factor graphs and belief propagation techniques. This work is
actually more general than ours. However, it leaves the specific
problem that we have handled almost untouched. Various struc-
tures for the sparsity pattern are mentioned there, including an
MRF model. However, the main focus in this paper is how to
efficiently combine the observation-structure and pattern-struc-
ture. The treatment given for the sparsity-pattern decoding is
very limited and empirical results are shown only for a Markov
chain structure. This is in contrast to our work where we mainly
focus on pattern-structure and address the more general setup of
an MRF model.
Finally, our work differs from typical works on model-based

sparse recovery, in terms of the signal dimensions. Our work is
limited to signals of low-dimensions. This is whywe have tested
denoising on image patches, where each is of low-dimension.
This limitation arises from the fact that, as a general framework,
our BM model requires an iteraction matrix which is of size
-by- . When is too large (beyond 1000), estimating

and working with it become a problem. In contrast, tree-based
sparse recovery methods, like the ones suggested in [7], need to
work on high-dimensional signals in order to truly benefit from
the multiscale structure of the wavelet coefficients.

XI. CONCLUSION

In this work, we developed a scheme for adaptive
model-based recovery of sparse representations, which takes
into account statistical dependencies in the sparsity pattern. To
exploit such dependencies we adapted a Bayesian model for
signal synthesis, which is based on a Boltzmann machine, and
designed specialized optimization methods for the estimation
problems that arise from this model. This includes MAP and
MMSE estimation of the sparse representation and learning
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of the model parameters. The main contributions of this work
include the development of pursuit algorithms for signal re-
covery: greedy methods which approximate the MAP and
MMSE estimators in the general setup and an efficient message
passing algorithm which obtains the exact MAP estimate under
additional modeling assumptions. We also addressed learning
issues and designed an efficient estimator for the parameters
of the graphical model. The algorithmic design is followed by
convincing empirical evidence. We provided a comprehensive
comparison between the suggested pursuit methods, along
with standard sparse recovery algorithms and Gibbs sampling
methods. Finally, we demonstrated the effectiveness of our
approach through real-life experiments on denoising of image
patches. We have released a Matlab toolbox containing all of
the suggested BM-based algorithms for both pursuit and model
estimation, available at http://www.cs.technion.ac.il/~elad/soft-
ware/ or http://webee.technion.ac.il/people/YoninaEldar/soft-
ware.html.

APPENDIX A
PROOF OF THEOREM 1

We show how the assumption that the dictionary is unitary
can be used to simplify the expression for . For a unitary
dictionary we have for any support . Consequently,
for a support of cardinality the matrix is

a diagonal matrix of size -by- with entries ,

on its main diagonal. Straightforward computations
show that the following relations hold

(40)

Using the definition of ( implies that is in the support
and implies otherwise), we can replace each sum over
the entries in the support by a sum over all possible
entries . Consequently, the relations in (40)
can be rewritten as

(41)

where are constants and are vectors with entries
, for . We now place

the relations of (41) into the appropriate terms in (10) and get

(42)
where is a constant. It is now easy to verify that the posterior
distribution corresponds to a BM distribution with the
same interaction matrix and a modified bias vector which we
denote by

(43)

where is a partition function of the BMparameters which
normalizes the distribution. Using the definitions of , , and
we get that (16) holds.
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