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Sub-Nyquist Sampling of Short Pulses
Ewa Matusiak and Yonina C. Eldar, Senior Member, IEEE

Abstract—We develop sub-Nyquist sampling systems for analog
signals comprised of several, possibly overlapping, finite duration
pulses with unknown shapes and time positions. Efficient sampling
schemes when either the pulse shape or the locations of the pulses
are known have been previously developed. To the best of our
knowledge, stable and low-rate sampling strategies for contin-
uous signals that are superpositions of unknown pulses without
knowledge of the pulse locations have not been derived. The goal
in this paper is to fill this gap. We propose a multichannel scheme
based on Gabor frames that exploits the sparsity of signals in time
and enables sampling multipulse signals at sub-Nyquist rates.
Moreover, if the signal is additionally essentially multiband, then
the sampling scheme can be adapted to lower the sampling rate
without knowing the band locations. We show that, with proper
preprocessing, the necessary Gabor coefficients, can be recovered
from the samples using standard methods of compressed sensing.
In addition, we provide error estimates on the reconstruction and
analyze the proposed architecture in the presence of noise.

Index Terms—Compressed sensing, Gabor frames, sub-Nyquist
sampling, Xampling.

I. INTRODUCTION

O NE of the common assumptions in sampling theory sug-
gests that in order to perfectly reconstruct a bandlimited

analog signal from its samples, it must be sampled at the Nyquist
rate, that is twice its highest frequency. In practice, however,
all real life signals are necessarily of finite duration, and conse-
quently cannot be perfectly bandlimited, due to the uncertainty
principle [1]. The Nyquist rate is therefore dictated by the essen-
tial bandwidth of the signal, that is by the desired accuracy of
the approximation: the higher the rate, meaning the more sam-
ples are taken, the better the reconstruction.
In this paper we are interested in sampling a special class

of time limited signals: signals consisting of a stream of short
pulses, referred to as multipulse signals. Since the pulses oc-
cupy only a small portion of the signal support, intuitively less
samples, then those dictated by the essential bandwidth, should
suffice to reconstruct the signal.
There are two standard approaches in the literature to sample

such functions. One is to acquire pointwise samples and approx-
imate the signal using Shannon’s interpolation formula [2], [3].
The reconstruction error can bemade sufficiently small with just
a finite number of samples, when the signal is sampled dense

Manuscript received March 17, 2011; revised August 19, 2011; accepted Oc-
tober 20, 2011. Date of publication November 22, 2011; date of current version
February 10, 2012. The associate editor coordinating the review of this manu-
script and approving it for publication was Prof. Trac D. Tran.
E. Matusiak is with the Department of Mathematics, NuHAG, University of

Vienna, Austria (e-mail: ewa.matusiak@univie.ac.at).
Y. C. Eldar is with the Department of Electrical Engineering, Technion-Israel

Institute of Technology, Haifa, Israel (e-mail: yonina@ee.technion.ac.il).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSP.2011.2176934

enough. However, this strategy results in many pointwise sam-
ples that are zero, leading to unnecessary high rates. The second,
is to collect Fourier samples and approximate the signal using
a truncated Fourier series. However, the Fourier transform does
not account for local properties of the signal, hence this method
cannot be used to exploit signal structure and reduce the sam-
pling rate. Both strategies require the Fourier transform of the
signal to be integrable and do not take the sparsity of the signal
in time into account. Moreover, exact pointwise samples needed
for Shannon’s method requires implementing a very high band-
width sampling filter. Here we show that these problems can be
alleviated using Gabor frames [4].
Gabor samples, which are inner products of a function with

shifted and modulated versions of a chosen window, are a good
compromise between exact pointwise samples and Fourier sam-
ples. In particular, we show that all square-integrable time lim-
ited signals, without additional conditions on their Fourier trans-
forms, can be well approximated by truncated Gabor series.
Furthermore, Gabor samples, taken with respect to a window
that is well localized in time and frequency, provide informa-
tion about local behavior of any square integrable function and
reflect the sparsity of a function either in time or frequency. The
price to pay is a slightly greater number of samples necessary
for approximation, that comes with using frames, namely, over-
complete dictionaries. The use of frames is a result of the fact
that Gabor bases are not well localized in both time and fre-
quency [5]. In all three approaches (pointwise, Fourier, Gabor)
the number of samples necessary to represent an arbitrary time
limited signal is dictated by the essential bandwidth of the signal
and the desired approximation accuracy.
Recently, there has been growing interest in efficient sam-

pling of multipulse signals [6]–[9]. This interest is motivated
by a variety of different applications such as digital processing
of certain radar signals, which are superpositions of shifted
and modulated versions of a single pulse [7], [10], [11]. An-
other example is ultrasound signals, that can be modeled by
superpositions of shifted versions of a given pulse shape [9].
Multipulse signals are also prevalent in communication chan-
nels, bio-imaging, and digital processing of neuronal signals.
Since the pulses occupy only a small portion of the signal sup-
port, intuitively less samples should suffice to reconstruct the
signal.
Prior works mentioned above assumed that the signal is com-

posed of shifts of a single known pulse. Such signals are com-
pletely characterized by a finite number of parameters and fall
under the class of finite rate of innovation (FRI) signals intro-
duced in [6]. The sampling schemes proposed in [8] operate at
the minimal sampling rate required for such signals, determined
by the rate of innovation [6]. In this case without noise, per-
fect recovery is possible due to the finite dimensionality of the
problem.
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In this paper we consider sampling of multipulse signals
when neither the pulses nor their locations are known. The
pulses can have arbitrary shapes and positions, and may
overlap. The only knowledge we assume is that our signal is
comprised of pulses, each of maximal width . Despite
the complete lack of knowledge on the signal shape, we show
that using Gabor frames and appropriate processing, such
signals can be sampled in an efficient and robust way, using
far fewer samples than that dictated by the Nyquist rate. The
number of samples is proportional to , that is, the actual
time occupancy. More precisely, we need about
samples, where is related to the essential bandwidth of the
signal and is the redundancy of the Gabor frame
used for processing. When the signal is additionally sparse
in frequency with only essential bands of width no more
than , the sampling rate can be further reduced. For such
signals, we need about samples, where is
related to the width of the essential bands of the signal.
In contrast, Nyquist-rate sampling in both settings requires
about samples, where is the signal duration. If the signal
occupies only a small portion of its time duration, such that

, respectively , then our scheme
results in a substantial gain over Nyquist-rate sampling.
The sampling criteria we consider are: a) minimal sampling

rate that allows almost perfect reconstruction; b) no prior
knowledge on the locations or shapes of the pulses; and c)
numerical stability in the presence of mismodeling and noise.
To achieve these goals we combine the well established theory
of Gabor frames [4] with compressed sensing (CS) methods for
multiple measurement systems [12]–[14]. Our scheme consists
of a multichannel system that modulates the input signal in each
channel with a parametric waveform, based on a chosen Gabor
frame, and integrates the result over a finite time interval. We
show that by a proper selection of the waveform parameters,
the Gabor samples can be recovered, from which the signal is
reconstructed. We also consider the case in which the signal
exhibits additional sparsity in frequency, as is common in radar
signals, and show that using our general scheme the sampling
rate can be further reduced. To recover the signal in this case
we solve two CS problems. We then prove that the proposed
system is robust to noise and model errors, in contrast with
techniques based on exact pointwise samples.
Our development follows the philosophy of recent work in

analog CS, termed Xampling, which provides a framework
for incorporating and exploiting structure in analog signals to
reduce sampling rates, without the need for discretization [15],
[16]. Xampling combines standard analog sampling methods
with CS digital recovery techniques. A pioneer sub-Nyquist
system of this type is the modulated wideband converter
(MWC) introduced in [17] based on the earlier work of [18].
This scheme targets low rate sampling of multiband signals.
Sub-Nyquist sampling is achieved by applying modulation
waveforms to the analog input prior to uniformly sampling at
the low rate.
Another system that falls into the Xampling paradigm is that

of [8] which treats multipulse signals with a known pulse shape.
The proposed sampling scheme is based on modulation wave-
forms as in theMWC. However, while in the MWC the modula-

tions are used to reduce the sampling rate relative to the Nyquist
rate, in [8] the modulations serve to simplify the hardware and
improve robustness.
Gabor frames were recently used to sample short discrete

pulses in [19]. The authors analyzed standard CS techniques
for redundant dictionaries, and applied their results to radar-like
signals. Finite discrete multipulse signals were also treated in
[20] where the authors modeled the signals as convolutions of
a sparse signal with a sparse filter, both sparse in the standard
basis of . The important difference between [19], [20] and
our work is that the former handles discrete time signals. In con-
trast, our method directly reduces the sampling rate of contin-
uous time input signals without the need for discretization.
The paper is organized as follows. In Section II we introduce

the notation and basic problem definition. Since the main tool
in our analysis is Gabor frames, in Section III we recall basic
facts and definitions from Gabor theory and show that trun-
cated Gabor series provide a good approximation for time lim-
ited functions. Based on this observation, in Section IV, we in-
troduce a sub-Nyquist sampling scheme for multipulse signals.
In Section V we show that our system can also be used to effi-
ciently sample radar-like signals, who are sparse in time and fre-
quency. Section VI points out connections to recently developed
sampling methods, while Section VII is devoted to implemen-
tation issues. The important part of our design are Gabor win-
dows, which we review in Section VIII. In particular, we sum-
marize several methods to generate compactly supported Gabor
frames. We demonstrate our theory by several numerical exam-
ples in Section IX.

II. PROBLEM FORMULATION AND MAIN RESULTS

A. Notation

We will be working throughout the paper with the Hilbert
space of complex square integrable functions , with inner
product

where denotes the complex conjugate of . The norm
induced by this inner product is given by . The
Fourier transform of is defined as

and is also square integrable with .
A main tool in our derivations are Gabor frames, which we

review in Section III-A. Two important operators that play a
central role in Gabor theory, are the translation and modulation
operators defined for as

respectively. The composition
is called a time-frequency shift operator and gives rise to the
short-time Fourier transform. For a fixed window ,
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Fig. 1. Schematic example of a multipulse signal with pulses each of
width no more than . In the example, two of the pulses are overlapping.

the short time Fourier transform of with respect to
is defined as

Many derivations, and especially input-output relations for
our sampling systems, will be presented in the compact form of
matrix multiplications. We denote matrices by boldface capital
letters, for example , and vectors by boldface lower case
letters, such as .
Our recovery method relies on CS algorithms. An important

notion in this context is that of the restricted isometry property
(RIP). A matrix is said to have the RIP of order , if there
exists such that

for all -sparse vectors [21].

B. Problem Formulation

We consider the problem of sampling and reconstructing
signals comprised of a sum of short, finite duration pulses. A
schematic representation of such a signal is depicted in Fig. 1.
We do not assume any knowledge of the signal besides the
maximum width (support) of the pulses. More formally, we
consider real valued signals of the form

(1)

The number of pulses and their maximal width are as-
sumed known. The pulses may overlap in time, as in Fig. 1. We
assume that is supported on an interval with

. Our goal is to recover from theminimal number
of samples possible.
Due to the uncertainty principle, finite duration functions

cannot be perfectly bandlimited. However, in practice the main
frequency content is typically confined to a finite interval. We
refer to such signals as essentially bandlimited. More formally,
we say that is essentially bandlimited, or -bandlimited
to , if for some

(2)

The symbol denotes the complement of the set . The adjec-
tive ‘essential’ refers to the fact that the energy of outside

is very small. We denote the set of multipulse sig-
nals (1) timelimited to and essentially bandlimited
to by .
There are three interesting special cases that fall into the

model (1). The first is when are shifts of a known pulse

, so that for some . In
this case, the problem is to find parameters, the amplitudes
and shifts . This setting can be treated within the class

of finite rate of innovation problems [6], [8], [9]. We return
to this scenario in Section VI and discuss the relation to our
work in more detail. A second class, is when the location
of the pulses are known but the pulses themselves are
not. The third, most difficult scenario, is when neither the
locations nor the pulses are known. Our goal is to develop an
efficient, robust, and low-rate sampling scheme for this most
general scenario. We will later see that our system can be used
to sample signals from the other two cases as well, at their
respective minimal rates. In Section V we show that our system
can be additionally used to reduce the sampling rate of a special
subclass of , which are multipulse signals
whose frequency content is concentrated on only a few bands
within .
We aim at designing a sampling system for signals from the

model that satisfies the following properties:
i) the system has no prior knowledge on the locations or
shapes of the pulses;

ii) the number of samples should be as low as possible;
iii) the reconstruction from the samples should be simple;
iv) the original and reconstructed signals should be close.

C. Main Results

The proposed multichannel sampling method, depicted in
Fig. 4, is a mixture of ideas from Gabor theory and Xampling
[16]. It consists of a set of modulators with functions ,
followed by integrators over the interval . The
system depends on an appropriately chosen Gabor frame with
redundancy degree , generated by a compactly
supported window that is well localized in the frequency
domain. This frame provides a sparse representation for

. The modulating waveforms , for-
mally defined in (7), are different, finite superpositions of
shifted versions of the chosen Gabor window. The goal of the
modulators is to mix together all windowed pieces of the signal
with different weights, so that, a sufficiently large number
of mixtures will allow to almost perfectly recover relatively
sparse multipulse signals. The resulting samples are weighted
superpositions of Gabor coefficients of the signal with respect
to the chosen frame. CS methods [12]–[14] are then used to
recover the relevant nonzero signal coefficients from the given
samples.
The number of rows in the resulting CS system is about

; it is a function of the number of pulses present in
the signal and the redundancy of the frame. Since CS algo-
rithms are used to recover the relevant coefficients, the exact
number of rows is dictated by the RIP constant of the matrix
containing the coefficients of the waveforms, and is given by

. In the case of purely multipulse
signals, the number of columns is a function of the desired
accuracy of the approximation, and equals about . How-
ever, when the signal is essentially mutiband, with bands
of width , then the number of columns can be reduced to
about , proportional to the actual frequency content
of the signal. Again, since CS methods are used in the recovery
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process, the overall number of columns is dictated by the
RIP constant of the matrix containing the coefficients of the
waveforms, and is given by .
The quantities , , and are related to , and ,
respectively, and depend on the chosen Gabor frame.
After finding the Gabor coefficients, we recover the signal

using a dual Gabor frame. The function reconstructed from
the postprocessed coefficients satisfies

where is the original signal, is a constant depending on
the Gabor frame, and is related to the essential bandwidth
of the chosen Gabor window. The first term is due to the signal
energy outside the essential bandwidth. The values of and
reflect the noise level in the signal (mismodeling error) and

the samples, respectively, while the constants and depend
on the CS method used for recovery of the Gabor coefficients.
If is perfectly multipulse and the sampling system is noise
free, then . For multipulse signals that are essen-
tially multiband, is related to the signal energy outside the
essential bands of .

III. SAMPLING USING GABOR FRAMES

We begin by recalling some basic facts and notions from
Gabor theory that will be used throughout the paper, and then
show how Gabor frames can be used to sample multipulse sig-
nals with known pulse locations. In Section IV we expand the
ideas to treat the unknown setting.

A. Basic Gabor Theory

A collection
is a Gabor frame for if there exist con-

stants such that

for all . The frame is called tight, if .
By simple normalization every tight frame can be changed to a
tight frame with frame bounds equal to one. Therefore, when we
talk about tight frames we will mean frames with frame bounds

. Every signal can be represented in
some Gabor frame [4].
A Gabor representation of a signal comprises the set

of coefficients obtained by inner products with the
elements of some Gabor system [4]

The coefficients are simply samples of a short-time Fourier
transform of with respect to at points . If

constitutes a frame for , then there exists a
function such that any can be recon-
structed from using the formula

(3)

The Gabor system is the dual frame to .
Consequently, the window is referred to as the dual of

. Generally, there is more than one dual window .
The canonical dual is given by , where is
the frame operator associated with , and is defined by

. There are several ways
of finding an inverse of , including the Janssen representation
of , the Zak transform method or iteratively using one of
several available efficient algorithms [4].
Here we will only be working with Gabor frames whose win-

dows are compactly supported on some interval
and lattice parameters for some .
For such frames, the frame operator takes on the particularly
simple form

The frame constants can be computed as
and . The canonical dual is then

. For tight frames the dual atom is simply
. A necessary condition for to be a frame for

is that , while Gabor Riesz bases can only exists
if [4]. Thus the ratio measures the redundancy
of Gabor systems.
Since one key motivation for considering Gabor frames is to

obtain a joint time-frequency representation of functions one
usually attempts to choose the window to be well localized
in time and frequency.While the Balian-Low theorem [5]makes
it impossible to design Gabor Riesz bases with good time-fre-
quency localization, it is not difficult to design Gabor frames
with excellent localization properties. For instance, if is
a Gaussian, then we obtain a Gabor frame whenever .
Therefore, to obtain a well localized window one needs to allow
for certain redundancy. In Section VIII we discuss in detail how
to construct frames and their duals with compactly supported
windows based on [22] and [23].
We consider windows that are members of so-called

Feichtinger algebra, denoted by [24]. Such windows guar-
antee that the synthesis and analysis mappings are bounded and
consequently result in stable reconstructions, and that the dual
window is in . Formally

where . The norm in is defined as
. Examples of functions in are the

Gaussian, B-splines of positive order, raised cosine, and any
function that is bandlimited or any function

that is compactly supported in time with Fourier transform in
. Note, that the rectangular window is not a member of

since its Fourier transform is not in .

B. Truncated Gabor Series

It is well known that time limited functions, whose
Fourier transform is additionally in , can be well approx-
imated with a finite number of samples using a Fourier series.
We now show that the same is true for Gabor series, without as-
suming anything additional on the signal besides that it is square
integrable.
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Let be a Gabor frame with compactly sup-
ported on an interval and for
some . The reason for using compactly supportedwin-
dows is that for every function time limited to ,
the decomposition of (3) reduces to

(4)

where is a dual window and denotes the smallest in-
teger such that the sum in (4) contains all possible nonzero co-
efficients . The exact value of is calculated by

The number of frequency samples necessary for recon-
struction is dictated by the pair of dual windows as incor-
porated in the following theorem, which is an extension of [24,
Th. 3.6.15].
Theorem III.1: Let be a finite duration signal sup-

ported on the interval and bandlimited to
and let be a Gabor frame described

above with the dual atom . Then for every there
exists an , depending on the dual window and the
essential bandwidths of and , such that

where with
a constant depending on the chosen Gabor frame.

Similar estimates also appear in [25].
Proof: See Appendix A.

The exact number of frequency coefficients is dictated
by the essential bandwidth of . More precisely, if is
a bandlimited approximation of in , that
is , then .
Theorem III.1 states that finite duration, essentially bandlim-

ited signals, can be well approximated using just the dominant
coefficients in the Gabor representation.
The number of samples depend on the chosen frame and the

accuracy of the approximation. To minimize the number of
samples for a chosen accuracy of the approximation, we select

(which reduces the number of samples in time) and
construct a window that is well localized in frequency (which
reduces the number of samples in frequency). Therefore, there
is an interplay between the number of samples in the frequency
domain and the number of samples with respect to time. The
total number of Gabor coefficients, meaning samples of the
short-time Fourier transform, is related to a somewhat larger
interval , where ,
with , in the time domain and a larger
interval , where ,

Fig. 2. The relation between and the shifts of the support of when .
When for some , does not overlap any of the pulses of , then

for all .

with , in the frequency domain. Overall, the
required number of samples is

When is close to one, and is well localized in fre-
quency forming a tight frame, the number of required samples
is close to . For a fixed and a chosen accuracy of approx-
imation, the number of frequency samples in a tight frame de-
pends on the decay properties of . Therefore, to minimize
the number of channels, we need to choose a window that
exhibits good frequency localization. On the other hand, having
already chosen a frame , if we desire to improve the
accuracy of approximation, then the number of ‘frequency’
coefficients has to increase.

C. Multipulse Signals With Known Pulse Locations

If , and the signal is multipulse, then many of the
Gabor coefficients are zero. Indeed, if the shift does
not overlap any pulse of then

for all . Therefore, when the locations of the pulses are
known, we can reduce the number of samples from to ,
where is the number of s, , for which
. To reduce to minimum, one needs to choose a Gabor frame
that allows for the sparsest representation of with respect
to the index .
For signals from , an optimal choice is an

atom that is supported on and shift param-
eters for some . In that case at
most shifts of by overlap one pulse of

. Indeed, when , at most two shifts of overlap one
pulse, as depicted in Fig. 2. When , at most shifts
of overlap one pulse of . This can be calculated from

Let denote the matrix of dominant Gabor coeffi-
cients. For functions each column

of has at most nonzero entries.
Moreover, all columns have nonzero entries at the same
places, as modulations applied to do not change
the positions of the pulses. The matrix is schematically de-
picted in Fig. 3. Therefore, the necessary Gabor coefficients can



MATUSIAK AND ELDAR: SUB-NYQUIST SAMPLING OF SHORT PULSES 1139

Fig. 3. Schematic representation of a matrix of Gabor coefficients in the case
of multipulse signals, on the left, and multipulse essentially multiband signals,
on the right. Empty circles denote zero values and crosses denote small, but
nonzero values of .

be obtained with only channels, where
and .

D. Method Comparison

Since time limited functions can be reconstructed only to a
certain accuracy, we refer to the minimal number of samples as
the minimal number required to reconstruct the signal with a
desired accuracy. For an accuracy of approximation using the
Fourier series and Shannon’s interpolation [2], [3] methods, the
minimal number of samples is of order , where is such
that

with and we have to assume that
. For the above to be satisfied with , as in (2),

has to be greater than since . The approximation
error using Fourier series is then given by

(5)

where are the Fourier coefficients and has to be equal
at least to achieve approximation. When the signal is
multipulse, cannot be reduced because the Fourier transform
does not account for local signal properties.
The approximation error using Shannon’s interpolation for-

mula equals

(6)

where is the largest integer less then and

For as is of finite duration, so
that about pointwise values of must be evaluated to
achieve accuracy. If the signal is multipulse and the pulse lo-
cations are known, then this number can be reduced to
samples, with samples per pulse.
For a Gabor frame with redundancy , we achieve approxi-

mation with a minimal number of samples of order as
long as the Gabor window and its dual are such that

TABLE I
COMPARISON OF THREE METHODS FOR APPROXIMATING FUNCTIONS
THAT ARE TIME LIMITED TO AND ESSENTIALLY BANDLIMITED
TO . THE SECOND AND THIRD LINES REFER TO MULTIPULSE
SIGNALS WITH PULSES, EACH OF WIDTH NO MORE THAN . THE
METHODS ARE COMPARED FOR THE SAME ACCURACY OF APPROXIMATION

where and . The
is an enlargement of , as in (2), by the essential bandwidth

of the window , and is an enlargement of
by the support of the window . Then,

and .
Table I compares the number of samples necessary for a good

approximation of time limited signals and of multipulse sig-
nals using these three methods. As can be seen from the table,
the Gabor frame has two main advantages. The first is that it
does not require strong decay of for the reconstruction
error to be bounded. Second, this approach can be used to ef-
ficiently sample multipulse signals with unknown pulse loca-
tions, as we will show in the next section. In this case we need
approximately samples which is minimal with re-
spect to the chosen approximation accuracy and frame redun-
dancy. However, this amount increases slightly to the order of

due to the utilization of CS
algorithms in the recovery process.

IV. SAMPLING OF MULTIPULSE SIGNALS

We now present a sampling scheme for functions from
that reduces the number of channels in a

Gabor sampling scheme and does not require knowledge of the
pulse locations.

A. Sampling System

Our system, shown in Fig. 4(a), exploits the sparsity of mul-
tipulse signals in time. The signal enters channels
simultaneously. In the th channel, is multiplied by
a mixing function , followed by an integrator. The de-
sign parameters are the number of channels and the mixing
functions . The role of
the mixing functions is to gather together all the information in

over the entire interval . Namely, is win-
dowed with shifts of some compactly supported function, and
all the windowed versions are summed with different weights.
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Fig. 4. An efficient sampling system for multipulse signals (a), and an equivalent system using filters (b). The sampling step is .

The functions are constructed from the Gabor frame.
Let be a Gabor frame with window supported
on the interval , essentially bandlimited to

, and with sampling parameters and
for some . Then

(7)

where

(8)

with

and (9)

Let and . The waveforms
are basically mixtures of channels

and , of the Gabor sampling
scheme, where the functions mix the frequency content of
the signal, while mix the temporal content of the signal.
To specify completely, it remains to choose the coef-
ficients and defining the waveforms and ,
respectively. To do so, we first analyze the relation between the
samples and the signal .
Consider the th channel

(10)

The relation (10) ties the known to the unknown Gabor
coefficients of with respect to . This relation
is key to the recovery of . If we can recover from the
samples , then by Theorem III.1 we are able to recover
almost perfectly. As can be seen from (10), the goal of the mod-
ulator is to create mixtures of the unknown Gabor co-
efficients . These mixtures, when chosen appropriately, will
allow to recover from a small number of samples by
exploiting their sparsity and relying on ideas of CS. Note, that
when using the basic Gabor scheme, each is equal to one
value of , so that no combinations are obtained. When
are sparse, with unknown sparsity locations, we will need to ac-
quire all their values using this approach. In contrast, obtaining
mixtures of , allows reduction in the number of samples.

B. Signal Recovery

For our purposes, it is convenient to write (10) in matrix form
as

(11)

Let the indices
and be fixed throughout the ex-

position. Then, is a matrix of size whose th element
equals , and is a matrix of size with th element
equal . The unknown Gabor coefficients are gathered in the

matrix with columns . The
matrix contains the coefficients ,

while the matrix contains the coefficients
. The matrices and have to be chosen such that it is pos-

sible to retrieve from (11). If and are
identity matrices, then the system of Fig. 4(a) reduces to stan-
dard Gabor sampling.
From (10) it follows that the waveforms , respectively

matrix , mix the temporal content of the signal, while the
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waveforms , respectively matrix , mix the frequency
content of the signal. The matrix is used to reduce the number
of channels. On the other hand, the purpose of depends on
which kind of signals are sampled. For general multipulse sig-
nals, the matrix is only used to simplify hardware implemen-
tation, as we discuss below, but not to reduce sampling rate.
Therefore, in general, we can choose in this case. For
multipulse signals that are additionally frequency sparse, we
need to allow recovery from lower rate samples, namely we
can reduce the sampling rate by using appropriate mixtures with

, as shown in Section V.
We begin the discussion with general multipulse signals.

When there is no frequency sparsity, we can choose and
, reducing (10) to . In this case become

pure modulations . Choosing and left
invertible leads to a mixture of pure modulations, which can
be easier to implement in hardware. This point is discussed in
more detail in Section VII. Assuming has full column rank,
we can recover from the samples by , where

is the (Moore-Penrose) pseudoinverse of
. It remains to retrieve the unknown Gabor coefficients

from .
Recall from Fig. 3, that for every , the column vectors of

matrix have only out of nonzero entries, where
the nonzero entries correspond to the pulse locations. In addi-
tion, all have nonzero entries in the same rows. The problem
of recovering such a matrix is referred to in the CS literature
as a multiple measurement vector (MMV) problem. Several al-
gorithms have been developed that exploit this structure to re-
cover efficiently from in polynomial time when has the
RIP property of order , twice the number of nonzero
rows [12]–[14], [26]–[28]. For example, a popular approach is
by solving the convex problem

(12)

where .
It is well known that Gaussian and Bernoulli random ma-

trices, whose entries are drawn independently with equal prob-
ability, have the RIP of order if , where
is a constant [29], [30]. For random partial Fourier matrices
the respective condition is [31], [32]. There-
fore in our case, the number of samples in time has to be at least

.
C. Equivalent Representation

For a fixed Gabor frame , the number of branches
can be reduced to if instead of modulations followed by
an integrator, we perform modulations followed by a filter

. Consider the system in Fig. 4(b) with as in (8),
, where , and is as in (9), and the filter
given by

Note, that for all is compactly supported in time on
, and that its support contains

the support of . The shifted versions

Fig. 5. Relation between the support of the filter , which is the sum of the
shifted supports of , and the support of the signal .

have non-overlapping supports as the width of
is smaller than the shift step

The support relation between the filter and the multipulse
signal is depicted in Fig. 5.
Under these assumptions, the output of the th channel is

The sum is nonzero only when , because otherwise
the support of shifted by does not overlap the
support of , as depicted in Fig. 5. Therefore it is sufficient
to sample only at points for ,
leading to

where are the Gabor coefficients. Evi-
dently, if the coefficients used to build the blocks
of the filter are the same as coefficients used to create the
waveforms , then the two systems are equivalent.

D. Noisy Measurements

Until now we considered signals that were exactly multipulse
and noise free samples. A more realistic situation is when the
measurements are noisy and/or the signal is not exactly
multipulse, having some energy leaking outside the pulses. We
now show that our sampling scheme is robust to bounded noise
in both the signal and the samples.
We say that a signal essentially bandlimited to

, is essentially multipulse with pulses each
of width no more than , if for some there exists an

such that

We assume that the signals are time limited to the interval
, meaning that the energy leaks only between the

pulses, and denote this class of signals by .
Since the energy of leaks beyond

the support of the pulses, the column vectors , of the
matrix of dominant coefficients, defined in (11), are no longer
sparse. Nonetheless, can be well approximated by a sparse
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matrix , which consists of rows of with
largest norm, and zeros otherwise, and is referred to as the
best term approximation of . The existence of is shown
in Appendix B.
Assuming now that the sampling system of Fig. 4(a) also has

imperfections in the form of noise added to the samples, the
input-output relation can be written as

(13)

where with a matrix of Gabor coefficients and
is an noise matrix. With having full column rank,

the relation (13) reduces to , where . A
good term approximation of can be obtained by utilizing
CS algorithms. Specifically, if has RIP constant
and is bounded, then

(14)

has a unique sparse solution that obeys [28]

where and are constants depending on .
Finally, following a proof similar to that of Theorem III.1

it can be shown that a function synthesized from is a good
approximation of the original signal

where
and .

In particular, if is row sparse, as is the case for
, then and the error of the

approximation depends only on the noise added to the sam-
ples. When the signal is essentially multipulse, then the error
bound depends on the decay of the coefficients. If that quantity
is small, then a good approximation of is achieved by
synthesizing a signal from the solution of (14). Note here,
that the if the dual window is compactly supported, then a
function reconstructed from the coefficients is multipulse.

V. TIME-FREQUENCY SPARSE SIGNALS

We now show that we can further reduce the sampling rate
when sampling multipulse essentially multiband signals. We
begin by giving a formal definition of such signals and describe
the structure of their Gabor coefficients.

A. Multipulse Essentially Multiband Signals

We say that a signal is essentially
multiband with bands of width no more than , if for some

there exists a multiband function with bands, all
of width no more then such that

We denote the set of such signals by .
An example are radar signals that are superpositions of a finite
number of time-shifts and modulations of one pulse. If the gen-
erating pulse is well localized in frequency, then the signal is
approximately sparse in the Gabor transform domain with re-
spect to a window that decays fast in time and frequency.
Let the Gabor frame be as in Section IV. If the signal is

known to be essentially multiband, then the nonzero row vectors
have only out of

dominant entries, and the dominant entries correspond to the lo-
cations of the essential bands of . Indeed, let be any
frequency band of . Then and there are at
most shifts of essential bandwidth
of by that overlap . This can be calculated from

The coefficients for which the shift by of does not
overlap any frequency band of are nonzero but small.
Since there are altogether bands present, each is

-dominant and all have dominant entries
on the same columns due to the structure of . This implies
that has at most dominant columns, as
shown in Fig. 3.
The matrix with nonzero

columns corresponding to the dominant columns of is re-
ferred to as the best -column approximation of . Conse-
quently, a result similar to that of Lemma B.1 holds with time
and frequency interchanged. The sparsity in time combined with
the sparsity of in frequency allows to further reduce the
number of samples necessary for a good reconstruction.

B. Signal Recovery

To recover from themeasurements in Fig. 4(a), the matrices
and have to be chosen appropriately. If and is

left invertible, then we are back to the situation of Section IV.
However, since is additionally almost sparse with respect to
columns, we would like to reduce .
It is convenient to write the relation (11) as

The matrix inherits sparsity with respect to rows from the
matrix , and therefore has only out of nonzero
rows, which are precisely the nonzero rows of . When the ma-
trix has the RIP property of order , then can be
efficiently recovered, for example by solving (12) for a unique
solution subject to .
Next, we use to find a unique -sparse

approximation of . Let be the set of indices of nonzero rows
of and the matrix built from those rows of indexed
by . If the matrix has RIP constant with

, then there exists a unique -sparse
solution of
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Let be a matrix whose rows indexed by
equal to , and the remaining entries equal to zero. It then fol-
lows that is proportional to the best -column approximation
of in the following sense [28]

where is a constant depending on . The requirement on
translates to . As opposed to purely

multipulse signals, where it suffices to take , this choice
is not possible here, since it does not satisfy RIP.
The resulting matrix is a row sparse and

column sparse approximation of . It is important to
note, that the solution to the first MMV problem, ,
recovers exactly, since is row sparse, while the solution
to the second MMV problem, , returns a column
sparse matrix that is an approximation of , which itself is
not strictly column sparse.
Finally, the function reconstructed from the coefficients

is a good approximation of the input signal :

where and . The
proof is analogous to the proof of the error estimate in Theorem
III.1 with appropriate adjustments.
In the case of known positions of the pulses and bands, the

minimal sampling rate for the desired accuracy of the approx-
imation and a given frame is when and

. In the blind setting, when the locations of
the pulses and the bands are unknown, the sampling rate in-
creases by a factor of four (a factor of two in each domain),
with and required for
obtaining a unique solution. Therefore, for signals from the set

, the number of samples with re-
spect to time is the same as for signals from ,
while , the number of samples with respect to frequency, is re-
duced from to . The overall number of samples is

, where .

VI. RELATED WORK

Recently, the ideas of CS have been extended to allow for
sub-Nyquist sampling of analog signals [6], [8], [9], [17], [18],
[28], [33], [34]. These works follow the Xampling paradigm,
which provides a framework for incorporating and exploiting
structure in analog signals without the need for discritization
[15], [16]. Two of these sub-Nyquist solutions are closely re-
lated to our scheme: the first is a sub-Nyquist sampling architec-
ture for multiband signals introduced in [17], while the second
is a sampling system for multipulse signals with known pulse
shape introduced in [8]. We show, that by choosing different
waveforms , the systems of [17] and [8] are special cases
of the system in Fig. 4.

A. The Modulated Wideband Converter

The concept of usingmodulation waveforms is based on ideas
presented in [17] for a multibandmodel, which is Fourier dual to
ours: the signals in [17] are assumed to be sparse in frequency,
while multipulse signals are sparse in time. More specifically,
[17] considers multiband signals whose Fourier transform is
concentrated on frequency bands, and the width of each band
is no greater than . The locations of the bands are unknown
in advance. A low rate sampling scheme, called the modulated
wideband converter (MWC), allowing recovery of such signals
at the rate of was proposed in [17]; a hardware prototype
appears in [16]. This scheme consists of parallel channels where
in each channel the input is modulated with a periodic waveform
followed by a low-pass filter and low-rate uniform sampling.
The main idea is that in each channel the spectrum of the signal
is scrambled, such that a portion of the energy of all bands ap-
pears at baseband. Therefore, the input to the sampler contains a
mixture of all the bands. Mixing of the frequency bands in [17]
is analogous to mixing the Gabor coefficients in our scheme.
The MWC is equivalent to the system of Fig. 4(b) where the

waveforms are -periodic and the filter is an ideal
rectangular low pass filter, whose bandwidth is .
The samples are taken at points . The output of
the MWC system is then a weighted sum of Gabor coefficients
with respect to a frame where is a sinc function
that is bandlimited to and . Thus
the samples can be written as

where .With this frame, for each
the number of nonzero Gabor coefficients equals at most
, as at most two shifts of by overlap

one band of the signal. Therefore, the number of channels is
proportional to the number of frequency bands in the signal,
and equals .
TheMWC is an ideal system, in the sense that it uses ideal low

pass filters, which in practice are difficult to build, and that the
reconstruction process uses infinitely many samples. Using the
Gabor approach we can generalize the MWC to other, not nec-
essarily ideal filters. Furthermore, the reconstruction error can
be computed when only a finite number of samples is available
by using Theorem III.1 with time and frequency interchanged.
The MWC can be easily extended to other, more redundant

frames, with a cost of increased number of channels . Let
be a collection of Gabor frames with windows

bandlimited to and constants and
, for some . For any frame from , the

MWC parameters change to , the
waveforms have to be -periodic and the filter

. Also, the sparsity of Gabor coefficients in frequency re-
duces to , as shifts of by

overlap one band of . The MWC system associated to
this frame has to have channels. This
is an increase in the number of channels by a factor of .
However, this increase can reduce the number of time samples
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necessary for achieving the same reconstruction error as with
.

B. Multipulse Signals With Known Pulse Shape

Another related signal model is that of multipulse signals with
known pulse shapes [6], [8], [9]:

(15)

where is known and is supported on .
This problem reduces to finding the amplitudes and time
delays . As shown in [6] the time-delays can be estimated
using nonlinear techniques, e.g., the annihilating filter method
as long as the number of measurements satisfies and
the time-delays are distinct. Once the time delays are known,
the amplitudes can be found via a least squares approach. The
number of channels is motivated by the number of unknown pa-
rameters which equals .
The Fourier coefficients can be determined from the samples

of using a scheme similar to that of Fig. 4(a) with
channels. The modulating waveforms being
with , and all set to one. In this case, the input-
output relation becomes

where is a vector of length is a matrix of size and
is a vector of Fourier coefficients of of length .
If are designed so that is left invertible, then .
We note here, that the system of [8] is inefficient for our signal
model, since it reduces to the Fourier series method, which does
not take sparsity in time into account. However, by choosing
an appropriate Gabor frame and waveforms , the same
scheme of Fig. 4(a) can be used both to sample signals from the
set as well as that of the form (15), as shown
in the following proposition.
Proposition VI.1: Let be a Gabor frame such that

almost everywhere, and the waveforms
in the sampling scheme of Fig. 4(a) are such that the

matrix , is left invertible and the matrix has RIP constant
of order with one row of ones. Then

this sampling scheme can be used to sample multipulse signals
of the form (15) supported on . The time-delays and
amplitudes of can be retrieved from samples as long as

and the known pulse in (15)
satisfies for .
The proof is straightforward.
Example of Gabor windows that are well localized

in time and frequency and form a partition of unity, e.g.,
, are the raised cosine window, or

B-splines of positive orders [23]. An example of a matrix
with a row of ones is a partial Fourier matrix which is known
for its good CS properties [21].
To conclude, we have seen that the same hardware can be

used to sample signals with known pulses and those from
. The difference is in the number of branches

used and the processing stage.

VII. WAVEFORM DESIGN

Hardware implementation of our scheme reduces to imple-
menting the waveforms . The mixing functions
are a product of and defined in (8). The functions

are pulse sequence modulations, where the sequences are
generated to form a valid CS matrix. An example is a matrix
whose entries are drawn independently and with equal prob-
ability.
One method to create the waveforms is to low-pass

filter -periodic waveforms. More precisely, let

where is some pulse shape such that for
, and is a length- sequence. Since is periodic

it can be expressed as

for some coefficients . We then filter by a filter
with frequency response , designed so that

to form the waveforms with coef-
ficients . The shaping filter frequency response,

, is designed to transfer only the coefficients with index
, suppressing all other coefficients.

For the matrix , built from the coefficients , to be left
invertible a necessary condition is that and the
sequences are chosen such that the matrix , whose th
element is , has full column rank [8]. For example, if

, then the rows of can be created from cyclic shifts
of one basic sequence. On the other hand, for a matrix to
be a valid CS matrix, meaning to have RIP property with high
probability, the values are chosen independently
with equal probability and [17].
One example of a pulse modulation scheme is when
, and

The frequency response of this pulse is given by

so that for . In addition we choose
as sequences of s, created from cyclic shifts of one basic se-
quence, in a way that yields an invertible matrix . Such rect-
angular pulses with alternating signs can be easily implemented
in hardware [16].

VIII. GABOR WINDOWS

The sampling scheme presented in this paper is based on
Gabor frames. We recall here some methods to construct Gabor
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frames with well localized windows for a chosen redundancy
based on results from [22] and [23].
Let . A window that is supported on

and forms a frame with and can be con-
structed from an everywhere increasing function such that

for , and for by

where , [22]. The function is nonnegative, has
the desired support and equals 1 on . If is
taken to be continuously differentiable, than is times
continuously differentiable, which implies that decays like

. The points , where becomes con-
stant, have been chosen so that their distance to the furthest
edge of is exactly . The frame bounds of such a con-
structed frame equal [22], since

As an example, let on [0,1] and . Then

An alternative construction for was developed in
[35] and [36]. The method results in spline type windows
of any order of smoothness that satisfy the partition of unity
criterion. The constructions are made by counting the number of
constraints (in the Ron-Shen duality condition [37], and on the
points where continuity/differentiability is required) and then
searching for polynomials on and on [0,1] of a matching
degree. One example is supported on and given
by

that forms a frame with and . It forms a partition
of unity with a shift parameter . The
dual window is also supported on and is given by

Applying dilation by , with , both to and
we obtain a dual pair of windows and

that are supported on , and such that
forms a frame with frame bounds

and . Moreover, forms a partition of unity with
shift parameter .
Well known, compactly supported Gabor windows are the

B-splines. Let be a spline of order

Then is supported on and forms a partition
of unity with shift parameter . To generate a Gabor frame
from with a window supported on and
lattice parameters , such that the window
forms a partition of unity with shift , we need to choose

[38]. Then is supported on the
desired interval and decays like in the frequency
domain. Note that decreases as the order of smoothness
of the B-spline is increased. Thus smoother windows can be
obtained only at the cost of a smaller . However, already for

we get good concentration properties of . The dual
can be computed by inverting the Gabor frame operator, or by
using the method of [23].

IX. SIMULATIONS

We now present some numerical experiments illustrating the
recovery of multipulse signals.
We tested our sampling scheme using Monte Carlo simula-

tions averaged over 500 trials on a range of multipulse sig-
nals of duration ms. The pulses making up the sig-
nals were chosen at random from a set of five different pulses:
cosine, Gaussian, B-spline of order 3 and 5, and rectangular
pulse. The locations of the pulses were also chosen at random.
We varied the number of pulses , the maximal
width ms of the pulse, and the redundancy

of the frame. Throughout the experiments
we chose and as a Bernoulli random matrix. We mea-
sured the relative error . For redundancy
we chose a Gabor frame with window being B-spline of order
three, for the window was a cosine, and for
we chose the truncated Gaussian.
Fig. 6(a) depicts the decrease in the reconstruction error with

increased number of samples for different values of and
ms. We used a tight Gabor frame with a cosine

window and redundancy . The is dictated by the the
number of pulses and frame redundancy, and it has to be at least

. Meaning, that for multipulse signals with
pulses, , for we have , and for it
has to be . As expected, the sparser the signal, the less
samples are needed for a good reconstruction. The number of
samples in time can be significantly reduced if sparsity is taken
into account. Without any knowledge on the sparsity we would
have to take time samples for signals with
pulses, and with that would result in the reconstruction
error of 0.05. However, when sparsity is taken into account, al-
ready samples suffice to achieve the same reconstruc-
tion error. Therefore reducing the number of samples by a factor
of six. When , to achieve reconstruction error of 0.05 we
need samples in time, and for signals with

.
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Fig. 6. (a) Decay of the reconstruction error with increased number of samples for multipulse signals with pulses, pulse width ms and
frame redundancy . (b) Comparison of performance for signals with ms using different frames with and .
(c) Comparison of the relative error with respect to the number of channels for multipulse essentially bandlimited signals with ms,
with respect to different frames.

In Fig. 6(b) we considered the influence of the Gabor frame on
the reconstruction error and the number of samples involved.
We tested the system for signals with pulses of width no
more than ms and . The least number of
samples is achieved with and at the same
time with we achieve a good reconstruction. The value
of necessary for a good reconstruction increases with the
increase of redundancy. Without knowing the sparsity structure
of the signal in time, we would have to take samples
for , and for . When sparsity is
exploited, we can reduce that number to and ,
respectively.
We then examined the performance of our sampling scheme

on signals comprising three pulses of width no more than
ms, that are additionally essentially multiband with two

bands. Fig. 6(c) depicts the decay of reconstruction error with
the increase of for two different frames: one is a tight frame
with cosine window and redundancy and second, a
frame with Gaussian window and redundancy . The
sampling systemwas tested with the matrix being the random
Fourier matrix and a Bernoulli random matrix. For example,
when a frame is of redundancy and no sparsity is taken
into account then we need and samples to
achieve a reconstruction error of 0.07. On the other hand, with
sparsity being exploited we can use only and
for a similar reconstruction quality, resulting in a twelvefold
reduction in the number of samples.

X. CONCLUSION

We presented an efficient sampling scheme for multipulse
signals, which is designed independently of the time support of
the input signal. Our system allows to sample multipulse sig-
nals at the minimal rate, far below Nyquist, without any knowl-
edge of the pulse shapes or its locations. The scheme fits into
the broad context of Xampling—a recent sub-Nyquist sampling
paradigm for analog signals. Our architecture relies on Gabor
frames which lead to sparse expansions of multipulse signals,
and consists of modulating the signal with several waveforms
followed by integration. We showed that the Gabor coefficients,
necessary for reconstruction, can be recovered from the sam-
ples of the system by utilizing CS techniques. The number of

necessary samples depends on the desired accuracy of the ap-
proximation, essential bandwidth of the signal, and redundancy
factor related to the Gabor frame, and equals .
The sampling rate can be further reduced if the signal is addi-
tionally sparse in frequency. We also showed that the proposed
sampling and recovery technique is stable with respect to noise
and mismodeling.

APPENDIX A
PROOF OF THEOREM III.1

The proof is rooted in that of [24, Th. 3.6.15] with appropriate
adjustments. Since is a Gabor frame, admits a
decomposition

Let . The bandlimited functions are dense in
, therefore, there exists bandlimited to some

, such that

Since is an essentially bandlimited function, there exists a
function bandlimited to , such that

Consequently, only for those
such that , that is

The fact that and are bandlimited implies that there
are only a finite number of values for which .
Let be the smallest integer such that for

. The exact value of can be calculated as

Define a sequence as
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Then for all
, and

where we first used the boundedness of the analysis operator
related to and then the synthesis operator related to
whenever and are in .

APPENDIX B
-TERM APPROXIMATION OF

We show here the existence of an -term approximation of
.
Lemma B.1: Let be -essentially

multipulse and be a Gabor frame with compactly
supported on and for some

. Then there exists a subset of
such that

where consists of rows of indexed by ,
and .

Proof: Let be a multipulse -ap-
proximation of . Then for all , and
the column vectors

, are all jointly sparse with nonzero coeffi-
cients. Let denote the index set of nonzero coefficients. For

, let be vectors with coefficients defined by

Then is the best -term approximation of ,
for each . Note that for all
and , so that

completing the proof.
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