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Abstract—The problem studied in this paper is unbiased esti-
mation of a sparse nonrandom vector corrupted by additive white
Gaussian noise. It is shown that while there are infinitely many
unbiased estimators for this problem, none of them has uniformly
minimum variance. Therefore, the focus is placed on locally min-
imum variance unbiased (LMVU) estimators. Simple closed-form
lower and upper bounds on the variance of LMVU estimators
or, equivalently, on the Barankin bound (BB) are derived. These
bounds allow an estimation of the threshold region separating
the low-signal-to-noise ratio (SNR) and high-SNR regimes, and
they indicate the asymptotic behavior of the BB at high SNR. In
addition, numerical lower and upper bounds are derived; these
are tighter than the closed-form bounds and thus characterize
the BB more accurately. Numerical studies compare the proposed
characterizations of the BB with established biased estimation
schemes, and demonstrate that while unbiased estimators per-
form poorly at low SNR, they may perform better than biased
estimators at high SNR. An interesting conclusion of this analysis
is that the high-SNR behavior of the BB depends solely on the
value of the smallest nonzero entry of the sparse vector, and that
this type of dependence is also exhibited by the performance of
certain practical estimators.

Index Terms—Barankin bound, Cramér–Rao bound, denoising,
Hammersley–Chapman–Robbins bound, locally minimum vari-
ance unbiased estimator, sparsity, unbiased estimation.

I. INTRODUCTION

R ESEARCH in the past few years has led to a recogni-
tion that the performance of signal processing algorithms

can be boosted by exploiting the tendency of many signals to
have sparse representations. Applications of this principle in-
clude signal reconstruction (e.g., in the context of compressed
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sensing [1], [2]) and signal enhancement (e.g., in the context of
image denoising and deblurring [3]–[5]).
In this work, we consider the estimation of an -sparse, fi-

nite-dimensional vector . By “ -sparse” we mean that
the vector has at most nonzero entries, which is denoted by

, where denotes the set of in-
dices of the nonzero entries of . The “sparsity” is assumed
to be known, and typically . However, the positions of
the nonzero entries [i.e., ] as well as the values of the
nonzero entries are unknown. We investigate how much we can
gain in estimation accuracy by knowing a priori that the vector
is -sparse. We will use the frequentist setting of estimation

theory [6], i.e., we will model as unknown but deterministic.
The frequentist setting corresponds to the absence of prior sta-
tistical information about , which is also a common assump-
tion in compressed sensing theory [1], [2]. This is in contrast
to Bayesian estimation theory, where one treats as a random
vector whose probability density function (pdf) or certain mo-
ments thereof are assumed to be known. In the Bayesian setting,
the sparsity can be modeled by using a pdf that favors sparse
vectors; see, e.g., [7]–[9].
A fundamental concept in the frequentist setting is that of un-

biasedness [6], [10], [11]. An unbiased estimator is one whose
expectation always equals the true underlying vector . The
restriction to unbiased estimators is important as it excludes
trivial and practically useless estimators, and it allows us to
study the difficulty of the estimation problem using established
techniques such as the Cramér–Rao bound (CRB) [10]–[12].
Another justification of unbiasedness is that for typical estima-
tion problems, when the variance of the noise is low, it is neces-
sary for an estimator to be unbiased in order to achieve a small
mean-squared estimation error (MSE) [6].
These reasons notwithstanding, there is no guarantee that un-

biased estimators are necessarily optimal. In fact, in many set-
tings, including the scenario described in this paper, there exist
biased estimators which are strictly better than any unbiased
technique in terms of MSE [13]–[15]. Nevertheless, for sim-
plicity and because of the reasons stated above, we focus on
bounds for unbiased estimation in this work. As we will see,
bounds on unbiased techniques give some indication of the gen-
eral difficulty of the setting, and as such some of our conclusions
will be shown empirically to characterize biased techniques as
well.
Our main contribution is a characterization of the optimal

performance of unbiased estimators that are based on
observing

(1)

0018-9448/$26.00 © 2011 IEEE



JUNG et al.: UNBIASED ESTIMATION OF A SPARSE VECTOR IN WHITE GAUSSIAN NOISE 7857

where is a known matrix with or-
thonormal columns, i.e., , and
denotes zero-mean white Gaussian noise with known variance
(here, denotes the identity matrix of size ). Note

that without loss of generality we can then assume that
and , i.e., restrict to the “signal-in-noise model”

, since premultiplication of model (1) by will reduce
the estimation problem to an equivalent problem
in which and the noise is
again zero-meanwhite Gaussianwith variance . Such a sparse
signal-in-noise model can be used, e.g., for channel estimation
[16] when the channel consists only of few significant taps and
an orthogonal training signal is used [17]. Another application
that fits our scope is image denoising using an orthonormal
wavelet basis [3]. Extending our approach to a general matrix
(including the case relevant to, e.g., compressed

sensing) appears to be difficult.
The estimation problem (1) with was studied by

Donoho and Johnstone [18], [19]. Their work was aimed at
demonstrating asymptotic minimax optimality, i.e., they con-
sidered estimators having optimal worst case behavior when the
problem dimensions tend to infinity. By contrast, we con-
sider the finite-dimensional setting, and attempt to characterize
the performance at each value of , rather than analyzing worst
case behavior. Such a “pointwise” approach was also taken by
Ben-Haim and Eldar [20], [21], who studied the CRB for the
sparse linear model (1) with arbitrary . However, the CRB
is a local bound, in the sense that the performance characteri-
zation it provides is only based on the statistical properties in
the neighborhood of the specific value of being examined.
In particular, the CRB for a given is only based on a local
unbiasedness assumption, meaning that the estimator is only re-
quired to be unbiased at and in its infinitesimal neighborhood.
Our goal in this paper is to obtain performance bounds for the
more restrictive case of globally unbiased estimators, i.e., esti-
mators whose expectation equals the true for each -sparse
vector . Since any globally unbiased estimator is also locally
unbiased, our lower bounds will be tighter than those of [20]
and [21].
Our contributions and the organization of this paper can be

summarized as follows. In Section II, we show that whereas
only one unbiased estimator exists for the ordinary (nonsparse)
signal-in-noise model, there are infinitely many unbiased esti-
mators for the sparse signal-in-noise model; however, none of
them has uniformly minimum variance. In Sections III and IV,
we characterize the performance of locally minimum variance
unbiased estimators by providing, respectively, lower and upper
bounds on their MSE. These bounds can equivalently be viewed
as lower and upper bounds on the Barankin bound [22], [23].
Finally, numerical studies exploring and extending our perfor-
mance bounds and comparing them with established estimator
designs are presented in Section V. We note that parts of this
work were previously presented in [24].
Notation: Throughout the paper, boldface lowercase letters

(e.g., ) denote column vectors while boldface uppercase letters
(e.g., ) denote matrices. We denote by , , and
the trace, transpose, and Moore–Penrose pseudoinverse of ,
respectively. The identity matrix of size is denoted by
. The notation indicates that is a positive

semidefinite matrix. The set of indices of the nonzero entries of

a vector is denoted by , and is defined as the
size of this set. The th entry of is written . We also use the
signum function of a real number , . The
sets of nonnegative, nonpositive, and positive real numbers will
be denoted by , , and , respectively.

II. THE SPARSE SIGNAL-IN-NOISE MODEL

A. Problem Setting

Let be an unknown deterministic vector which is
known to be -sparse, i.e., , with

The vector is to be estimated based on the observation of a
vector , which is the sum of and zero-mean white Gaussian
noise. Thus

with (2)

where the noise variance is assumed to be nonzero and
known. It follows that the pdf of , parameterized by , is
given by

(3)

We refer to (2) as the sparse signal-in-noise model (SSNM).
As explained previously, settings of the form (1) with an or-
thonormal matrix can be converted to the SSNM (2). The
case corresponds to the situation in which no sparsity
assumption is made. As we will see, this case is fundamentally
different from the sparse setting , which is our focus in
this paper.
An estimator of the parameter vector is a function that

maps (a realization of) the observation to (a realization of) the
estimated vector , i.e.,

With an abuse of notation, we will use the symbol for both
the estimator (which is a function) and the estimate (a specific
function value). The meaning should be clear from the context.
The question now is howwe can exploit the information that is
-sparse in order to construct “good” estimators. Our measure
of the quality of an estimator for a given parameter value

will be the estimator’s MSE, which is defined as

Here, the notation means that the expectation is taken
with respect to the pdf of the observation parameter-
ized by . Note that even though is known to be -sparse, the
estimates are not constrained to be -sparse.
The MSE can be written as the sum of a bias term and a

variance term, i.e.,

where the bias accounts for system-
atic estimation errors and the variance

accounts for errors due to random fluctuations of
the estimate. Thus, for unbiased estimators ( for



7858 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 12, DECEMBER 2011

all ), the MSE is equal to the variance, i.e.,
.

We will also consider the mean power (second moment) of
an estimator

(4)

For unbiased estimators, , and hence

(5)

Thus, minimizing the variance at a fixed
among all unbiased estimators is equivalent to minimizing

.

B. Estimator Design

Two well-established estimator designs are the least squares
(LS) estimator defined by

(6)

and the maximum-likelihood (ML) estimator defined by

(7)

For the SSNM, due to (3), the LS and ML estimators coincide;
they are easily seen to be given by

(8)

where is an operator that retains the largest (in magnitude)
entries and zeros out all others. The LS/ML estimator is biased
unless . Note that this estimator is not based on a direct
minimization of the MSE. Indeed, if the sparsity constraint is
removed and , it has been shown [13]–[15] that
there exist estimators which yield a better MSE performance
than that of the LS/ML estimator.
The MSE of a specific estimator depends on the

value of the parameter . This makes it difficult to define op-
timality in terms of minimum MSE. Ideally, an optimal esti-
mator should have minimum MSE for all parameter values si-
multaneously. However, such an optimality criterion is unattain-
able since the minimum MSE achievable at any specific pa-
rameter value is zero; it is achieved by the trivial estimator

which is constant and completely ignores the ob-
servation . Therefore, if there were a uniformly minimum MSE
estimator, it would have to achieve zero MSE for all parameter
values, which is obviously impossible. Thus, requiring the esti-
mator to minimize the MSE for all parameter values simultane-
ously makes no sense.
One useful optimality criterion is given by the minimax ap-

proach, which considers the worst case MSE
of an estimator . An optimal estimator in the minimax sense
minimizes the worst case MSE, i.e., it is a solution of the mini-
mization problem . Considerable effort
has been spent to identify minimax estimators for sparse models
such as the SSNM in (2); see, e.g., [18], [19], and [25]. How-
ever, these results apply only in the asymptotic regime, i.e.,
when . By contrast, our goal is to analyze estimator
performance for finite problem dimensions. A lower bound on

the minimax risk and approximately minimax-optimal estima-
tors for the SSNM in the finite-dimensional case have been pre-
sented recently in [26] and [27].
In this work, rather than pursuing the minimax criterion, we

consider unbiased estimators for the SSNM. An unbiased
estimator is one for which the bias is zero for all
-sparse parameter vectors, i.e.,

for all (9)

Let denote the set of all unbiased estimators for the
SSNM, i.e.,

for all

Constraining an estimator to be unbiased excludes such trivial
estimators as where is some fixed -sparse
parameter vector.

C. Unbiased Estimation for the SSNM

We now study the set of unbiased estimators for the SSNM
in more detail. In particular, we will show that with the excep-
tion of the case , this set is uncountably large, i.e., there
are infinitely many unbiased estimators. We will also show that
there exists no uniformly minimum variance unbiased estimator
unless . In what follows, we will say that an estimator
has a bounded MSE if for all , where is
a constant which may depend on , , and .

Theorem 1: Consider the SSNM (2) with , i.e.,
without a sparsity constraint, in which case . Then,
there exists exactly one unbiased estimator having bounded
MSE (up to deviations having zero measure). This estimator
is given by , which equals the LS/ML estimator in
(6)–(8).

A proof of this result is provided in Appendix A. By contrast
with Theorem 1, when sparsity constraints are imposed there
exists a large family of unbiased estimators, as we now show.

Theorem 2: For , there are uncountably infinitely
many unbiased estimators for the SSNM.

Proof: Consider the class of estimators defined by

(10)

where

else.

A straightforward calculation shows that each estimator of
this uncountably infinite class is an unbiased estimator for the
SSNM.

This (constructive) proof points at a noteworthy fact. Con-
sider a particular parameter value . By an appropriate choice
of the parameters in (10), one can reduce the magnitude
of the estimate for sets of realizations with high proba-
bility, i.e., for which is large. This results in a reduced
mean power and (since the estimator is unbiased) in a reduced
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variance and MSE at the specific parameter value . Using a
similar construction, one can also obtain a biased estimator that
has the same bias as the LS/ML estimator for
all but a potentially smaller variance (MSE) at the given
.
In view of Theorems 1 and 2, we will only consider the case

in the following. Since in this case there are infinitely
many unbiased estimators, we would like to find an unbiased es-
timator having minimum variance (and, thus, minimum MSE)
among all unbiased estimators. If there exists an unbiased esti-
mator which minimizes the variance simultaneously
for all -sparse parameter vectors , then this estimator
is called a uniformly minimum variance unbiased (UMVU) es-
timator [6]. In other words, a UMVU estimator for the SSNM
solves the minimization problem

(11)

simultaneously for all . In the nonsparse case , it
is well known that the LS estimator is the UMVU
estimator [10]; however, in light of Theorem 1, this is not a
very strong result, since is the only unbiased estimator in
that case. On the other hand, for the sparse case , the
following negative result is shown in Appendix B.

Theorem 3: For the SSNM with , there exists no
UMVU estimator, i.e., there is no unbiased estimator
that minimizes simultaneously for all parameter vectors

.

Despite the fact that a UMVU estimator does not exist for the
SSNM, one can still attempt to solve the minimization problem
(11) separately for each value of . An unbiased esti-
mator which solves (11) for a specific value of is said to be a
locally minimum variance unbiased (LMVU) estimator at [6].
The MSE of this estimator at cannot be improved upon by
any other unbiased estimator. When viewed as a function of ,
this minimum MSE is known as the Barankin bound (BB) [22],
[23]. Thus, the BB characterizes the minimum MSE achievable
by any unbiased estimator for each value of ; it is the
highest and tightest lower bound on the MSE of unbiased esti-
mators. As such, the BB serves as a measure of the difficulty of
estimating .
Computing the BB is equivalent to calculating

for each parameter vector
separately. In the remainder of this paper, we will provide
lower and upper bounds on the BB. When these bounds are
close to one another, they provide an accurate characterization
of the BB.

III. LOWER BOUNDS ON THE MINIMUM MSE

In this section, we will develop a lower bound on the
BB—which is thus a lower bound on the MSE of any unbiased
estimator—by calculating a limiting case of the Hammer-
sley–Chapman–Robbins bound (HCRB) [22] for the SSNM.

A. Review of the CRB

A variety of techniques exist for developing lower bounds
on the MSE of unbiased estimators. The simplest is the CRB

[11], [12], [28], which was previously derived for a more gen-
eral sparse estimation setting in [20] and [21]. In the current
setting, i.e., for the SSNM (2), the CRB is given by

(12)

where , i.e., is any unbiased estimator for the SSNM.
In the case of parameter values with nonmaximal

support, i.e., , the CRB is . This is the MSE of
the trivial unbiased estimator . Since the CRB is thus
achieved by an unbiased estimator, we conclude that the CRB
is a maximally tight lower bound for ; no other lower
bound can be tighter (higher). We also conclude that for
, the trivial estimator is the LMVU estimator; no
other unbiased estimator can have a smaller MSE.
For parameter values with maximal support, i.e.,

, we will see that the CRB is not maximally tight,
and the trivial estimator is not the LMVU estimator.
Moreover, the CRB in (12) is discontinuous in the transition1

between and . This is a bit surprising, as
one would expect the tightest lower bound to form a continuous
transition when some entry of tends to zero. In order to obtain
tighter bounds for , it is important to realize that the
CRB is a local bound, which assumes unbiasedness only in a
neighborhood of . Since we are interested in estimators that are
unbiased for all , which is a more restrictive constraint
than local unbiasedness, tighter (i.e., higher) lower bounds can
be expected for unbiased estimators in the case .

B. Hammersley–Chapman–Robbins Bound

An alternative lower bound for unbiased estimators is the
HCRB [22], [29], [30], which can be stated, in our context, as
follows.

Proposition 4: Given a parameter value , consider a
set of “test points” such that for all

. Then, the covariance of any unbiased estimator ,
,

satisfies

(13)

where

(14)

and the th entry of the matrix is given by

(15)

In particular, the MSE of satisfies

(16)

The proof of Proposition 4, which can be found in
Appendix C, involves the application of the multivariate
HCRB of Gorman and Hero [22] to the SSNM setting. Note
that both the number of test points and their values are

1The transition from to is performed by letting one of
the nonzero entries of go to zero.
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arbitrary and can depend on . In general, including additional
test points will result in a tighter HCRB [22]. Our goal in
this section is to choose test points which result in a tight
but analytically tractable bound.
Before attempting to derive a bound which is tighter than the

CRB, we first observe that the CRB itself can be obtained as the
limit of a sequence of HCRBs with appropriately chosen test
points. Indeed, consider the specific test points given by2

(17a)

(17b)

where is a constant and represents the th column of the
identity matrix. Note that in (17a) and in

(17b). Each value of yields a different set of test points and, via
Proposition 4, a different lower bound on the MSE of unbiased
estimators. We show in Appendix D that the CRB in (12) is the
limit of a sequence of such bounds as , and that it is tighter
than any bound that can be obtained via Proposition 4 using the
test points (17) for a fixed .
Can a set of test points different from (17) yield a lower

bound that is tighter (higher) than the CRB?As discussed above,
this is only possible for parameter values having maximal
support, i.e., , because for the CRB is
already maximally tight. Therefore, let us consider a param-
eter with . Suppose one of the entries within the
support, for some , has a small magnitude.
Such a parameter just barely qualifies as having maximal sup-
port, so it makes sense to adapt the optimal test points (17b)
from the nonmaximal support case. However, including a test
point with is not allowed, since in this case

is not in . Instead, one could include the test point
, still with , which satisfies the

requirement and is still close to if is small.
More generally, for any maximal-support parameter , we pro-
pose the set of test points given by

(18)

Here, denotes the smallest (in magnitude) of the nonzero en-
tries of and denotes the corresponding unit vector. These
test points satisfy the condition . Note that the
test points in (17a), which for yield the CRB, are a subset
of the test points in (18). It can be shown [22] that this implies
that the bound induced by (18) will always be at least as tight
as that obtained from (17a). It is important to note that (18) uses
test points for parameter values with maximal support, just

as (17b) does for parameter values with nonmaximal support. In
fact, there is a smooth transition between the optimal test points
(17b) for nonmaximal support and the proposed test points (18)
for maximal support.
While an expression of the HCRB can be obtained by simply

plugging (18) into (16), the resulting bound is extremely cum-
bersome and not very insightful. Instead, in analogy to the
derivation of the CRB above, one can obtain a simple result by
taking the limit for . This leads to the following theorem,
which combines the cases of maximal support [(16) using (18)

2Note that, with a slight abuse of notation, the index of the test points is now
allowed to take on nonsequential values from the set .

for ] and nonmaximal support [(16) using (17a) for
], and whose proof can be found in Appendix E.

Theorem 5: The MSE of any unbiased estimator for
the SSNM satisfies

HCRB

.
(19)

where, in the case , is the smallest (in magnitude)
of the nonzero entries of .

For simplicity, we will continue to refer to (19) as an HCRB,
even though it was obtained as a limit of HCRBs. Note that when

, the HCRB in (19) is identical to the CRB in (12),
since in that case the CRB is maximally tight and cannot be im-
proved. The HCRB also approaches the CRB when
and all entries of are much larger than : here is negli-
gible and the respective bound in (19) converges to , which
is equal to the CRB in (12). This is due to the fact that the CRB is
achieved by the ML estimator asymptotically3 as ,
and is therefore also maximally tight when and

. Furthermore, if we define the “worst case entry SNR”
(briefly denoted as SNR) as , then Theorem 5 hints that the
convergence to the high-SNR limit is exponential in the SNR.
One of the motivations for improving the CRB (12) was that

(12) is discontinuous in the transition between and
. While the HCRB (19) is still discontinuous in this

transition, the discontinuity is much smaller than that of the
CRB. Indeed, the transition from to corre-
sponds to , in which case the first bound in (19) tends to

, whereas the second bound, valid for , is
; thus, the difference between the two bounds in (19) is .

By contrast, the difference between the two bounds in (12) is
, which is typically much larger. Again, the disconti-

nuity of (19) seems to suggest that (19) is not the tightest lower
bound obtainable for unbiased estimators. In Section V, we will
demonstrate experimentally that this discontinuity can be elim-
inated altogether by using a much larger number of test points.
However, in that case the resulting bound no longer has a simple
closed-form expression and can only be evaluated numerically.

IV. UPPER BOUND ON THE MINIMUM MSE

As pointed out in the previous section, the lower bound
HCRB on the BB is not maximally tight since it is dis-
continuous in the transition between parameter vectors with

and those with . In other words, there is
a gap between the HCRB and the BB. How large is this gap?
We will address this issue by deriving an upper bound on the
BB. This will be done by finding a constrained solution of (11).
If this upper bound is close to the lower bound HCRB , we
can conclude that both bounds are fairly tight and thus provide

3This can be explained by the fact that for , according to (8), the
ML estimator for the SSNM retains the largest entries in and zeros out
all other entries. For noise variances that are extremely small compared to
the nonzero entries, i.e., for , the probability that the ML estimator
selects the true entries becomes very close to one. Therefore, for high , the
ML estimator behaves like an oracle estimator which knows the support of and
whose MSE is equal to . Note also that the ML estimator is asymptotically
unbiased as . This is an example of the general tendency of the
MSE of the ML estimator to converge to the CRB at high SNR [6].
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a fairly accurate characterization of the BB. As before, we
consider the nontrivial case .
We first note [cf. (4) and (5)] that (11) is equivalent to

the minimization problem

, where denotes the th
entry of . This, in turn, is equivalent to the individual scalar
minimization problems

(20)

where denotes the set of unbiased estimators of the th entry
of , i.e.,

for all

By combining the unbiased estimators for
into a vector, we obtain an unbiased estimator of the parameter
.
It will be convenient to write the th scalar estimator as

(21)

with . Since for any we have
, the

unbiasedness condition is equivalent to

for all

For , the solution of the minimization problem (20)
is stated in the following lemma, which is proved in Appendix F.
In what follows, we will denote by a solution of the
minimization problem (11) for a given parameter vector
. We recall that the estimator is an LMVU esti-

mator at the parameter value , and its MSE,
, equals the BB at .

Lemma 6: Consider a parameter vector with max-
imal support, i.e., . Then, for any , the
solution of the minimization problem (20) is given by

Moreover, this is the LMVU estimator for . The
MSE of this estimator is .

Because Lemma 6 describes the scalar LMVU estimators
for all indices , it remains to consider the scalar
problem (20) for . Since is the min-
imum of as defined by the minimization problem (11),
we can obtain an upper bound on by placing further
constraints on the estimator to be optimized. We will thus
consider the modified minimization problem

(22)

where the set is chosen such that a simpler problem is
obtained. We will define in a componentwise fashion.
More specifically, the th component of , where

, is said to belong to the set if the correction
term [see (21)] satisfies the following two
properties.

• Odd symmetry with respect to and all indices in

for all (23)

• Independence with respect to all other indices

for all (24)

We then define as the set of estimators such that
for all . Note that any function

is fully specified by its values for all arguments such that
and all entries of are nonnegative.

The values of for all other follow by the decomposition
(21) and the properties (23) and (24).
To solve the modified minimization problem (22), we con-

sider the equivalent scalar form

(25)

The resulting minimum MSE is stated by the following lemma,
whose proof can be found in Appendix G.

Lemma 7: Consider a parameter vector with max-
imal support, i.e., . Then, for any , the
minimum MSE of any estimator , denoted by
BB , is given by

BB (26)

with

(27)

Lemma 7 identifies the minimum MSE of any unbiased esti-
mator of the th entry of [where ] that is also
constrained to be an element of . Note that BB does
not depend on . It provides an upper bound on the minimum
MSE of any unbiased estimator of the th entry of , for any

.
The total MSE of a vector estimator can be decomposed

as with
the component MSE . Inserting
the minimum component MSE for (which is
according to Lemma 6) in the first sum and the upper bound
BB on the minimum component MSE for in
the second sum, we obtain the following upper bound on the
minimum total MSE of any unbiased vector estimator.

Theorem 8: The minimum MSE achievable by any unbiased
estimator for the SSNM at a parameter vector with

satisfies

BB BB (28)

with BB given by (26).
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Depending on the parameter vector , the upper bound
BB varies between two extreme values. For decreasing
SNR , it converges to the low-SNR value [because
the factor in (26) vanishes for ]. On the
other hand, we will show that for increasing SNR, BB
converges to its high-SNR value, which is given by .
The lower bound HCRB in (19) for the case ,

i.e., , exhibits an exponential
transition between the low-SNR and high-SNR regimes. More
specifically, when considering a sequence of parameter vectors

with increasing SNR , the bound transitions from
the low-SNR value (obtained for ) to the
high-SNR value (obtained for ); this transition
is exponential in the SNR. The upper bound BB in (28) also
exhibits a transition that is exponential in . In fact, it is
shown in Appendix H that

BB (29)

This shows that for increasing , the upper bound
BB —just as the lower bound HCRB —decays ex-
ponentially to its asymptotic value , which is also the
asymptotic value of HCRB . It follows that the BB itself also
converges exponentially to as increases. This result
will be further explored in Section V-C.

V. NUMERICAL RESULTS

In this section, we describe several numerical studies which
explore and extend the theoretical bounds developed above.
These include a numerical improvement of the bounds, a
comparison with practical (biased) estimation techniques, an
analysis of the performance at high SNR, and an examination
of the ability to estimate the threshold region in which the
transition from low to high SNR occurs.
We will first show that it is possible to obtain significantly

tighter variants of the lower and upper bounds developed in
Sections III and IV. These tightened versions can only be com-
puted numerically and no longer have a simple form; conse-
quently, they are less convenient for theoretical analyses. Nev-
ertheless, they characterize the BB very accurately and there-
fore also provide an indication of the accuracy of the simpler,
closed-form bounds.

A. Numerical Lower Bound

For a parameter vector with , let us reconsider
the HCRB in (16). We will show that by using an increased
number of appropriately chosen test points , we can obtain a
lower bound that is higher (thus, tighter) than (19). Specifically,
assume without loss of generality that ,
and consider the set of test points

with the component sets

Fig. 1. Lower bounds HCRB , HCRB and upper bounds BB ,
BB on the MSE of the LMVU estimator at ,
with varied to obtain different values of SNR . (The upper
bound BB will be defined in Section V-B.) The SSNM parameters are

, , and .

where . In Fig. 1, the HCRB (16) for the new set of
test points—denoted HCRB —is displayed versus the SNR
and compared with HCRB . For this figure, we chose ,

, , and , where the parameter
is varied to obtain different SNR values.4 As before, the

SNR is defined as SNR , where is the -largest (in
magnitude) entry of . (In our example with , is simply
the single nonzero entry.) It can be seen from Fig. 1 that the
numerical lower bound HCRB computed from the above
test points is indeed tighter than the closed-form lower bound
HCRB in (19).

B. Numerical Upper Bound

It is also possible to find upper bounds on the BB that are
tighter (lower) than the upper bound BB in (28). Consider
a parameter vector with . We recall that BB
was derived by constructing, for all , unbiased es-
timators with constrained by (23)
and (24). We will now investigate howmuch we can improve on
BB if we remove the constraint (23). Thus, in the minimiza-
tion problem (22), the constraint set is hereafter considered
to correspond only to the constraint (24).
In order to numerically solve this modified minimization

problem (22), we used a discrete approximation for .
More specifically, we defined to be piecewise constant
in each of the entries with , and constant
in the remaining entries [the latter being required by (24)].
We used piecewise constant segments for each of the
indices , with each segment of length

. These blocks of constant segments were centered
about . The remaining values of were set to .
Thus, we obtained a function with linear dependence on
a finite number of parameters. For functions of this form,
the minimization problem (22) becomes a finite-dimensional
quadratic program with linear constraints, which can be solved
efficiently [31]. The MSE of the resulting estimator, denoted
by BB , is an upper bound on the BB. Since the constraint
(23) was removed, this bound is tighter than the closed-form
upper bound BB in (28) if the discretization effects are suf-
ficiently small, i.e., if is large enough. In Fig. 1, we compare

4The use of a low-dimensional model is mandated by the complexity of the
numerical approximation of the upper bound on the BB (this numerical approx-
imation will be described in Section V-B).
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BB for with BB as a function of the SNR. The
improved accuracy of BB relative to BB is evident,
especially at high SNR values. Moreover, the proximity of the
numerical upper bound BB to the numerical lower bound
HCRB indicates that these two bounds achieve an accurate
characterization of the BB, since the BB lies between them.

C. The Role of

We have seen in Section IV that for , the MSE of
the LMVU estimator at high SNR is given by , and further-
more, convergence to this value is exponential in the quantity

. A remarkable aspect of this conclusion is the fact that
convergence to the high-SNR regime depends solely on , the
smallest nonzero entry of , rather than having a more complex
dependency on all the nonzero entries of . For example, one
might imagine the behavior of an estimator to be rather different
when all nonzero entries have the same value , as opposed to
the situation in which one entry equals and the others are much
larger. However, our analysis shows that when , the re-
maining entries of have no effect on the performance of the
LMVU estimator. We will next investigate whether practical es-
timators also exhibit such an effect.
To answer this question, we examined the MSE of the ML

estimator (8) for a wide range of parameter vectors having a
predetermined smallest entry . More specifically, for a given
value of , we randomly generated 100 parameter vectors ,

, with and , whose min-
imum nonzero entry was equal to . The other nonzero en-
tries were generated as independent, identically distributed re-
alizations of the random variable , where

is a standard Gaussian random variable. The MSE
of the ML estimator is shown in Fig. 2 for ,

, and four different SNRs , with the horizontal axis
representing the different choices of in arbitrary order. It is
seen that for large , is almost independent of the
specific , which means that the performance of the ML es-
timator, like that of the LMVU estimator, depends almost ex-
clusively on . This suggests that the performance bounds of
Sections III and IV, while formally valid only for unbiased es-
timators, can still provide general conclusions which are also
relevant to biased techniques such as the ML estimator. More-
over, this result also justifies our definition of the SNR as the
ratio , since this is the most significant factor determining
estimation performance for the SSNM.

D. Threshold Region Identification

In Sections III and IV, we characterized the performance of
unbiased estimators as a means of quantifying the difficulty
of estimation for the SSNM. A common use of this analysis
is in the identification of the threshold region, i.e., the range
of SNR values constituting a transition between low-SNR and
high-SNR behavior [32]–[34]. Specifically, in many cases the
performance of estimators can be calculated analytically when
the SNR is either very low or very high. It is then important to
identify the threshold region which separates these two regimes.
Although the analysis is based on bounds for unbiased estima-
tors, the result is often heuristically assumed to approximate the
threshold region for biased techniques as well [32]–[34].
For , the lower and upper bounds on the BB

[HCRB in (19), BB in (28)] exhibit a transition be-

Fig. 2. MSE of the ML estimator for randomly generated param-
eter vectors at four different SNRs , for SSNM parameters ,

, and .

tween a low-SNR region, where both bounds are on the order of
, and a high-SNR region, for which both bounds converge

to . The BB therefore also displays such a transition. One
can define the threshold region of the SSNM (for unbiased
estimation) as the range of values of in which this
transition takes place. Since the BB is itself a lower bound on
the performance of unbiased estimators, one would expect the
transition region of actual estimators to occur at slightly higher
SNR values than that of the BB.
To test this hypothesis, we compared the bounds of

Sections III and IV with the MSE of two well-known esti-
mation schemes, namely, the ML estimator in (8) and the
hard-thresholding (HT) estimator , which is given
componentwise as

else

for a given threshold . In our simulations, we chose the
commonly used value [35]. Note that since the
ML and HT estimators are biased, their MSE is not bounded by
BB , HCRB , and the CRB. Assuming SSNM parameters

and , we generated a number of parameter vec-
tors from the set , where
was varied to obtain a range of SNR values. For these , we cal-
culated the MSE of the two estimators and by means
of numerical integration [see Appendix I for a discussion of the
computation of ].
The results are displayed in Fig. 3 as a function of the SNR
. Although there is some gap between the lower bound

(HCRB) and the upper bound BB , a rough indication of the
behavior of the BB is conveyed. As expected, the threshold re-
gion exhibited by theML andHT estimators is somewhat higher
than that predicted by the bounds. Specifically, the threshold re-
gion of the BB (as indicated by the bounds) can be seen to occur
at SNR values between 5 and 5 dB, while the threshold region
of the ML and HT estimators is at SNR values between 5 and 12
dB. Another effect which is visible in Fig. 3 is the convergence
of the MSE of the ML estimator to the BB at high SNR; this
is a manifestation of the well-known fact that the ML estimator
is asymptotically unbiased and asymptotically optimal. Finally,
at low SNR, both the ML and HT estimators are better than the
best unbiased approach. This is because unbiased methods gen-
erally perform poorly at low SNR, so that even the best unbiased
technique is outperformed by the biased ML and HT estimators.
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Fig. 3. MSE of the ML and HT estimators compared with the performance
bounds BB , HCRB , and CRB , as a function of the SNR

, for SSNM parameters , , and .

Fig. 4. Ratio BB HCRB versus the SNR for different sets of
parameter vectors .

On the other hand, for medium SNR, the MSE of the ML and
HT estimators is significantly higher than the BB. Thus, there is
a potential for unbiased estimators to perform better than biased
estimators in the medium-SNR regime.
One may argue that considering only parameter vectors
in the set is not representative, since covers only a

small part of the parameter space . However, the choice
of is conservative in that the maximum deviation between
HCRB and BB is largest when the nonzero entries of
have approximately the same magnitude, which is the case

for each element of . This is illustrated in Fig. 4, which
shows the ratio between the two bounds versus the SNR

for three different configurations of the nonzero entries
in the parameter vector. Specifically, we considered the two
additional sets and

, in which the nonzero
entries have different magnitudes. It can be seen from Fig. 4
that the ratio BB HCRB is indeed highest when is in
.

VI. CONCLUSION

We have studied unbiased estimation of a sparse vector in
white Gaussian noise within a frequentist setting. As we have
seen, without the assumption of sparsity, there exists only a
single unbiased estimator. By contrast, with the assumption of
sparsity, there exists a rich family of unbiased estimators. The
analysis of the performance of these estimators has been the
primary goal of this paper. We first demonstrated that there ex-
ists no uniformly minimum variance unbiased estimator, i.e., no

single unbiased estimator is optimal for all parameter values.
Consequently, we focused on analyzing the BB, i.e., the MSE
of the locally minimum variance unbiased estimator, or equiv-
alently, the smallest MSE achievable by an unbiased estimator
for each value of the sparse vector.
For the sparse estimation problem considered, as for most es-

timation problems, the BB cannot be computed exactly. How-
ever, we demonstrated that it can be characterized quite accu-
rately using numerical lower and upper bounds. Furthermore,
we derived simple closed-form lower and upper bounds which
are somewhat looser than the numerical bounds. These closed-
form bounds allow an estimation of the threshold region sepa-
rating the low-SNR and high-SNR regimes, and they indicate
the asymptotic behavior of the BB at high SNR. In particular,
a notable conclusion is that the high-SNR behavior of the BB
depends solely on the value of the smallest nonzero entry of the
sparse vector.
While the unbiasedness property is intuitively appealing and

related to several desirable asymptotic features of an estimator
[6], one can often obtain biased estimators which outperform
any unbiased estimator [13]–[15]. Thus, it is interesting to note
that some of the conclusions obtained from our analysis of un-
biased estimators appear to provide insight into the behavior of
standard biased estimators. In particular, we saw that the be-
havior of two commonly used biased estimators at high SNR
corresponds to the predictions made by our unbiased bounds,
not only in terms of the asymptotically achievable MSE but also
in certain finer details, such as the SNR range of the threshold
region and the fact that the convergence to the high-SNR regime
depends primarily on the value of the smallest nonzero entry of
the sparse vector, rather than on the entire vector. This provides
an additional motivation for the analysis of achievable estima-
tion performance within the unbiased setting.

APPENDIX A
PROOF OF THEOREM 1

We wish to show that for , the only unbiased estimator
with bounded MSE is the trivial estimator . We will
first show that a bounded MSE implies that is equivalent
to a tempered distribution. This will allow us to reformulate the
unbiasedness condition in the Fourier transform domain.
Using (3), the unbiasedness condition in (9) for reads

for all (30)

The integral in (30) is the convolution of with
. The result of this convolution, viewed as a

function of , must equal for all parameter vectors
. For absolutely integrable functions, the Fourier

transform maps a convolution onto a pointwise product, and
consequently it seems natural to consider the Fourier transform
of condition (30) in order to simplify the analysis. However,
typically, the estimator function will be neither absolutely
integrable nor square integrable, and thus its Fourier transform
can only exist in the sense of a tempered distribution [36]. From
a practical point of view, the class of tempered distributions is
large enough so that it does not exclude reasonable estimators
such as the LS estimator (8). The following lemma states
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that can be viewed as a tempered distribution if it has a
bounded MSE.

Lemma 9: Consider an estimator for the SSNM (2) with
. If has a bounded MSE, i.e., for all
(where is a constant which may depend on , ,

and ), then is equivalent to a tempered distribution.

Proof: The proof of Lemma 9 is based on the following
result which gives a sufficient condition for a function to
be (equivalent to) a tempered distribution.

Proposition 10 [36]: If there exist constants
such that

for all (31)

then is equivalent to a tempered distribution.

Let be an estimator function with bounded MSE, i.e.,
there exists a constant such that

for all (32)

Defining the usual norm on the space of random vec-
tors by , we can use the triangle in-
equality and the fact that

for a deterministic to obtain

for all

where (32) has been used. Squaring both sides and using the
inequality , we obtain

for all

or equivalently

for all (33)

We will now show that (31) holds for , i.e., .
We define the -dimensional grid

where (hence, ) and is chosen as
. The number of grid points in any single

dimension satisfies

(34)

so that

(35)

Let us first consider

(36)

Splitting into a sum with respect to and a sum
with respect to all other entries of , it is easily shown that

, and hence we ob-
tain from (36)

(37)

where (34) was used in the last step. Furthermore, for
, we have

for all with (38)

In order to verify this inequality, consider an arbitrary
with . Since , and since
implies that no entry of can be larger (in magnitude) than
, there always exists a grid point (dependent on )

such that for all . It follows that
and, in turn

which is equivalent to (38).
Successively using (38), (33), (35), (37), and , we

obtain the following sequence of inequalities:
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(39)

It then follows from (39) that for

Thus, we have established that under the conditions of Lemma
9 (bounded MSE) the bound (31) holds with ,

, and . Therefore, it follows from
Proposition 10 that an estimator with bounded MSE is equiv-
alent to a tempered distribution. This concludes the proof of
Lemma 9.

We now continue our proof of Theorem 1. Any estimator
for the SSNM (2) can be written as

(40)

with the correction term . Because
,

is unbiased if and only if

for all (41)

Remember that we assume that has a boundedMSE, so that
according to our above proof of Lemma 9, the estimator function

satisfies condition (31) with and , i.e.,

for all (42)

with as given at the end of the proof of Lemma 9. We will
also need the following bound, in which :

(43)

We then have for the correction term , for all

where (42) and (43) have been used. Therefore, the correction
term also satisfies (31), and thus, according to Proposition
10, it is equivalent to a tempered distribution.
The bias function in (41) is the convolution of

with the Gaussian function ,
for all . Since is a tempered distribution and
the Gaussian function is in the Schwartz class, it follows that
the Fourier transform of the convolution product (41) is a
smooth function which can be calculated as the pointwise
product , where denotes the Fourier
transform of [36]. Therefore, (41) is equivalent to

for all . This can only be
satisfied if , which in turn implies that
(up to deviations of zero measure) and further, by (40), that

. Recalling that , it is clear from (6) that
is the LS estimator. Thus, we have shown that, for

the SSNM with , is the unique unbiased
estimator with bounded MSE.

APPENDIX B
PROOF OF THEOREM 3

We will show that there exists no UMVU estimator for the
SSNM with . The outline of our proof is as follows.
We first demonstrate that the unique solution of the mini-
mization problem (11) at the parameter value , i.e.,

, is the estimator . We then
show that there exist unbiased estimators which have a lower
variance than at other points . This implies that neither

nor any other estimator uniformly minimizes the variance
for all among all unbiased estimators.
The estimator is a solution of (11) when
because the minimum variance at of any unbiased

estimator is bounded below by and achieves
this lower bound [20]. To show that is the unique solution
of (11) for , suppose by contradiction that there exists a
second unbiased estimator different from , also having
variance at . Consider the estimator

. Since and are unbiased, is unbiased as well.
Thus, its variance is [see (5)] .
In particular, we obtain for
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where the strict inequality follows from the
Cauchy–Schwarz inequality applied to the inner product

, combined with the fact that and
are not linearly dependent (indeed, since and

were assumed to be different unbiased estimators). This
inequality means that the variance of at is lower
than . But this is impossible, as is the minimum
variance at achieved by any unbiased estimator. Thus,
we have shown that is the unique solution of (11) for

.
Next, still for , we consider the specific parameter

value whose entries are given by

else.

The estimator has variance at (and,
by the way, at all other ). We will now construct an
unbiased estimator whose variance at is smaller than

. The components of this estimator are defined as

(44)

where

else

and is a parameter to be determined shortly.5 A direct
calculation shows that is unbiased for all . Note
that is identical to except for the first com-
ponent .
We recall that for unbiased estimators, minimizing the

variance is equivalent to minimizing the mean
power [see (5)]; furthermore,

with .

For the proposed estimator ,
except for . Therefore, our goal is to choose such that

is smaller than . We have

5The interval in the definition of is chosen rather arbitrarily.
Any interval which ensures that in (45) is nonzero can be used.

and

(45)

with

Note that . From (45), the minimizing
is obtained as ; the associated min-

imum is given by . It can be shown
that is nonzero due to the construction of , and thus

is smaller than . Therefore, using
in (44), we obtain an estimator which

has a smaller component power than . Since
for , it follows that the

overall mean power of at is smaller than that of , i.e.,
. Since both estimators are unbiased,

this moreover implies [because of (5)] that at , the variance of
is smaller than that of . Thus, cannot be the LMVU

estimator at . On the other hand, as we have seen, is
the unique LMVU estimator at . We conclude that there
does not exist a single unbiased estimator which simultaneously
minimizes the variance for all parameters .

APPENDIX C
PROOF OF PROPOSITION 4

We begin by stating the multivariate HCRB.

Proposition 11 [22]: Let be a family of pdfs of
indexed by , and let be a set of points
in . Given an estimator , define

and

(46)

Then, the covariance matrix of satisfies

(47)

We will now prove Proposition 4 by applying the multivariate
HCRB (47) to the case of unbiased estimation under Gaussian
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noise. For an unbiased estimator , we have , so
and further

(48)

[cf. (14)]. We next show that the matrix in (46) co-
incides with in (15). Because of the Gaussian noise,

, and thus we
obtain by direct calculation

and consequently

Now is the moment-generating function
of the zero-mean Gaussian random vector , which equals

. We thus have

which equals in (15). Inserting (48) and into (47),
we obtain (13). Finally, taking the trace of both sides of (13) and
using the fact that implies yields (16).

APPENDIX D
OBTAINING THE CRB FROM THE HCRB

We will demonstrate that the CRB (12) can be obtained as a
limit of HCRBs (16) by choosing the test points according to
(17) and letting . Since the test points (17) are orthogonal
vectors, it follows from (15) that the matrix is diagonal. More
specifically, we have

.

Thus, both for and for , the pseudoinverse
is obtained simply by inverting the diagonal entries of . From
(16), we then obtain

.
(49)

We now use the third-order Taylor series expansion

where (50)

Inserting (50) into (49) yields

.
(51)

In the limit as , decays faster than , and thus
the bound (51) converges to the CRB (12).
The CRB can also be obtained by formally replacing

with in (49). From (50), we have
for all . This shows that for

any , the bound (49) is lower than the CRB (12). Thus,
the CRB (which, as shown above, is obtained using the test
points (17) in the limit ) is tighter than any bound that is
obtained using the test points (17) for any fixed .

APPENDIX E
PROOF OF THEOREM 5

We will prove the HCRB-type bound in (19). For
, (19) was already demonstrated by the CRB (12), and thus
it remains to show (19) for . This will be done by
plugging the test points (18) into the HCRB (16), calculating the
resulting bound for an arbitrary constant , and then taking
the limit as .We will use the following lemma, whose proof
is provided at the end of this Appendix.

Lemma 12: Let be an matrix with the
following structure:

. . .
. . .

...
...
...
...
. . .

. . .

(52)

where is the column vector of dimension whose entries all
equal , and

(53)
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Let

(54)

and assume that

(55)

Then, is nonsingular and its inverse is given by

. . .
. . .

...
...

...
...

. . .
. . .

(56)

where and

(57)

Let , and assume for concreteness and without loss
of generality that and that , the smallest
(in magnitude) nonzero entry of , is the th entry. A direct
calculation of the matrix in (15) based on the test points (18)
then yields

Here, is an matrix, where , having
the structure (52) with entries

(58)

We now apply Lemma 12 in order to show that is nonsin-
gular and to calculate its inverse. More precisely, it suffices to
calculate the inverse for all but a finite number of values of ,
since any finite set of values can simply be excluded from con-
sideration when tends to . When applying Lemma 12, we
first have to verify that conditions (55) hold for all but a finite
number of values of . By substituting (58), it is seen that the
left-hand sides of (55) are nonconstant entire functions of , and
thus have a finite number of roots on any compact set of values
of . By Lemma 12, this implies that is nonsingular for all but
a finite number of values of , and that the inverse (if it exists)
is given by

(59)

where is given by (56) and (57), again with .
Next, we observe that for our choice of test points (18)

(60)

where is an matrix having structure (52)
with entries

Using (16) together with (59) and (60), a direct calculation
yields

(61)

We now take the limit in (61). For the first term, we obtain

(62)

where we have expanded into a second-order Taylor se-
ries. Here, indicates terms which are negligible com-
pared with when , i.e., . To
find the limit of the second term in (61),

, we first consider the reciprocal of the first factor, .
We have

Expanding some of the -dependent exponentials into Taylor
series, dropping higher order terms, and simplifying, we obtain

(63)

For the second factor, we obtain

(64)

Then, using (63) and (64), it is seen that the second term in (61)
converges to

(65)
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Next, we consider the third term in (61), , which can be
written as . We have

Combining with (63), we obtain

(66)

The fourth and fifth terms in (61) have to be calculated to-
gether because each of them by itself diverges. The sum of these
terms is

(67)

Using (63), in (67) becomes

(68)

Furthermore, a direct calculation yields

(69)

To take the limit of , first note that

Together with (63), we thus have

(70)

Adding the limits of , , and in (68)–(70), we find that the
sum of the fourth and fifth terms in (61) converges to

(71)
Finally, adding the limits of all terms in (61) as given by (62),

(65), (66), and (71) and simplifying, we obtain the following
result for the limit of the bound (61) for :

This equals (19), as claimed.

Proof of Lemma 12: We first calculate the inverse of in
(53). Applying the Sherman–Morrison–Woodbury formula [37,
Sec. 2.8]

to (53) and simplifying yields

(72)

Next, we invoke the block inversion lemma [37, Sec. 2.8]

with

where matrix is assumed to be symmetric. Specializing to
and as is appropriate for in (52), we obtain

for the inverse of

with (73)

We now develop the various blocks of by using the expres-
sion of in (72). We first consider the upper left block .
We have
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Thus, using the definitions in (54) and (57) yields

(74)

which proves the validity of the upper left entry of in (56).
Next, using (72) and (74) and simplifying, the upper right block
in (73) becomes

Thus, we have shown the validity of the first row and first
column of in (56). Finally, to develop the remaining block

in (73), we first calculate

(75)
We then have

(76)

where (72), (75), and the definition of in (57) were used.
Using the definition of in (54) and simplifying, the factor in
brackets can be written as

Substituting back into (76), we obtain

Thus, within the lower right block of , the off-diag-
onal entries all equal , as required. Furthermore, the diagonal
entries in this block are given by

which completes the proof of the lemma.

APPENDIX F
PROOF OF LEMMA 6

Let with and consider a fixed .
We have to show that a solution of (20), i.e.,

with for all (77)

is given by . Let
denote the mean power of the LMVU estimator defined by (77).

We will show that and, furthermore, that
is achieved by the estimator .
Let denote the set of all -sparse vectors which

equal except possibly for the th entry, i.e.,
for all . Consider the modified minimiza-

tion problem

with for all (78)

and let denote the mean power
of the estimator defined by (78). Note the distinction between

and : is the set of estimators of which are unbi-
ased for all whereas is the set of estimators of
which are unbiased for all which equal a given, fixed
except possibly for the th component. Therefore, the unbi-

asedness requirement expressed by is more restrictive than
that expressed by , i.e., , which implies that

(79)

We will use the following result, which is proved at the end
of this Appendix.

Lemma 13: Let . Given an arbitrary estimator
, the estimator

(80)

also satisfies the constraint , and its mean power
at does not exceed that obtained by , i.e.,

.

Thus, to each estimator which depends on the
entire observation , we can always find at least one estimator

which depends only on the observation entry
and is at least as good. Therefore, with no loss in optimality,
we can restrict the minimization problem (78) to estimators

which depend on only via its th entry . This
means that (78) can be replaced by

with for all (81)

Note that in the definition of , we can use the requirement
instead of since the expectation does

not depend on the entries with . The corresponding
minimum mean power is still equal to
. However, the new problem (81) is equivalent to the classical

problem of finding the LMVU estimator of a scalar based on
the observation , with . A solu-
tion of this latter problem is the estimator , whose
variance and mean power are and , respectively [10].
Thus, a solution of (81) or, equivalently, of (78) is the trivial es-
timator , and

(82)

Combining (79) and (82), we see that the minimum mean
power for our original minimization problem (77) satisfies
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As we have shown, this lower bound is achieved by the esti-
mator . In addition, is an element of
, the constraint set of (77). Therefore, it is a solution of (77).
Proof of Lemma 13: Consider a fixed and an es-

timator . In order to show the first statement of the
lemma, , we first note that

for any (83)

We now have for

where we used the definition (80) in , the identity (83) in
, the law of total probability [38] in , and our assumption

in . Thus, .
Next, the inequality is proved as

follows:

where we used the law of total probability in , Jensen’s in-
equality for convex functions [31] in , and the definition (80)
in .

APPENDIX G
PROOF OF LEMMA 7

We wish to solve the componentwise minimization problem
(25), i.e., , for .
Note that and, thus, the MSE equals the mean power

.
We first observe that the constraint implies that the

estimator is unbiased, and thus . Indeed, using
(21) and , we have

(84)

where and denote the -dimensional vec-
tors obtained from and by removing the th entry

and , respectively, and the result in (84) follows be-
cause due to the odd sym-
metry assumption (23). Thus, we can replace the constraint

in (25) by .
A solution of (25) can now be found by noting that

The first term is equal to . Regarding the second
term, suppose that and let denote the length-
subvector of that comprises all with .
Due to (24), depends only on and can thus be written
(with some abuse of notation) as . Let denote the com-
plementary subvector of , i.e., the length- subvector
comprising all with . Furthermore, let
and denote the analogous subvectors of . The second inte-
gral can then be written as the product

The second factor is , and thus we have

(85)

Using the symmetry property (23), this can be written as

(86)

with

(87)

(88)

We sketch the derivation of (86)–(88) by showing the first of
similar sequential calculations. For simplicity of notation

and without loss of generality, we assume for this derivation that
and . The integral in (85) then

becomes

(89)
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The integration can now be represented as ,
where the component refers to and the compo-
nent refers to . Then, (89) can be further processed
as

where the odd symmetry property (23) was used in . After
performing this type of manipulation times, the integral is
obtained in the form

where was used. With
, this becomes further

Finally, removing our “notational simplicity” assumptions
and , this can be written for general

and general as

(90)

Inserting (90) into (85) yields (86)–(88).
The integral

in (86) is minimized with respect to by minimizing
the integrand pointwise for
each value of . This is easily done by completing
the square in , yielding the minimization problem

. Thus, the optimal
is obtained as

for all

and the corresponding pointwise minimum of the integrand is
given by . The extension to all
is then obtained using the properties (23) and (24), and the op-
timal component estimator solving (25) follows as

. The corresponding minimum MSE, denoted by
BB , is obtained by substituting the minimum value of the
integrand, , in (86). This yields

BB

(91)

Inserting (87) and (88) into (91) and simplifying gives (26) and
(27).

APPENDIX H
PROOF OF EQUATION (29)

To show (29), we consider in (27) for [this is
sufficient since ], and we use the bound

, which can be verified using elementary
calculus. We then obtain from (27), for
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The first integral can be written as

The bound thus becomes

where was used in . This bound on
is actually valid for all because .
Inserting it in (26), we obtain

BB (92)

The statement in (29) follows since we have due to the distribu-
tive law [note that denotes the sum over all possible
subsets of , including and the empty set ]

where we have used the facts that and that the number of
different subsets is . Inserting the
last bound into (92) and, in turn, the resulting bound BB

into (28) yields (29).

APPENDIX I
MSE OF THE ML ESTIMATOR

We calculate the MSE of the ML estimator
in (8). Let denote the th component of . We have

(93)

Thus, we have to calculate the quantities and
.

We recall that , where is an oper-
ator that retains the largest (in magnitude) entries and zeros
out all others. Let denote the set of vectors for which is
not among the largest (in magnitude) entries. We then have

.

Equivalently, , where
is the indicator function of the event (i.e.,
is if and else). Thus, we obtain as

(94)

where the notations and indicate that the expecta-
tion is taken with respect to the random quantities and ,
respectively (here, denotes without the entry ) and

is the conditional probability that ,
given . Furthermore, we used the law of total probability in

and the fact that is held constant in the conditional ex-
pectation in . Similarly

(95)
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Calculating and is thus reduced to cal-
culating the conditional probability .
Let , and let denote the set of all

binary partitions of the set , where is at least of
cardinality

In order to evaluate the conditional probability ,
we split the event —i.e., that is not among the
largest (in magnitude) entries of —into several elementary

events. More specifically, let denote the event that every
entry with satisfies and every entry with

satisfies . The events for all
are mutually exclusive, i.e.,

, and their union corresponds to the event ,
i.e., . Consequently

(96)

where we have used the facts that the are independent and
; furthermore, is the right tail

probability of a standard Gaussian random variable. Plugging

(96) into (94) and (95) and, in turn, the resulting expressions
into (93) yields a (very complicated) expression of .
This expression is evaluated numerically in Section V.
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