

Electrical Engineering Department Computers **Communications**

~0

lode 4 (8 x 10 thinned)

SNR = -15 dB

Cognitive Sub-Nyquist Collocated MIMO Radar Prototype

Kumar Vijay Mishra	Eli Shoshan	Moshe Namer	Maxim Meltsin			
Eran Ronen	Yana Grir	novich Yo	Yonina C. Eldar 646804-BNYQ			
Main Contributions	Conventional Collocated MIMO	Sub-Nyquist MIMO	Signal Model and Recovery			
 Prototype realizes both spatial and temporal sub-Nyquist sampling in a MIMO radar without loss of angular and range resolution 	MIMO array with fewer elements has same spatial resolution as a virtual array with	 Spatial Sub-Nyquist Less antenna elements (randomly thinned arrays) Same angular resolution as of virtual array Temporal Sub-Nyquist 	• Received signal for P pulses at the <i>q</i> th antenna after demodulation: Total number of Targets $trace = \sum_{p=0}^{P-1} \sum_{m=0}^{M-1} \sum_{l=1}^{L} \alpha_l h_m (t - \tau_l - p\tau) e^{j2\pi\beta_{m,q}\theta_l} e^{j2\pi f_l^D p\tau}$ $Target time delay$			

- Sub-Nyquist 4x5 MIMO array shows same detection performance as Nyquist 8x10 ULA
- Cognitive transmission is employed to further enhance SNR for sub-Nyquist arrays

more elements	$TR\frac{\lambda}{2}$ Virtual array	 Temporal Sub-Nyquist Reduced sampling rate at each Rx 	Composite Rx signal spectrum	•	Fourier coefficients of the m th transmitter channel at the q th receiver: Operating frequency
MIMO transmits orthogonal	Radar cross-section is same for all antennas in collocated MIMO	• Same range resolution as that of Nyquist bandwidth TB_h			$y_{m,q}^{p}[k] = \sum_{l=1}^{L} \alpha_{l} e^{j2\pi\beta_{m,q}\theta_{l}} e^{-j\frac{2\pi}{\tau}k\tau_{l}} e^{-j2\pi f_{m}\tau_{l}} e^{j2\pi f_{l}^{D}p\tau}$ Target reflectivity Dopplor focusing for a specific frequency y
waveforms and processes linear combination of		 Cognitive Transmission Entire power is focused in only few narrow subbands 	Nyquist MIMO Tx Waveform		$Doppier focusing for a specific frequency v$ $\phi_{m,q}^{v}[k] = \sum_{l=1}^{L} \alpha_{l} e^{j2\pi\beta_{m,q}\theta_{l}} e^{-j\frac{2\pi}{\tau}(k+f_{m}\tau)\tau_{l}} \times \begin{cases} P & f_{l}^{D}-\nu < 1/2P\tau \\ 0 & else \end{cases}$
to each waveform	R receivers T transmitters	• High SNR at receiver	Jub-Nyquist MIMO Tx Waveform	•	Recover azimuth, delay and Doppler using simultaneous sparse 3D OMP with focusing

Technical Specifications

BW per Tx (incl. guard- bands) BW per Tx (excl. guard- bands) Temporal sampling rate Spatial sampling rate	Nyquist (Mode 1)15 MHz12 MHz30 MHz8x1080	Sub-Nyquist (Mode 3)3 MHz3 MHz3 MHz7.5 MHz4x520	Reduction 80% 75% 75% 50% 25%	Laptop/PC User Interface $s_r[n] = l_r[n] + jQ_r[n]$ Modes 1, 2 and 4 Mode 3 $T = 2^{20} MHz$ $T = 2^{20} MH$	Litter full spectrum of one channel of one receiver before subsampling at 7.5 MHz
	Array	Modes		Waveform Generator	Analog Pre-Processor (APP) Digital Receiver
Mode 1: Filled unifor Mode 2: Filled rand Mode 3 Thinned ran (~Virtual 8 Spatial sub Mode 4: Thinned ran (~Virtual 20	: 8x10 orm array : 8x10 om array 3: 4x5 dom array x10 ULA) o-Nyquist : 8x10 dom array x20 ULA)	$\begin{array}{c} \times \ Tx \\ \end{array} \\ \end{array} \\ \end{array} \\ \times \ \infty \\ \end{array} \\ \times \ \infty \\ \end{array} \\ \end{array} \\ \begin{array}{c} \times \ 0 \\ 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \times \ 0 \\ 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \times \ 0 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \times \ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \times \ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \times \ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \times \ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \times \ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \times \ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \times \ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \times \ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \times \ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \times \ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \times \ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \times \ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \times \ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} \times \ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \times \ 0 \\ \end{array} \\ \begin{array}{c} \times \ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \times \ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \times \ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \times \ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \times \ 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \times \ 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \times \ 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \\ \end{array} \\ \end{array} \\ \end{array}		 Total BW, 8 Tx: 120 MHz 3 MHz guard-bands Eight 375 kHz cognitive slices per Tx Cognitive BW, 1 Tx: 3 MHz (= 8 x 375 kHz) BW reduction, 1 Tx (excl. guard-bands): 75% (3 of 12 Mhz) Kilinx VC707 FPGA Board Vilinx VC707 FPGA Board Vilinx	 APP filters the receiver data into eight channels Dual back-to-back APPs in a single chassis BPFs have ~30 dB stopband attenuation to mitigate subsampling noise BPFs have ~30 dB stopband attenuation to mitigate subsampling noise Two 16-bit eight, channel digitizers for I and Q streams Sub-Nyquist sampling rate: 7.5 MHz/channel Signal BW with guard-bands: 30 MHz/channel

Overview of Hardware Architecture

User Interface \ Radar Display

Sample Measurements Results

