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Parametric signals, such as streams of short pulses, appear in many appli-

cations including bio-imaging, radar, and spread-spectrum communication.

The recently developed finite rate of innovation (FRI) framework, has paved

the way to low rate sampling of such signals, by exploiting the fact that

only a small number of parameters per unit of time are needed to fully

describe them. For example, a stream of pulses can be uniquely defined by

the time-delays of the pulses and their amplitudes, which leads to far fewer

degrees of freedom then the signal’s Nyquist rate samples. This chapter

provides an overview of FRI theory, algorithms and applications. We begin

by discussing theoretical results and practical algorithms allowing perfect

reconstruction of FRI signals from a minimal number of samples. We then

turn to treat recovery from noisy measurements. Finally, we overview a

diverse set of applications of FRI theory, in areas such as superresolution,

radar and ultrasound.

1.1 Introduction

We live in an analog world, but we would like our digital computers to inter-

act with it. For example, sound is a continuous-time phenomenon, which can be

characterized by the variations in air pressure as a function of time. For digital

processing of such real-world signals to be possible, we require a sampling mech-

anism which converts continuous signals to discrete sequences of numbers, while

preserving the information present in those signals.

In classical sampling theory, which dates back to the beginning of the 20th

century [1–3], a bandlimited signal whose maximum frequency is fmax is sampled

at or above the Nyquist rate 2fmax. It is well known that the signal can then

be perfectly reconstructed from its samples. Unfortunately, real-world signals

are rarely truly bandlimited, if only because most signals have finite duration

in time. Even signals which are approximately bandlimited often have to be

sampled at a fairly high Nyquist rate, requiring expensive sampling hardware

and high-throughput digital machinery.

Classical sampling theory necessitates a high sampling rate whenever a signal

has a high bandwidth, even if the actual information content in the signal is low.
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For instance, a piecewise linear signal is non-differentiable; it is therefore not

bandlimited, and moreover, its Fourier transform decays at the fairly low rate

Op 1
f2 q. However, the signal is completely described by the positions of knots

(transitions between linear segments) and the signal values at those positions.

Thus, as long as the knots are known to have a minimum separation, this signal

has a finite information rate. It seems wasteful to sample such signals at the

Nyquist rate. It would be more efficient to have a variety of sampling techniques,

tailored to different signal models, such as bandlimited or piecewise linear signals.

Such an approach echoes the fundamental quest of compressive sampling, which

is to capture only the essential information embedded in a signal. This chapter,

together with Chapter 3, on Xampling, apply the idea of compressed sensing

to certain classes of analog signals. While the focus of Xampling is on signals

lying in unions of subspaces and on developing a unified architecture for efficient

sampling of various classes of signals, here we concentrate on a comprehensive

review of finite rate of innovation (FRI) theory.

To be specific, suppose that a function xptq has the property that any finite

duration segment of length τ is completely determined by no more than K

parameters. In this case, the function xptq is said to have a local rate of innovation

equal to K
τ [4], because it has no more than K degrees of freedom every τ seconds.

In general, a signal is said to have FRI if its local rate of innovation is finite for a

sufficiently large τ . For example, the aforementioned piecewise linear signal has

this property. Many important signal models, such as splines and pulse streams,

also satisfy the FRI property, and will be explored in depth later in this chapter.

An elegant and powerful result is that, in many cases, certain types of FRI

signals can be reconstructed without error from samples taken at the rate of

innovation [4]. The advantage of this result is self-evident: FRI signals need

not be bandlimited, and even if they are, the Nyquist frequency can be much

higher than the rate of innovation. Thus, by using FRI techniques, the sampling

rate required for perfect reconstruction can be lowered substantially. However,

exploiting these capabilities requires careful design of the sampling mechanism

and of the digital post-processing. The purpose of this chapter is to review the

theory, recovery techniques, and applications of the FRI model.

1.1.1 The sampling scheme

Consider the sampling setup shown in Fig. 1.1, where the original continuous-

time signal xptq is filtered before being uniformly sampled at a rate of fs � 1
T .

The filtering may be a design choice or may be due to the acquisition device.

If we denote the filtered version of xptq by yptq � hptq
 xptq, then the samples

tynu are given by

yn � ypnT q �
〈
xptq, ϕ

�
t

T
� n


〉
�
» 8
�8

xptqϕ
�
t

T
� n



dt, (1.1)



Sampling at the Rate of Innovation: Theory and Applications 3

where the sampling kernel ϕptq is the scaled and time-reversed version of hptq.
For example, the previously discussed classical sampling setup often incorpo-

rates an anti-aliasing low-pass filter hptq � sincptq, which eliminates any signal

components having frequencies above fs
2 .

Changing the sampling kernel ϕptq provides considerable flexibility in the infor-

mation transferred to the samples tynu. Indeed, many modern sampling tech-

niques, such as sampling in shift-invariant spaces, rely on an appropriate choice

of the sampling kernel [5,6]. As we will see, the model of Fig. 1.1 with adequate

sampling kernels also provides the basis for most FRI sampling techniques. On

the other hand, FRI recovery methods are typically more elaborate, and involve

nonlinear digital processing of the samples. This is an important practical aspect

of FRI techniques: the sampling hardware is simple, linear, and easy to imple-

ment, but it is followed by nonlinear algorithms in the digital stage, since this is

typically easier and cheaper to customize.

xptq hptq � ϕ
�
� t

T

� T
yn

yptq

Figure 1.1 Traditional sampling scheme. The continuous-time input signal xptq is
filtered with hptq and sampled every T seconds. The samples are then given by
yn � px
 hqptq|t�nT .

Two basic questions arise in the context of the sampling scheme of Fig. 1.1.

First, under what conditions is there a one-to-one mapping between the mea-

surements tynu and the original signal xptq? Second, assuming such a mapping

exists and given the samples tynu, how can a practical algorithm recover the

original signal?

Sampling is a typical ill-posed problem in that one can construct an infinite

number of signals that lead to the same samples tynu. To make the problem

tractable one then has to impose some constraints on the choice of xptq. Ban-

dlimited signals are the prototypical example of such a constraint, and yield

both a one-to-one mapping and a practical recovery technique. The set of band-

limited signals also happens to form a shift-invariant subspace of the space of

continuous-time functions. As it turns out, the classical sampling theorem can

be extended to signals belonging to arbitrary shift-invariant subspaces, such as

splines having uniformly spaced knots [5, 6].

In many cases, however, requiring that a signal belongs to a subspace is too

strong a restriction. Consider the example of piecewise linear functions. Is the

set of all such functions a subspace? Indeed it is, since the sum of any two

piecewise linear signals is again piecewise linear, as is the product of a piece-

wise linear function with a scalar. However, the sum of two such functions will

usually contain a knot wherever either of the summands has a knot. Repeatedly

summing piecewise linear signals will therefore lead to functions containing an

infinite number of infinitesimally spaced knots; these contain an infinite amount



4 Chapter 1. Sampling at the Rate of Innovation: Theory and Applications

of information per time unit and clearly cannot be recovered from samples taken

at a finite rate.

To avoid this difficulty, we could consider uniform piecewise linear signals,

i.e., we could allow knots only at predetermined, equally-spaced locations. This

leads to the shift-invariant subspace setting mentioned above, for which stable

recovery techniques exist [6]. However, instead of forcing fixed knot positions, one

could merely require, for example, a combination of a finite number of piecewise

linear signals with arbitrary known locations. In many cases, such a restriction

better characterizes real-world signals, although it can no longer be modeled as

a linear subspace. Rather, this is an instance of a union of subspaces [7,8]: each

choice of valid knot positions forms a subspace, and the class of allowed signals

is the union of such subspaces. The minimum separation model also satisfies the

FRI property, and can be recovered efficiently from samples taken at the rate of

innovation. The union of subspaces structure, which is explored in more detail

in Chapter 3, is useful in developing a geometrical intuition of FRI recovery

techniques. There is, however, a distinction between the union of subspaces and

FRI models. In particular, there exist FRI settings which cannot be described

in terms of unions of subspaces, for example, when the signal parameters do not

include an amplitude component. There are also unions of subspaces which do

not conform to the FRI scenario, in particular when the parameters affect the

signal in a non-local manner, so that finite-duration segments are not determined

by a finite number of parameters.

Our discussion thus far has concentrated on perfect recovery of FRI signals

in the absence of noise. However, empirical observations indicate that, for some

noisy FRI signals, substantial performance improvements are achievable when

the sampling rate is increased beyond the rate of innovation [9–12]. This leads

to two areas of active research on FRI: first, the development of algorithms with

improved noise robustness [9–11, 13–17], and, second, the derivation of bounds

on the best possible performance at a given noise level [12, 16]. By comparing

FRI techniques with performance bounds, we will demonstrate that while noise

treatment has improved in recent years, there remain cases in which state-of-

the-art techniques can still be enhanced.

1.1.2 History of FRI

The idea of analyzing FRI signals was first proposed by Vetterli et al. [4].

Although the minimal sampling rate required for such settings has been derived,

no generic reconstruction scheme exists for the general problem. Nonetheless,

some special cases have been treated in previous work, including streams of

pulses, which will be our focus in this chapter.

A stream of pulses can be viewed as a parametric signal, uniquely defined by

the time-delays of the pulses and their amplitudes. An efficient sampling scheme

for periodic streams of impulses, having K impulses in each period, was proposed

in [4]. Using this technique, one obtains a set of Fourier series coefficients of the
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periodic signal. Once these coefficients are known, the problem of determining the

time-delays and amplitudes of the pulses becomes that of finding the frequencies

and amplitudes of a sum of sinusoids. The latter is a standard problem in spectral

analysis [18] which can be solved using conventional approaches, such as the

annihilating filter method [18,19], as long as the number of samples is no smaller

than 2K. This result is intuitive since 2K is the number of degrees of freedom

in each period: K time-delays and K amplitudes.

Periodic streams of pulses are mathematically convenient to analyze, but not

very practical. By contrast, finite streams of pulses are prevalent in applica-

tions such as ultrasound imaging [10]. The first treatment of finite Dirac streams

appears in [4], in which a Gaussian sampling kernel was proposed. The time-

delays and amplitudes are then estimated from the samples. However, this

approach is subject to numerical instability, caused by the exponential decay of

the kernel. A different approach, based on moments of the signal, was developed

in [9], where the sampling kernels have compact time support. This method treats

streams of Diracs, differentiated Diracs, and short pulses with compact support.

The moments characterize the input akin to the Fourier coefficients used in [4].

In fact, the time delays and pulses can again be determined from the moments by

using standard spectral estimation tools. Another technique that utilizes finite-

support sampling kernels, was proposed in [10]. This approach has improved

numerical stability, thanks to the choice of the sampling kernel, especially for

high rates of innovation. The method was then generalized in [11].

Infinite streams of pulses arise in applications such as ultra-wideband (UWB)

communications, where the communicated data changes frequently. Using a com-

pactly supported filter [9], and under certain limitations on the signal, the infinite

stream can be divided into a sequence of separate finite problems. The individ-

ual finite cases may be treated using methods for the finite setting; however, this

leads to a sampling rate that is higher than the rate of innovation. A technique

achieving the rate of innovation was proposed in [11], based on a multichannel

sampling scheme which uses a number of sampling kernels in parallel.

In related work, a semi-periodic pulse model was proposed in [17], wherein

the pulse time delays do not change from period to period, but the amplitudes

vary. This is a hybrid case in which the number of degrees of freedom in the

time-delays is finite, but there is an infinite number of degrees of freedom in

the amplitudes. Therefore, the proposed recovery scheme generally requires an

infinite number of samples.

The effect of digital noise on the recovery procedure was first analyzed by

Maravic and Vetterli [13], where an improved model-based approach was pro-

posed. In this technique, known as the subspace estimator, proper use of the

algebraic structure of the signal subspace is exploited, leading to improved noise

robustness. An iterative version of the subspace estimator was later proposed by

Blu et al. [19]. This approach is optimal for the sinc sampling kernel of [4], but

can also be adapted to compactly supported kernels. FRI recovery in the pres-

ence of noise was also examined from a stochastic modeling perspective by Tan
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and Goyal [14] and by Erdozain and Crespo [15]. The performance in the pres-

ence of analog noise has been recently examined in [12]. Treating analog noise

allows to analyze the interaction between FRI techniques and the underlying

sampling methods. In particular, bounds are obtained which are independent of

the sampling method. For different classes of FRI signals, this allows to iden-

tify an optimal sampling approach that achieves the bound. In addition, it is

shown that under certain scenarios the sampling schemes of [11] are optimal in

the presence of analog noise. This framework can also be used to identify FRI

settings in which noise-free recovery techniques deteriorate substantially under

slight noise levels.

There has also been some work on FRI setups departing from the simple one-

dimensional scheme of Fig. 1.1. We have already mentioned multichannel setups,

in which sampling is performed simultaneously using several distinct kernels,

but with a lower total sampling rate [11, 17, 20]. The problem of recovering an

FRI pulse stream in which the pulse shape is unknown was examined in [21].

Some forms of distributed sampling have been studied in [22]. There has also

been work on multidimensional FRI signals, i.e., signals which are a function of

two or more parameters (such as images) [23,24]. The many applications of FRI

theory include image superresolution [25,26], ultrasound imaging [10], radar [27],

multipath identification [17], and wideband communications [28,29].

1.1.3 Chapter outline

Throughout the rest of the chapter, we treat the basic concepts underlying FRI

theory in greater detail. We mainly focus on FRI pulse streams, and consider in

particular the cases of periodic, finite, infinite, and semi-periodic pulse streams.

In Section 1.2, we provide a general definition and some examples of FRI signals.

In Section 1.3, we treat the problem of recovering FRI signals from noiseless

samples taken at the rate of innovation. Specifically, we concentrate on a pulse

stream input signal and develop recovery procedures for various types of sampling

kernels. Modifications of these techniques when noise is present in the system

are discussed in Section 1.4. Simulations illustrating the ability to recover FRI

signals are provided in Section 1.5. We conclude the chapter in Section 1.6 with

several extensions of the FRI model and a brief discussion of some of its practical

application areas.

1.1.4 Notation and conventions

The following notation will be used throughout the chapter. R, C and Z denote

the sets of real, complex and integer numbers, respectively. Boldface uppercase

letters M denote matrices, while boldface lowercase letters v indicate vectors.

The identity matrix is denoted I. The notation Ma�b explicitly indicates that

the matrix is of dimensions a� b. The superscripts p�qT , p�q�, p�q�1 and p�q:, when

referring to operations on matrices or vectors, mean the transpose, Hermitian
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conjugate, inverse, and Moore-Penrose pseudoinverse respectively. Continuous-

time functions are denoted xptq, whereas discrete-time sequences are denoted xn
or xrns. The expectation operator is Ep�q. The box function rectptq equals 1 in

the range r� 1
2 ,

1
2 s and 0 elsewhere. The Heaviside or step function uptq is 0 for

t   0 and 1 for t ¥ 0.

The continuous-time Fourier transform x̂pωq of the function xptq is defined as

x̂pωq �
» 8
�8

xptqe�jtωdt, (1.2)

while the discrete-time Fourier transform (DTFT) of a sequence arns is given by

âpejωT q �
¸
nPZ

arnse�jωnT . (1.3)

The Fourier series tx̂mumPZ of a τ -periodic function is defined as

x̂m �
1

τ

» τ
0

xptqe�j2πm t
τ dt. (1.4)

We will also use the Fourier series (1.4) for finite-duration signals, i.e., signals

whose support is contained in r0, τ s.
We conclude the section with some identities which will be used in several

proofs throughout the chapter. These are the Poisson summation formula [30]¸
nPZ

xpt� nT q � 1

T

¸
kPZ

x̂

�
2πk

T



ej2πk

t
T (1.5)

and Parseval’s theorem for the equivalence of the inner product [30,31]

〈xptq, yptq〉 � 1

2π
〈x̂pωq, ŷpωq〉 , (1.6)

where 〈xptq, yptq〉 � ³8
�8 x

�ptqyptqdt.

1.2 Signals with finite rate of innovation

As explained in the beginning of this chapter, FRI signals are those that can

be described by a finite number of parameters per time unit. In this section we

introduce the original definition as stated by Vetterli et al. in [4]. In addition,

we provide some examples of FRI signals that can be sampled and perfectly

reconstructed at their rate of innovation using the techniques of [4,9–11,17]. We

also formally define periodic, semi-periodic and finite duration signals.

1.2.1 Definition of signals with FRI

The concept of FRI is intimately related to parametric signal modeling. If a

signal variation depends on a few unknown parameters, then we can see it as

having a limited amount of degrees of freedom per unit time.
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More precisely, given a set of known functions tgrptquR�1
r�0 , arbitrary shifts tk

and amplitudes γk,r, consider a signal of the form:

xptq �
¸
kPZ

R�1̧

r�0

γk,rgrpt� tkq. (1.7)

Since the set of functions tgrptquR�1
r�0 is known, the only free parameters of the

signal are the coefficients γk,r and the time shifts tk. Consider a counting function

Cxpta, tbq that is able to compute the number of parameters over a time interval

rta, tbs. The rate of innovation is defined as follows

ρ � lim
τÑ8

1

τ
Cx

�
�τ

2
,
τ

2

	
. (1.8)

Definition 1.1. [4] A signal with Finite Rate of Innovation can be defined as a

signal with a parametric representation such as that given by (1.7), and with a

finite ρ given by (1.8).

Another useful concept is that of a local rate of innovation over a window of

size τ , defined as:

ρτ ptq � 1

τ
Cx

�
t� τ

2
, t� τ

2

	
, (1.9)

Note that ρτ ptq clearly tends to ρ as τ tends to infinity.

Given an FRI signal with a rate of innovation ρ, we expect to be able to recover

xptq from ρ samples (or parameters) per unit time. The rate of innovation turns

out to have another interesting interpretation in the presence of noise: it is a lower

bound on the ratio between the average mean-squared error (MSE) achievable by

any unbiased estimator of xptq and the noise variance, regardless of the sampling

method [12].

1.2.2 Examples of FRI signals

It is well-known from classical sampling theory that a signal bandlimited to��B
2 ,

B
2

�
can be expressed as an infinite sum of properly weighted and shifted

versions of the sinc function:

xptq �
¸
nPZ

xrns sinc pBt� nq , (1.10)

where xrns � 〈xptq, B sincpBt� nq〉. Comparing equations (1.10) and (1.7)

immediately reveals that a bandlimited signal can be interpreted as having finite

rate of innovation. In this case, we can say that the signal xptq has B degrees of

freedom per second, since it is exactly defined by a sequence of numbers txrnsunPZ
spaced T � B�1 seconds apart, given that the basis function sinc is known.
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This idea can be generalized by replacing the sinc basis function with any

other function ϕptq. The set of signals

xptq �
¸
nPZ

xrnsϕ pBt� nq , (1.11)

defines a shift-invariant subspace, which is not necessarily bandlimited, but that

again has a rate of innovation ρ � B. Such functions can be efficiently sampled

and reconstructed using linear methods [5, 6], and thus typically do not require

the more elaborate techniques of FRI theory. However, many FRI families of

signals form a union of subspaces [7,8], rather than a subspace, and can still be

sampled and perfectly reconstructed at the rate of innovation. As a motivation for

the forthcoming analysis, several examples of such signals are plotted in Fig. 1.2

and described below. For simplicity, these examples describe finite-duration FRI

signals defined over the range r0, 1s, but the extension to infinite or periodic FRI

models is straightforward.

(i) The first signal of interest is a stream of K Diracs with amplitudes takuK�1
k�0

and time locations ttkuK�1
k�0 . Mathematically, xptq can be written as

xptq �
K�1̧

k�0

akδpt� tkq. (1.12)

The signal has 2K degrees of freedom, because it has K amplitudes and K

locations that are unknown. A typical realization of such a signal can be

seen in Fig. 1.2(a).

(ii) A signal xptq is a nonuniform spline of order R with amplitudes takuK�1
k�0

and knots at ttkuK�1
k�0 P r0, 1s if and only if its pR� 1qth derivative is a

stream of K weighted Diracs. Equivalently, such a signal consists of K � 1

segments, each of which is a polynomial of degree R, such that the entire

function is differentiable R times. This signal also has 2K degrees of free-

dom, because it is only the K amplitudes and K locations of the Diracs

that are unknown. An example is the piecewise linear signal described in

Section 1.1 and shown in Fig. 1.2(b). The second derivative of this signal

is the train of Diracs shown in (a).

(iii) A Stream of K differentiated Diracs with amplitudes takruK�1,Rk�1
k�0,r�0 and

time locations ttkuK�1
k�0 is similar to the stream of Diracs, but combining lin-

early a set of properly displaced and weighted differentiated Diracs, δprqptq.
Mathematically, we can write:

xptq �
K�1̧

k�0

Rk�1¸
r�0

akrδ
prqpt� tkq. (1.13)

In this case, the number of degrees of freedom of the signal is determined

by K locations and K̃ � °K�1
k�0 Rk different weights.

(iv) A signal xptq is a piecewise polynomial with K segments of maximum degree

R� 1 (R ¡ 0) if and only if its Rth derivative is a stream of differentiated
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(a) Train of Diracs.
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(b) Nonuniform spline.
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(c) Piecewise polynomial.
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(d) Piecewise sinusoidal.
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(e) Stream of pulses. (f) 2D set of bilevel polygons.

Figure 1.2 Examples of FRI signals that can be sampled and perfectly reconstructed at
the rate of innovation.

Diracs. The signal again has K � K̃ degrees of freedom. An example is

shown in Fig. 1.2(c). The difference between a piecewise polynomial and a

spline is that the former is not differentiable at the knots.

(v) Another family of signals, considered in [16], are piecewise sinusoidal func-

tions. These are a linear combination of truncated sinusoids, with unknown

amplitudes akd, angular frequencies ωkd and phases θkd, so that

xptq �
K�1̧

k�0

D�1̧

d�0

akd cospωkdt� θkdqξdptq, (1.14)
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with ξdptq � upt� tdq � upt� td�1q, where td are locations to be deter-

mined, and uptq is the Heaviside step function. Fig. 1.2(d) shows an example

of such a signal.

(vi) An important example we focus on in this chapter is a stream of pulses,

which is uniquely defined by a known pulse shape pptq and the unknown

locations ttkuK�1
k�0 and amplitudes takuK�1

k�0 that characterize the pulses.

The signal can thus be expressed mathematically as

xptq �
K�1̧

k�0

akppt� tkq. (1.15)

The stream of pulses has 2K degrees of freedom. A realization of a train of

pulses is shown in Fig. 1.2(e).

(vii) Finally, it is also possible to consider FRI signals in higher dimensions. For

instance, a 2D stream of Diracs can be written as

fpx, yq �
K�1̧

k�0

akδpx� xk, y � ykq. (1.16)

In Fig. 1.2(f) we show another type of two-dimensional signal, a 2D set of

bilevel polygons.

We conclude this section by focusing on streams of pulses, which are the pro-

totypical signals we use from now on in the remaining of the chapter. We thus

assume for simplicity a single pulse shape pptq in (1.7), and describe an infinite-

length stream of pulses as

xptq �
¸
kPZ

akppt� tkq. (1.17)

Periodic FRI signals turn out to be particularly convenient for analysis, and

will be discussed in depth in Section 1.3.1. If we assume that there are only K

different time locations ttku and amplitudes taku in (1.17), and that they are

repeated every τ , we have

xptq �
¸
mPZ

K�1̧

k�0

akppt� tk �mτq. (1.18)

The total number of parameters determining the signal for each period is thus

2K, leading to a rate of innovation given by 2K
τ .

Another variant is a finite-duration pulse stream, which consists of K pulses,

whose shifts ttku are known to be located within a finite segment of length τ .

Under the assumption of a single pulse shape pptq, we can express finite-duration

FRI signals as

xptq �
K�1̧

k�0

akppt� tkq. (1.19)
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Such signals are of practical relevance, since it is unrealistic to expect any mea-

sured signal to continue indefinitely. Here again, a finite number of parameters

determines xptq entirely. In this case we are interested in the local rate of inno-

vation ρτ � 2K
τ .

We will also consider semi-periodic signals, which we define as signals of the

form

xptq �
K�1̧

k�0

¸
mPZ

akrmsppt� tk �mτq. (1.20)

Such signals are similar to the periodic pulse stream (1.18), with amplitudes that

vary from period to period. Signals from this class can be used, for example, to

describe the propagation of a pulse with known shape pptq which is transmitted

at a constant rate 1
τ through a medium consisting of K paths. Each path has

a constant delay tk and a time-varying gain akrns [17]. Due to the delays being

repeated over the subsequent periods of the signal, estimation in this model is

simpler than in the finite or infinite signal cases [11,12].

1.3 Sampling and recovery of FRI signals in the noise-free setting

In this section, we present the basic mechanisms for reconstruction of pulse

stream FRI signals from their low-rate samples. Recovery is achieved by first

linearly combining the samples in order to obtain a new set of measurements

tx̂mu, which represent the Fourier transform of xptq, and then recovering the FRI

signal parameters from tx̂mu. The latter stage is equivalent to the problem of

determining the frequencies of a signal formed by a sum of complex exponentials.

This problem has been treated extensively in the array processing literature, and

can be solved using conventional tools from spectral estimation theory [18] such

as the matrix pencil [32], subspace-based estimators [33,34], and the annihilating

filter [19].

Recovery of FRI signals is most readily understood in the setting of a periodic

stream of pulses given by (1.18), and this is therefore the first scenario we explore.

We later discuss recovery techniques that use finite-support sampling kernels.

These can be used in the finite setting of equation (1.19) as well as the original

infinite FRI model of equation (1.7). Finally, we also discuss a technique for

recovering semi-periodic signals of the form (1.20).

1.3.1 Sampling using the sinc kernel

Consider a τ -periodic stream of K pulses pptq at locations ttkuK�1
k�0 and with

amplitudes takuK�1
k�0 , as defined in (1.18). The pulse shape is known a-priori,

and therefore the signal has only 2K degrees of freedom per period.
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Since xptq is periodic it can be represented in terms of its Fourier series coef-

ficients x̂m as

xptq �
K�1̧

k�0

ak
¸
mPZ

ppt� tk �mτq (1.21)

paq�
K�1̧

k�0

ak
1

τ

¸
mPZ

p̂

�
2πm

τ



ej2πm

t�tk
τ

�
¸
mPZ

x̂mej2πm
t
τ ,

where in paq we used Poisson summation formula (1.5), and

x̂m � 1

τ
p̂

�
2πm

τ


K�1̧

k�0

ake�j2πm
tk
τ , (1.22)

are the Fourier series coefficients of xptq.
If we have direct access to a set K of M consecutive Fourier coefficients for

which p̂
�

2πm
τ

� � 0, and M ¥ 2K, then it is possible to retrieve the 2K free

parameters tak, tku, k � 0, 1, ...,K � 1 by using conventional tools from spectral

analysis [18] such as Prony’s method or the annihilating filter method [18, 19] .

To show this fact we first write (1.22) as

x̂mp̂
�1

�
2πm

τ



� 1

τ

K�1̧

k�0

aku
m
k , (1.23)

where uk � e�j2π
tk
τ and p̂�1 denotes the multiplicative inverse of p. Since pptq is

known a-priori, we assume for simplicity of notation that p̂
�

2πm
τ

� � 1 for m P K;

this happens for example when xptq is a stream of Diracs. Otherwise one must

simply divide each measurement by the corresponding value of p̂
�

2πm
τ

�
.

In order to find the values uk in (1.23), let thmuKm�0 denote the filter whose

z-transform is

ĥpzq �
Ķ

m�0

hmz
�m �

K�1¹
m�0

�
1� ukz

�1
�
. (1.24)

That is, the roots of ĥpzq equal the values uk to be found. Then, it follows that:

hm 
 x̂m �
Ķ

i�0

hix̂m�i �
Ķ

i�0

K�1̧

k�0

akhiu
m�i
k �

K�1̧

k�0

aku
m
k

Ķ

i�0

hiu
�i
kloooomoooon

�0

� 0 (1.25)

where the last equality is due to the fact that ĥpukq � 0. The filter thmu is called

an annihilating filter , since it zeroes the signal x̂m. Its roots uniquely define the

set of values uk, provided that the locations tk are distinct.
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Assuming without loss of generality that h0 � 1, the identity in (1.25) can be

written in matrix/vector form as�
����
x̂�1 x̂�2 � � � x̂�K
x̂0 x̂�1 � � � x̂�K�1

...
...

. . .
...

x̂K�2 x̂K�3 � � � x̂�1

�
���
�
����
h1

h2

...

hK

�
���� �

�
����

x̂0

x̂1

...

x̂K�1

�
��� (1.26)

which reveals that we need at least 2K consecutive values of x̂m to solve the

above system. Once the filter has been found, the locations tk are retrieved from

the zeros uk of the z-transform in (1.24). Given the locations, the weights ak
can then be obtained by considering for instance K consecutive Fourier-series

coefficients in (1.23). For example, if we use the coefficients for k � 0, 1, ...,K � 1,

then we can write (1.23) in matrix/vector form as follows:

1

τ

�
����

1 1 � � � 1

u0 u1 � � � uK�1

...
...

. . .
...

uK�1
0 uK�1

1 � � � uK�1
K�1

�
���
�
����

a0

a1

...

aK�1

�
����

�
����

x̂0

x̂1

...

x̂K�1

�
���. (1.27)

This is a Vandermonde system of equations that yields a unique solution for

the weights ak since the uks are distinct. We thus conclude that the original

signal xptq is completely determined by the knowledge of 2K consecutive Fourier

coefficients.

However, the Fourier coefficients are not readily available, rather they need to

be determined from the samples yn �
〈
xptq, ϕp tT � nq〉 (see also Fig. 1.1). In [4],

the sampling kernel considered is the sinc function of bandwidth B, where Bτ is

assumed to be an odd integer. We denote this kernel by φBptq. In this case, the

Fourier coefficients can be related to the samples as follows:

yn � 〈xptq, φBpnT � tq〉 (1.28)

paq�
¸
mPZ

x̂m

〈
ej2πm

t
τ , φBpnT � tq

〉

pbq� 1

2π

¸
mPZ

x̂m

〈
δ

�
ω � 2πm

τ



, φ̂BpωqejωnT

〉

�
¸
mPZ

x̂mφ̂B

�
2πm

τ



ej2πn

τ
N
m
τ

� 1

B

¸
|m|¤M�tBτ2 u

x̂mej2π
mn
N

where in paq, (1.21) and the linearity of the inner product have been used, and for

pbq Parseval’s theorem (1.6) has been applied. Equation (1.28) relates the samples

yn and the Fourier series coefficients x̂m by means of the inverse discrete Fourier

transform (IDFT). Thus, calculating the DFT of the samples would directly



Sampling at the Rate of Innovation: Theory and Applications 15

yield x̂m for |m| ¤M . Since we need 2K consecutive Fourier coefficients and we

require Bτ to be an odd number we obtain the requirement Bτ ¥ 2K � 1.

We summarize the above sampling and recovery discussion by highlighting the

main steps necessary for the retrieval of xptq:

(1) Obtain the Fourier series coefficients x̂m for |m| ¤M . This can be done by

calculating the DFT coefficients of the samples using ŷm � °N�1
n�0 yne�j2π

nm
N

and the fact that they relate through x̂m � Bŷm, |m| ¤M .

(2) Retrieve the coefficients of the filter that annihilates x̂m. These coefficients

can be found writing down (1.25) as a linear system of equations of the form

(1.26), which has K equations and K unknowns. There is only one solution

to the system, since the filter hm is unique for the given signal x̂m.

(3) Obtain the roots of the filter ĥpzq, which yield the values uk and, therefore,

the locations tk.

(4) Find the amplitudes ak using the first K consecutive equations in (1.23).

This yields the Vandermonde system of equations (1.27), which also has a

unique solution for different values of the locations tk.

We note that while the mechanism described above correctly identifies the

signal parameters in the present setting, it becomes inaccurate if noise is added

to the system. Techniques which are better suited to dealing with noise will be

discussed in Section 1.4.

For the sake of briefness we have concentrated on the annihilating filter method

for retrieving the signal parameters. However, other techniques exist such as the

matrix pencil method [32] as well as subspace-based estimators [33, 34]. In the

presence of noise the latter methods can provide improved performance compared

to the annihilating filter approach [12,13].

1.3.2 Sampling using the sum of sincs kernel

While the above procedure has shown that it is indeed possible to reconstruct

exactly a periodic stream of pulses, it has the disadvantage that it uses a sam-

pling kernel of infinite support and slow decay. It is thus natural to investigate

whether a similar procedure can be used with alternative, possibly compactly

supported, kernels. As we will see shortly, another important advantage of com-

pactly supported kernels is that the resulting methods can be used in conjunction

with finite and infinite FRI signals, rather than periodic signals as was the case in

Section 1.3.1. Essentially, we are looking for alternative kernels that can still be

used to relate the samples yn to the Fourier coefficients of xptq. This is because

we have seen that, given the Fourier coefficients, xptq can be retrieved using

spectral estimation techniques.
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Consider for now a periodic FRI signal (1.18). Assuming a generic sampling

kernel gptq, we have that [10]

yn � 〈xptq, g pt� nT q〉 (1.29)

�
〈¸
mPZ

x̂mej2πm
t
τ , g pt� nT q

〉

paq�
¸
mPZ

x̂mej2πm
nT
τ

〈
ej2πm

t
τ , g ptq

〉

pbq�
¸
mPZ

x̂mej2πm
nT
τ ĝ�

�
2πm

τ



,

where paq follows from the linearity of the inner product and a change of variable,

and pbq is due to the definition (1.2) of the Fourier transform.

Having control over the filter gptq, we now impose the following condition on

its Fourier transform:

ĝ� pωq �

$''&
''%

0, ω � 2πm
τ , m R K,

non-zero, ω � 2πm
τ , m P K,

arbitrary, otherwise,

(1.30)

where K is a set of coefficients which will be determined shortly. Then, we have

yn �
¸
mPK

x̂mej2πm
nT
τ ĝ�

�
2πm

τ



. (1.31)

In general, the system in (1.31) has a unique solution provided the number of

samples N is no smaller than the cardinality of K, which we will call M � |K|.
The reason is that, in this case, the matrix defined by the elements ej2πm

nT
τ is

left-invertible. The idea is that each sample yn is a combination of the elements

x̂m, and the kernel gptq is designed to pass the coefficients for m P K and suppress

those for m R K. Note that for any real filter satisfying (1.30), we have that if

m P K, then �m P K, since by conjugate symmetry ĝ
�

2πm
τ

� � ĝ�
�� 2πm

τ

�
.

In the particular situation in which the number of samples N equals M , and

when the sampling period T is related to the total period τ by T � τ
N , we can

write

yn �
¸
mPK

ĝ�mx̂mej
2πmn
N (1.32)

where ĝ�m � ĝ�
�

2πm
τ

�
. This equation relates the samples yn and the Fourier coef-

ficients of the input x̂m through a “weighted” IDFT. This means that calculating

the DFT of the samples yields each of the weighted Fourier series coefficients

DFTtynu � ŷm � ĝ�mx̂m or, equivalently, the coefficients themselves by inversion

of each equation, x̂m � ĝ��1
m ŷm. Thus, sampling with a filter that satisfies (1.30)

allows to obtain the Fourier coefficients x̂m in a simple manner.

It is straightforward to see that one particular case of a filter obeying (1.30)

is the sinc function gptq � sincpBtq with B � M
τ . A family of alternative kernels
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satisfying (1.30) was introduced in [10] and is known as the family of Sum of

Sincs (SoS). This class of kernels is defined in the frequency domain as

ĝpωq � τ
¸
mPK

bm sinc

�
ω
2π
τ

�m



, (1.33)

where bm � 0 for m P K. The resulting filter is real valued if m P K implies

�m P K and bm � b��m. In the time domain, the sampling kernel is of compact

support, and can be written as

gptq � rect

�
t

τ


 ¸
mPK

bmej2πm
t
τ . (1.34)

The filter can be further generalized when using a function φptq instead of the sinc

in (1.33). This could be useful when we need a smoother time implementation

than the one involving the rect function as in (1.34). A key feature of gptq is that

it is compactly supported in time. This will become important when sampling

finite-length FRI signals.

One interesting set of coefficients is bm � 1 for m � �p, . . . , p, so that the filter

in (1.34) becomes:

gptq � rect

�
t

τ


 p̧

m��p

ej2πm
t
τ � rect

�
t

τ



Dp

�
2πt

τ



(1.35)

where Dpptq is the Dirichlet kernel. It is shown in [10] that under certain con-

ditions this choice is optimal in the presence of noise. Fig. 1.3 shows this kernel

together with the one obtained when the coefficients bm form a Hamming win-

dow [10]. Here M is the cardinality of the set K and M ¥ 2K. In general, the

free parameters tbkukPK may be optimized for different goals.
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Figure 1.3 SoS sampling kernels. The figures show the time and frequency domain
representations of the SoS family of kernels given by (1.34) and (1.33) for bm � 1,@m
and when the coefficients follow a Hamming window pattern.

To summarize, given the samples yn, we need to obtain their DFT, and the

resulting sequence is related to the Fourier series coefficients x̂m through (1.32)
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(we use N �M and τ � NT ). We can then build a system of equations as in

(1.26) to determine the annihilating filter coefficients, from which the locations tk
are found calculating by its roots. Finally we build another system of equations

like (1.27) to determine the amplitudes ak, using (1.32).

The fact that the SoS kernels have compact support allows us to depart from

the case of periodic signals, facilitating sampling finite and infinite length FRI

signals, as discussed below.

Sampling finite streams of pulses
Finite streams of pulses can be processed based on the above analysis for the peri-

odic case. For the finite length scenario, we need to relate the samples obtained

from the finite stream of pulses to those of the periodic stream. Let x̃ptq be a

finite FRI signal of the form (1.19). It is shown in [10] that

yn � 〈x̃ptq, g̃ pt� nT q〉 � 〈xptq, g pt� nT q〉 (1.36)

where xptq is the periodic continuation of the finite stream x̃ptq, and where we

have defined the periodic extension of the filter gptq as g̃ptq � °
mPZ gpt�mτq.

Therefore, the set of samples yn � 〈xptq, g pt� nT q〉, which uniquely represent a

τ -periodic stream of pulses, are equivalent to those that could be obtained by

sampling the finite length signal x̃ptq with the τ -periodic extension of the filter,

g̃ pt� nT q.
However, it is not practical to use an infinitely long sampling kernel. Assume

the pulse pptq is equal to zero for any |t| ¥ R
2 . Then, the samples have the

form [10]

yn �
〈
x̃ptq,

ŗ

m��r

gpt� nT �mτq
〉
, (1.37)

where r �
Q
R
τ �3

2

U
� 1. The advantage of this approach is that we can immediately

follow the same retrieval procedure as with the periodic stream of pulses. The

reason is that now we obtain the same set of samples given by equation (1.36)

sampling the finite length signal x̃ptq with the finite support kernel

grptq �
ŗ

m��r

gpt� nT �mτq. (1.38)

Moreover, if the support of pptq satisfies R ¤ τ , then r � 1, and the extension of

gptq will contain only three repetitions, i.e. grptq � gptq � gpt� τq � gpt� τq.
The multichannel sampling scheme of [11] can also be used to sample finite

FRI signals. As we will see in Section 1.3.4, the use of a filter (or modulator)

bank allows us to avoid forming a delayed pulse as in grptq. In cases in which

such delays are difficult to implement in hardware, it may be advantageous to

use multiple channels without the need for delays.
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Sampling infinite-length streams of pulses
A similar technique may also be used to sample and recover infinite length FRI

pulse streams of the form

xptq �
¸
kPZ

akppt� tkq. (1.39)

Concretely, in this case, we assume the signal is characterized by bursts of max-

imal duration τ which contain at most K pulses, separated by quiet phases of

a certain length. This separation depends on the support of the sampling kernel

which, in turn, is related to the pulse shape pptq. For example, in order to sample

a finite length stream of Diracs we showed that the filter g3pptq � gptq � gpt� τq
was capable of sampling the signal leading to its perfect reconstruction. The

support of the filter is 3τ and we then know that, if we want to use a sequential

retrieval algorithm for the infinite-length input signal case, the separation of con-

secutive bursts has to be at least 3τ
2 . However, this technique requires a sampling

rate which is higher than the rate of innovation. Achieving perfect reconstruction

for infinite FRI signals from samples taken at the rate of innovation requires a

multichannel sampling scheme, and is the subject of Section 1.3.4.

1.3.3 Sampling using exponential reproducing kernels

Another important class of compact support kernels that can be used to sample

FRI signals is given by the family of exponential reproducing kernels.

An exponential reproducing kernel is any function ϕptq that, together with its

shifted versions, can generate complex exponentials of the form eαmt. Specifically,¸
nPZ

cm,nϕpt� nq � eαmt (1.40)

where m � 0, 1, ..., P and α0, λ P C. The coefficients are given by cm,n �
〈eαmt, ϕ̃pt� nq〉, where ϕ̃ptq is the dual of ϕptq, that is, 〈ϕpt� nq, ϕ̃pt� kq〉 �
δn,k. When we use these kernels in the FRI process, the choice of the exponents

in (1.40) is restricted to αm � α0 �mλ with α0, λ P C and m � 0, 1, ..., P . This

is done to allow the use of the annihilating filter method at the reconstruction

stage. This point will be more evident later on.

The theory related to the reproduction of exponentials relies on the concept of

E-splines [35]. A function βαptq with Fourier transform β̂αpωq � 1�eα�jω

jω�α is called

an E-spline of first order, with α P C. The time domain representation of such

a function is βαptq � eαt rect
�
t� 1

2

�
. The function βαptq is of compact support,

and a linear combination of its shifted versions βαpt� nq reproduces the expo-

nential eαt. Higher order E-splines can be obtained through convolution of first

order ones, e.g., β~αptq � pβα0

 βα1


 . . .
 βαP q ptq, where ~α � pα0, α1, . . . , αP q.
This can also be written in the Fourier domain as follows:

β̂~αpωq �
P¹
k�0

1� eαk�jω

jω � αk
. (1.41)
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Higher order E-splines are also of compact support and, combined with

their shifted versions, β~αpt� nq, can reproduce any exponential in the sub-

space spanned by teα0 , eα1 , . . . , eαP u [9, 35]. Notice that the exponent αm can

be complex, which indicates that E-splines need not be real. However, this can

be avoided by choosing complex conjugate exponents. Fig. 1.4 shows examples of

real E-spline functions of orders one to four. Finally, note that the exponential

reproduction property is preserved through convolution [9, 35] and, therefore,

any function ϕptq � ψptq
 β~αptq, combined with its shifted versions, is also able

to reproduce the exponentials in the subspace spanned by teα0 , eα1 , . . . , eαP u.
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Figure 1.4 Example of exponential reproducing kernels. The shortest function shown is
obtained by convolving two first order splines with complex parameters �jω0 � �j 2π

N

and N � 32 samples, resulting in a real function. The successive E-splines, shown in
order from left to right, are obtained by convolving kernels with parameters
αm � jω0p2m� P q, m � 0, . . . , P .

Reconstruction of FRI signals using exponential reproducing kernels is better

understood in the time domain. For simplicity, we assume that pptq is a Dirac

function, even though other types of pulses can be sampled and perfectly recov-

ered. In fact, any pulse satisfying p̂pωq � 0 for ω � αm can be used. Here αm,

m � 0, 1, ..., P are the exponents of the exponentials reproduced by the kernel.

This is due to the fact that sampling a stream of pulses with the kernel ϕptq is

equivalent to sampling a stream of Diracs with the kernel pptq
 ϕptq. The above

condition guarantees that pptq
 ϕptq is still able to reproduce exponentials.

Consider a finite-duration FRI signal of length τ :

xptq �
K�1̧

k�0

akδpt� tkq. (1.42)

Assuming a sampling period of T � τ
N , the measurements are

yn �
〈
xptq, ϕ

�
t

T
� n


〉
�
K�1̧

k�0

akϕ

�
tk
T
� n



, (1.43)

for n � 0, 1, ..., N � 1. The E-spline reconstruction scheme, first proposed in [9],

operates as follows. The samples are first linearly combined with the coefficients
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cm,n of (1.40) to obtain the new measurements

sm �
N�1̧

n�0

cm,nyn, m � 0, 1, ..., P. (1.44)

Then, using (1.43), we have that

sm �
〈
xptq,

¸
n

cm,nϕ

�
t

T
� n


〉
�
» 8
�8

xptqeαmtdt (1.45)

�
K�1̧

k�0

âku
m
k , m � 0, 1, ..., P

where âk � akeα0
tk
T and uk � eλ

tk
T . Here we have used the fact that αm �

α0 �mλ. Note that the new measurements sm represent the bilateral Laplace

transform of xptq at locations αm, m � 0, 1, ..., P . These measurements are again

in a power sum series form as those discussed in the previous sections. Therefore

the pairs of unknowns tâk, uku can be retrieved from sm � °K�1
k�0 âku

m
k using

the annihilating filter method. Consequently, the main steps in the reconstruc-

tion of FRI signals with exponential reproducing kernels are the same as those

discussed previously. The only difference is that the samples were previously

combined using a weighted DFT, whereas in this case the linear combination is

dictated by the coefficients cm,n. Since 2K consecutive coefficients sm are needed

to run the annihilating filter method, we have the condition P ¥ 2K � 1.

We conclude by highlighting the generality of exponential reproducing kernels.

First, when the exponent αm is purely imaginary, that is, when αm � jωm, then

sm � x̂pωmq is precisely the Fourier transform of xptq at ωm. Since xptq is time-

limited, this can be thought of as the Fourier series coefficients of the signal.

In this case, and for a proper choice of the parameters N and P , it can be

shown [36] that the coefficients cm,n constitute a DFT. For this situation the

above analysis converges to the one of Section 1.3.1. Moreover, the SoS sampling

kernel introduced in Section 1.3.2 is an exponential reproducing kernel of this

type. Second, when αm � 0, m � 0, 1, ..., P , the E-spline becomes a polynomial

spline (or B-spline). In general, when αm � 0, any exponential reproducing kernel

reduces to a kernel satisfying the Strang-Fix conditions [37]. These are still valid

sampling kernels but reproduce polynomials rather than exponentials. Functions

satisfying Strang-Fix conditions are extensively used in wavelet theory and the

above result provides an intriguing connection between sampling of FRI signals

and wavelets. This connection allows to combine FRI theory with wavelets to

develop efficient centralized and distributed algorithms for the compression of

piecewise smooth functions [38,39]. Finally, it is possible to show that any device

whose input and output are related by linear differential equations can be turned

into an exponential reproducing kernel and can therefore be used to sample FRI

signals [9]. This includes, for example, any linear electrical circuit. Given the

ubiquity of such devices and the fact that in many cases the sampling kernel is
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given and cannot be modified, FRI theory with exponential reproducing kernels

becomes even more relevant in practical scenarios.

1.3.4 Multichannel sampling

The techniques discussed so far were based on uniform sampling of the signal

xptq convolved with a single kernel hptq (see Fig. 1.1). While this is the simplest

possible sampling scheme, improved performance and lower sampling rates can

be achieved at the cost of slightly more complex hardware. In particular, one can

consider a multichannel sampling setup, in which the signal xptq is convolved with

P different kernels s�1 p�tq, . . . , s�P p�tq, and the output of each channel is sampled

at a rate 1
T [11, 17]. The set of samples in this case is given by

c`rms � 〈s`pt�mT q, xptq〉 , ` � 1, . . . , P, m P Z. (1.46)

The system is said to have a total sampling rate of P
T . Note that the standard

(single-channel) scenario is a special case of this scheme, which can be obtained

either by choosing P � 1 sampling channels, or with P ¡ 1 copies of the sampling

kernel hptq which are shifted in time.

An alternative multichannel structure can be obtained in which the filter is

replaced by a modulator (i.e. multiplier) followed by an integrator. In this case

the output of each branch is given by

c`rms �
» mT
pm�1qT

xptqs`ptq, ` � 1, . . . , P, m P Z, (1.47)

where s`ptq is the modulating function on the `th branch. This scheme is par-

ticularly simple, and as we show below, can be used to treat all classes of FRI

signals: periodic, finite, infinite, and semi-periodic, under the assumption that

the pulse pptq is compactly supported. In contrast, the filterbank approach is

beneficial in particular for semi-periodic pulse streams and can accommodate

arbitrary pulse shapes pptq, including infinite-length functions. Furthermore, the

multichannel filter bank structure can often be collapsed to a single sampling

channel followed by a serial to parallel converter, in order to produce the paral-

lel sampling sequences in (1.46). Thus, when applicable, this scheme may lead

to savings in hardware over the modulator based approach, while still retaining

the benefits of low sampling rate.

Due to its generality and simplicity, we begin by discussing the modulator-

based multichannel structure. The merits of this approach are best exposed by

first considering a τ -periodic stream of K pulses.

Before proceeding we note that alternative multichannel systems have been

proposed in the literature. In [20] a multichannel extension of the method in [9]

was presented. This scheme allows reduced sampling rate in each channel, but

the overall sampling rate is similar to [9] and therefore does not achieve the

rate of innovation. Two alternative multichannel methods, were proposed in [40]

and [41]. These approaches, which are based on a chain of integrators [40] and
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exponential filters [41], allow only sampling of infinite streams of Diracs at the

rate of innovation. In addition, we show in the simulation section, that these

methods are unstable, especially for high rates of innovation.

Periodic FRI signals
Consider a τ -periodic stream of K pulses, as in (1.18). Recall from Section 1.3.1

that if the Fourier coefficients of this signal are available, then standard tech-

niques of spectral analysis can be used to recover the unknown pulse shifts and

amplitudes. The multichannel setup provides a simple and intuitive method for

obtaining these Fourier coefficients by correlating the signal xptq with the Fourier

basis functions

s`ptq �
#
ej

2π
τ `t, t P r0, τ s,

0, elsewhere,
(1.48)

for ` P L, where L is a set of 2K contiguous integers. We set the sampling interval

T to be equal to the signal period τ , yielding a total sampling rate of 2K
T for all

channels. Thus we have a sampling scheme functioning at the rate of innovation,

and yielding 2K Fourier coefficients of xptq. These can then be used to recover

the original signal, for example using the annihilating filter method discussed

in Section 1.3.1. An additional advantage of this approach is that the kernels

have compact support; indeed, the support corresponds to precisely one period

of the FRI signal, which is smaller than the support of the kernel proposed

in Section 1.3.2. This property will facilitate the extension of the multichannel

system to infinite FRI signals.

x(t)

1
τ

∫ τ
0 (·)dt

1
τ

∫ τ
0 (·)dt

e+j 2π
τ Kt

X [−K]

e−j 2π
τ Kt

X [+K]

Figure 1.5 Multichannel sampling scheme for periodic FRI signals. The resulting
samples are the Fourier series coefficients of xptq. Note that we only sample once
every period, thus T � τ .

Instead of functions of the form (1.48), one can just as well use sampling ker-

nels which are a linear combination of these sinusoids, as in Fig. 1.6. This can be

advantageous from a hardware point of view, since it may be difficult in practice

to implement accurate sinusoids. On the other hand, by allowing such linear com-

binations, the modulating functions s`ptq can be chosen to have a simple form,

such as lowpassed versions of binary sequences [11]. These sequences were shown
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to be advantageous in other sub-Nyquist configurations as well, such as the mod-

ulated wideband converter, designed to sample wideband signals at sub-Nyquist

rates [42, 43], and sampling of stream of pulses with unknown shapes [21]. In

addition, in real-life scenarios one or more channels might fail, due to malfunc-

tion or noise corruption, and therefore we loose the information stored in that

channel. By mixing the coefficients we distribute the information about each

Fourier coefficient among several sampling channels. Consequently, when one or

more channels fail, the required Fourier coefficients may still be recovered from

the remaining operating channels.

When using a mixture of sinusoids, a linear operation is needed to recover the

Fourier coefficients from the resulting samples. Specifically, denoting by x the

vector of Fourier coefficients of xptq, the output of Fig. 1.6 is given by Sx where S

is the matrix of elements sik. As long as S has full column rank, we can recover x

from the samples and then proceed using, e.g., the annihilating method to recover

the delays and amplitudes. The new kernels retain the desirable property of

compact support with length equal to a single signal period. It is also interesting

to note that by proper choice of these linear combinations, the modulator bank

can implement the SoS filters [11]. This offers an alternative implementation for

finite-length FRI signals that avoids the need to form delayed versions of the SoS

kernel at the expense of more complex hardware.

Connection to the modulated wideband converter
The concept of using modulation waveforms, is based on ideas which were pre-

sented in [42–44]. We now briefly review the sampling problem treated in [43]

and its relation to our setup. We also show the practical hardware implementa-

tion of both systems is similar. For a more detailed description of this scheme

see Chapter 3.

The model in [43] is of multiband signals: signals whose CTFT is concentrated

on Nbands frequency bands, and the width of each band is no greater than B.

The location of the bands is unknown in advance. A low rate sampling scheme

allowing recovery of such signals at a rate of 4BNbands was proposed in [45]. This

scheme exploits the sparsity of multiband signals in the frequency domain, to

reduce the sampling rate well below the Nyquist rate. In [42, 43], this approach

was extended to a more practical sampling scheme, which uses a modulation stage

and referred to as the modulated wideband converter (MWC). In each channel

of the MWC, the input is modulated with some periodic waveform, and then

sampled using a lowpass filter (LPF) followed by a low rate uniform sampler.

The main idea is that in each channel, the spectrum of the signal is shuffled,

such that a portion of the energy of all bands appears at baseband. Mixing the

frequency bands in [43] is analogous to mixing the Fourier coefficients in Fig. 1.6.

We note here some differences between the methods. First, following the mixing

stage, we use an integrator in contrast to the LPF used in [43]. This is a result

of the different signal quantities measured: Fourier coefficients in our work as

opposed to the frequency bands content in [43]. The second difference is in the
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purpose of the mixing procedure. In [43] mixing is performed to reduce the

sampling rate relative to the Nyquist rate. In our setting, the mixing is used in

order to simplify hardware implementation and to improve robustness to failure

in one of the sampling channels.

Nonetheless, the hardware considerations in the mixing stage in both systems

are similar. Recently, a prototype of the MWC has been implemented in hard-

ware [42]. This design is composed of P � 4 sampling channels, where the repe-

tition rate of the modulating waveforms is 1
T � 20 MHz. In each period there are

108 rectangular pulses. This prototype, with certain modifications, can be used

to implement our sampling scheme as well. These modifications mainly include

adding shaping filters on modulating waveforms lines, and reducing the number

of rectangular pulses in each period.

Infinite FRI signals
Consider an infinite-duration FRI signal of the form (1.39), where we use T � τ .

Furthermore, suppose that the T -local rate of innovation is 2K
T , for some specified

value T . Thus, there are no more than K pulses in any interval of size T , i.e.

Im � rpm� 1qT,mT s. Assume further that the pulses do not overlap interval

boundaries, i.e., if tk P Im then ppt� tkq � 0 for all t R Im. Such a requirement

automatically holds if pptq is a Dirac, and will hold with high probability as long

as the support of pptq is substantially smaller than T .

The signal parameters in each interval can now be treated separately. Specifi-

cally, consider the T -periodic signal obtained by periodic continuation of the val-

ues of xptq within a particular interval Im. This periodic signal can be recovered

by obtaining 2K of its Fourier coefficients. As explained above, these coefficients

can be determined using sampling kernels of the form (1.48), whose support is

limited to the interval Im itself (rather than its periodic continuation).

This precise technique can thus be used directly on the non-periodic signal xptq,
since the portion of the periodic signal which is sampled includes only the interval

Im [11]. Specifically, this requires obtaining a sample from each of the channels

once every T seconds, and using P ¥ 2K channels. The resulting procedure is

equivalent to a multichannel sampling scheme with rate 1
T , as depicted in Fig. 1.6.

Observe that the success of this technique hinges on the availability of sampling

kernels whose support is limited to a single period of the periodic waveform.

The output of the channel is equal to crms � Sxrms where S is the matrix of

elements sik, and xrms are the Fourier coefficients of xptq over the interval Im.

We can then invert S to obtain the Fourier coefficients over each interval.

Semi-periodic FRI signals
The multichannel scheme is also effective for reconstructing FRI signals having

the semi-periodic structure of (1.20). That is, signals consisting of K pulses

occurring at repeated intervals T , with amplitudes akrms which vary from one

period to the next. The modulator approach can be used as in the infinite case,
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x(t)

1

τ

∫

Im
(·)dt c1[m]

t = mT

cp[m]
t = mT

s1(t) =
∑

k∈K
s1ke

−j 2π
τ
kt

sp(t) =
∑

k∈K
spke

−j 2π
τ
kt

1

τ

∫

Im
(·)dt

Figure 1.6 Multichannel sampling scheme for infinite FRI signals. Here T � τ .

with the difference that now the samples from different periods can be jointly

processed to improve performance.

Specifically, as before, we can recover xrms from the output of the modulator

bank. Since the delays are constant for each interval Im, it can be shown (after

normalizing the Fourier coefficients by the Fourier coefficients of the pulse if

necessary) that in the frequency domain

xrms � Nptqarms, m P Z, (1.49)

where arms is the vector of coefficients akrms, and Nptq is the P �K Vander-

monde matrix with k`th element e�j2πk
t`
T . When only one time instant m is

available, we can solve (1.49) by using the annihilating filter method to recover

the delays t`, and then the coefficients akrms. However, now we have many vec-

tors xrms that share the same delays, namely, use the same matrix N. This allows

the use of robust methods that recover the delays more reliably, by jointly pro-

cessing the samples for all m. Examples include the ESPRIT [46] or MUSIC [47]

algorithms. These approaches, known as subspace methods, are far more robust

then techniques based on a single set of samples. They proceed by computing the

correlation matrix
°
mPZ xrmsxT rms, and then separate the range of this matrix

into two subspaces, the signal and noise subspaces. The delays associated with

the matrix N are then found by exploiting this decomposition.

Clearly, the condition for the general infinite model P ¥ 2K is a sufficient

condition here as well in order to ensure recovery of xptq. However the additional

prior on the signal’s structure can be used to reduce the number of sampling

channels. In particular it is sufficient to use

P ¥ 2K � η � 1 (1.50)

channels, where η is the dimension of the minimal subspace containing the vec-

tor set tarms,m P Zu. This condition implies that in some cases the number of

channels P can be reduced beyond the lower limit 2K for the general model.

An alternative scheme for the semi-periodic setting is the filterbank system.

The advantage of this technique is that one need not assume the existence of
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distinct pulse intervals, nor is it necessary for the pulse shape to have compact

support [17]. Here as well we will exploit the periodicity to jointly process the

samples by using subspace-methods.

When the pulse shape pptq is arbitrary, the derivation departs somewhat from

the canonical technique presented in Section 1.3.1. This is a result of the fact that

the signal is not periodic and cannot be divided into distinct intervals, so that

one can no longer speak of its Fourier series. Instead, assume that the sampling

interval T equals the signal period τ . The DTFT of the samples (1.46) is then

ĉ`
�
ejωT

� � 1

T

¸
mPZ

ŝ�`

�
ω � 2π

T
m



x̂

�
ω � 2π

T
m



(1.51)

where the Fourier transform of a function fptq is denoted f̂pωq. By computing

the Fourier transform of the semi-periodic signal xptq of (1.20), we have

ĉ`
�
ejωT

� � K�1̧

k�0

âk
�
ejωT

�
e�jωtk

1

T

¸
mPZ

ŝ�`

�
ω � 2π

T
m



p̂

�
ω � 2π

T
m



ej

2π
T mtk ,

(1.52)

where we used the fact that âk
�
ejωT

�
is 2π{T -periodic.

Let us restrict our attention to ω P �0, 2π
T

�
, which can be done without loss of

information since expressions in the DTFT domain are 2π{T -periodic. Denote

by ĉpejωT q the length-P column vector whose `th element is ĉ`pejωT q, and by

âpejωT q the length-K column vector whose kth element is âkpejωT q. Also define

the vector t � pt0, . . . , tK�1qT . We can then write (1.52) in matrix form as

ĉ
�
ejωT

� � M
�
ejωT , t

�
D
�
ejωT , t

�
â
�
ejωT

�
. (1.53)

Here M
�
ejωT , t

�
is a P �K matrix whose `kth element is

M`k

�
ejωT , t

� � 1

T

¸
mPZ

ŝ�`

�
ω � 2π

T
m



p̂

�
ω � 2π

T
m



ej

2π
T mtk , (1.54)

and D
�
ejωT , t

�
is a diagonal matrix whose kth diagonal element equals e�jωtk .

Defining the vector b
�
ejωT

�
as

b
�
ejωT

� � D
�
ejωT , t

�
â
�
ejωT

�
, (1.55)

we can rewrite (1.53) in the form

ĉ
�
ejωT

� � M
�
ejωT , t

�
b
�
ejωT

�
. (1.56)

Our problem can then be reformulated as that of recovering b
�
ejωT

�
and the

unknown delay set t from the vectors ĉ
�
ejωT

�
, for all ω P �0, 2π

T

�
. Once these

are known, the vectors â
�
ejωT

�
can be recovered using the relation in (1.55).

To proceed, we focus our attention on sampling filters ŝ`pωq with finite support

in the frequency domain, contained in the frequency range

F �
�

2π

T
γ,

2π

T
pP � γq

�
, (1.57)
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where γ P Z is an index which determines the working frequency band F . This

choice should be such that it matches the frequency occupation of p ptq (although

pptq does not have to be bandlimited). This freedom allows our sampling scheme

to support both complex and real valued signals. For simplicity, we assume here

that γ � 0. Under this choice of filters, each element M`k

�
ejωT , t

�
of (1.54) can

be expressed as

M`k

�
ejωT , t

� � P̧

m�1

W`m

�
ejωT

�
Nmk ptq , (1.58)

where W
�
ejωT

�
is a P � P matrix whose `mth element is given by

W`m

�
ejωT

� � 1

T
ŝ�`

�
ω � 2π

T
pm� 1� γq



p̂

�
ω � 2π

T
pm� 1� γq



,

and N ptq is a P �K Vandermonde matrix. Substituting (1.58) into (1.56), we

have

ĉpejωT q � W
�
ejωT

�
N ptqbpejωT q. (1.59)

If W
�
ejωT

�
is stably invertible, then we can define the modified measurement

vector d
�
ejωT

�
as d

�
ejωT

� � W�1
�
ejωT

�
ĉ
�
ejωT

�
. This vector satisfies

d
�
ejωT

� � N ptqb
�
ejωT

�
. (1.60)

Since N ptq is not a function of ω, from the linearity of the DTFT, we can express

(1.60) in the time domain as

d rns � N ptqb rns , n P Z. (1.61)

The elements of the vectors d rns and b rns are the discrete time sequences,

obtained from the inverse DTFT of the elements of the vectors b
�
ejωT

�
and

d
�
ejωT

�
respectively.

Equation (1.61) has the same structure as (1.49) and can therefore be treated

in a similar fashion. Relying on methods such as ESPRIT and MUSIC one can

first recover t from the measurements [17]. After t is known, the vectors b
�
ejωT

�
and â

�
ejωT

�
can be found using linear filtering relations by

b
�
ejωT

� � N: ptqd
�
ejωT

�
. (1.62)

Since N ptq is a Vandermonde matrix, its columns are linearly independent, and

consequently N:N � IK . Using (1.55),

â
�
ejωT

� � D�1
�
ejωT , t

�
N: ptqd

�
ejωT

�
. (1.63)

The resulting sampling and reconstruction scheme is depicted in Fig. 1.7.

Our last step is to derive conditions on the filters s�1 p�tq, . . . , s�P p�tq and the

function p ptq such that the matrix W
�
ejωT

�
will be stably invertible. To this

end, we decompose the matrix W
�
ejωT

�
as

W
�
ejωT

� � S
�
ejωT

�
P
�
ejωT

�
(1.64)
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Figure 1.7 Sampling and reconstruction scheme for a semi-periodic signal.

where S
�
ejωT

�
is a P � P matrix whose `mth element is

S`m
�
ejωT

� � 1

T
ŝ�`

�
ω � 2π

T
pm� 1� γq



(1.65)

and P
�
ejωT

�
is a P � P diagonal matrix with mth diagonal element

Pmm

�
ejωT

� � p̂

�
ω � 2π

T
pm� 1� γq



. (1.66)

We can guarantee stable invertibility of WpejωT q by ensuring that both SpejωT q
and PpejωT q are stably invertible. From (1.66), it is readily seen that the matrix

PpejωT q is stably invertible if there exists constants a, b P R such that

0   a ¤ |p̂ pωq| ¤ b   8 almost everywhere ω P F . (1.67)

In addition, the filters s�` p�tq should be chosen in such a way that they form

a stably invertible matrix S
�
ejωT

�
. One example of a set of sampling kernels

satisfying this requirement is the ideal bandpass filterbank given by

ŝ`pωq �
#
T, ω P �p`� 1q 2π

T , `
2π
T

�
,

0, otherwise.
(1.68)

Another example is a LPF with cutoff πP
T followed by a uniform sampler at a

rate of P
T . The samples can then be converted into P parallel streams to mimic

the output of P branches. Further discussion of sampling kernels satisfying these

requirements can be found in [17].

To summarize, we derived a general technique for the recovery of pulse param-

eters from a semi-periodic pulse stream. The technique is outlined in Fig. 1.7.

This method is guaranteed to perfectly recover the signal parameters from sam-

ples taken at a total rate of 2K
T or higher, provided that the pulse shape satisfies

the stability condition (1.67) and the sampling kernels are chosen so as to yield

a stable recovery matrix, for example by using the bandpass filterbank (1.68).
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1.4 The effect of noise on FRI recovery

Real-world signals are often contaminated by noise and thus do not conform

precisely to the FRI scheme. Furthermore, like any mathematical model, the

FRI framework is an approximation which does not precisely hold in practical

scenarios, an effect known as mismodeling error. It is therefore of interest to

design noise-robust FRI recovery techniques.

Noise may arise both in the analog and digital domains, i.e., before and after

sampling, as illustrated in Fig. 1.8. The resulting samples can then be written

as

ỹn � 〈xptq, h pt� nT q〉� εn (1.69)

with εn being the overall noise introduced in the process.

x(t) h(t) = ϕ
(
− t

T

)
ỹn

Analog noise

T

Digital noise

Acquisition device

Figure 1.8 Noise perturbations in a “real-world” sampling set-up. The continuous
signal xptq can be corrupted both in the analog and the digital paths.

When noise is present, it is no longer possible to perfectly recover the original

signal from its samples. However, one can sometimes mitigate the effects of noise

by oversampling, i.e., by increasing the sampling rate beyond the rate of innova-

tion. In Section 1.4.3 we describe several modifications of the recovery techniques

of Section 1.3 designed for situations in which a larger number of measurements

is available. These are based on the noise model we introduce in Section 1.4.2.

Oversampling increases the number of measurements of the signal, and it is

consequently not surprising that this technique can sometimes be used to improve

performance under noise. However, the degree to which improvement is possi-

ble depends on the setting under consideration. Indeed, in some cases sampling

at the rate of innovation is optimal even in the presence of noise, and cannot

be improved by oversampling. Reaching such conclusions requires a theoretical

analysis of the effects of noise on the ability to recover FRI signals. This issue

will be discussed in Sections 1.4.1 and 1.4.2.

1.4.1 Performance bounds under continuous-time noise

In the next two sections, we analyze the effect of noise on the accuracy with

which FRI signals can be recovered. A standard tool for accomplishing this is

the Cramér–Rao bound (CRB), which is a lower bound on the MSE achievable

by any unbiased estimator [48]. As such, it provides a measure of the difficulty of

a given estimation problem, and can indicate whether or not existing techniques
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come close to optimal. It can also be used to measure the relative merit of

different types of measurements. Thus, we will see that the CRB can identify

which of the sampling kernels proposed in Section 1.3 provides more robustness

to noise, as well as quantify the benefit achievable by oversampling.

As we have already mentioned, in practical applications two types of noise may

arise, namely, continuous-time noise which corrupts the signal prior to sampling,

and discrete noise contributed by the sampling system (see Fig. 1.8). To simplify

the discussion, we separately examine each of these models: we begin below with

continuous-time noise and discuss sampling noise in Section 1.4.2. Further details

concerning the combined effect of the two sources of noise can be found in [12].

For the purpose of the performance analysis, we focus on finite-duration FRI

signals of the form (1.19). Thus, our signal xptq is determined by a finite number

2K of parameters tak, tkuK�1
k�0 . For future use, we define the parameter vector

θ � pt0, . . . , tK�1, a0, . . . , aK�1qT . (1.70)

An important aspect of continuous-time noise is that it is independent of the

sampling process. This noise model can thus be used to identify ultimate limits

on the achievable estimation accuracy of a given signal. To be specific, suppose

we sample the signal

yptq � xptq � wptq (1.71)

where xptq is the finite-duration FRI signal (1.19) and wptq is continuous-time

white Gaussian noise with variance σ2.

Sampling-indifferent bound
To bound the MSE that can be achieved by any sampling method, it is of interest

to derive the CRB for estimating xptq directly from the continuous-time process

yptq. Clearly, no sampling mechanism can do better than exhausting all of the

information contained in yptq.
This bound turns out to have a particularly simple closed form expression

which depends on the number of pulses in the signal (or, equivalently, on the

rate of innovation) — but not on the class of FRI signals being estimated. Indeed,

for a signal xptq of duration τ , it can be shown that the MSE of any unbiased,

finite-variance estimator x̂ptq satisfies [12]

1

τ

»
E
�|xptq � x̂ptq|2� dt ¥ ρτσ

2 (1.72)

where we recall that the τ -local rate of innovation satisfies ρτ � 2K
τ for finite

FRI signals.

Thus, in the noisy setting, the rate of innovation can be given a new inter-

pretation as the ratio between the best achievable MSE and the noise variance

σ2. This is to be contrasted with the characterization of the rate of innovation

in the noise-free case as the lowest sampling rate allowing for perfect recovery of

the signal; indeed, when noise is present, perfect recovery is no longer possible.
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Bound for sampled measurements
We next consider a lower bound for estimating xptq from samples of the signal

yptq of (1.71). To keep the discussion general, we consider samples of the form

ỹn � 〈yptq, ϕnptq〉 , n � 0, . . . , N � 1 (1.73)

where tϕnptqu is a set of sampling kernels. For example, pointwise sampling at

the output of an anti-aliasing filter ϕp�tq corresponds to the sampling kernels

ϕnptq � ϕpt� nT q. We denote by Φ the subspace spanned by the sampling ker-

nels. In this setting, the samples inherit the noise wptq embedded in the signal

yptq. Note that unless the sampling kernels tϕnptqu happen to be orthogonal, the

resulting measurements will not be statistically independent. This is a crucial

difference with respect to the sampling noise model of Section 1.4.2 below.

We assume that there exists a Fréchet derivative Bx
Bθ which quantifies the sen-

sitivity of xptq to changes in θ. Informally, Bx
Bθ is an operator from R2K to the

space of square-integrable functions L2 such that

xptq|θ�δ � xptq|θ � Bx
Bθδ. (1.74)

Suppose for a moment that there exist elements in the range space of Bx
Bθ which

are orthogonal to Φ. This implies that one can perturb xptq without changing

the distribution of the measurements ỹ0, . . . , ỹN�1. This situation occurs, for

example, when the number of measurements N is smaller than the number 2K

of parameters defining xptq. While it may still be possible to reconstruct some of

the information concerning xptq from these measurements, this is an undesirable

situation from an estimation point of view. Thus we will assume that

Bx
Bθ X ΦK � t0u. (1.75)

Under these assumptions, it can be shown that any unbiased, finite-variance

estimator x̂ptq of xptq from the samples (1.73) satisfies [12]

1

τ

»
E
�|xptq � x̂ptq|2� dt ¥ σ2

τ
Tr

��Bx
Bθ

��Bx

Bθ

��Bx

Bθ

�

PΦ

�Bx
Bθ


�1

�

(1.76)

where PΦ is the projection onto the subspace Φ.

Note that despite the involvement of continuous-time operators, the expres-

sion within the trace in (1.76) is a 2K � 2K matrix and can therefore be com-

puted numerically. Also observe that, in contrast to the continuous-time bound

of (1.72), the sampled bound depends on the value of θ. Thus, for a specific

sampling scheme, some signals can potentially be more difficult to estimate than

others.

As expected, the sampled bound (1.76) is never lower than the ultimate

(sample-indifferent) bound (1.72). However, the two bounds can sometimes coin-

cide. If this occurs, then at least in terms of the performance bounds, estimators

based on the samples (1.73) will suffer no degradation compared with the “ideal”
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estimator based on the entire set of continuous-time measurements. Such a situ-

ation occurs if xptq P Φ for any feasible value of xptq, a situation which we refer

to as “Nyquist-equivalent” sampling. In this case, PΦ
Bx
Bθ � Bx

Bθ , so that (1.76)

reduces to

1

τ

»
E
�|xptq � x̂ptq|2� dt ¥ σ2

τ
TrpI2K�2Kq � σ2ρτ (1.77)

and the two bounds coincide.

Many practical FRI signal models are not contained in any finite-dimensional

subspace, and in these cases, any increase in the sampling rate can improve esti-

mation performance. Even if there exists a subspace containing the entire family

of FRI signals, its dimension is often much larger than the number of param-

eters 2K defining the signal; consequently, fully exploiting the information in

the signal requires sampling at the Nyquist-equivalent rate, which is potentially

much higher than the rate of innovation. This fact provides an analytical expla-

nation of the empirically observed phenomena that oversampling often provides

improvement over sampling at the rate of innovation in the presence of noise. A

practical example of the benefit of oversampling is described in Section 1.5.

It is interesting to examine this phenomenon from a union of subspaces view-

point. Suppose that the set of feasible signals X can be described as a union of

an infinite number of subspaces tUαu indexed by the continuous parameter α, so

that

X �
¤
α

Uα. (1.78)

In this case, a finite sampling rate captures all of the information present in the

signal if and only if

dim

�¸
α

Uα
�
  8 (1.79)

where dimpMq is the dimension of the subspace M. By contrast, in the noise-

free case, it has been previously shown [7] that the number of samples required

to recover xptq is given by

max
α1,α2

dimpUα1
� Uα2

q, (1.80)

i.e., the largest dimension among sums of two subspaces belonging to the union.

In general, the dimension of (1.79) will be much higher than (1.80), illustrating

the qualitative difference between the noisy and noise-free settings. For example,

if the subspaces Uα are finite-dimensional, then (1.80) is also necessarily finite,

whereas (1.79) need not be.

The bounds developed for analog noise can also be used to optimize the sam-

pling kernels for a given fixed rate. Under certain assumptions, it can be shown

that for the case of finite pulse streams, using exponential functions, or Fourier

samples, as in the schemes of [10,11], is optimal. However, in some cases of pulse
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shapes the bounds demonstrate that there is room for substantial improvement

in the reconstruction stage of these algorithms. Another insight gained from these

bounds is that estimation in the semi-periodic setting is far more robust then

in the infinite case. As we have discussed, this is because joint processing of the

samples is possible. As a rule of thumb, it appears that for union of subspace

signals, performance is improved at low rates if most of the parameters identify

the position within the subspace, rather than the subspace itself.

1.4.2 Performance bounds under sampling noise

In this section, we derive the CRB for estimating the parameters of a finite-

duration FRI signal (1.19) from samples, in the presence of discrete sampling

noise. Specifically, we consider unbiased estimators of the parameters θ, as given

in (1.70), from the noisy samples

ỹ � pỹ0, . . . , ỹN�1qT , (1.81)

which are given by

ỹn �
〈
xptq, ϕ

�
t

T
� n


〉
� εn. (1.82)

We assume throughout that εn is white Gaussian noise with variance σ2.

This setting is distinct from the scenario discussed in Section 1.4.1 in two

respects. First, we now consider noise introduced after the sampling process,

rather than continuous-time noise. It is therefore possible to discuss performance

bounds only in the context of a given sampling scheme, so that a sampling-

indifferent lower bound such as (1.72) is not available in this case. Another

implication is that since the noise originates from the sampling process, it is

reasonable to assume that the noise in different samples is independent. Second,

we consider in this section the problem of estimating the parameters θ defining

the signal xptq, rather than the signal itself. Bounds on the recovery of xptq from

samples corrupted by discrete noise can be found in [12].

For concreteness, we focus in this section on the problem of estimating a τ -

periodic stream of Diracs, given by

xptq �
¸
mPZ

K�1̧

k�0

akδpt� tk �mτq. (1.83)

The samples (1.82) then become

ỹn �
¸
mPZ

K�1̧

k�0

akϕpnT � tk �mτq � εn � fpθ, nq � εn. (1.84)

Thus, the measurement vector ỹ has a Gaussian distribution with mean

pfpθ, 0q, . . . , fpθ, N � 1qqT and covariance σ2IN�N . The CRB is given by [48]

CRBpθq � pJpθqq�1 (1.85)
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where Jpθq is the Fisher information matrix

Jpθq � 1

σ2

N�1̧

n�0

∇fpθ, nq∇fpθ, nqT . (1.86)

It follows that the MSE of any unbiased estimator θ̂ of θ satisfies

E
!
}θ̂ � θ}2

)
¥ Tr

�pJpθqq�1
�
. (1.87)

Note that a very similar technique can be used to obtain bounds on FRI signals

composed of arbitrary pulse shapes, as well as periodic FRI signals. The only

difference is that the expression for fpθ, nq becomes more cumbersome.

Comparing sampling kernels in the presence of noise
As an example for which closed-form expressions of the CRB can be obtained, we

now consider the special case of estimating the parameters of a periodic stream

of Diracs in which each period contains a single pulse. We thus have K � 1,

and the unknown parameters are θ � pt0, a0qT . While this is a very simple case,

the ability to derive a closed form will enable us to reach conclusions about the

relative merit of various sampling schemes. In particular, we will compare the

bounds obtained using the sinc, B-spline, E-spline, and SoS sampling kernels.

The CRBs for estimating this periodic FRI signal using various kernels are

derived in the Appendix. The square root of the resulting MSE is then used

to bound the uncertainties in the locations and amplitudes. The expressions

obtained for B-splines and E-splines depend on t0. We remove this dependency by

assuming that t0 is uniformly distributed over τ and then compute the expected

values of the uncertainties. We restrict our analysis to cardinal and trigonometric

exponential splines [35]. For all the derivations and the summary given in this

section we define the peak signal-to-noise ratio (SNR) as PSNR � �
a0
σ

�2
. To

obtain a fair comparison between the sampling kernels under consideration the

kernels are normalized to have unit norm.

Table 1.1. Summary of the uncertainties on the locations and amplitudes for various
sampling kernels. The uncertainties are obtained from the Cramér–Rao Bounds derived
in the Appendix.

Kernel ∆t0
τ

¥ ∆a0
|a0| ¥

sinc 1
π

b
τ
N

3
pB2τ2�1qPSNR� 1

2
a

τ
N

PSNR� 1
2

B-spline 2
3

1
N

a
τ
N

PSNR� 1
2 2?

3

a
τ
N

PSNR� 1
2

E-spline ω0�cosω0 sinω0
ω0 sinω0

1
ω0N

a
τ
N

PSNR� 1
2 1

ω0

c
ω2
0
�cos2 ω0 sin2 ω0

ω0 sin2 ω0

a
τ
N

PSNR� 1
2

SoS 1
2π

b
τ
N

°
kPK |bk|2°
kPK k2|bk|2 PSNR� 1

2
a

τ
N

PSNR� 1
2
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To compare the different kernels, assume that the sinc kernel is chosen with

Bτ � N for odd N and Bτ � N � 1 for even N , as is commonly accepted [19].

Also assume that the SoS kernel has bk � 1 for all k, which yields optimal results

for this kernel [10]. Under these assumptions, it can be seen from Table 1.1 that

the uncertainties in the location for all the kernels follow the same trend, up to

a constant factor: they are proportional to 1
N

a
τ
NPSNR� 1

2 . Thus, performance

improves considerably with an increase in the sampling rate (corresponding to

larger values of N), and also improves as the square root of the SNR. Interest-

ingly, it can easily be shown that the SoS kernel has precisely the same uncer-

tainty as that of the sinc kernel. To see this, note that |K| � 2M � 1 and that

the number of samples has to satisfy N ¥ |K| ¥ 2K.

Using typical values for the parameters of the results given in Table 1.1 we can

compare the performance of the kernels. For instance, assume a fixed interval

τ � 1, and constant number of samples N � 32, with sampling period T � τ
N

for all the kernels, bk � 1,@k for the SoS, P � 1 for the B-spline and P � 1 and

ω0 � 2π
N for the E-spline, with only K � 1 Diracs. In this situation, the sinc and

SoS kernels have the best behavior, both in terms of uncertainty in the location

and amplitude. For the B-spline and E-spline kernels of lowest possible order

(P � 1), the uncertainties are almost identical, and slightly worse than optimal.

For any support larger than the minimum, the uncertainties achieved by these

latter kernels increase.

1.4.3 FRI techniques improving robustness to sampling noise

A central step in each of the reconstruction algorithms examined in Section 1.3

was the search for an annihilating filter thmuKm�0 which satisfies a given system

of linear equations (1.26). This annihilation equation was obtained by observing

that x̂
 h � 0 for any filter thmu whose z-transform has roots (zeroes) at the

values tuk � e�j2π
tk
τ uK�1

k�0 . In the noise-free setting it was sensible to choose thmu
having degree K, the lowest possible degree for a filter with K zeroes. However,

any filter of degree L ¥ K can also be chosen, as long as tukuK�1
k�0 are among

its L zeroes. Conversely, any filter which annihilates the coefficients tx̂mu is also

such that the values uk are among its zeroes.

When noise is present in the system, we can no longer compute the sequence

tx̂mu precisely; instead, we have access only to a noisy version tˆ̃xmu. On the other

hand, since the annihilating equation is satisfied for any contiguous sequence

within tx̂mu, we can choose to increase the number of measurements, and conse-

quently obtain the sequence tˆ̃xmu in the range �M ¤ m ¤M , for some M ¡ L
2 .

The annihilating equation can then be written as�
����

ˆ̃x�M�L
ˆ̃x�M�L�1 � � � ˆ̃x�M

ˆ̃x�M�L�1
ˆ̃x�M�L � � � ˆ̃x�M�1

...
...

. . .
...

ˆ̃xM ˆ̃xM�1 � � � ˆ̃xM�L

�
���
�
����
h0

h1

...

hL

�
����

�
����

0

0
...

0

�
��� (1.88)
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which has 2M � L� 1 equations and L� 1 unknowns. The equation is not satis-

fied exactly due to the presence of noise in the measurements tˆ̃xmu. Equivalently,

we can write the same equation more compactly as

Ãh � 0 (1.89)

where the tilde sign in Ã serves to remind us of the fact that this matrix contains

noisy measurements. We will denote by A the matrix obtained when we form

the same system of equations with noiseless measurements.

Note that we do not require h0 � 1. Indeed, there exist L�K � 1 linearly

independent polynomials of degree L with zeros at uk. Thus, there are L�
K � 1 independent vectors h that satisfy (1.88). In other words, the rank of

Ã never exceeds K. This is a key point which forms the basis for many of the

methods for signal reconstruction in the presence of noise. We now review two

such techniques, namely the total least-squares approach and Cadzow iterative

algorithm introduced in [19]. Note that for these techniques to work as explained

next, the sampled noise εn has to be a set of additive, white and Gaussian

measurements.

Total least-squares approach
In the presence of noise, the measurements tx̂mu are not known precisely, and

one therefore has access only to a noisy version Ã of matrix A, so that the

modified annihilating equation (1.89) is true. However, it is reasonable to seek

an approximate solution to (1.89) by using the method of total least-squares

(TLS) [19], which is defined as the solution to the minimization problem

min
h

}Ãh}2 subject to }h}2 � 1. (1.90)

It is not difficult to show that the filter h solving (1.90) is given by the singular

vector corresponding to the smallest singular value of Ã . Once the filter h

is found, one can determine its roots and hence identify the time delays, as

explained in Section 1.3.

Cadzow iterative denoising algorithm
When the level of noise increases, the TLS approach becomes unreliable. There-

fore, it is necessary to use a technique that reduces the noise prior to applying

TLS. The idea of the Cadzow technique is to exploit the fact that the noise-

free matrix A is Toeplitz with rank K. Our goal is therefore to find a rank-K

Toeplitz matrix A1 which is closest to the noisy matrix Ã, in the sense of a

minimal Frobenius norm. Thus, we would like to solve the optimization problem

min
A1

}Ã�A1}2F such that rankpA1q ¤ K and A1 is Toeplitz. (1.91)

To solve (1.91), we employ an algorithm that iteratively updates a target

matrix B until convergence. The iterations alternate between finding the best

rank-K approximation and finding the best Toeplitz approximation to B. Thus,
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we must independently solve the two optimization problems

min
A1

}B�A1}2F such that rankpA1q ¤ K (1.92)

and

min
A1

}B�A1}2F such that A1 is Toeplitz. (1.93)

The solution to (1.93) is easily obtained by averaging the diagonals of B. To

solve (1.92), we compute the singular value decomposition (SVD) B � USV� of

B, where U and V are unitary and S is a diagonal matrix whose diagonal entries

are the singular values of B. We then discard all but the K largest singular values

in S. In other words, we construct a diagonal matrix S1 whose diagonal contains

the K largest entries in S, and zero elsewhere. The rank-K matrix closest to B

is then given by US1V�.

The entire iterative algorithm for solving (1.91) can be summarized as follows:

(1) Let B equal the original (noisy) measurement matrix Ã.

(2) Compute the SVD decomposition of B such that B � USV�, where U and

V are unitary and S is diagonal.

(3) Build the diagonal matrix S1 consisting of the K largest elements in S, and

zero elsewhere.

(4) Update B to its best rank-K approximation B � US1V�.

(5) Update B to its best Toeplitz approximation by averaging over the diagonals

of B.

(6) Repeat from step (2) until convergence or until a specified number of itera-

tions has been performed.

Applying even a small number of iterations of Cadzow’s algorithm will yield

a matrix A1 whose error }A1 �A}2F is much lower than the error of the original

measurement matrix Ã. This procedure works best when Ã is as close as possible

to a square matrix [19], and so a good choice would be to use L �M � X
Bτ
2

\
.

The denoised matrix A1 can then be used in conjunction with the TLS technique,

as described previously.

1.5 Simulations

In this section we provide some results obtained from implementation of the

FRI methods we described. We first show how perfect reconstruction is possible

using the proposed kernels in the absence of noise. We then demonstrate the

performance of the various kernels when samples are corrupted by additive iid

Gaussian noise. In all simulations we consider only real-valued sampling kernels.
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1.5.1 Sampling and reconstruction in the noiseless setting

Fig. 1.9 shows an example of the sampling and reconstruction process of Sec-

tion 1.3.1 for periodic inputs consisting of Diracs. Note that in this setting, using

a sinc sampling kernel, or an SoS filter with bk � 1 is equivalent. In Fig. 1.9(a) we

show the original and reconstructed signals plotted together, while in Fig. 1.9(b)

we plot the filtered input and the samples taken at a uniform interval.
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(a) Original and reconstruction.
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(b) Samples.

Figure 1.9 Example of sampling and reconstruction of a Stream of Diracs with a sinc
kernel. (a) The original signal along with its reconstruction, exact to numerical
precision. (b) Convolution of the sinc kernel with the input. The samples, taken at
uniform intervals of T seconds, are also indicated.

Fig. 1.10 shows perfect reconstruction of K � 4 closely spaced Diracs using a

real-valued E-spline. Here again, reconstruction is exact to numerical precision.
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(a) Original and reconstruction.
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(b) Samples.

Figure 1.10 Sampling and reconstruction of K � 4 closely spaced Diracs with the
E-spline kernel. (a) The original signal along with its reconstruction, exact to
numerical precision. (b) Convolution of the E-spline kernel with the input. The
samples, taken at uniform intervals of T seconds, are also indicated.

As a final example, consider a periodic input xptq in which each period consists

of K � 5 delayed and weighted versions of a Gaussian pulse, with τ � 1. We

select the amplitudes and locations at random. Sampling is performed using an
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SoS kernel with indices K � �K, . . . ,K and cardinality M � |K| � 2K � 1 �
11. We filter xptq with gptq defined in (1.34), and set the coefficients bk, k P
K to be a length-M symmetric Hamming window. The output of the filter is

sampled uniformly N times, with sampling period T � τ
N , where N �M � 11.

The sampling process is depicted in Fig. 1.11(b). The reconstructed and original

signals are depicted in Fig. 1.11(a). Once again the estimation and reconstruction

are exact to numerical precision.

(a) Original and reconstruction. (b) Samples.

Figure 1.11 Example of sampling and reconstruction of a Stream of Pulses with an SoS
kernel. (a) The train of pulses, with Gaussian shape, and the estimated parameters.
(b) Convolution of the input with the SoS kernel, and the samples taken at uniform
intervals.

1.5.2 Sampling and reconstruction in the presence of noise

In the presence of noise, exact retrieval of the input signal is no longer possible.

In order to obtain reasonable recovery, it is necessary to employ some denoising

strategies, such as those explained in Section 1.4.

Periodic pulse streams
We start by showing that the proposed robust reconstruction strategies can

achieve the CRBs on digital noise given in Section 1.4.2 for a wide range of

SNRs. We concentrate on the SoS kernel with coefficients bk � 1. Notice that in

this case, the SoS is the Dirichlet function and is therefore equivalent to the peri-

odic sinc of [19]. Fig. 1.12 shows the results of the SoS kernel when the input is

a periodic train of K � 3 Diracs, and the samples are corrupted by iid Gaussian

noise with SNR = 10dB, where we define the SNR as SNR � }y}22
Nσ2 , for a single

realization. We use M � X
Bτ
2

\
, and 20 iterations of Cadzow. The result shows

that there is a very small error in the estimated locations despite the fairly low

SNR. There is, however, a bigger error when estimating the amplitudes. This

happens because the kernel is optimized to minimize the error in the estimation

of the location of the Diracs rather than in the amplitude.
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(a) Original and reconstruction.
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(b) Samples.

Figure 1.12 Example of sampling and reconstruction of a Stream of Diracs with an SoS
kernel. (a) The original signal to be sampled and its reconstruction, overlapping the
input. (b) Convolution of the kernel with the input. The noisy samples are also shown.

Now we consider a periodic stream with a single Dirac (e.g. K � 1). In the

simulations, the amplitude of the Dirac is fixed. The samples are corrupted by

iid Gaussian noise with variance σ2 such that the SNR ranges from -10dB to

30dB. We define the error in time-delay estimation as the average over all exper-

iments of }t� t̂}22, where t and t̂ denote the true and estimated time-delays,

respectively, sorted in increasing order. We then calculate the square root of the

average to obtain the MSE, which equals the standard deviation for unbiased

estimators. Fig. 1.13 shows the results obtained from averaging 10000 realiza-

tions and using 10 iterations of Cadzow’s algorithm. More specifically, 1.13(a)

shows the estimated positions with respect to the real location and 1.13(b) the

estimation error compared to the deviation predicted by the CRB. The retrieval

of the FRI signal made of one Dirac is almost optimal for SNR levels above

5dB since the uncertainty on these locations reaches the (unbiased) theoretical

minimum given by Cramér–Rao bounds .
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(a) Scatter plot.
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Figure 1.13 Retrieval of the locations of a FRI signal. (a) Scatterplot of the locations.
(b) Standard deviation (averaged over 10,000 realizations) compared to the
Cramér–Rao lower bound.
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The reconstruction quality can be further improved at the expense of oversam-

pling. This is illustrated in Fig. 1.14 where two Diracs are reconstructed. Here

we show recovery performance for oversampling factors of 2, 4 and 8.

Figure 1.14 Effect of oversampling. The performance of the recovery improves for all
SNR when more samples are available.

In the following simulation, we consider exponential reproducing kernels and

analyze their performance in the presence noise. Any exponential reproducing

kernel is of the form ϕptq � ψptq
 β~αptq where β~αptq is the E-spline with expo-

nents ~α � tα0, α1, ..., αP u and ψptq can essentially be any function, even a dis-

tribution. The aim here is to understand how to set both ~α and ψptq in order to

have maximum resilience to noise when noise is additive iid Gaussian as assumed

so far. It turns out that the best choice of the exponents is αm � j2πmN [36]. The

choice of ψptq is not unique and depends on the desired support of ϕptq. If ϕptq has

the same support as the SoS kernel, then the best choice of ψptq leads to an expo-

nential reproducing kernel with the property that its coefficients cm,n constitute

a DFT. Moreover, when the order P of the resulting exponential reproducing

kernel equals P � N � 1 then the kernel behaves like the Dirichlet function [36].

The simulation results of Fig. 1.15 confirm the above analysis. Here we retrieve

two Diracs in the presence of noise using an E-spline with arbitrary exponents

(P � 9, d), an E-spline with the correct exponents αm � j2πmN (P � 9, o), and

finally using two of the most stable exponential reproducing kernels (P � 15, 30,

n) (the best being the Dirichlet function). We use the notation “d” to indicate

default kernel, “o” orthogonal rows of coefficients and “n” orthonormal rows.

Here, we have N � 31 samples and the input xptq is a τ -periodic stream of

Diracs, where τ � 1 second. We run 1000 experiments contaminating the sam-

ples with iid Gaussian noise of desired SNR by controlling its variance, and we

denoise the calculated moments doing 30 iterations of Cadzow’s denoising algo-

rithm. We can see the improvement in performance by going from the first to the

last type of exponential reproducing kernel. In fact, as expected, proper choice

of the exponents αm improves the estimation of the locations, and the appro-

priate choice of ψptq enhances the results further. Interestingly, if we use pure

E-splines β~αptq then there is an order from which the performance declines. In
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Fig. 1.15 we plot the optimum order (P � 9). In contrast, when we design the

optimum exponential reproducing kernel the performance improves constantly

until it matches that of the Dirichlet kernel.
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Figure 1.15 Sampling with exponential reproducing kernels. Results of the estimation of
the location of K � 2 Diracs in the presence of noise. The performance of exponential
reproducing kernels can be enhanced by proper selection of the parameter αm (solid
line with -o-) and depending on the choice of ψptq (dashed-dotted lines).

Finite pulse streams
We now turn to demonstrate FRI recovery methods when using finite pulse

streams. We examine 4 scenarios, in which the signal consists of K � 2, 3, 5, 20

Diracs1. In our setup, the time-delays are equally distributed in the window r0, τq,
with τ � 1, and remain constant throughout the experiments. All amplitudes are

set to one. The index set of the SoS filter is K � t�K, . . . ,Ku. Both B-splines and

E-splines are taken of order 2K � 1, and for E-splines we use purely imaginary

exponents, equally distributed around the complex unit circle. The sampling

period for all methods is T � τ
N , where the number of samples is N � 2K � 1 �

5, 7, 11, 41 for the SoS and N � 2K � 1� S � 9, 13, 21, 81 for the spline-based

methods, where S is the spline support. Hard thresholding was implemented in

order to improve the spline methods. The threshold was chosen to be 3σ, where

σ is the standard deviation of the noise. For the Gaussian sampling kernel the

parameter σg was optimized and took on the value of σg � 0.25, 0.28, 0.32, 0.9,

respectively.

The results are given in Fig. 1.16. For K � 2 all methods are stable, where

E-splines exhibit better performance than B-splines, and Gaussian and SoS

1 Due to computational complexity of calculating the time-domain expression for high order
E-splines, the functions were simulated up to order 9, which allows for K � 5 pulses.
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(a) K � 2.
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(b) K � 3.
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(c) K � 5.
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(d) K � 20.

Figure 1.16 Performance in the presence of noise: finite stream case. SoS, B-spline,
E-spline and Gaussian sampling kernels. (a) K � 2 Dirac pulses are present, (b)
K � 3 pulses, (c) high value of K � 5 pulses, and (d) the performance for a very high
value of K � 20 (without E-spline simulation, due to computational complexity of
calculating the time-domain expression for high values of K).

approaches demonstrate the lowest errors. As the value of K grows, the advan-

tage of the SoS filter becomes more prominent, where for K ¥ 5, the performance

of Gaussian and both spline methods deteriorate and have errors approaching the

order of τ . In contrast, the SoS filter retains its performance nearly unchanged

even up to K � 20, where the B-spline and Gaussian methods are unstable.

Infinite pulse streams
We now demonstrate the performance of FRI methods for infinite pulse streams

in the presence of white Gaussian noise, when working at the rate of innovation.

We compare three methods that can achieve the innovation rate in the infinite

case: an integrator based approach detailed in [40], exponential filters [41], and

the multichannel approach described in Section 1.3.4 based on modulators. For

the modulators, we examine three waveforms: cosine and sine waveform (tones),

filtered rectangular alternating pulses (rectangular) and waveforms obtained

from delayed versions of the SoS filter (SoS). Following [41], the parameters
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defining the impulse response of the exponential filters are chosen as α � 0.2T

and β � 0.8T .

We focus on one period of the input signal, which consists of K � 10 Diracs

with times chosen in the interval r0, T q and amplitudes equal one, and P � 21

channels. The estimation error of the time-delays versus the SNR is depicted

in Fig. 1.17, for the various approaches. The instability of the integrators and

exponential filters based methods becomes apparent for these high orders. The

SoS approach, in contrast, achieves good estimation results. There is a slight

advantage for the schemes based on tones and SoS, over alternating pulses, where

the first two configurations have similar performance.
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Figure 1.17 Performance in the presence of noise at the rate of innovation. The signal
consists of K � 10 Diracs.

1.5.3 Periodic vs. semi-periodic FRI signals

As we have seen above, the reconstruction of signals of the form (1.18) in the

presence of noise is often severely hampered when sampled at or slightly above

the rate of innovation. Rather than indicating a lack of appropriate algorithms,

in many cases this phenomenon results from fundamental limits on the ability

to recover such signals from noisy measurements. A similar effect was demon-

strated [10] in the finite pulse stream model (1.19). On the other hand, some

types of FRI signals exhibit remarkable noise resilience, and do not appear to

require substantial oversampling in the presence of noise [17]. As we now show,

the CRB for analog noise can be used to verify that such phenomena arise from

a fundamental difference between families of FRI signals.

As an example, we compare the CRB for reconstructing the periodic signal

(1.18) with the semi-periodic signal (1.20). Recall that in the former case, each

period consists of pulses having unknown amplitudes and time shifts. By con-

trast, in the latter signal, the time delays are identical throughout all periods,

but the amplitudes can change from one period to the next.

While these are clearly different types of signals, an effort was made to form

a fair comparison between the reconstruction capabilities in the two cases. To
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this end, we chose an identical pulse gptq in both cases. We selected the signal

segment r0, τ s, where τ � 1, and chose the signal parameters so as to guarantee

an identical τ -local rate of innovation. We also used identical sampling kernels

in both settings: specifically, we chose the kernels which measure the N lowest

frequency components of the signal.

To simplify the analysis and focus on the fundamental differences between

these settings, we will assume in this section that the pulses pptq are compactly

supported, and that the time delays are chosen such that pulses from one period

do not overlap with other periods. For the periodic signal, we chose K � 10 pulses

with random delays and amplitudes. A period of τ � 1 was selected. This implies

that the signal of interest is determined by 2K � 20 parameters (K amplitudes

and K time delays). To construct a semi-periodic signal with the same number

of parameters, we chose a period of T � 1
9 containing K � 2 pulses. The segment

r0, τ s then contains precisely M � 9 periods, for a total of 20 parameters. While

it may seem plausible to require the same number of periods for both signals,

this would actually disadvantage the periodic approach, as it would require the

estimation of much more closely-spaced pulses.

Note that since the number of parameters to be estimated is identical in both

signal models, the continuous-time CRB for the two settings coincides (see Sec-

tion 1.4.1). Consequently, for a large number of measurements, the sampled

bounds also converge to the same values. However, when the number of samples

is closer to the rate of innovation, the bound on the reconstruction error for the

semi-periodic signal is much lower than that of the periodic signal, as shown

in Fig. 1.18. As mentioned above, this is in agreement with previously reported

findings for the two types of signals [4, 11,17].
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Figure 1.18 Comparison between the CRB for a periodic signal (1.18) and a
semi-periodic signal (1.20).

To find an explanation for this difference, it is helpful to recall that both signals

can be described using the union of subspaces viewpoint. Each of the signals in

this experiment is defined by precisely 20 parameters, which determine the sub-

space to which the signal belongs and the position within this subspace. Specifi-
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cally, the values of the time delays select the subspace, and the pulse amplitudes

define a point within this subspace. Thus, in the above setting, the periodic signal

contains 10 parameters for selecting the subspace and 10 additional parameters

determining the position within it; whereas for the semi-periodic signal, only 2

parameters determine the subspace while the remaining 18 parameters set the

location in the subspace. Evidently, identification of the subspace is challeng-

ing, especially in the presence of noise, but once the subspace is determined,

the remaining parameters can be estimated using a simple linear operation (a

projection onto the chosen subspace). Consequently, if many of the unknown

parameters identify the position within a subspace, estimation can be performed

more accurately. This may provide an explanation for the difference between the

two examined signal models.

1.6 Extensions and applications

1.6.1 Sampling piecewise sinusoidal signals

While most of the previous sections have concentrated on sampling streams of

pulses, the theory of FRI extends beyond this class of signals and can be applied,

for instance, to sample piecewise polynomial signals or classes of 2-D signals. In

this section we demonstrate that piecewise sinusoidal signals can also be sampled

and perfectly reconstructed using FRI theory [16].

The signals we consider can be written as follows:

xptq �
Ḑ

d�1

Ņ

n�1

Ad,n cospωd,nt� θd,nqξdptq,

where ξdptq � upt� tdq � upt� td�1q and �8   t1   ...   td   ...   tD�1   8.

Namely, we consider piecewise sinusoidal signals with a maximum of D pieces

and with a maximum of N sinusoids per piece. Piecewise sinusoidal signals are

traditionally difficult to sample because they are not bandlimited, have informa-

tion concentrated both in time and frequency (e.g., time location of the switching

points, frequency of each sine wave) and finally cannot be sparsely described in

a basis or a frame. However, they are completely specified by a finite number of

parameters and are therefore FRI signals.

We assume, for simplicity, that the signal xptq is acquired using an exponential

reproducing kernel, however, similar analysis applies to the sinc and SoS kernels.

We have seen in (1.44) and (1.45) that given the samples yn the new measure-

ments sm � °N�1
n�0 cm,nyn, m � 0, 1, ..., P correspond to the Laplace transform

of xptq evaluated at αm � α0 �mλ. In the piecewise sinusoidal case the Laplace

transform is given by:

sm �
Ḑ

d�1

2Ņ

n�1

Ād,n
retd�1pjωd,n�αmq � etdpjωd,n�αmqs

pjωd,n � αmq , (1.94)
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where Ād,n � Ad,ne
jθd,n . We now define the polynomial Qpαmq as follows:

Qpαmq �
D¹
d�1

2N¹
n�1

pjωd,n � αmq �
J̧

j�0

rjα
j
m. (1.95)

Multiplying both sides of the equation by Qpαmq we obtain:

Qpαmqsm �
Ḑ

d�1

2Ņ

n�1

Ād,nRpαmqretd�1pjωd,n�αmq � etdpjωd,n�αmqs, (1.96)

where Rpαmq is a polynomial. Since αm � α0 � λm the right-hand side of (1.96)

is a power-sum series and can be annihilated:

Qpαmqsm 
 hm � 0. (1.97)

More precisely the right hand side of (1.96) is equivalent to°D
d�1

°2DN�1
r�0 br,dm

reλtdm where br,d are weights that depend on αm but

do not need to be computed here. Therefore a filter of the type:

ĥpzq �
D¹
d�1

p1� eλtdz�1q2DN �
Ķ

k�0

hkz
�k

will annihilate Qpαmqsm. In matrix/vector form (1.97) can be written as

�
����

sK αJKsK � � � s0 � � � αJ0 s0

sK�1 α
J
K�1sK�1 � � � s1 � � � αJ1 s1

...
...

...
. . .

...
...

sP αJP sP � � � s0 � � � αJP�KsP�K

�
���

�
�������������

h0r0

...

h0rJ
...

hKr0

...

hKrJ

�
������������
�

�
����

0

0
...

0

�
���.

Solving the system for h0 � 1 enables finding the coefficients rj , from which we

can obtain the coefficients hk. The roots of the filter ĥpzq and of the polynomial

Qpαmq give the locations of the switching points and the frequencies of the sine

waves respectively. The number of values sm required to build a system with

enough equations to find the parameters of the signal is P ¥ 4D3N2 � 4D2N2 �
4D2N � 6DN .

An illustration of the sampling and reconstruction of a piecewise sinusoidal

signal is shown in Fig. 1.19. For more details about the sampling of these signals

we refer the reader to [16].

1.6.2 Signal compression

We have seen that specific classes of signals can be parsimoniously sampled using

FRI sampling theory. Moreover, the sampling kernels involved include scaling
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Figure 1.19 Sampling a piecewise sinusoidal signal. (a) The original continuous-time
waveform, this is made of two truncated sinewaves. (b) The observed samples. (c)
The reconstructed signal, where the retrieval of the two switch points and of the sine
waves parameters is exact to machine precision.

functions used in the construction of wavelet bases such as, for example, B-

splines or Daubechies scaling function.

We are now going to concentrate on this type of kernels and investigate the

potential impact of such sampling schemes in compression where samples are

also quantized and represented with a bit stream. In this context, the best way

to analyze the compression algorithm is by using standard rate-distortion (R-D)

theory since this gives the best achievable trade-off between the number of bits

used and the reconstruction fidelity. It is often assumed that the error due to

quantization can be modeled as additive noise. While this assumption is normally

not accurate, it allows us to connect R-D theory with the CRB discussed in the

previous section and therefore relate the theory of sampling FRI signals with

compression.

The classes of signals we consider here are piecewise smooth functions, that

is, functions which are made of regular pieces. The regularity of a function is

normally measured using the Lipschitz coefficients [49]. We thus assume that

the signals we consider are made of pieces with Lipschitz regularity α.

The FRI-based compression algorithm we propose is characterized by a simple

linear encoding strategy and a more complex decoding. This is in contrast with

standard wavelet based compression algorithms that involve a fairly sophisti-

cated encoding strategy, but simple decoding. There might be situations, how-

ever, where it is important to have simple encoders. In our set-up, at the encoder

the signal is decomposed using a standard wavelet transform and the result-

ing coefficients are quantized linearly. This means that the low-pass coefficients

(equivalent to the samples in the FRI framework) are quantized first followed by

the wavelet coefficients from the coarse to the finest scale.
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At the decoder, the FRI reconstruction strategy is used to estimate the discon-

tinuities in the signal using the scaling coefficients, while the other coefficients

are used to reconstruct the smooth parts of the signals. By modeling the quan-

tization error and any model mismatch as additive noise, one can use the CRB

to estimate the performance of this compression strategy. The rate-distortion

behavior of this FRI-based algorithm is [38,39]:

DFRIpRq ¤ c1R
�2α � c2 (1.98)

where c2 is a systematic estimation error due to the model mismatch. Standard

wavelet-based compression algorithms instead are characterized by a complex

encoder and a simple decoder and can achieve the optimal rate distortion behav-

ior [50]:

DwavepRq ¤ c3R
�2α. (1.99)

This indicates that if the systematic error in (1.98) is sufficiently small the FRI-

based algorithm, which shifts the complexity from the encoder to the decoder,

can achieve the same performance of the best wavelet-based compression algo-

rithms for a wide range of bit rates.

1.6.3 Superresolution imaging

An image superresolution algorithm aims at creating a single detailed image,

called a super-resolved image (SR) from a set of low-resolution input images of

the same scene [51]. If different images from the same scene have been taken

such that their relative shifts are not integer-multiple of the pixel size, then sub-

pixel information exists among the set. This allows to obtain higher resolution

accuracy of the scene once the images have been properly registered.

Image registration involves any group of transformations that removes the

disparity between any two low resolution (LR) images. This is followed by image

fusion, which blends the properly aligned LR images into a higher resolution

output, possibly removing blur and noise introduced by the system [26].

The registration step is crucial is order to obtain a good quality SR image.

The theory of FRI can be extended to provide superresolution imaging, combined

with B-spline or E-spline processing. The key idea of this approach is that, using

a proper model for the point-spread function of the scene acquisition system,

it is possible to retrieve the underlying “continuous geometric moments” of the

irradiance light-field. From this information, and assuming the disparity between

any two images can be characterized by a global affine transformation, the set

of images can be exactly registered.

Concretely, if the smoothing kernel that models the 2-D image acquisition is

considered to be a B-spline or a more generic function such as a spline, then the

continuous moments of the image can be found using a proper linear combination

of the samples [25,26]. From them, it is possible to find the central and complex

moments of the signal, from which the disparities between any two LR images
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can be estimated. Thus, this allows for proper registration of the set of input

images, which can now be combined into a super-resolved output. Fig. 1.20 shows

an example of the results obtained using the method presented in [26].

(a) HR. (b) LR. (c) SR.

Figure 1.20 Image super-resolution from translated images with registration from the
extracted edges and detected corners. (a) Original high resolution image
(512x512pixels). (b) One of the 20 low-resolution images (64x64 pixels) used in the
super-resolution simulation. (d) Super-resolved image with the proposed edge
detector and Wiener Filter, 512x512 pixels, PSNR = 15.6 dB.

1.6.4 Ultrasound imaging

Another application of the stream of pulses FRI framework is ultrasound imag-

ing [10]. In this application, an acoustic pulse is transmitted into the scanned

tissue. Echoes of the pulse bounce off scatterers within the tissue, and create a

signal consisting of a stream of pulses at the receiver. The time-delays and ampli-

tudes of the echoes indicate the position and strength of the various scatterers,

respectively. Therefore, determining these parameters from low rate samples of

the received signal is an important problem. Reducing the rate allows more effi-

cient processing which can translate to power and size reduction of the ultrasound

imaging system.

The stream of pulses is finite since the pulse energy decays within the tissue. In

order to demonstrate the viability of an FRI framework, we model the multiple

echo signal recorded at the receiver as a finite stream of pulses, like (1.15).

The unknown time-delays correspond to the locations of the various scatterers,

whereas the amplitudes are the reflection coefficients. The pulse shape in this case

is Gaussian, due the physical characteristics of the electro-acoustic transducer

(mechanical damping).

As an example, we chose a phantom consisting of uniformly spaced pins, mim-

icking point scatterers, and scanned it by GE Healthcare’s Vivid-i portable ultra-

sound imaging system, using a 3S-RS probe. We use the data recorded by a single

element in the probe, which is modeled as a 1D stream of pulses. The center fre-

quency of the probe is fc � 1.7021 MHz, The width of the transmitted Gaussian

pulse in this case is σ � 3 � 10�7 sec, and the depth of imaging is Rmax � 0.16 m
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corresponding to a time window of2 τ � 2.08 � 10�4 sec. We carried out our sam-

pling and reconstruction scheme on the data. We set K � 4, looking for the

strongest 4 echoes. Since the data is corrupted by strong noise we oversampled

the signal, obtaining twice the minimal number of samples. In addition, hard-

thresholding of the samples was implemented, where we set the threshold to 10

percent of the maximal value. Fig. 1.21 depicts the reconstructed signal together

with the full demodulated signal. Clearly, the time-delays were estimated with

high precision. The amplitudes were estimated as well, however the amplitude

of the second pulse has a large error. However, the exact locations of the scat-

terers is typically more important than the accurate reflection coefficients. This

is because the time of arrival indicates the scatterer’s location within the tissue.

Accurate estimation of tissue boundaries and scatterer locations allows for reli-

able detection of certain illnesses, and is therefore of major clinical importance.

The location of the boundaries is often more important than the power of the

reflection which is incorporated in the received amplitudes.

Figure 1.21 Example of sampling and reconstruction of real ultrasound imaging data.
The input signal, in blue and continuous line, is sampled assuming there exist K � 4
pulses, and using an oversampling factor of 2. The output is a stream of Gaussian
pulses, where the unknown locations and amplitudes have been estimated from the
N � 17 samples obtained from the input, denoising with hard-thresholding.

Current ultrasound imaging technology operates at the high rate sampled data,

e.g., fs � 20 MHz in our setting. Since there are usually 100 different elements

in a single ultrasonic probe each sampled at a very high rate, data throughput

becomes very high, and imposes high computational complexity to the system,

limiting its capabilities. Therefore, there is a demand for lowering the sampling

rate, which in turn will reduce the complexity of reconstruction. Exploiting the

parametric point of view, our sampling scheme reduces the sampling rate by over

2 orders of magnitude, while estimating the locations of the scatterers with high

accuracy.

2 The speed of sound within the tissue is 1550 m/sec.
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1.6.5 Multipath medium identification

Another nice application of the FRI model is to the problem of time-varying

channel estimation in wireless communication [17]. In such an application the

aim of the receiver is to estimate the channel’s parameters from the samples of

the received signal [52].

We consider a baseband communication system operating in a multipath fad-

ing environment with pulse amplitude modulation (PAM). The data symbols

are transmitted at a symbol rate of 1
T , modulated by a known pulse pptq. The

transmitted signal xt ptq is given by

xT ptq �
Nsym¸
n�1

d rns p pt� nT q (1.100)

where d rns are the data symbols taken from a finite alphabet, and Nsym is the

total number of transmitted symbols.

The transmitted signal xT ptq passes through a baseband time-varying multi-

path channel whose impulse response is modeled as

hpτ, tq �
Ķ

k�1

αk ptq δ pτ � τkq (1.101)

where αk ptq is the path time varying complex gain for the kth multipath propa-

gation path and τk is the corresponding time delay. The total number of paths is

denoted by K. We assume that the channel is slowly varying relative to the sym-

bol rate, so that the path gains are considered to be constant over one symbol

period:

αk ptq � αk rnT s for t P rnT, pn� 1qT s . (1.102)

In addition, we assume that the propagation delays are confined to one symbol,

i.e τk P r0, T q. Under these assumptions, the received signal at the receiver is

given by

xR ptq �
Ķ

k�1

Nsym¸
n�1

ak rns p pt� τk � nT q � n ptq (1.103)

where ak rns � αk rnT s d rns and n ptq denotes the channel noise.

The received signal xR ptq fits the semi-periodic FRI signal model. Therefore,

we can use the methods we described to recover the time delays of the propa-

gation paths. In addition, if the transmitted symbols are known to the receiver,

then the time varying path gains can be recovered from the sequences ak rns.
As a result our sampling scheme can estimate the channel’s parameters from

samples of the output at a low rate, proportional to the number of paths.

As an example, we can look at the channel estimation problem in code divi-

sion multiple access (CDMA) communication. This problem was handled using

subspace techniques in [53, 54]. In these works the sampling is done at the chip
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rate 1
Tc

or above, where Tc is the chip duration given by Tc � T
N and N is the

spreading factor which is usually high (1023, for example, in GPS applications).

In contrast, our sampling scheme can provide recovery of the channel’s parame-

ters at a sampling rate of 2K
T . For a channel with a small number of paths, this

sampling rate can be significantly lower than the chip rate.

1.6.6 Super-resolution radar

We end with an application of the semi-periodic model (1.20) to super-resolution

radar [27].

In this context, we can translate the rate reduction to increased resolution,

thus enabling super-resolution radar from low rate samples. Here the goal is to

identify the range and velocity of a set of targets. The delay in this case captures

the range while the time varying coefficients are a result of the Doppler delay

related to the target velocity. More specifically, we assume that several targets

can have the same delays but possibly different Doppler shifts so that tt`uK`�1

denote the set of distinct delays. For each delay value t` there are K` values of

associated Doppler shifts ν`k and reflection coefficients α`k. It is further assumed

that the system is highly underspread, namely νmaxT ! 1, where νmax denotes

the maximal Doppler shift, and T denotes the maximal delay. To identify the

targets we transmit the signal

xT �
N�1̧

n�0

xnppt� nT q, (1.104)

where xn is a known N -length probing sequence, and pptq is a known pulse shape.

The received signal can then be described in the form (1.20), where the sequences

a`rns satisfy

a`rns � xn

K`̧

k�1

α`ke
j2πν`knT . (1.105)

The delays and the sequences a`rns can be recovered using the general

scheme for time delay recovery. The Doppler shifts and reflection coefficients

are then determined from the sequences a`rns using standard spectral estima-

tion tools [18]. The targets can be exactly identified as long as the bandwidth of

the transmitted pulse satisfies W ¥ 4πK
T , and the length of the probing sequence

satisfies N ¥ 2 maxK` [27]. This leads to a minimal time-bandwidth product of

the input signal of WT ¥ 8πK maxK`, which is much lower than that obtained

using standard radar processing techniques, such as matched-filtering (MF).

An example of the identification of nine close targets is illustrated in

Fig. 1.22(a). The sampling filter used is a simple LPF. The original and recov-

ered targets are shown on the Doppler-delay plane. Evidently all the targets

were correctly identified using our FRI-based method. The result obtained by

MF, with the same time-bandwidth product, is shown in Fig. 1.22(b). Clearly
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Figure 1.22 Comparison between the target-detection performance of matched-filtering
and the procedure described in [27] for the case of nine targets (represented by �) in
the delay–Doppler space with τmax � 10µs, νmax � 10 kHz, W � 1.2 MHz, and
T � 0.48 ms. The probing sequence txnu corresponds to a random binary p�1q
sequence with N � 48, the pulse pptq is designed to have a nearly-flat frequency
response and the pulse repetition interval is T � 10 µs. (a) Target detection by
matched-filtering. (b) Target detection using the proposed procedure with P � 12.

the FRI method has superior resolution than the standard MF. Thus, the FRI

viewpoint not only offers a reduced-rate sampling method, but allows to increase

the resolution in target identification.
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Appendix to Chapter 1: Cramér–Rao bound
derivations

Cramér–Rao bounds for the sinc kernel

Here we focus on the simplified case in which the input is a single τ -periodic

Dirac, for which we can obtain a closed form expression for (1.85).

In the absence of noise, the samples taken at uniform intervals of time T with

K � 1 Diracs, can be expressed as:

yn � a0ψpnT � t0q � fpθ, nq (.106)

where ψptq is the Dirichlet kernel

ψptq �
¸
mPZ

φB pt�mτq � 1

Bτ

sin
�
πp2M�1qt

τ

	
sin
�
πt
τ

� � 1

Bτ

sinpπBtq
sin
�
πt
τ

� (.107)

and θ � pt0, a0qT . The Fisher information matrix is the following square and size

2� 2 matrix:

Ipθq � σ�2

� °N�1
n�0 pa0ψ

1pnT � t0qq2
°N�1
n�0 a0ψ

1pnT � t0qψpnT � t0q°N�1
n�0 ψpnT � t0qa0ψ

1pnT � t0q
°N�1
n�0 pψpnT � t0qq2

�
.

(.108)

In order to evaluate the summations it is convenient to use the Fourier series

representations of the signals ψptq and ψ1ptq because the following holds [55]:

N�1̧

n�0

fpnT qg�pnT q paq�
N�1̧

n�0

�¸
k

f̂kej2πkn
T
τ

��¸
k1

ĝ�k1e
�j2πk1nTτ

�
(.109)

�
¸
k

f̂k
¸
k1

ĝ�k1
1� ej2πpk�k

1qN T
τ

e�j2πpk�k
1qTτ

pbq�
¸
k

f̂k
¸
k1

ĝ�k1Nδk,k1 � N
¸
k

f̂kĝ
�
k ,

where in paq we have used the fact that fptq and gptq are assumed to be periodic,

and in pbq the fact that for τ � NT the sum is only non-zero when k � k1.

Furthermore, if we call ψ̂k the coefficients for ψptq, then ψ̂1k � j2π kτ ψ̂k would

be the coefficients for its derivative and ψ̂
pt0q
k � e�j2πk

t0
τ ψ̂k the coefficients for

its shifted version by t0.

56
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These last equivalences and (.109) simplify the calculations of the sums in

(.108), because the function ψptq is characterized by the Fourier series coefficients

ψ̂k � 1
Bτ |k| ¤M and ψ̂k � 0 otherwise. Element (1,1) in (.108) can therefore be

calculated as

σ�2
N�1̧

n�0

�
a0ψ

1pnT � t0q
�2 � σ�2a2

0N
¸

|k|¤M

ψ1ke�j2πk
t0
τ ψ1�k ej2πk

t0
τ (.110)

rIpθqs11 � N

�
a0

σ

2π

Bτ2


2
MpM � 1qp2M � 1q

3
.

The other elements in (.108) can be calculated likewise. Due to the fact that

the elements in the anti-diagonal are zero, the inverse of the Fisher information

matrix can be computed by just inverting the diagonal elements, yielding

CRBpθq �
�

1
N

�
σ
a0

Bτ2

2π

	2
3

MpM�1qp2M�1q 0

0 1
N σ

2B2τ2 1
2M�1

�
, (.111)

where M � X
Bτ
2

\
. Note that, for this M , it always holds that 2M � 1 � Bτ .

To end, we can determine the uncertainties in the location and the amplitude

from the values derived in the CRB. We know that the diagonal values in (.111)

are lower bounds for vartt0u and varta0u respectively. And since we are inter-

ested in unbiased estimators, the variances equal the MSE for each unknown.

Therefore, we can write the uncertainty in the location as follows:

∆t0
τ

¥
d

1

N

�
σ

a0

Bτ

2π


2
3

MpM � 1qp2M � 1q (.112)

paq� 1

π

d
3Bτ

NpB2τ2 � 1qPSNR� 1
2 ,

where we have defined the peak signal-to-noise ratio as PSRN � �
a0
σ

�2
, and in

paq we have used the fact that 4MpM � 1q � p2M � 1q2 � 1 � B2τ2 � 1. We can

also write the uncertainty in the amplitude as:

∆a0

|a0| ¥
d

1

N

σ2

a2
0

B2τ2
1

2M � 1
�
c
Bτ

N
PSNR� 1

2 . (.113)

Cramér–Rao bounds for the SoS kernel

The derivation of the CRB for the SoS kernel follows exactly the same steps as in

the previous section for the sinc. First, we express the samples as yn � a0ηpt0 �
nT q � fpθ, nq, where ηptq � °

mPZ gpt�mτq, and gptq is the filter defined in

(1.34). Now, we can once more rely on the Fourier series representation of the
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signals to calculate the summations. From (1.33), the Fourier series coefficients

of the periodic expansion of the kernel ηptq are ηk � 1
τ ĝ
�

2πk
τ

� � bk, for k P K.

The elements of the Fisher information matrix are found as in the sinc case,

using the equivalence shown in (.109) and the properties for the coefficients

of the derivative of ηptq and of its shifted version by t0. The only additional

consideration is that, when computing the elements of the anti-diagonal, we

encounter a term of the form
°
kPK k|bk|2. This is always equal to zero as long as

|bk| � |b�k| which is true, for instance, if we want to design real filters, for which

bk � b��k. Thus

CRBpθq �
�
� 1
N

�
σ
a0

	2 �
τ
2π

�2 1°
kPK k

2|bk|2
0

0 σ2 1
N

1°
kPK |bk|

2

�
. (.114)

The uncertainty in the location is

∆t0
τ

¥ 1

2π

d
1

N

1°
kPK k

2|bk|2 PSNR� 1
2 , (.115)

and the uncertainty in the amplitude

∆a0

|a0| ¥
d

1

N

1°
kPK |bk|2

PSNR� 1
2 . (.116)

Cramér–Rao bounds for B-splines

We now derive the lower bounds on the variances when estimating the location

t0 and amplitude a0 of a single τ -periodic Dirac when the sampling kernel is

a B-spline. We restrict the analysis to the shortest possible B-spline capable of

sampling one Dirac, i.e. the first order B-spline (P � 1) obtained as the convo-

lution of two box functions. It has the following form:

β1ptq �
#
t, 0 ¤ t   1,

2� t, 1 ¤ t   2.
(.117)

In the absence of noise, the samples taken at uniform intervals of time T can

be expressed as yn � a0

°
mPZ β1

�
t0
T � n�mN

� � fpθ, nq where we have used

τ � NT .

If we want to sample an infinitely long signal with a finite support kernel, we

need to have zero samples in between blocks of non-zero samples. For a kernel of

size L � P � 1 we need at least 1 zero per period τ ¥ pL� 1qT Ø N ¥ L� 1. We

assume the only non-zero samples are located in the positions n � 0, . . . , L� 1

(or we would do a circular shift otherwise).

We are working with a finite support kernel of length L � P � 1 � 2. This

allows to remove the dependence of the Fisher information matrix on m, since fix-
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ing t0 P rPT, pP � 1qT q � rT, 2T q, which is equivalent to n � 0, . . . , L� 1, makes

the only possible m value to be equal to zero.

We can now evaluate the terms of the Fisher information matrix, which has

a form identical to (.108). Contrary to the previous sections, now we have to

work in the time domain, using the definition of the B-spline (.117) and of its

derivative. We have finite length sums over n, so it is possible to derive closed

form results. For example, the first element of the diagonal can be calculated as

σ�2
1̧

n�0

�
a0

T
β11

�
t0
T
� n



2

� σ�2
�a0

T

	2 �
12 � 12

�
(.118)

rIpθqs11 � 2σ�2
�a0

T

	2

.

Once we obtain all the terms, the CRB can be found by inverting the Fisher

information matrix. In this scenario, the bounds depend on t0:

CRBpθq �
�
�p2t20 � 6Tt0 � 5T 2q

�
σ
a0

	2

p3T � 2t0qσ2

a0

p3T � 2t0qσ2

a0
2σ2

�
. (.119)

In order to remove the dependence on t0, we can consider various options. For

instance, we may calculate the expected value of CRBpθq assuming that t0 is

uniformly distributed over τ . This leads to:

∆t0
τ

¥ 1

N

c
2

3
PSNR� 1

2 . (.120)

∆a0

|a0| ¥
?

2PSNR� 1
2 . (.121)

Cramér–Rao bounds for E-splines

To conclude, we derive lower bounds on the variances of the estimated location

and amplitude for a τ -periodic single Dirac when the sampling kernel is an E-

spline. The method is the same as that explained for B-splines, but requires

further assumptions.

We restrict the analysis to cardinal exponential splines, which we also assume

to be trigonometric [35]. The first property means that the exponential splines are

defined on a uniform grid, and the second property that the complex parameters

are purely imaginary and equally spaced around the origin, which yields a real

valued function.

We need to be careful when working with E-splines for two main reasons. The

first is that the periodicity of the complex exponentials causes the moments to

be periodic too. This imposes a limit in the locations that can be retrieved.

The second is that E-splines are no longer a basis for certain combinations of

the complex parameters [35]. These conditions, plus the fact that we want that
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the exponential reproduction formula coefficients form an orthogonal basis with

ω0 � 2π
N , translate into a bound for t0 which has to satisfy t0   NT

2 � τ
2 , and for

the number of samples, which requires N ¡ maxpP � 1, 2P q. For a more detailed

explanation of these conditions, we refer to [56].

If we focus on the first order real E-spline, then it is possible to derive a

closed form expression for the CRB. Note that this function is obtained through

convolution of the zero order components having complex parameters �jω0. The

obtained kernel has the following form:

e1ptq �
#

sinpω0tq
ω0

, 0 ¤ t   1,

� sinpω0pt�2qq
ω0

, 1 ¤ t   2.
(.122)

The CRB can be obtained by inverting the Fisher information matrix, derived

similarly to the B-spline case. In this situation, again the bounds depend on t0.

Calculating the average values leads to:

∆t0
τ

¥ 1

N

d
ω0 � cosω0 sinω0

ω0 sin2 ω0

PSNR� 1
2 . (.123)

∆a0

|a0| ¥
d
ω0
ω0 � cosω0 sinω0

sin2 ω0

PSNR� 1
2 . (.124)
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