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1 Optimization Techniques in
Modern Sampling Theory

Tomer Michaeli and Yonina C. Eldar
Department of Electrical Engineering, Technion–Israel Institute of Technology, Haifa, Israel

Sampling theory has benefited from a surge of research in recent years, due in
part to intense research in wavelet theory and the connections made between
the two fields. In this chapter we present several extensions of the Shannon
theorem, which treat a wide class of input signals as well as nonideal sampling
and constrained recovery procedures. This framework is based on an optimization
viewpoint, which takes into account both the goodness of fit of the reconstructed
signal to the given samples, as well as relevant prior knowledge on the original
signal. Our exposition is based on a Hilbert-space interpretation of sampling
techniques, and relies on the concepts of bases (frames) and projections. The
reconstruction algorithms developed in this chapter lead to improvement over
standard interpolation approaches in signal and image processing applications.

1.1 Introduction

Sampling theory treats the recovery of a continuous-time signal from a discrete
set of measurements. This field attracted significant attention in the engineering
community ever since the pioneering work of Shannon [1] (also attributed to
Whitaker [2], Kotelnikov [3], and Nyquist [4]) on sampling bandlimited signals.
Discrete-time signal processing (DSP) inherently relies on sampling a continuous-
time signal to obtain a discrete-time representation. Therefore, with the rapid
development of digital applications, the theory of sampling has gained impor-
tance.

Traditionally, sampling theories addressed the problem of perfectly recon-
structing a given class of signals from their samples. During the last two decades,
it has been recognized that these theories can be viewed in a broader sense of pro-
jection onto appropriate subspaces of L2 [5, 6, 7], and also extended to arbitrary
Hilbert spaces [8, 9].

The goal of this chapter is to introduce a complementary viewpoint on sam-
pling, which is based on optimization theory. The key idea in this approach is
to construct an optimization problem that takes into account both the good-
ness of fit of the reconstructed signal to the given samples, as well as relevant
prior knowledge on the original signal, such as smoothness. This framework is
rooted in the theory of spline interpolation: one of the arguments in favor of
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4 Chapter 1. Optimization Techniques in Modern Sampling Theory

using smoothing splines for interpolation is that they minimize an energy func-
tional. This objective accounts for both the miss-fit at the sampling locations,
and for the energy of the mth derivative [10] (where m is related to the spline
order). Several other interpolation techniques have been proposed in recent years,
which are based on variational arguments of the same spirit [11]. These meth-
ods also have connections with Wiener’s estimation theory of random processes
[11, 12, 13, 14, 15]. This chapter provides extensions, generalizations, and rigor-
ous proofs of a variety of optimization-based interpolation techniques. Some of
these methods were recently reported (without proof) in the review paper [15].

We focus on sampling problems in an abstract Hilbert space setting. This facili-
tates the treatment of various sampling scenarios via an optimization framework.
Since signals are generally functions over a continuous domain, the optimization
problems we will encounter in this chapter are infinite-dimensional and cannot
be solved numerically. Furthermore, in order to make the discussion relevant to
arbitrary Hilbert spaces and not only for signals which are functions over R, we
refrain from using calculus of variations in our derivations. Therefore, most of our
treatment relies on the interpretation of the resulting optimization problems in
terms of projections onto appropriate spaces. Besides being infinite-dimensional,
many of the optimization problems we attempt to solve are also not convex.
Nevertheless, we derive closed-form solutions for many of these, by employing a
geometric viewpoint. In the last section we tackle interpolation problems which
do not admit a closed form solution. In this scenario, we narrow the discussion to
signals lying in Rn or Cn and employ semi-definite relaxation and saddle-point
techniques to arrive at optimization problems which can be solved numerically.

The scenarios treated in this chapter differ from one another in several aspects.
First, we distinguish between noiseless and noisy samples. Second, the recon-
struction algorithms we consider can either be adjusted according to some objec-
tive, or constrained to be of a certain predefined structure. Third, we treat two
types of prior knowledge on the original signal, which we term subspace priors
and smoothness priors. Last, we treat two classes of optimization criteria for each
of the scenarios: least-squares and minimax. The setups we consider are summa-
rized in Table 1.1. Throughout the chapter we highlight the connection between
the resulting reconstruction methods, demonstrate how they can be implemented
efficiently, and provide concrete examples of interpolation results.

The chapter is organized as follows. In Section 1.2 we provide mathematical
preliminaries needed for the derivations to follow. Section 1.3 describes in detail
the sampling and reconstruction setups treated in this chapter. In particular, we
elaborate on the types of prior knowledge and reconstruction approaches that are
considered. Section 1.4 is devoted to the different objectives that are at the heart
of the proposed recovery techniques. In Sections 1.5 and 1.6 we develop recon-
struction methods for the case of subspace and smoothness priors respectively.
Each of these priors is studied in a constrained and unconstrained reconstruction
setting using both the least-squares and minimax objectives. All reconstruction
methods in these sections possess closed-form expressions. Section 1.7 includes
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Table 1.1: Different scenarios treated in this chapter

Unconstrained Reconstruction Constrained Reconstruction
Least-Squares Minimax Least-Squares Minimax

Subspace Priors
Noise-Free Samples

Section 1.5.1.1 Section 1.5.1.2 Section 1.5.2.1 Section 1.5.2.2

Smoothness Priors
Noise-Free Samples

Section 1.6.1.1 Section 1.6.1.2 Section 1.6.2.1 Section 1.6.2.2

Smoothness Priors
Noisy Samples

Section 1.8 Section 1.8 Section 1.8 Section 1.8

comparisons between the various recovery algorithms. Finally, in Section 1.8 we
treat the case in which the samples are noisy. There, we focus our attention on
smoothness priors and on the minimax objective. We use semi-definite relaxation
to tackle the resulting non-convex quadratic programs. This section also includes
a summary of recent results on semi-definite relaxation of non-convex quadratic
programs, which is needed for our derivations.

1.2 Notation and mathematical preliminaries

The exposition in this chapter is based on a Hilbert-space interpretation of sam-
pling techniques, and relies on the concepts of frames and projections. In this
section we introduce some notations and mathematical preliminaries, which form
the basis for the derivations in the sections to follow.

1.2.1 Notation

We denote vectors in an arbitrary Hilbert space H by lowercase letters, and the
elements of a sequence c ∈ `2 by c[n]. Traditional sampling theories deal with
signals, which are defined over the real line. In this case the Hilbert space H of
signals of interest is the space L2 of square integrable functions, i.e., every vector
x ∈ H is a function x(t), t ∈ R. We use the notations x and x(t) interchangeably
according to the context. The continuous-time Fourier transform (CTFT) of a
signal x(t) is denoted by X(ω) and is defined by

X(ω) =
∫ ∞

−∞
x(t)ejωtdt. (1.1)

Similarly, the discrete-time Fourier transform (DTFT) of a sequence c[n] is
denoted by C(ejω) and is defined as

C(ejω) =
∞∑

n=−∞
c[n]ejωn. (1.2)

The inner product between vectors x, y ∈ H is denoted 〈x, y〉, and is linear
in the second argument; ‖x‖2 = 〈x, x〉 is the squared norm of x. The `2 norm
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of a sequence is ‖c‖2 =
∑

n |c[n]|2. The orthogonal complement of a subspace
A is denoted by A⊥. A direct sum between two closed subspaces W and S is
written as W ⊕S, and is the sum set {w + s; w ∈ W, s ∈ S} with the property
W ∩ S = {0}. Given an operator T , T ∗ is its adjoint, and N (T ) and R(T ) are
its null space and range space, respectively.

1.2.2 Projections

A projection E in a Hilbert space H is a linear operator from H onto itself that
satisfies the property

E2 = E. (1.3)

A projection operator maps the entire space H onto the range R(E), and leaves
vectors in this subspace unchanged. Property (1.3) implies that every vector in
H can be uniquely decomposed into a vector in R(E) and a vector in N (E),
that is, we have the direct sum decomposition H = R(E)⊕N (E). Therefore, a
projection is completely determined by its range space and null space.

An orthogonal projection P is a Hermitian projection operator. In this case
the range space R(P ) and null space N (P ) are orthogonal, and consequently
P is completely determined by its range. We use the notation PV to denote
an orthogonal projection with range V = R(PV). An important property of an
orthogonal projection onto a closed subspace V is that it maps every vector in
H to the vector in V which is closest to it:

PVy = arg min
x∈V

‖y − x‖. (1.4)

This property will be useful in a variety of different sampling scenarios.
An oblique projection is a projection operator that is not necessarily Hermi-

tian. The notation EAS⊥ denotes an oblique projection with range space A and
null space S⊥. If A = S, then EAS⊥ = PA [16]. The oblique projection onto A
along S⊥ is the unique operator satisfying

EAS⊥a = a for any a ∈ A;

EAS⊥s = 0 for any s ∈ S⊥. (1.5)

Projections can be used to characterize the pseudo-inverse of a given operator.
Specifically, let T be a bounded operator with closed range. The Moore-Penrose
pseudo inverse of T , denoted T †, is the unique operator satisfying [17]:

N (T †) = R(T )⊥,

R(T †) = N (T )⊥,

TT †x = x ∀x ∈ R(T ). (1.6)

The following is a set of properties of the pseudo-inverse operator, which will be
used extensively throughout the chapter [17].
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Lemma 1.1. Let T be a bounded operator with closed range. Then:

1. PR(T ) = T †T .
2. PN (T )⊥ = TT †.
3. T ∗ has closed range and (T ∗)† = (T †)∗.

1.2.3 Frames

As we will see in the sequel, sampling can be viewed as the process of taking
inner products of a signal x with a sequence of vectors {an}. To simplify the
derivations associated with such sequences, we use the notion of set transforms.

Definition 1.1. A set transformation A : `2 → H corresponding to vectors {an}
is defined by Ab =

∑
n b[n]an for all b ∈ `2. From the definition of the adjoint, if

c = A∗x, then c[n] = 〈an, x〉.

Note that a set transform A corresponding to vectors {an}N
n=1 in RM is simply

an M ×N matrix whose columns are {an}N
n=1.

To guarantee stability of the sampling theorems we develop, we concentrate
on vector sets that generate frames [18, 19].

Definition 1.2. A family of vectors {an} in a Hilbert space H is called a frame
for a subspace A ⊆ H if there exist constants α > 0 and β < ∞ such that the
associated set transform A satisfies

α‖x‖2 ≤ ‖A∗x‖2 ≤ β‖x‖2, ∀x ∈ A. (1.7)

The norm in the middle term is the `2 norm of sequences.

The lower bound in (1.7) ensures that the vectors {an} span A. Therefore, the
number of frame elements, which we denote by N , must be at least as large as
the dimension of A. If N < ∞, then the right hand inequality of (1.7) is always
satisfied with β =

∑
n ‖an‖2. Consequently, any finite set of vectors that spans

A is a frame for A. For an infinite set of frame vectors {an}, condition (1.7)
ensures that the sum x =

∑
n b[n]an converges for any sequence b ∈ `2 and that

a small change in the expansion coefficients b results in a small change in x [20].
Similarly, a slight perturbation of x will entail only a small change in the inner
products with the frame elements.

1.3 Sampling and reconstruction setup

We are now ready to introduce the sampling and reconstruction setup that will
be studied in this chapter. Before we elaborate on the abstract Hilbert space
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t = nT

x(t) x̂(t)

∞∑

n=−∞

δ (t − nT )

Anti-aliasing LPF Reconstruction LPF

Figure 1.1: Shannon’s sampling paradigm. The signal x(t) passes through an
ideal LPF prior to sampling. Reconstruction is obtained using the same LPF.

exposition that will be at the heart of our derivations to follow, we first review
the famous Shannon sampling theorem [1].

Shannon’s theorem states that a signal x(t) bandlimited to π/T can be recov-
ered from its uniform samples at time instants nT . Reconstruction is obtained
by filtering the samples with a sinc interpolation kernel:

x̂(t) =
1
T

∞∑
n=−∞

x(nT )sinc(t/T − n), (1.8)

where sinc(t) = sin(πt)/(πt). If the bandwidth of x(t) exceeds π/T , then an anti-
aliasing low-pass filter (LPF) with cutoff π/T can be used prior to sampling, as
shown in Fig. 1.1. In this case, the reconstruction formula (1.8) produces the best
approximation (in an L2 sense) to x(t) within the class of π/T -bandlimited func-
tions. To see this, note that a LPF with unit magnitude in its pass-band satisfies
(1.3) and is thus a projection operator. Furthermore, the range space of such a
filter comprises all signals whose CTFT vanishes outside [−π/T, π/T ], and its
null space is the set of signals that vanish in [−π/T, π/T ], which is orthogonal to
the range. Therefore, the anti-aliasing filter is an orthogonal projection. Property
(1.4) then implies that its output is the best approximation to its input within
all signals in its range, namely π/T -bandlimited signals.

Shannon’s theorem contains four fundamental aspects that are important in
any sampling theorem:

1. Prior knowledge: The input lies in the class of π/T -bandlimited signals;
2. Sampling mechanism: Pre-filtering with a LPF with cutoff π/T , followed

by pointwise sampling;
3. Reconstruction method: Sinc interpolation kernel modulated by the sam-

ple values;
4. Objective: Minimization of the L2 norm of the error x(t)− x̂(t).

These specific choices of prior knowledge, sampling mechanism, reconstruction
method, and objective are often not met in practical scenarios. First, natural
signals are rarely truly bandlimited. Second, the sampling device is usually not
ideal, that is, it does not produce exact signal values at the sampling locations.
A common situation is that the analog-to-digital converter (ADC) integrates
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the signal, usually over small neighborhoods surrounding the sampling points.
Moreover, in many applications the samples are contaminated by noise due to
quantization and other physical effects. Third, the use of the sinc kernel for
reconstruction is often impractical because of its slow decay. Finally, when con-
sidering signal priors which are richer than the bandlimited assumption, it is
usually impossible to minimize the error norm uniformly over all feasible signals.
Therefore other criteria must be considered.

In this chapter we treat each of these essential components of the sampling
scheme, focusing on several models which commonly arise in signal processing,
image processing and communication systems. For simplicity, throughout the
chapter we assume a sampling period of T = 1. We next elaborate on the signal
priors and general sampling and reconstruction processes we treat.

1.3.1 Signal priors

In essence, the Shannon sampling theorem states that if x(t) is known a pri-
ori to lie in the space of bandlimited signals, then it can be perfectly recovered
from ideal uniformly-spaced samples. Clearly, the question of whether x(t) can
be recovered from its samples depends on the prior knowledge we have on the
class of input signals. In this chapter we depart from the traditional bandlim-
ited assumption and discuss signal priors that appear more frequently in signal
processing and communication scenarios.

1.3.1.1 Subspace priors
Our first focus is on cases where the signal x(t) is known to lie in a subspace A,
spanned by vectors {an} . Although the discussion in this chapter is valid for
a wide class of such subspaces, we take special interest in subspaces of L2 that
are shift invariant (SI). A SI subspace A of L2, is a space of signals that can be
expressed as linear combinations of shifts of a generator a(t) [7]:

x(t) =
∞∑

n=−∞
d[n]a(t− n), (1.9)

where d[n] is an arbitrary norm-bounded sequence. Note that d[n] does not
necessarily correspond to samples of the signal, that is we can have x(n) 6=
d[n]. More generally, A may be generated by several generators ak(t) so that
x(t) =

∑K
k=1

∑∞
n=−∞ dk[n]ak(t− n). For simplicity we focus here on the single

generator case. Using set transform formulation, (1.9) can be written compactly
as

x = Ad, (1.10)

where A is the set transform associated with the functions {a(t− n)}.
Choosing a(t) = sinc(t) in (1.9) results in the space of π-bandlimited signals.

However, a much broader class of signal spaces can be defined including spline
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Figure 1.2: Spline functions of different orders generated using (1.9) with the
same sequence d[n]. (a) β1(t). (b) A spline of degree 1. (c) β3(t). (d) A spline of
degree 3.

functions [21]. In these cases a(t) may be easier to handle numerically than the
sinc function.

A popular choice of SI spaces in many image processing applications is the
class of splines . A spline f(t) of degree N is a piecewise polynomial with the
pieces combined at knots, such that the function is continuously differentiable
N − 1 times. It can be shown that any spline of degree N with knots at the
integers can be generated using (1.9) by a B-spline of degree N , denoted βN (t).
The latter is the function obtained by the (N + 1)-fold convolution of the unit
square

β0(t) =
{

1 − 1
2 < t < 1

2 ;
0 otherwise.

(1.11)

As demonstrated in Fig. 1.2, the sequence d[n] in (1.9) is not equal to the samples
x(n) for splines of order greater than 1.
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An important generalization of the SI subspace prior (1.9) is the class of signals
that lie in a union of SI spaces. In this case,

x(t) =
K∑

k=1

∞∑
n=−∞

dk[n]ak(t− n), (1.12)

for a set of generators ak(t) where only M < K out of the sequences dk[n] are
not identically zero. However, we do not know in advance which M are chosen.
This model can be used, for example, to describe multiband signals whose total
number of active bands is small compared to the Nyquist rate [22, 23]. The
techniques developed to sample and reconstruct such classes of signals are based
on ideas and results from the emerging field of compressed sensing [24, 25].
However, while the latter deals with sampling of finite vectors, the multiband
problem is concerned with analog sampling. By using several tools, developed in
more detail in [26, 23, 27], it is possible to extend the essential ideas of compressed
sensing to the analog domain. These results can also be applied more generally
to signals that lie in a union of subspaces [28, 29], which are not necessarily shift
invariant. Unlike subspace priors, nonlinear techniques are required in order to
recover signals of this type. Therefore, for simplicity we will confine the discussion
in this chapter to the single subspace case.

1.3.1.2 Smoothness priors
Subspace priors are very useful because, as we will see, they often can be used to
perfectly recover x(t) from its samples. However, in many practical scenarios our
knowledge about the signal is much less complete and can only be formulated
in very general terms. An assumption prevalent in image and signal processing
is that natural signals are smooth in some sense. Here we focus on approaches
that quantify the extent of smoothness using the L2 norm ‖Lx‖, where L is a
linear operator. Specifically, we assume that

‖Lx‖ ≤ ρ (1.13)

for some finite constant ρ > 0. It is common to use SI smoothness priors, resulting
in a linear time-invariant (LTI) operator L. In thess cases the corresponding
filter L(ω) is often chosen to be a first or second order derivative in order to
constrain the solution to be smooth and nonoscillating, i.e., L(ω) = a0 + a1jω +
a2(jω)2 + · · · for some constants an. Another common choice is the filter L(ω) =
(a2

0 + ω2)γ with some parameter γ. The latter is in use mainly in image processing
applications. The appeal of the model (1.13) stems from the fact that it leads
to linear recovery procedures. In contrast, smoothness measures such as total
variation [30], result in nonlinear interpolation techniques.

The class of “smooth” signals is much richer than its subspace counterpart.
Consequently, it is often impossible to distinguish between one “smooth” sig-
nal and another based solely on their samples. In other words, in contrast to
subspace priors, perfect reconstruction is typically impossible under the smooth-
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s(−t)

t = n

x(t)

c[n]

u[n]

c̃[n]

Figure 1.3: Shift-invariant sampling. Filtering the signal x(t) prior to taking ideal
and uniform samples, can be interpreted as L2 inner-products between x(t) and
shifts of s(t). In practical applications the samples are contaminated by noise
u[n].

ness assumption. Instead, we develop recovery algorithms that attempt to best
approximate a smooth signal from the given samples.

1.3.2 Sampling process

We now present the general sampling process we treat. As we have seen, in the
Shannon sampling theorem x(t) is filtered with an LPF with cutoff π prior to
sampling. In practical applications the sampling is not ideal. Therefore, a more
realistic setting is to let the anti-aliasing filter, which we denote by s(−t), be an
arbitrary sampling function, as depicted in Fig. 1.3. This allows to incorporate
imperfections in the ideal sampler into the function s(t) [5, 8, 31, 32, 15]. As
an example, typical ADCs average the signal over a small interval rather than
outputting pointwise signal values. This distortion can be taken into account by
modifying s(t) to include the integration.

The samples c[n] can be expressed as

c[n] =
∫ ∞

−∞
x(t)s(t− n)dt = 〈sn, x〉, (1.14)

where sn(t) = s(t− n). More generally, we treat the scenario in which the sam-
ples c[n] are obtained as inner products with a set of arbitrary functions {sn}.
Using set transform notation, the samples can be written as

c = S∗x, (1.15)

where S is the set transform corresponding to the sampling vectors {sn} and c

is the sequence whose nth element is c[n].
To ensure that the sampling process is stable, we concentrate on the case in

which the vectors {sn} form a frame for their span, which we term the sampling
space S. It follows immediately from the upper bound in (1.7) that the sequence
of samples c[n] = 〈sn, x〉 is then in `2 for any signal x that has bounded norm.

In the case where S is a SI space, condition (1.7) can be stated in terms of
S(ω), the CTFT of the generator s(t). Specifically, it can be shown that the
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functions {s(t− n)} generate a frame if and only if

α ≤ φSS

(
ejω

) ≤ β, ω ∈ IS , (1.16)

for some constants α > 0 and β < ∞. Here,

φSS

(
ejω

)
=

∞∑

k=−∞
|S(ω − 2πk)|2 (1.17)

is the DTFT of the sampled correlation function rss[n] = 〈s(t), s(t− n)〉 and
IS is the set of frequencies ω for which φSS(ejω) 6= 0 [33]. It easy to see that
s(t) = sinc(t) satisfies (1.16). Furthermore, B-splines of all orders also satisfy
(1.16) [21].

In many situations the samples are perturbed by the sampling device, for
example due to quantization or noise. Thus, as shown in Fig. 1.3, one usually
only has access to the modified samples

c̃[n] = c[n] + u[n], (1.18)

where u[n] is a discrete-time noise process. Clearly, the noise should be taken
into consideration when designing a reconstruction algorithm.

Another setup which was treated recently is that of reconstructing a signal
which has undergone nonlinear distortion prior to sampling [34]. Using opti-
mization tools together with frame-perturbation theory it can be shown that
under a subspace prior and several technical conditions the signal can be recon-
structed perfectly despite the nonlinearity. In this chapter, we focus on linear
sampling and therefore do not survey these results.

1.3.3 Reconstruction method

The problem at the heart of sampling theory is how to reconstruct a signal from
a given set of samples. For a sampling theorem to be practical, it must take into
account constraints that are imposed on the reconstruction method. One aspect
of the Shannon sampling theorem, which renders it unrealizable, is the use of
the sinc interpolation kernel. Due to its slow decay, the evaluation of x(t) at
a certain time instant t0, requires using a large number of samples located far
away from t0. In many applications, reduction of computational load is achieved
by employing much simpler methods, such as nearest-neighbor interpolation. In
these cases the sampling scheme should be modified to compensate for the chosen
non-ideal kernel.

In this chapter we study two interpolation strategies: unconstrained and con-
strained reconstruction. In the former, we pose no limitation on the interpolation
algorithm. The goal then is to extend Shannon’s theorem to more general classes
of input signals. In the latter strategy, we restrict the reconstruction to be of a
predefined form in order to reduce computational load. Here too, we address a
variety of input signals.
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w(t) x̂(t)
d[n]

∞∑

n=−∞

δ (t − n)

h[n]c[n]

Figure 1.4: Reconstruction using a digital compensation filter h[n] and interpo-
lation kernel w(t).

1.3.3.1 Unconstrained reconstruction
The first setup we treat is unconstrained recovery. Here, we design reconstruc-
tion methods that are best adapted to the underlying signal prior according to
an appropriately defined objective, without restricting the reconstruction mech-
anism . In these scenarios, it is sometimes possible to obtain perfect recovery, as
in the Shannon sampling theorem. When both the sampling process and signal
prior are SI, the unconstrained reconstruction methods under the different sce-
narios treated in this chapter all have a common structure, depicted in Fig. 1.4.
Here w(t) is the impulse response of a continuous-time filter, which serves as the
interpolation kernel, while h[n] represents a discrete-time filter used to process
the samples prior to reconstruction. Denoting the output of the discrete-time
filter by d[n], the input to the analog filter w(t) is a modulated impulse train∑

n d[n]δ(t− n). The filter’s output is given by

x̂(t) =
∞∑

n=−∞
d[n]w(t− n). (1.19)

If either the sampling process or the prior are not SI, then the reconstruction
has the more general form x̂ =

∑
n d[n]wn, where d[n] is obtained by a linear

transform of c[n]. Using set transform notation, the recovered signal can be
written as

x̂ = Wd = WHc, (1.20)

where W is the set transform corresponding to the reconstruction vectors {wn}
and H is a linear operator. Our goal is to determine both the reconstruction
vectors {wn} and the transform H to be optimal in some sense.

We will see that in the SI case, optimal interpolation kernels are typically
derived in the frequency domain but very often do not admit a closed-form
in the time domain. This limits the applicability of these recovery techniques.
One way to resolve this problem is to choose the signal prior so as to yield an
efficient interpolation algorithm, as done e.g., in [12] in the context of exponential
B-splines. Nevertheless, this approach restricts the type of priors that can be
handled.
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1.3.3.2 Constrained reconstruction
To overcome the difficulties in implementing the unconstrained solutions, we may
resort to a system that uses a predefined interpolation kernel w(t) that is easy
to implement. For example, in image processing applications kernels with small
supports are often used. These include nearest neighbor (B-spline of order 0),
bilinear (B-spline of order 1), bicubic (Keys kernel [35]), Lanczos and B-spline of
order 3. In this setup, the only freedom is in the design of the digital correction
filter h[n] in Fig. 1.4, which may be used to compensate for the non-ideal behavior
of the pre-specified kernel [5, 32, 9, 36, 8]. The filter h[n] is selected to optimize
a criterion matched to the signal prior.

As a simple example demonstrating the need for constraining the recon-
struction, consider the situation where we are given pointwise samples of a π-
bandlimited signal and our goal is to compute x(t0) for some non-integer t0.
The sinc interpolation formula (1.8) uses the entire sequence of samples c[n],
since sinc(t) is not compactly supported. To reduce computational load, we can
replace the sinc kernel, for instance, by β3(t) (a B-spline of degree 3). Since the
support of the latter is [−2, 2], the approximation (1.19) includes only 4 sum-
mands per time instance t0. In this example, however, using the sample values
c[n] as the expansion coefficients d[n] in (1.19) is not desired, as demonstrated in
Fig. 1.2(d). To obtain a good approximation, a digital processing step is required
prior to reconstruction, as depicted in Fig. 1.4.

More generally, when the signal is reconstructed using an arbitrary given set
of vectors {wn}, the goal is to design the correction transform H in (1.20), which
will usually not correspond to digital filtering. We restrict attention to the case
where {wn} form a frame for their span W, which we call the reconstruction
space. By restricting the reconstruction to the form x̂ = Wd, we are essentially
imposing that the recovered signal x̂ lie in the predefined space W. This space
can be chosen so as to lead to highly efficient interpolation methods. For example,
by appropriate choice of a generator w(t), the family of splines can be described
using (1.19) [37, 38, 39].

1.4 Optimization methods

The fundamental problem we wish to address in this chapter is the following.
Given the (noisy) samples of a signal c̃ = S∗x + u and some prior knowledge of
the form x ∈ A, produce a reconstruction x̂ that is close to x in some sense. The
set A incorporates our knowledge about the typical input signals and can be a
subspace, as in (1.10), or an ellipsoid, as in (1.13).

Assuming that the noise u is known to be norm bounded, the samples c̃

together with the set A can be used to determine the set of feasible signals:

G = {x : x ∈ A, ‖S∗x− c̃‖ ≤ α}. (1.21)
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Thus, the unknown signal lies in G. To find a good approximation to x in G, it is
important to notice that the reconstruction error ‖x̂− x‖ of any recovery method
generally depends on the unknown signal x. This renders comparison between
different methods difficult, as one method may be better than another for certain
input signals and worse for others. In other words, it is generally impossible to
minimize the error uniformly over G. The same phenomenon occurs in the case
where the noise u is random and the goal is to minimize the mean squared error
(MSE) over the set A [40]. Two approaches to deal with this dependency are
least-squares (LS) and worst-case (minimax) design.

In the LS strategy, the reconstruction error ‖x̂− x‖ is replaced by the error-
in-samples objective ‖S∗x̂− c̃‖. This approach seeks a signal x̂ that produces
samples as close as possible to the measured samples c̃:

x̂LS = arg min
x∈G

‖S∗x− c̃‖2. (1.22)

The objective in (1.22) is convex (quadratic) in x and therefore, if G is a convex
set, as we assume throughout the chapter, then the problem is convex. Further-
more, the LS reconstruction admits a closed-form solution for many interesting
priors. Due to its simplicity, this criterion is widely used in inverse problems in
general, and in sampling in particular [11, 12]. However, it is important to note
that there are situations where minimization of the error-in-samples leads to a
large reconstruction error. This happens, for example, when S is such that large
perturbations in x lead to small perturbations in S∗x. Therefore, this method
does not guarantee a small recovery error.

An alternative to the LS approach is worst-case (or minimax) design [32, 41,
42, 14, 40]. This method attempts to control the estimation error by minimizing
its largest possible value. Since x is unknown, we seek the reconstruction x̂ that
minimizes the error for the worst feasible signal:

x̂MX = arg min
x̂

max
x∈G

‖x̂− x‖2. (1.23)

In contrast to (1.22), here we attempt to directly control the reconstruction error
‖x− x̂‖, which is the quantity of interest in many applications. Problem (1.23),
however, is more challenging than (1.22) as we discuss next.

There are several possible approaches to solving minimax problems. In convex-
concave problems we can replace the order of the minimization and the maxi-
mization [43], as incorporated in the following proposition.

Proposition 1.1. Let X and Y be convex compact sets, and let f(x, y) be a
continuous function which is convex in x ∈ X for every fixed y ∈ Y and concave
in y ∈ Y for every fixed x ∈ X . Then,

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y),

and we can replace the order of the minimization and the maximization.
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There are many variants of Proposition 1.1 under weaker conditions. In partic-
ular, it is sufficient that only one of the sets will be compact, and convexity may
be replaced by quasi-convexity. In the case in which the minimization is easy to
solve, the problem reduces to a convex optimization problem of maximizing a
concave function.

Unfortunately, since the objective in (1.23) is convex in both x and x̂, we
cannot employ Proposition 1.1 to solve it. An alternative strategy is to establish
a lower bound on the objective and find a vector x̂, which is not a function of
x, that achieves it. Specifically, suppose that we show that maxx∈G ‖x̂− x‖2 ≥
maxx∈G g(x) for all x̂, where g(x) is some function of x. Then every reconstruction
x̂, which is not a function of x, that achieves the bound is a solution. Although
this approach is not constructive, when applicable, it leads to a closed-form solu-
tion to the infinite-dimensional minimax problem (1.23). The minimax problems
of Sections 1.5 and 1.6 will be treated using this strategy.

Another approach to solve minimax problems is to replace the inner maxi-
mization by its dual function when strong duality holds. This will result in a
minimization problem that can be combined with the outer minimization. In
order to follow this method, we need to be able to establish strong duality. The
inner maximization in (1.23) is a nonconvex constrained quadratic optimization
problem. The nonconvexity is the result of the fact that we are maximizing a
convex quadratic function, rather than minimizing it. Fortunately, we will see
that under the signal priors considered here, strong duality exists in some cases
[44]. In other cases, the dual problem leads to an upper bound on the objective
of the inner maximization and can be used to approximate the solution. The
drawback of this route is that the resulting optimization problem usually does
not admit a closed-form solution and must be solved numerically. This limits this
method to finite-dimensional problems. The minimax problems of Section 1.8,
which involve noisy samples, will be approached using this strategy.

1.5 Subspace priors

Our first focus is on cases in which the signal x(t) is known to lie in a subspace A
spanned by frame vectors {an}. Given a sequence of measurements c[n] = 〈sn, x〉,
namely c = S∗x, where the vectors {sn} form a frame for the sampling space S,
our goal is to produce a reconstruction x̂ that best approximates x in some sense.

1.5.1 Unconstrained reconstruction

We begin the discussion with the case where no constraints are imposed on the
reconstruction x̂. Interestingly, we will see that in this setting the minimax and
LS solutions coincide.



18 Chapter 1. Optimization Techniques in Modern Sampling Theory

1.5.1.1 Least-squares recovery
As explained in Section 1.4, in the LS strategy, the reconstruction error ‖x̂− x‖
is replaced by the error-in-samples objective ‖S∗x̂− c‖. Taking into account the
prior knowledge that x ∈ A, the LS recovery method can be written as

x̂LS = arg min
x∈A

‖S∗x− c‖2. (1.24)

By assumption, there exists a signal x ∈ A for which c = S∗x. Therefore, the
optimal value in (1.24) is 0. The signal x attaining this optimum is not unique if
A ∩ S⊥ 6= {0}. Indeed, suppose that x is a nonzero signal in A ∩ S⊥. Then c[n] =
〈sn, x〉 = 0 for all n and clearly x cannot be reconstructed from the measurements
c[n]. A sufficient condition ensuring the uniqueness of the solution is that A ∩
S⊥ = {0} and that the Hilbert space H of signals can be decomposed as [45]

H = A⊕ S⊥. (1.25)

When this condition holds, we can perfectly recover x from the samples c. This
condition can be easily verified in SI spaces, as we discuss below.

Since (1.24) is defined over an infinite-dimensional Hilbert space, to solve it we
do not use standard techniques such as setting the derivative of the Lagrangian
to 0. Instead, we rely on the properties of the relevant spaces. Specifically, to
determine the set of optimal solutions to (1.24), we express x in terms of its
expansion coefficients in A. Writing x =

∑
d[n]an = Ad, the optimal sequence d

is the solution to

d̂LS = arg min
d
‖S∗Ad− c‖2. (1.26)

The set of solutions to this optimization problem is given in the following theo-
rem.

Theorem 1.1. Every solution to (1.26) is of the form

d̂LS = (S∗A)†c + v, (1.27)

where v is some vector in N (S∗A). Furthermore, the minimal norm solution is
given by d̂ = (S∗A)†c.

Before proving the theorem, we first need to verify that the pseudo-inverse
is well defined. If S and A have finite dimensions, say M and N respectively,
then S∗A corresponds to an M ×N matrix and (S∗A)† is trivially a bounded
operator. However, this is not necessarily true for infinite-dimensional operators.
Fortunately, the fact that S and A are synthesis operators of frames, guarantees
that (S∗A)† is bounded, as stated in the next proposition.

Proposition 1.2. Let S and A be set transformations corresponding to frames
{sn} and {an} respectively. Then (S∗A)† is a bounded operator.
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Proof. The proof of the proposition relies on the fact that the pseudo-inverse of
an operator is well defined if its range is closed. In other words, we need to show
that every Cauchy sequence cn ∈ R(S∗A) converges to a limit in R(S∗A). This
can be established by using the lower frame bound of S, the fact that R(A) and
R(S∗) are closed, and that S∗ is continuous.

We now prove Theorem 1.1.

Proof of Theorem 1.1. To see that the set of solutions to (1.26) is given by (1.27),
we substitute d̂LS of (1.27) into the objective of (1.26):

S∗Ad̂LS − c = (S∗A)((S∗A)†c + v)− c

= (S∗A)(S∗A)†c− c

= PR(S∗A)c− c = 0. (1.28)

The second equality follows from the fact that v ∈ N (S∗A), the third equality
follows from Lemma 1.1, and the last equality is a result of c ∈ R(S∗A) since
c = S∗x for some x ∈ A. Therefore, every vector described by (1.27) attains an
optimal value of 0 in (1.26). It is also clear from (1.28) that any vector of the
form d̂LS + w, where d̂LS is given by (1.27) and w ∈ N (S∗A)⊥, is not a solution
to (1.26). Thus, d solves (1.26) if and only if it is of the form (1.27).

Among all solutions, the one with minimal norm is given by d̂LS = (S∗A)†c.
This follows from the fact that (S∗A)†c ∈ N (S∗A)⊥ by definition of the pseudo-
inverse, and v lies in N (S∗A). The Pythagorean theorem therefore implies that
‖(S∗A)†c + v‖2 = ‖(S∗A)†c‖2 + ‖v‖2 > ‖(S∗A)†c‖2 for any nonzero v.

In the sequel, we take interest only in the minimal-norm solution. From The-
orem 1.1, the LS recovery method with minimal-norm amounts to applying the
transformation

H = (S∗A)† (1.29)

to the samples c to obtain a sequence of expansion coefficients d. This sequence
is then used to synthesize x̂ via x̂ =

∑
n d[n]an. Thus, x̂ is related to x by

x̂LS = Ad = AHc = A(S∗A)†c = A(S∗A)†S∗x. (1.30)

In settings where the solution is unique, namely when A ∩ S⊥ = {0} and (1.25)
holds, the LS strategy leads to perfect recovery of x. This has a simple geometric
interpretation. It is easily verified that N (S∗A) = N (A) in this case [45]. Con-
sequently, A(S∗A)†S∗ is an oblique projection with range A and null space S⊥,
denoted by EAS⊥ . To see this, note that every x ∈ A can be written as x = Ad

for some d ∈ `2 and therefore

A(S∗A)†S∗x = A(S∗A)†S∗Ad = APN (S∗A)⊥d = APN (A)⊥d = Ad = x. (1.31)

On the other hand, for any x ∈ S⊥ we have A(S∗A)†S∗x = 0. Thus, x̂ = EAS⊥x =
x for any x ∈ A, which implies that the LS reconstruction (1.30) coinsides with
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S⊥

S
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PSx

x

Figure 1.5: A unique element in A which is consistent with the samples in S can
be recovered from the known samples.

the original signal x. As a special case, if A = S then the LS solution reduces to
an orthogonal projection PS = S(S∗S)†S∗.

The geometric explanation of x̂ = EAS⊥x follows from the fact that knowing
the samples c is equivalent to knowing the orthogonal projection of the signal
onto the sampling space, since PSx = S(S∗S)†S∗x = S(S∗S)†c. The direct-sum
condition (1.25) ensures that there is a unique vector in A with the given pro-
jection onto S. As depicted in Fig. 1.5, in this case we can draw a vertical line
from the projection until we hit the space A and in such a way obtain the unique
vector in A that is consistent with the given samples. Therefore, under (1.25), x

can be perfectly recovered from c by using H of (1.29). To conclude, we see that
if A ∩ S⊥ = {0} then the LS approach leads to perfect recovery. If the intersec-
tion is non-trivial, on the other hand, then clearly perfect reconstruction is not
possible since there are generally infinitely many signals in A yielding the same
samples c = S∗x.

We now turn our attention to the case in which A and S are SI spaces with
generators a(t) and s(t) respectively. In this setting, the operator S∗A corre-
sponds to convolution with the sequence rSA[n] = (a(t) ∗ s(−t))(n). To see this,
let c = S∗Ad. From Definition 1.1,

c[k] =
∫ ∞

−∞
s(t− k)

∞∑
n=−∞

d[n]a(t− n)dt

=
∞∑

n=−∞
d[n](a(t) ∗ s(−t))(k − n)

= (d[n] ∗ rSA[n])[k]. (1.32)

Therefore, the correction H = (S∗A)† is a digital filter with frequency response

H(ejω) =

{
1

φSA(ejω) , φSA

(
ejω

) 6= 0;
0, φSA

(
ejω

)
= 0,

(1.33)
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where φSA(ejω) is the DTFT of rSA[n], and is given by

φSA(ejω) =
∞∑

k=−∞
S∗(ω + 2πk)A(ω + 2πk). (1.34)

The overall scheme fits that depicted in Fig. 1.4, with w(t) = a(t) and h[n] given
by (1.33).

The direct sum condition (1.25) ensuring perfect recovery, can be verified easily
in SI spaces. Specifically, (1.25) is satisfied if and only if [46] the supports IA and
IS of φSS(ejω) and φAA(ejω) respectively coincide, and there exists a constant
α > 0 such that |φSA(ejω)| > α, for all ω ∈ IA.

We conclude the discussion with a non-intuitive example in which a signal
that is not bandlimited is filtered with a LPF prior to sampling, and still can be
perfectly reconstructed from the resulting samples.

Example 1.1: Consider a signal x(t) formed by exciting an RC circuit with a
modulated impulse train

∑
n d[n]δ(t− n), as shown in Fig. 1.6(a). The impulse

response of the RC circuit is known to be a(t) = τ−1 exp{−t/τ}u(t), where u(t)
is the unit step function and τ = RC is the time constant. Therefore

x(t) =
1
τ

∞∑
n=−∞

d[n] exp{−(t− n)/τ}u(t− n). (1.35)

Clearly, x(t) is not bandlimited. Now, suppose that x(t) is filtered by an ideal
LPF s(t) = sinc(t) and then sampled at times t = n to obtain the sequence c[n].
The signal x(t) and its samples are depicted in Fig. 1.6(b). Intuitively, there
seems to be information loss in the sampling process since the entire frequency
content of x(t) outside [−π, π] is zeroed out, as shown in Fig. 1.6(c). However,
it is easily verified that if τ < π−1, then |φSA(ejω)| > (1− π2τ2)−1/2 > 0 for all
ω ∈ [−π, π] so that condition (1.25) is satisfied. Therefore, perfect recovery is
possible in this setup using the LS approach. The digital correction filter (1.33)
in this case can be shown to be

h[n] =
{

1 n = 0;
τ
n (−1)n n 6= 0.

(1.36)

Thus, to reconstruct x(t) we need to excite an identical RC circuit with an
impulse train modulated by the sequence d[n] = h[n] ∗ c[n]. The entire sampling-
reconstruction setup is depicted in Fig. 1.6(a).

1.5.1.2 Minimax recovery
We now treat the recovery of x via a minimax framework:

x̂MX = arg min
x̂

max
x∈G

‖x̂− x‖2, (1.37)
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Figure 1.6: A non-bandlimited signal x(t), formed by exciting an RC-circuit with
a modulated impulse train, is sampled after passing through an ideal LPF and
then perfectly reconstructed using the LS approach. (a) Sampling and recon-
struction setup. (b) The signal x(t), its samples c[n] and expansion coefficients
d[n]. (c) The signal X(ω) and the sampling filter S(ω).

where G is the set of signals x ∈ A satisfying S∗x = c.
To approach this problem, notice that x̂MX must lie in A, as any x̂ 6∈ A can

be improved upon by projecting it onto A: ‖x̂− x‖2 ≥ ‖PAx̂− x‖2 for any x̂

and x ∈ A. Therefore, we can express both x̂ and x in terms of their expansion
coefficients in A, by writing x̂ = Ad̂ and x = Ad. To guarantee that the error
in (1.37) cannot grow without bound, the sequence d should be constrained to
lie in some bounded set. We therefore impose the additional requirement that
‖d‖ ≤ ρ, for some ρ > 0. Problem (1.37) can then be reformulated as

min
d̂

max
d∈D

‖Ad̂−Ad‖2, (1.38)

where D = {d : S∗Ad = c, ‖d‖ ≤ ρ}. As we now show, the choice of ρ does not
affect the solution, as long as D is a nonempty set.

Theorem 1.2. A solution to problem (1.38) is d̂ = (S∗A)†c.

Proof. As we have seen in the proof of Theorem 1.1, assuming that c ∈ R(S∗A),
a sequence d satisfies S∗Ad = c if and only if it is of the form d = (S∗A)†c + v,
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where v is some vector in N (S∗A). Furthermore, (S∗A)†c ∈ N (S∗A)⊥ so that
‖v‖2 = ‖d‖2 − ‖(S∗A)†c‖2. Therefore, the inner maximization in (1.38) becomes

‖A(d̂− (S∗A)†c)‖2 + max
v∈V

{‖Av‖2 − 2v∗A∗A(d̂− (S∗A)†c)}, (1.39)

where

V =
{
v : v ∈ N (S∗A), ‖v‖2 ≤ ρ2 − ‖(S∗A)†c‖2} . (1.40)

Since V is a symmetric set, the vector v attaining the maximum in (1.39) must
satisfy v∗A∗A(d̂− (S∗A)†c) ≤ 0, as we can change the sign of v without effecting
the constraint. Therefore,

max
v∈V

{‖Av‖2 − 2v∗A∗A(d̂− (S∗A)†c)} ≥ max
v∈V

‖Av‖2. (1.41)

Combining (1.41) and (1.39) we have that

min
d̂

max
d∈D

‖Ad̂−Ad‖2 ≥ min
d̂
{‖A(d̂− (S∗A)†c)‖2 + max

v∈V
‖Av‖2}

= max
v∈V

‖Av‖2, (1.42)

where the equality is a result of solving the minimization, which is obtained e.g.,
at d̂ = (S∗A)†c.

We now show that the inequality in (1.42) can be achieved with d̂ = (S∗A)†c.
Indeed, substituting this choice of d̂ in (1.39), we have that

max
d∈D

‖Ad̂−Ad‖2 = max
v∈V

{‖Av‖2 − 2v∗A(d̂− (S∗A)†c)} = max
v∈V

‖Av‖2, (1.43)

concluding the proof.

We conclude that a solution to the minimax problem (1.37) is given by

x̂MX = A(S∗A)†c, (1.44)

coinciding with the LS solution (1.30). We also see that, as in the LS strategy,
the expansion coefficients of the recovery x̂ in A are obtained by applying H =
(S∗A)† on the samples c.

Although the minimax and LS approaches coincide in the unconstrained sub-
space setting discussed thus far, we will wee that these strategies lead to quite
different reconstruction methods when the reconstruction process is constrained.
In Section 1.6 we will also show that the results differ under a smoothness prior.

1.5.2 Constrained reconstruction

Up until now we specified the sampling process but did not restrict the recon-
struction or interpolation kernel w(t) in Fig. 1.4. We now address the problem of
approximating x using a predefined set of reconstruction functions {wn}, which
form a frame for the reconstruction space W. Given sampling functions {sn}
and a fixed set of reconstruction functions {wn} an important question is how
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to design the correction transform H so that the output x̂ is a good approxima-
tion of the input signal x in some sense. To handle this problem, we extend the
two approaches discussed in Section 1.5.1 to the constrained setup. However, in
contrast to the previous section, where perfect recovery was under a direct sum
assumption, here x̂ must lie in the space W. Therefore, if x does not lie in W to
begin with, then x̂ cannot be equal x.

1.5.2.1 Least squares recovery
To obtain a reconstruction in W within the LS methodology we reformulate
(1.24) as

x̂CLS = arg min
x∈W

‖S∗x− c‖2. (1.45)

Namely, the reconstruction x̂CLS ∈ W should yield samples as close as possible to
the measured sequence c. Note that (1.45) actually ignores our prior knowledge
that x ∈ A, a problem which is inevitable when working with the error-in-samples
criterion.

Problem (1.45) is similar to (1.24) with A replaced by W. However, here c

does not necessarily lie in R(S∗W ). Therefore, there does not necessarily exist
an x ∈ W giving rise to the measured samples c, and consequently the minimal
distance is generally not 0.

Theorem 1.3. A solution to (1.45) is x̂CLS = W (S∗W )†c.

Proof. Let d̂ denote the expansion coefficients of the reconstruction, so that
x̂ = Wd̂, and let ĉ = S∗Wd̂ be the samples it produces. Then, (1.45) can be
written as

min
ĉ∈R(S∗W )

‖ĉ− c‖2. (1.46)

This formulation shows that the optimal ĉ is the projection of c onto R(S∗W ):

ĉ = S∗Wd̂ = PR(S∗W )c = (S∗W )(S∗W )†c, (1.47)

from which the result follows.

The solution of Theorem 1.3 has the same structure as the unconstrained LS
reconstruction (1.30) with A replaced by W . Furthermore, as in Section 1.5.1.1,
this solution is not unique if W ∩ S⊥ 6= {0}.

It is interesting to study the relation between the unconstrained and con-
strained solutions. As we have seen, x̂LS of (1.30) is consistent, namely S∗x̂LS = c.
Therefore, x̂CLS can be expressed in terms of x̂LS:

x̂CLS = W (S∗W )†c = W (S∗W )†S∗x̂LS. (1.48)
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The geometric meaning of this relation is best understood when H = W ⊕S⊥.
Then, x̂CLS is the oblique projection of x̂LS onto W along S⊥:

x̂CLS = EWS⊥ x̂LS. (1.49)

Figure 1.7 depicts x̂LS and x̂CLS in a situation where A and S⊥ satisfy the direct-
sum condition (1.25) so that x̂LS = x̂MX = x, and also H = W ⊕S⊥ implying
that (1.49) holds. This example highlights the disadvantage of the LS formu-
lation. In this setting we are constrained to yield x̂ ∈ W. But since x can be
determined from the samples c in this case, so can its best approximation in W,
which is given by PWx = PW x̂LS. This alternative is also shown in Fig. 1.7, and
is clearly advantageous to x̂CLS in terms of squared error for every x. We will
see in Section 1.5.2.2 that orthogonally projecting x̂LS onto the reconstruction
space W can be motivated also when condition (1.25) does not hold.

The constrained LS method can be easily implemented in situations where
W and S are SI spaces with generators w(t) and s(t) respectively. As we have
seen, the operator S∗W corresponds to convolution with the sequence rSW [n] =
(w(t) ∗ s(−t))(n) and thus the correction transform H = (S∗W )† is a digital filter
whose frequency response is

H(ejω) =

{
1

φSW (ejω) , φSW

(
ejω

) 6= 0;
0, φSW

(
ejω

)
= 0,

(1.50)

where φSW (ejω) is the DTFT of rSW [n], which is given by (1.34) with A(ω)
replaced by W (ω). To conclude, reconstruction is performed by the scheme
depicted in Fig. 1.4, where the reconstruction kernel is w(t) and the digital
correction filter is given by (1.50).

1.5.2.2 Minimax recovery
We now treat the constrained recovery setting via a worst-case design strategy.
The constraint x̂ ∈ W leads to an inherent limitation on the minimal achievable
reconstruction error. Indeed, since x ∈ A, the reconstruction error cannot be 0
unless W ⊆ A [32]. From (1.4), we know that the best approximation in W of
any signal x is given by x̂ = PWx, which in general cannot be computed from
the sequence of samples c[n]. Therefore, we consider here the minimization of
the regret , which is defined by ‖x̂− PWx‖2. Since the regret is a function of the
unknown signal x, we seek the reconstruction x̂ ∈ W minimizing the worst-case
regret [47, 48, 32, 14]. Our problem is thus

x̂CMX = min
x̂∈W

max
x∈G

‖x̂− PWx‖2, (1.51)

where G is the set of signals x ∈ A satisfying S∗x = c.
To solve (1.51) we express x̂ and x in terms of their expansion coefficients inW

and A respectively, by writing x̂ = Wd̂ and x = Ad. As in the unconstrained set-
ting, we require that ‖d‖ ≤ ρ for some ρ > 0, in order for the inner maximization
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to be bounded. Therefore, problem (1.51) can be written as

min
d̂

max
d∈D

‖Wd̂− PWAd‖2, (1.52)

where D = {d : S∗Ad = c, ‖d‖ ≤ ρ}.

Theorem 1.4. A solution to problem (1.51) is d̂ = (W ∗W )†W ∗A(S∗A)†c.

Proof. The set D consists of all sequences of the form d = (S∗A)†c + v, where v

is some vector in N (S∗A), with ‖v‖2 ≤ ‖d‖2 − ‖(S∗A)†c‖2. Therefore, the inner
maximization in (1.52) becomes

‖Wd̂− PWA(S∗A)†c‖2 + max
v∈V

{‖PWAv‖2 − 2(PWAv)∗(Wd̂− PWA(S∗A)†c)},
(1.53)

where V is given by (1.40). Since V is a symmetric set, the vector v attaining
the maximum in (1.53) must satisfy (PWAv)∗(Wd̂− PW(S∗A)†c) ≤ 0, as we can
change the sign of v without effecting the constraint. Consequently,

max
v∈V

{‖PWAv‖2 − 2(PWAv)∗(Wd̂− PWA(S∗A)†c)} ≥ max
v∈V

‖PWAv‖2. (1.54)

Combining (1.54) and (1.53) we have that

min
d̂

max
d∈D

‖Wd̂− PWAd‖2 ≥ min
d̂
{‖Wd̂− PWA(S∗A)†c‖2 + max

v∈V
‖PWAv‖2}

= max
v∈V

‖PWAv‖2, (1.55)

where the equality is a result of solving the minimization, which is obtained e.g.,
at

d̂ = (W ∗W )†W ∗A(S∗A)†c. (1.56)

We now show that the inequality can be achieved with d̂ given by (1.56). Sub-
stituting this into (1.53), we have that

max
d∈D

‖Wd̂− PWAd‖2 = max
v∈V

{‖PWAv‖2 − 2(PWAv)∗(Wd̂− PWA(S∗A)†c)}
= max

v∈V
‖PWAv‖2, (1.57)

from which the proof follows.

We conclude that the solution to the minimax problem (1.51) is given by

x̂CMX = Wd̂ = W (W ∗W )†W ∗A(S∗A)†c = PWA(S∗A)†c. (1.58)

In contrast to the constrained LS reconstruction of Theorem 1.3, the minimax
regret solution of Theorem 1.4 explicitly depends on A. Hence, the prior knowl-
edge that x ∈ A plays a role, as one would expect. It is also readily observed
that the relation between the unconstrained and constrained minimax solu-
tions is different than in the LS approach. Identifying in (1.58) the expression
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S⊥

S

A

PSx

x = x̂LS = x̂MX

W

x̂CMX = PWx

x̂CLS = EWS⊥x

Figure 1.7: When condition (1.25) holds, x = xLS = xMX and thus the signal
x ∈ A can be recovered from the samples c[n], allowing to compute its projection
onto W. The constrained minimax approach indeed yields x̂CMX = PWx whereas
the constrained least-squares criterion leads to x̂CLS = EWS⊥x.

A(S∗A)†c = x̂MX = x̂LS, the constrained minimax recovery can be written as

x̂CMX = PW x̂MX, (1.59)

so that the constrained solution is the orthogonal projection onto W of the
unconstrained reconstruction. In Section 1.5.2.1 we discussed the superiority of
this approach in situations where the spaces S and A satisfy the direct-sum
condition (1.25), as shown in Fig. 1.7. We now see that this strategy stems from
the minimization of the worst case regret, for any two spaces S and A.

Let us now examine the case where S, A, and W are SI spaces with generators
s(t), a(t), and w(t) respectively. As shown in Section 1.5.1.1, each of the operators
(W ∗W )†, W ∗A and (S∗A)† corresponds to a digital filter. Therefore, the overall
reconstruction scheme is that depicted in Fig. 1.4 with a digital correction filter
H(ejω) given by

H
(
ejω

)
=

{
φW A(ejω)

φSA(ejω)φW W (ejω) , φSA(ejω)φWW (ejω) 6= 0;
0, φSA(ejω)φWW (ejω) = 0,

(1.60)

where φWA(ejω), φSA(ejω) and φWW (ejω) follow from (1.34) with the corre-
sponding substitution of the filters W (ω), A(ω) and S(ω).

To demonstrate the minimax regret recovery procedure, we now revisit Exam-
ple 1.1 imposing a constraint on the recovery mechanism.

Example 1.2: Suppose that the signal x(t) of (1.35) is sampled at the integers
after passing through the anti-aliasing filter s(t) = sinc(t), as in Example 1.1.
We would now like to recover x(t) from the samples c[n] using a standard zero-
order-hold digital-to-analog convertor. The corresponding reconstruction filter is
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therefore w(t) = u(t)− u(t− 1), where u(t) is the unit step function. To compute
the digital compensation filter (1.60), we note that φWW (ejω) = 1 in our case.
Furthermore, the filter 1/φSA(ejω) is given by (1.36), as we have already seen
in Example 1.1. It can be easily shown that the remaining term, φWA(ejω),
corresponds to the filter

hWA[n] =

{
e

n
τ

(
1− e−

1
τ

)
, n ≤ 0;

0, n > 0.
(1.61)

Therefore, the sequence d[n] feeding the DAC is obtained by convolving the
samples c[n] with h[n] of (1.36) and then by hWA[n] of (1.61).

To summarize, we have seen that treating the constrained reconstruction sce-
nario within the minimax regret framework leads to a simple and plausible recov-
ery method. In contrast, the constrained LS approach does not take the prior
into account and is thus often inferior in terms of squared error in this setting.

1.6 Smoothness priors

We now treat the problem of approximating x(t) from its samples, based on the
knowledge that it is smooth. Specifically, here x is assumed to obey (1.13) with
some ρ > 0.

1.6.1 Unconstrained reconstruction

1.6.1.1 Least-squares approximation
We begin by approximating a smooth signal x via the minimization of the error-
in-samples criterion. To take the smoothness prior into account, we define the
set G of feasible signals as G = {x : ‖Lx‖ ≤ ρ}. The LS problem is then

x̂LS = arg min
x∈G

‖S∗x− c‖2. (1.62)

Since, by assumption, there exists an x in G giving rise to the measured samples
c, the optimal value in (1.62) is 0. Furthermore, there may be infinitely many
solutions in G yielding 0 error-in-samples, as demonstrated in Fig. 1.8(b). In
this figure, the solid vertical segment is the set of signals satisfying S∗x = c

and ‖Lx‖ ≤ ρ. To resolve this ambiguity, we seek the smoothest reconstruction
among all possible solutions:

x̂LS = arg min
x∈G

‖Lx‖, (1.63)

where now G = {x : S∗x = c}.
Problem (1.63) is a linearly constrained quadratic program with a convex

objective. In finite dimensions there always exists a solution to this kind of
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problem. However, in infinite dimensions this is no longer true [49, Chapter 11].
To guarantee the existence of a solution we focus on situations in which the
operator L∗L is bounded from above and below, so that there exist constants
0 < αL ≤ βL < ∞ such that

αL‖x‖2 ≤ ‖L∗Lx‖2 ≤ βL‖x‖2. (1.64)

Since L∗L is Hermitian, this condition also implies that (L∗L)−1 is bounded and
that β−1

L ‖x‖2 ≤ ‖(L∗L)−1x‖2 ≤ α−1
L ‖x‖2 for any x ∈ H.

Theorem 1.5. Assume that the operator L satisfies condition (1.64). Then the
solution (1.63) is given by

x̂LS = W̃ (S∗W̃ )†c, (1.65)

where

W̃ = (L∗L)−1S. (1.66)

Proof. Since (L∗L)−1 is upper- and lower-bounded, and S satisfies the frame
condition (1.7), W̃ is a synthesis operator of a frame. From Proposition 1.2, it
then follows that (S∗W̃ )† is bounded.

To solve (1.63), define the operator

E = W̃ (S∗W̃ )†S∗, (1.67)

so that x̂LS of (1.65) is given by x̂LS = Ex. Now, any x can be decomposed as

x = Ex + (I − E)x = Ex + v, (1.68)

where v = (I − E)x. In addition,

S∗E = S∗(L∗L)−1S(S∗(L∗L)−1S)†S∗ = PN (S∗(L∗L)−1S)⊥S
∗ = S∗, (1.69)

where we used the fact that N (S∗(L∗L)−1S) = N (S) = R(S∗)⊥. Therefore,
S∗x = c and S∗v = 0. Next, using the identity U †UU † = U †, it can be verified
that

E∗L∗L(I − E) = 0. (1.70)

Consequently,

‖Lx‖2 = ‖LEx‖2 + ‖L(I − E)x‖2 = ‖LEx‖2 + ‖Lv‖2, (1.71)

and thus ‖Lx‖2 is minimized by choosing Lv = 0. Finally, if S∗x = c then Ex =
x̂LS of (1.65).

In Section 1.5, we have seen that (1.65) corresponds to the LS and minimax
reconstructions when we have prior knowledge that x lies in the range of W̃ ,
which we denote by W̃. Thus, this approach can be viewed as first determining
the optimal reconstruction space given by (1.66), and then computing the LS (or
minimax) reconstruction under the subspace prior x ∈ W̃.
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S

S⊥

‖Lx‖

S∗x = c

x̂

G

W̃

(a) LS

S

S⊥

‖Lx‖ ≤ ρ

S∗x = c

x̂

G

W̃

(b) Minimax

Figure 1.8: Geometric interpretation of the LS (a) and minimax (b) recoveries.

Figure 1.8(a) shows a geometric interpretation of the LS solution. The set of
feasible signals is the subspace S∗x = c, which is orthogonal to S (vertical dashed
line). The dashed ellipsoids are the level sets of the objective function ‖Lx‖. The
LS solution is the intersection between the vertical line and the ellipsoid for which
it constitutes a tangent. The reconstruction space W̃, is the line connecting all
possible reconstructions (for all possible sample sequences c).

As a special case, we may choose to produce the minimal-norm consistent
reconstruction x̂ by letting L be the identity operator I. This leads to W̃ = S
and consequently, x̂ is the orthogonal projection onto the sampling space, x̂ =
S(S∗S)†S∗x = PSx. This can also be seen by noting that any reconstruction x̂

which yields the samples c has the form x̂ = PSx + v where v is an arbitrary
vector in S⊥. The minimal-norm approximation corresponds to the choice v = 0.

If L is an LTI operator corresponding to convolution with a kernel whose
CTFT is L(ω), then (L∗L)−1 corresponds to filtering with 1/|L(ω)|2. In this
case, if the sampling space S is SI, then W̃ is a SI space with generator w̃(t)
whose CTFT is W̃ (ω) = S(ω)/|L(ω)|2. This is because the nth reconstruction
function wn(t) is a filtered version of the corresponding sampling function sn(t) =
s(t− n), namely W̃n(ω) = Sn(ω)/|L(ω)|2. As shown in the previous section, the
correction transform H yielding the expansion coefficients d[n] is also LTI in this
case, i.e., it corresponds to digital filtering. Therefore, the overall reconstruction
scheme is that shown in Fig. 1.4 where now the reconstruction kernel is

W̃ (ω) =
S(ω)
|L(ω)|2 , (1.72)

and the digital correction filter is

H(ejω) =

{
1

φSW̃ (ejω) , φSW̃

(
ejω

) 6= 0;
0, φSW̃

(
ejω

)
= 0,

(1.73)
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Here, the filter φSW̃ (ejω) follows from (1.34) with A(ω) replaced by W̃ (ω).

1.6.1.2 Minimax recovery
We now treat the problem of reconstructing a smooth signal from its samples
via a worst-case design approach. The prior information we have can be used to
construct a set G of all possible input signals:

G = {x : S∗x = c, ‖Lx‖ ≤ ρ} . (1.74)

As in Section 1.6.1.1, ρ > 0 is a assumed to be large enough so that G is nonempty.
The set consists of signals that are consistent with the samples and are relatively
smooth. We now seek the reconstruction that minimizes the worst-case error over
G:

x̂MX = min
x̂

max
x∈G

‖x̂− x‖2. (1.75)

Theorem 1.6. The solution to problem (1.75) coincides with the LS approach,
namely x̂MX equals x̂LS of (1.65).

Proof. For any signal x satisfying the consistency constraint S∗x = c, the norm
‖Lx‖2 is given by (1.71), with E of (1.67). Therefore, we can write the inner
maximization in (1.75) as

‖x̂− W̃ (S∗W̃ )†c‖2 + max
v∈V

{
‖v‖2 − 2(x̂− W̃ (S∗W̃ )†c)∗v

}
, (1.76)

where

V =
{

v : ‖Lv‖2 ≤ ρ2 − ‖LW̃ (S∗W̃ )†c‖2
}

. (1.77)

Clearly, at the maximum value of v we have that (x̂− W̃ (S∗W̃ )†c)∗v ≤ 0 since
we can change the sign of v without effecting the constraint. Therefore,

max
v∈V

{
‖v‖2 − 2(x̂− W̃ (S∗W̃ )†c)∗v

}
≥ max

v∈V
‖v‖2. (1.78)

Combining (1.78) and (1.76),

min
x̂

max
x∈G

‖x̂− x‖2 ≥ min
x̂

{
‖x̂− W̃ (S∗W̃ )†c‖2 + max

v∈V
‖v‖2

}
= max

v∈V
‖v‖2, (1.79)

where the equality is a result of solving the inner minimization, obtained at
x̂ = W̃ (S∗W̃ )†c. We now show that the inequality can be achieved with x̂ =
W̃ (S∗W̃ )†c. Indeed, with this choice of x̂, (1.76) implies that

max
x∈G

‖x̂− x‖2 = max
v∈V

{
‖v‖2 − 2(x̂− W̃ (S∗W̃ )†c)∗v

}
= max

v∈V
‖v‖2, (1.80)

from which the theorem follows.

Figure 1.8(b) shows a geometric interpretation of the minimax solution. The
set G (solid segment) of feasible signals is an intersection of the ellipsoid defined
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by ‖Lx‖ ≤ ρ and the subspace S∗x = c, which is orthogonal to S. Clearly, for
any reconstruction x̂ ∈ G, the worst case signal x lies on the boundary of G.
Therefore, to minimize the worst case error, x̂ must be the midpoint of the
solid segment, as shown in the figure. The optimal reconstruction space W̃ con-
nects the recoveries corresponding to all possible sequences of samples c. This
is equivalent to horizontally swapping the vertical dashed line in the figure and
connecting the midpoints of the corresponding feasible sets G.

Although the two approaches we discussed are equivalent in the unrestricted
setting, the minimax strategy allows more flexibility in incorporating constraints
on the reconstruction, as we show in the next subsection. Furthermore, it tends
to outperform the consistency approach when further restrictions are imposed
as we will demonstrate via several examples.

Example 1.3: Figure 1.9 compares the minimax (and LS) approach with bicubic
interpolation in the context of image enlargement. The bicubic kernel of [35] is
one of the most popular image re-sampling methods. In our experiment, a high-
resolution image was down-sampled by a factor of 3. A continuous model was
then fitted to the samples using both the minimax solution and the bicubic kernel
of [35]. These models were re-sampled on a grid with 1/3 spacings to produce an
image of the original size. The regularization operator was taken to be L(ω) =(
(0.1π)2 + ‖ω‖2)1.3, where ω denotes the 2D frequency vector. In this example

minimax recovery is superior to the commonly used bicubic method in terms of
peak signal to noise ratio (PSNR), defined as PSNR = 10 log10(2552/MSE) with
MSE denoting the empirical squared-error average over all pixel values. In terms
of visual quality, the minimax reconstruction is sharper and contains enhanced
textures.

1.6.2 Constrained reconstruction

We next treat the problem of approximating x from its samples using a pre-
specified set of reconstruction functions {wn}. We will see that in this setup the
LS and minimax recovery methods no longer coincide.

1.6.2.1 Least-squares approximation
In order to produce a solution x̂ ∈ W, we modify the feasible set G of (1.62) to
include only signals in W:

x̂CLS = arg min
x∈G̃

‖S∗x− c‖2, (1.81)

where G̃ = {x : ‖Lx‖ ≤ ρ, x ∈ W}.
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(a) Bicubic (b) Minimax

Figure 1.9: Mandrill image rescaling: down-sampling by a factor of 3 using a rect-
angular sampling filter followed by upsampling back to the original dimensions
using two interpolation methods. (a) The bicubic interpolation kernel leads to a
blurry reconstruction with PSNR of 24.18dB. (b) The minimax method leads to
a sharper reconstruction with PSNR of 24.39dB.

We have seen in Section 1.5 that without the constraint ‖Lx‖ ≤ ρ, the set of
solutions to (1.81) is given by

G = {x : x ∈ W , S∗x = PR(S∗W )c}. (1.82)

We assume here that ρ is sufficiently large so that G contains at least one x. To
choose one solution to (1.81) we minimize the smoothness measure ‖Lx‖ over
the set G:

x̂CLS = arg min
x∈G

‖Lx‖. (1.83)

Theorem 1.7. The solution to problem (1.83) is given by

x̂CLS = Ŵ (S∗Ŵ )†c. (1.84)

where now

Ŵ = W (W ∗L∗LW )†W ∗S. (1.85)

Proof. The proof of the theorem follows similar steps as in Section 1.6.1.1 and
utilizes the fact that every signal in G is of the form x = W ((S∗W )†c + v), where
v ∈ N (S∗W ).
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Note that this solution is feasible, namely x̂CLS ∈ G:

S∗xCLS = S∗W (W ∗L∗LW )†W ∗S(S∗W (W ∗L∗LW )†W ∗S)†c

= PR(S∗W (W ∗L∗LW )†W ∗S)c

= PR(S∗W )c. (1.86)

The last equality follows from the fact that R((W ∗L∗LW )†) = N (W ∗L∗LW )⊥ =
N (LW )⊥ = N (W )⊥ and similarly N ((W ∗L∗LW )†)⊥ = R(W ∗).

In contrast to subspace priors, here the constrained LS recovery does not gener-
ally relate to the unconstrained solution via an oblique projection. An exception
is the case whereW ⊕S⊥ = H. As we have seen, in this case there exists a unique
x ∈ W satisfying S∗x = c, which is equal to the oblique projection EWS⊥x. Since
there is only one signal in the constraint set of problem (1.83), the smooth-
ness measure in the objective does not play a role and the solution becomes
x̂CLS = W (S∗W )†c. In this setting, we can also use the fact that the uncon-
strained solution (1.65) satisfies S∗xLS = c, to write x̂CLS = W (S∗W )†S∗xLS,
recovering the relation we had in Section 1.5.2.1.

Another interesting scenario where L does not affect the solution is the case
where W and S are SI spaces with generator w(t) and s(t) respectively and L is
an LTI operator with frequency response L(ω). The operator (W ∗L∗LW )† then
corresponds to the digital filter
{

1
φ(LW )(LW )(ejω) , φ(LW )(LW )(ejω) 6= 0;
0, φ(LW )(LW )(ejω) = 0

=

{
1

φ(LW )(LW )(ejω) , φWW (ejω) 6= 0;
0, φWW (ejω) = 0,

(1.87)
where φ(LW )(LW )(ejω) is given by (1.34) with S(ω) and A(ω) both replaced by
L(ω)W (ω) and φWW (ejω) is given by (1.34) with S(ω) and A(ω) both replaced
by W (ω). The equality follows from the fact that L is assumed to satisfy (1.64)
and thus L(ω) does not vanish anywhere. Therefore, it can be verified that
x̂CLS(t) of (1.84) can be produced by filtering the sequence of samples c[n] with

H(ejω) =

{
1

φSW (ejω) , φSW (ejω) 6= 0, φWW (ejω) 6= 0;
0, else,

(1.88)

prior to reconstruction with W (ω). Here φSW (ejω) is given by (1.34) with A(ω)
replaced by W (ω). It can be seen that (1.88) does not depend on L(ω), namely
the smoothness prior does not affect the solution in the SI setting.

The situation where W ⊕S⊥ = H, happens if and only if the supports of S(ω)
and W (ω) are the same [32]. In this case it can be seen that (1.88) becomes

H(ejω) =

{
1

φSW (ejω) , φSW

(
ejω

) 6= 0;
0, φSW

(
ejω

)
= 0,

(1.89)

The resulting scheme is identical to the constrained LS reconstruction discussed
in Section 1.6.2.1 in the context of subspace priors.
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1.6.2.2 Minimax regret recovery
We next consider the extension of the minimax approach of Section 1.6.1.2 to the
setup where x̂ is constrained to lie in W. Similar to the case of subspace priors,
treated in Section 1.5.2.2, we consider here the minimization of the worst-case
regret:

x̂CMX = arg min
x̂∈W

max
x∈G

‖x̂− PWx‖2 , (1.90)

where G is given by (1.74).

Theorem 1.8. The solution to (1.90) is given by

x̂CMX = PWW̃ (S∗W̃ )†c = PW x̂MX, (1.91)

where W̃ is given by (1.66) and x̂MX = x̂LS is the unconstrained solution given
by (1.65).

Proof. The proof follows the exact same steps as in Section 1.6.1.2.

This result is intuitive: When the output is constrained to the subspaceW, the
minimax recovery is the orthogonal projection onto W of the minimax solution
without the restriction. Recall that relation (1.91) is also true for subspace priors,
as we have seen in Section 1.5.

Figure 1.10 shows a geometric interpretation of the minimax regret solution.
As in the unconstrained scenario of Fig. 1.9, the feasible set of signals G is the
vertical solid segment. Here, however, the reconstruction x̂ is constrained to lie
in the predefined space W. The regret criterion (1.90) measures the deviation of
x̂ from PWx. The tilted solid segment is the projection of the feasible set G onto
W. For every reconstruction x̂ in W, the signal x leading to the worst regret
corresponds to one of the endpoints of this set. Therefore, the minimal regret
is attained if we choose x̂ to be the midpoint of this segment. This solution
is also the projection of the midpoint of G onto W, i.e., the projection of the
unconstrained minimax reconstruction (1.65) onto W.

When S and W are SI spaces and L is an LTI operator, the correction trans-
form H corresponds to a digital filter H(ejω). This filter can be determined by
writing H = (W ∗W )†W ∗W̃ (S∗W̃ )†, where W̃ = (L∗L)−1S is the set transform
corresponding to the unrestricted minimax solution. The operators W ∗W , W ∗W̃ ,
and S∗W̃ correspond to the digital filters φWW (ejω), φWW̃ (ejω) and φSW̃ (ejω)
respectively. The digital correction filter of Fig. 1.4 then becomes

H(ejω) =

{
φW W̃ (ejω)

φSW̃ (ejω)φW W (ejω) , φSW̃ (ejω)φWW (ejω) 6= 0;
0, else.

(1.92)

In contrast to the constrained LS method, this filter depends on L(ω) so that the
prior does affect the solution. The next example demonstrates the effectiveness
of this filter in an image processing task.
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S⊥

‖Lx‖ ≤ ρ

S∗x = c

x̂opt

G

W̃

W

x̂

Figure 1.10: Geometric interpretation of minimax regret recovery in a predefined
reconstruction space W.

Example 1.4: In Fig. 1.11 we demonstrate the difference between the LS and
minimax-regret methods in an image enlargement task. The setup is the same
as that of Fig. 1.9 only now the reconstruction filter is constrained to be a
triangular kernel corresponding to linear interpolation. With this interpolation
kernel, the direct-sum condition L2 = W ⊕S⊥ is satisfied. It can be seen that the
error of the minimax regret recovery is only 0.7dB less than the unconstrained
minimax shown in Fig. 1.9. The constrained LS approach, on the other hand, is
much worse both in terms of PSNR and in terms of visual quality. Its tendency to
over-enhance high frequencies stems from the fact that it ignores the smoothness
prior.

Many of the interesting properties of the minimax-regret recovery (1.92) can
be best understood by examining the case where our only prior on the signal is
that it is norm-bounded, that is, when L is the identity operator I. This scenario
was thoroughly investigated in [32]. Setting L(ω) = 1 in (1.92), the correction
filter becomes

H(ejω) =

{
φW S(ejω)

φSS(ejω)φW W (ejω) , φSS(ejω)φWW (ejω) 6= 0;
0, else,

(1.93)

since from (1.72), w̃(t) = s(t). Applying the Cauchy-Schwartz inequality to the
numerator of (1.93) and to the denominator of (1.88), it is easy to see that
the magnitude of the minimax regret filter (1.93) is smaller than that of the
constrained LS filter (1.88) at all frequencies. This property renders the minimax
regret approach more resistant to noise in the samples c[n], since perturbations
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(a) Consistent (b) Minimax regret

Figure 1.11: Mandrill image rescaling: down-sampling by a factor of 3 using a
rectangular sampling filter followed by upsampling back to the original dimen-
sions using the LS and minimax regret methods. (a) The LS approach over-
enhances the high frequencies and results in a PSNR of 22.51dB. (b) The mini-
max regret method leads to a smoother reconstruction with PSNR of 23.69dB.

in x̂(t) caused by errors in c[n] are always smaller in the minimax regret method
than in the consistent approach.

In Fig. 1.12 we illustrate the minimax regret reconstruction geometrically for
the case L = I. We have seen already that knowing the samples c[n] is equivalent
to knowing PSx. In addition, our recovery is constrained to lie in the spaceW. As
illustrated in the figure, the minimax regret solution is a robust recovery scheme
by which the signal is first orthogonally projected onto the sampling space, and
then onto the reconstruction space.

When x is known to lie in S, it follows from the previous section that the
minimal error can be obtained by using (1.60) with A = S. The resulting fil-
ter coincides with the minimax regret filter of (1.89), implying that the regret
approach minimizes the squared-error over all x ∈ S.

In [32] tight bounds on the error resulting from the constrained LS and mini-
max regret methods are developed for the case where H = W ⊕S⊥. We omit the
technical details here and only summarize the main conclusions. We first recall
that if we know a priori that x lies in a subspace A such that H = A⊕ S⊥, then
the filter (1.60) will yield the minimal error approximation of x and therefore
is optimal in the squared-norm sense. When A = S this strategy reduces to the
minimax regret method, while if A = W, then we obtain the constrained LS
reconstruction.

When no prior subspace knowledge is given, the regret approach is preferable
if the spaces S and W are sufficiently far apart, or if x has enough energy in S.
These results are intuitive as illustrated geometrically in Fig. 1.12. In Fig. 1.12(a)
we depict the constrained LS and regret reconstruction when W is far from S.
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Figure 1.12: Comparison of minimax regret reconstruction and constrained LS
reconstruction for two different choices of W satisfying H = W ⊕S⊥. (a) The
minimax strategy (PWPSx) is preferable to LS (EWS⊥x) when W is ‘far’ from
S. (b) Both methods lead to errors on the same order of magnitude when W is
‘close’ to S.

Table 1.2: Reconstruction from noiseless samples
Unconstrained (x̂ ∈ H) Constrained (x̂ ∈ W)

Prior Least-Squares Minimax Least-Squares Minimax

x ∈ A x̂sub
LS = A(S∗A)†c x̂sub

MX = x̂sub
LS x̂sub

CLS = W (S∗W )†S∗x̂sub
LS x̂sub

CMX = PW x̂sub
MX

‖Lx‖ ≤ ρ x̂smo
LS = W̃ (S∗W̃ )†c x̂smo

MX = x̂smo
LS x̂smo

CLS = Ŵ (S∗Ŵ )†S∗x̂smo
LS x̂smo

CMX = PW x̂smo
MX

As can be seen in the figure, in this case the error resulting from the LS solution
is large with respect to the regret approximation error. In Fig. 1.12(b), W and
S are close, and the errors have roughly the same magnitude.

1.7 Comparison of the various scenarios

Table 1.2 summarizes the reconstruction techniques developed in Sections 1.5
and 1.6. We use the superscripts ‘sub’ and ‘smo’ to signify whether a solution
corresponds to a subspace or a smoothness prior. The transformations W̃ and
Ŵ are given by

W̃ = (L∗L)−1S

and

Ŵ = W (W ∗L∗LW )†W ∗S

respectively.
This table highlights the key observations discussed in the previous sections.

We begin by examining the case in which no constraint is imposed on x̂, shown
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Table 1.3: Reconstruction from noiseless samples under direct sum assumptions

Unconstrained (x̂ ∈ H) Constrained (x̂ ∈ W)

Prior Least-Squares Minimax Least-Squares Minimax

x ∈ A x̂sub
LS = x x̂sub

MX = x̂sub
LS x̂sub

CLS = EWS⊥ x̂sub
LS x̂sub

CMX = PW x̂sub
MX

‖Lx‖ ≤ ρ x̂smo
LS = EW̃S⊥x x̂smo

MX = x̂smo
LS x̂smo

CLS = EWS⊥ x̂smo
LS x̂smo

CMX = PW x̂smo
MX

in columns 1 and 2. First, we see that in this situation both the LS and minimax
reconstructions coincide. This property holds true both for subspace and smooth-
ness priors. In Section 1.8 we show that this is not the case when the samples
are noisy. Second, smoothness-prior recovery (row 2) has the same structure as
subspace-prior recovery (row 1) with W̃ replacing A. Therefore, we can interpret
W̃ = R(W̃ ) as the optimal reconstruction space associated with the smoothness
prior. Finally, we note that for certain subspace priors, perfect recovery can be
achieved, leading to x̂sub

LS = x. Specifically, this happens if the sampling space
S and the prior space A satisfy the direct sum condition H = A⊕ S⊥. In the
smoothness prior case, the direct sum condition H = W̃ ⊕ S⊥ does not imply
perfect recovery because the original x does not necessarily lie in W̃. When the
direct sum holds, however, recovery can be interpreted as an oblique projection
of the (unknown) signal x onto the optimal reconstruction space W̃, namely
x̂smo

LS = EW̃S̃⊥x.
We now examine the case in which the recovery is constrained to lie in W

(columns 3 and 4). These solutions are expressed in Table 1.2 in terms of the
unconstrained reconstructions (columns 1 and 2). Here the minimax regret solu-
tions (column 4) are related to the unconstrained recoveries (column 2) via
an orthogonal projection onto the reconstruction space W. This implies that
‖x̂CMX‖ ≤ ‖x̂MX‖. The constrained LS solutions, on the other hand, possess a
different structure. When the sampling and reconstruction spaces satisfy the
direct-sum H = W ⊕S⊥, both constrained LS solutions of column 3 become
x̂CLS = EWS⊥ x̂LS. This has several implications. First, in contrast to an orthog-
onal projection, an oblique projection may lead to solutions with arbitrary large
norm, given that W is sufficiently far apart from S. Therefore, the error in the
constrained LS framework is not guaranteed to be bounded, unless a bound on
the ‘distance’ between S and W is known a-priori. Second, this implies that the
recovery does not depend on the prior, i.e., x̂sub

CLS is not a function of A and x̂smo
CLS

does not depend on L. These properties are clearly undesirable and can lead to
unsatisfactory results in practical applications, as demonstrated in Example 1.4.

Table 1.3 summarizes the recovery formulae obtained under the direct sum
assumptions discussed above. The expressions in column 1, rows 1 and 2, are true
when H = A⊕ S⊥ and H = W̃ ⊕ S⊥ respectively. The recoveries of column 3 are
obtained under the assumption that H = W ⊕S⊥.

Finally, we note that all the recovery techniques discussed thus far can be eas-
ily implemented in SI spaces. Specifically, suppose that S, A andW are SI spaces
with generators s(t), a(t) and w(t) respectively. Moreover, assume that L is an
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Table 1.4: Reconstruction from noiseless samples in SI spaces

Unconstrained (x̂ ∈ H) Constrained (x̂ ∈ W)
Prior Least-Squares Minimax Least-Squares Minimax

x ∈ A (1.33) (1.33) (1.50) (1.60)
‖Lx‖ ≤ ρ (1.73), (1.72) (1.73), (1.72) (1.88) (1.92)

LTI operator corresponding to the filter L(ω). Then all the reconstruction meth-
ods of Table 1.2 can be implemented by digitally filtering the samples c[n] prior
to reconstruction, as depicted in Fig. 1.4. The resulting interpolation methods
are summarized in Table 1.4. The numbers in the table indicate the equation
numbers containing the reconstruction formulae of the digital correction filter
and reconstruction kernel. The optimal kernel corresponding to unconstrained
recovery with a subspace prior (row 1, columns 1 and 2) is a(t), while the inter-
polation kernel in the constrained case (columns 3 and 4) is w(t).

The direct sum conditions, under which Table 1.3 was constructed, can be
easily verified in SI spaces, as explained in Section 1.5.1.1. Specifically, for two
SI spaces A and S, the condition H = A⊕ S⊥ is satisfied if and only if [46] the
supports IA and IS of φSS(ejω) and φAA(ejω) respectively coincide, and there
exists a constant α > 0 such that |φSA(ejω)| > α, for all ω in IA. The filters
φSS(ejω), φAA(ejω), and φSA(ejω) are defined in (1.34).

1.8 Sampling with noise

We now extend the approaches of the previous sections to the case in which the
samples are perturbed by noise. Specifically we assume that c = S∗x + u, where
u[n] is an unknown noise sequence.

To approach the noisy setup within the LS framework, we need to minimize
the error-in-samples ‖S∗x− c‖2 over the set of feasible signals. Thus, the opti-
mization problems (1.24), (1.45), (1.62) and (1.81), which correspond to the
unconstrained and constrained subspace and smoothness scenarios, remain valid
here too. However, note that to solve these problems we assumed that signals x

for which S∗x = c (or S∗x = PR(W ∗S)c in the constrained setting) are included in
the feasible set. When the samples are noisy, this is not necessarily true so that,
for example, the optimal value of the unconstrained problem minx∈A ‖S∗x− c‖2
is no longer 0. Nevertheless, it can be easily shown that the solutions we obtained
under the subspace prior assumption (problems (1.24) and (1.45)) and in the con-
strained smoothness setting (problem (1.81)) remain the same. Furthermore, it
can be shown that in the unconstrained smoothness scenario (problem (1.62)),
this fact does not change the optimal reconstruction space W̃ of (1.66), but only
the expansion coefficients of x̂ in W̃. Interestingly, this property holds even when
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the `2-norm in the error-in-samples term ‖S∗x− c‖ is replaced by an `p-norm
with arbitrary p ∈ [1,∞] [11].

Therefore, we focus our attention on the extension of the minimax recovery
techniques to the noisy case. To keep the exposition simple, we will thoroughly
examine only the smoothness prior scenarios of Section 1.6. The subspace prior
problems of Section 1.5 can be treated in the exact same manner. We thus assume
in the sequel that ‖Lx‖ ≤ ρ for some ρ ≥ 0. In this setting the solution no longer
lies in the reconstruction space W̃ of (1.66). Moreover, the resulting problems
generally do not admit a closed-form solution and must be solved using numerical
optimization methods. Consequently, we will narrow the discussion from signals
in an arbitrary Hilbert space H to signals lying in Rn or Cn.

Assume that the samples c are noisy so that our only information is that
‖S∗x− c‖ ≤ α for some value of α. The extension of the minimax problem (1.75)
in the unconstrained scenario to the noisy case is

x̂MX = arg min
x̂

max
x∈G

‖x̂− x‖2, (1.94)

where

G = {x : ‖S∗x− c‖ ≤ α, ‖Lx‖ ≤ ρ}. (1.95)

Similarly, the counterpart of (1.90), where the solution is constrained to lie in
W, is x̂CMX = Wd̂CMX, with

d̂CMX = arg min
d

max
x∈G

‖Wd− PWx‖2 . (1.96)

To solve (1.94) and (1.96) we replace the inner maximization by its dual func-
tion. This will result in a minimization problem that can be combined with
the outer minimization. In order to follow this method, we need to be able to
establish strong duality of the inner maximization with its dual function. The
maximization in (1.94) and (1.96) is a special case of a nonconvex quadratic opti-
mization problem with two quadratic constraints. The nonconvexity is the result
of the fact that we are maximizing a convex quadratic function, rather than
minimizing it. Nonconvex quadratic optimization problems have been studied
extensively in the optimization literature. Below, we first briefly survey some of
the main results on quadratic optimization, relevant to our problem. We then
show how they can be used to develop a robust recovery method.

1.8.1 Quadratic optimization problems

This simplest class of quadratic optimization problems is the minimization of
a single (possibly nonconvex) quadratic function subject to one quadratic con-
straint. A special well-studied case is that of the trust region algorithm for uncon-
strained optimization, which has the form [50, 51, 52, 53, 54, 55]:

min
x∈Rn

{xT Bx + 2gT x : ‖x‖2 ≤ δ}, (1.97)
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where B is not necessarily nonnegative definite so that the problem is not gen-
erally convex. The dual of (1.97) is given by the semidefinite program (SDP)
[56]

max
α,λ

{
λ :

(
B + αI g

gT −αδ − λ

)
º 0, α ≥ 0

}
. (1.98)

Problem (1.97) enjoys many useful and attractive properties. It is known that
it admits no duality gap and that its semidefinite relaxation (SDR) is tight.
Moreover, there exist a set of necessary and sufficient conditions that guarantee
optimality of a solution to (1.97), which can be extracted from the dual solution
ᾱ. These results all extend to the case in which the problem is to optimize an
arbitrary quadratic function subject to a single quadratic constraint, where both
quadratic forms are not necessarily convex.

Unfortunately, in general these results cannot be generalized to the case in
which the constraint set consists of two quadratic restrictions. More specifically,
consider the following quadratic problems:

(Q2PC) min
z∈Cn

{f3(z) : f1(z) ≥ 0, f2(z) ≥ 0}, (1.99)

(Q2PR) min
x∈Rn

{f3(x) : f1(x) ≥ 0, f2(x) ≥ 0}. (1.100)

In the real case each function fj : Rn → R is defined by fj(x) = xT Ajx + 2bT
j x +

cj with Aj = AT
j ∈ Rn×n, bj ∈ Rn and cj ∈ R. In the complex setting, fj : Cn →

R is given by fj(z) = z∗Ajz + 2<(b∗jz) + cj , where Aj are Hermitian matrices,
i.e., Aj = A∗

j , bj ∈ Cn and cj ∈ R. We distinguish between the real and complex
cases since we will see that different strong duality results apply in both settings.
In particular, there are stronger results for complex quadratic problems than for
their real counterparts.

The problem (Q2PR) appears as a subproblem in some trust region algorithms
for constrained optimization [57, 58, 59, 60, 61] where the original problem is
to minimize a general nonlinear function subject to equality constraints. Unfor-
tunately, in general the strong duality results in the case of a single constraint
cannot be extended to the case of two quadratic restrictions (Q2PR). Indeed, it
is known that the SDR of (Q2PR) is not necessarily tight [62, 60]. An exception
is the case in which the functions f1, f2 and f3 are all homogenous quadratic
functions and there exists a positive definite linear combination of the matrices
Aj [62]. Another setting in which strong duality is guaranteed is derived in [44]
and will be discussed below.

Quadratic optimization in the complex domain is simpler. In [44] it is shown
that under some mild conditions strong duality holds for the complex valued
problem (Q2PC) and that its semidefinite relaxation is tight. This result is based
on the extended version of the S-lemma derived by Fradkov and Yakubovich [63].
The standard Lagrangian dual of (Q2PC) is given by

(DC) max
α≥0,β≥0,λ

{
λ

∣∣∣∣
(

A3 b3

b∗3 c3 − λ

)
º α

(
A1 b1

b∗1 c1

)
+ β

(
A2 b2

b∗2 c2

)}
. (1.101)
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Problem (DC) is sometimes called Shor’s relaxation [64]. Theorem 1.9 below
states that if problem (Q2PC) is strictly feasible then val(Q2PC) = val(DC) even
in the case where the value is equal to −∞.

Theorem 1.9. [44] Suppose that problem (Q2PC) is strictly feasible, i.e., there
exists z̃ ∈ Cn such that f1(z̃) > 0, f2(z̃) > 0. Then,

1. if val(Q2PC) is finite then the maximum of problem (DC) is attained and
val(Q2PC) = val(DC).

2. val(Q2PC) = −∞ if and only if (DC) is not feasible.

Necessary and sufficient optimality conditions similar to those known for (1.97)
where also derived in [44]. These conditions can be used to calculate the optimal
solution of (Q2PC) from the dual solution.

It is interesting to note that the dual problem to (DC) is the so-called SDR of
(Q2PC):

(SDRC) min
Z
{Tr(ZM3) : Tr(ZM1) ≥ 0, Tr(ZM2) ≥ 0, Zn+1,n+1 = 1, Z º 0},

(1.102)
where

M j =
(

Aj bj

b∗j cj

)
. (1.103)

If both problems (Q2PC) and (DC) are strictly feasible, then problems
(Q2PC),(DC) and (SDRC) (problems (1.99),(1.101) and (1.102) respectively)
attain their solutions and

val(Q2PC) = val(DC) = val(SDRC). (1.104)

The real valued problem (Q2PR) is more difficult to handle. In contrast to
the complex case, strong duality results are, generally speaking, not true for
(Q2PR). It is not known whether (Q2PR) is a tractable problem or not and
in that respect, if there is an efficient algorithm for finding its solution. If the
constraints of (Q2PR) are convex then the complex valued problem (Q2PC),
considered as a relaxation of (Q2PR), can produce an approximate solution.
Although strong duality results do not hold generally in the real case, a sufficient
condition can be developed to ensure zero duality gap (and tightness of the
semidefinite relaxation) for (Q2PR) [44]. This result is based on the connection
between the image of the real and complex spaces under a quadratic mapping,
and is given in terms of the dual optimal values.

The dual problem to (QPR) is

(DR) max
α≥0,β≥0,λ

{
λ

∣∣∣∣
(

A3 b3

bT
3 c3 − λ

)
º α

(
A1 b1

bT
1 c1

)
+ β

(
A2 b2

bT
2 c2

)}
. (1.105)

Note that this is exactly the same as problem (DC) in (1.101), where here we
used the fact that the data is real and therefore b∗j = bT

j . The SDR in this case
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is given by

(SDRR) min
X
{Tr(XM3) : Tr(XM1) ≥ 0, Tr(XM2) ≥ 0, Xn+1,n+1 = 1, X º 0}.

(1.106)
Suppose that both problems (Q2PR) and (DR) are strictly feasible and there
exists real values α̂, β̂ such that

α̂A1 + β̂A2 Â 0. (1.107)

Let (λ̄, ᾱ, β̄) be an optimal solution of the dual problem (DR). If

dim
(N (A3 − ᾱA1 − β̄A2)

) 6= 1 (1.108)

then val(Q2PR) = val(DR) = val(SDRR) and there exists a real valued solution
to the complex valued problem (Q2PC).

1.8.2 Minimax recovery using SDP relaxation

We now show how the strong duality results developed in the previous section can
be used to solve the recovery problems (1.94) and (1.96). Our general approach
is to replace the inner maximization by its dual [65]. Over the complex domain,
strong duality holds, and the resulting problems are exact representations of
(1.94) and (1.96). Over the reals, this leads to an approximation, however, in
practice it is pretty tight and yields good recovery results. Alternatively, we can
use an SDR approach to replace the inner maximization by its relaxation. The
resulting problem is a convex-concave saddle point program which can be further
simplified by relying on Proposition 1.1 [66]. Both derivations are equivalent since
the dual problem of the inner maximization is also the dual of the (convex) SDR
[56]. Here we follow the relaxation approach since its derivation is simpler.

Instead of focusing on our particular problem, we treat a general minimax
formulation with a quadratic objective, and two quadratic constraints:

min
x̂

max
x
{‖Ax̂−Qx‖2 : fi(x) ≤ 0, 1 ≤ i ≤ 2}, (1.109)

where

fi(x)
4
= x∗Aix + 2<{b∗ix}+ ci. (1.110)

Clearly (1.94) and (1.96) are special cases of (1.109) with

A1 = SS∗, b1 = −Sc, c1 = ‖c‖2 − α2, A2 = L∗L, b2 = 0, c2 = −ρ2. (1.111)

The difference between the two problems is in the matrices A and Q. In (1.94)
we have A = Q = I, whereas in (1.96) A = W and Q = PW = W (W ∗W )†W ∗.

In order to develop a solution to (1.109) we first consider the inner maximiza-
tion:

max
x
{‖Ax̂−Qx‖2 : fi(x) ≤ 0, 1 ≤ i ≤ 2}, (1.112)
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which is a special case of quadratic optimization with 2 quadratic constraints.
Denoting ∆ = xx∗, (1.112) can be written equivalently as

max
(∆,x)∈G

{‖Ax̂‖2 − 2<{x̂∗A∗Qx}+ Tr(Q∗Q∆)}, (1.113)

where

G = {(∆, x) : fi(∆, x) ≤ 0, 1 ≤ i ≤ 2, ∆ = xx∗}, (1.114)

and we defined

fi(∆, x) = Tr(Ai∆) + 2<{b∗ix}+ ci, 1 ≤ i ≤ 2. (1.115)

The objective in (1.113) is concave (linear) in (∆, x), but the set G is not convex.
To obtain a relaxation of (1.113) we may replace G by the convex set

T = {(∆, x) : fi(∆, x) ≤ 0, 1 ≤ i ≤ 2, ∆ º xx∗}. (1.116)

Indeed, using Schur’s lemma [67, p. 28] ∆ º xx∗ can be a written as a linear
matrix inequality. Our relaxation of (1.109) is the solution to the resulting min-
imax problem:

min
x̂

max
(∆,x)∈T

{‖Ax̂‖2 − 2<{x̂∗A∗Qx}+ Tr(Q∗Q∆)}. (1.117)

The objective in (1.117) is concave (linear) in ∆ and x and convex in x̂. Fur-
thermore, the set T is bounded. Therefore, from Proposition 1.1 we can replace
the order of the minimization and maximization, resulting in the equivalent
problem

max
(∆,x)∈T

min
x̂
{‖Ax̂‖2 − 2<{x̂∗A∗Qx}+ Tr(Q∗Q∆)}. (1.118)

The inner minimization is a simple quadratic problem. Expressing the objective
as ‖Ax̂−Qx‖2, it can be seen that its solution satisfies Ax̂ = PAQx, where
A = R(A). Substituting this result into (1.118), our problem reduces to

max
(∆,x)∈T

{−‖PAQx‖2 + Tr(Q∗Q∆)}, (1.119)

Problem (1.119) is a convex optimization problem with a concave objective and
linear matrix inequality constraints and can therefore be solved easily using
standard software packages. The approximate minimax solution to (1.109) is
the x-part of the solution to (1.119). When (1.109) is defined over the com-
plex domain, then this solution is exact. In the real case, it will be exact when
condition (1.108) is satisfied.

Instead of solving (1.119) we may consider its dual function. Since (1.119) is
convex, strong duality holds. For simplicity, we will assume that L∗L is invertible
so that A2 Â 0 in our case. We will also use the fact that in our setting, Q = PA,
where A = R(A). This leads to a simple explicit expression for the solution x̂:
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Theorem 1.10. Assume that at least one of the matrices {Ai} is strictly positive
definite and that Q = PA. Then the solution to (1.119) is given by

x̂ = −
(

2∑

i=1

αiAi

)−1 (
2∑

i=1

αibi

)
, (1.120)

where (α1, α2) is an optimal solution of the following convex optimization prob-
lem in 2 variables:

min
αi





2∑

i=1

αib
∗
i

(
2∑

i=1

αiAi

)−1 2∑

i=1

αibi −
2∑

i=1

ciαi





s.t.
2∑

i=1

αiAi º Q∗Q,

αi ≥ 0, 1 ≤ i ≤ 2. (1.121)

Proof. To prove the theorem we show that (1.121) is the dual of (1.119). Since
(1.119) is convex and strictly feasible, its optimal value is equal to that of its
dual problem. To compute the dual, we first form the Lagrangian:

L = −‖PAQx‖2 + Tr(Q∗Q∆) + Tr(Π(∆− xxT ))

−
2∑

i=1

αi(Tr(Ai∆) + 2<{b∗ix}+ ci), (1.122)

where αi ≥ 0 and Π º 0 are the dual variables. The maximization of L with
respect to x yields

x = −(Q∗PAQ + Π)−1
2∑

i=1

αibi. (1.123)

The derivative with respect to ∆ yields,

Q∗Q + Π =
2∑

i=1

αiAi. (1.124)

Using the fact that Q∗PAQ = Q∗Q and that Q∗(PA − I)Q = 0, the combination
of (1.123) and (1.124) yields (1.120).

Next we note that since Π º 0, we must have from (1.124) that
∑k

i=0 αiAi º
Q∗Q. Finally, substituting (1.123) and (1.124) into (1.122), we obtain the dual
problem (1.121).

Returning to our reconstruction problems, the substitution of (1.111) in The-
orem 1.10 implies that x̂MX of (1.94) is given by

x̂MX = (SS∗ + λL∗L)−1Sc, (1.125)
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where λ = α2/α1. If α1 = 0 then x̂MX = 0. Similarly, x̂CMX corresponding to
(1.96) is given by

x̂CMX = PW x̂MX, (1.126)

where we used the fact that A = W and Q = PW in this case. This shows that,
as in the noiseless scenarios of Sections 1.5 and 1.6, here too the constrained
minimax regret solution relates to the unconstrained minimax recovery via an
orthogonal projection.

Problem (1.121) can be cast as an SDP:

minαi

{
t−∑2

i=1 ciαi

}

s.t.
(

Q∗(PA − I)Q +
∑2

i=1 αiAi

∑2
i=1 αibi∑2

i=1 αib
∗
i t

)
º 0,

∑2
i=1 αiAi º Q∗Q,

αi ≥ 0, 1 ≤ i ≤ 2.

(1.127)

This SDP can be solved by one of the many available SDP solvers such as the
Self-Dual-Minimization (SeDuMi) package [68] or CVX [69].

It can be shown that both the true minimax solution and its approximation
are feasible, namely they satisfy the quadratic constraints [66]. This approach
can also be extended to the case when there are more than 2 constraints.

Example 1.5: Figure 1.13 shows a concrete example of the approximation dis-
cussed above for the unconstrained minimax reconstruction of (1.94). This recon-
struction is compared with the LS solution x̂LS = min‖Lx‖≤ρ ‖S∗x− c‖2. In this
experiment, the sampling filter is a rectangular window whose support is equal
to the sampling interval, the noise is white and Gaussian with variance σ2,
and the signal x = (x(1), . . . , x(100))T is given by x(n) = sinc(0.1(n− 33.3)) +
exp{−0.005(n− 50.5)2}. The regularization operator L was taken to be a (dis-
crete approximation of) first order derivative. The parameter α was chosen as
3
√

Kσ, where K is the number of samples. Both the minimax and LS reconstruc-
tions were produced with the same ρ. It can be seen that x̂LS tends to oscillate
more than x̂MX. Consequently, its reconstruction error is larger than that of x̂MX

by 30%.

To conclude, we have seen that when the samples are perturbed by noise, we
can obtain an approximation of the minimax recovery by numerically solving
an SDP. In some cases, this strategy leads to the exact minimax solution. The
minimax method often yields improved reconstructions over LS. This is especially
true in the constrained setting, where the minimax recovery is the orthogonal
projection of the unconstrained solution onto the reconstruction space, whereas
the LS recovery may deviate substantially from the unconstrained method.
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x(t)
c[n]
x̂MX (t)
x̂LS (t)

Figure 1.13: Comparison of minimax and LS reconstruction. The error norm of
x̂LS is 30% higher than that of x̂MX.

1.9 Conclusion

In this chapter we revisited the fundamental problem of reconstructing signals
from their samples. We considered several models for each of the essential ingredi-
ents of the sampling problem: the sampling mechanism (general pre-filter, noise),
the reconstruction kernel (pre-specified, unrestricted), and the signal prior (sub-
space, smoothness). Our approach was to define an optimization problem that
takes into account both the fit of the reconstructed signal to the given samples
and the prior knowledge we have about the signal. Each of the settings studied
in this chapter was treated using two optimization strategies: LS and minimax.
We showed that when the samples are noise-free, both strategies coincide if the
reconstruction mechanism is unrestricted. In this case, perfect recovery is often
possible under a subspace prior. In contrast, when the recovery is constrained,
the minimax strategy leads to solutions that are closer to the original signal.
The last part of this chapter was devoted to the challenging task of treating
smoothness priors via the minimax strategy in the case in which the samples are
noisy. Since closed-form solutions are unavailable in this setting, we restricted
our attention to signals lying in Rn and Cn and showed how the resulting prob-
lems can be solved numerically using standard optimization packages. This was
made possible by relying on recent results in optimization theory, regarding the
tightness of SDP relaxations in quadratic problems.
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Birkhäuser, 2008.

[18] I. Daubechies, “The wavelet transform, time-frequency localization and sig-
nal analysis,” IEEE Trans. Inform. Theory, vol. 36, pp. 961–1005, Sep. 1990.

[19] ——, Ten Lectures on Wavelets. SIAM, Philadelphia, 1992.
[20] R. M. Young, An Introduction to Nonharmonic Fourier Series. New York:

Academic Press, 1980.
[21] M. Unser, “Sampling—50 years after Shannon,” IEEE Proc., vol. 88, pp.

569–587, Apr. 2000.
[22] M. Mishali and Y. C. Eldar, “Blind multi-band signal reconstruction: Com-

pressed sensing for analog signals,” IEEE Trans. Signal Process., vol. 57,
no. 3, pp. 993–1009, March 2009.

[23] Y. C. Eldar, “Compressed sensing of analog signals in shift invariant spaces,”
to appear in IEEE Trans. on Signal Process.

[24] D. L. Donoho, “Compressed sensing,” IEEE Trans. on Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr 2006.

[25] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information,” IEEE
Trans. Inform. Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[26] M. Mishali and Y. C. Eldar, “Reduce and boost: Recovering arbitrary sets
of jointly sparse vectors,” IEEE Trans. Signal Process., vol. 56, no. 10, pp.
4692–4702, Oct. 2008.

[27] Y. C. Eldar, “Uncertainty relations for analog signals,” submitted to IEEE
Trans. Inform. Theory.

[28] Y. M. Lu and M. N. Do, “A theory for sampling signals from a union of
subspaces,” IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2334–2345, 2008.

[29] Y. C. Eldar and M. Mishali, “Robust recovery of signals from a union of
subspaces,” submitted to IEEE Trans. Inform. Theory.

[30] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise
removal algorithms,” Physica D, vol. 60, no. 1-4, pp. 259–268, 1992.

[31] P. P. Vaidyanathan, “Generalizations of the sampling theorem: Seven
decades after Nyquist,” IEEE Trans. Circuit Syst. I, vol. 48, no. 9, pp.
1094–1109, Sep. 2001.

[32] Y. C. Eldar and T. G. Dvorkind, “A minimum squared-error framework for
generalized sampling,” IEEE Trans. Signal Processing, vol. 54, no. 6, pp.
2155–2167, Jun. 2006.



52 References

[33] A. Aldroubi, “Oblique projections in atomic spaces,” Proc. Amer. Math.
Soc., vol. 124, no. 7, pp. 2051–2060, 1996.

[34] T. G. Dvorkind, Y. C. Eldar, and E. Matusiak, “Nonlinear and non-ideal
sampling: Theory and methods,” IEEE Trans. Signal Process., vol. 56,
no. 12, pp. 5874–5890, 2008.

[35] R. G. Keys, “Cubic convolution interpolation for digital image processing,”
IEEE Trans. Acoust., Speech, Signal Process., vol. 29, no. 6, pp. 1153–1160,
1981.

[36] Y. C. Eldar and T. Werther, “General framework for consistent sampling
in Hilbert spaces,” International Journal of Wavelets, Multiresolution, and
Information Processing, vol. 3, no. 3, pp. 347–359, Sep. 2005.

[37] I. J. Schoenberg, Cardinal Spline Interpolation. Philadelphia, PA: SIAM,
1973.

[38] M. Unser, A. Aldroubi, and M. Eden, “B-Spline signal processing: Part I -
Theory,” IEEE Trans. Signal Processing, vol. 41, no. 2, pp. 821–833, Feb.
1993.

[39] ——, “B-Spline signal processing: Part II - Efficient design and applica-
tions,” IEEE Trans. Signal Processing, vol. 41, no. 2, pp. 834–848, Feb.
1993.

[40] Y. C. Eldar, “Rethinking biased estimation: Improving maximum likelihood
and the Cramer–Rao bound,” Foundations and Trends in Signal Processing,
vol. 1, no. 4, pp. 305–449, 2007.

[41] Y. C. Eldar, A. Ben-Tal, and A. Nemirovski, “Robust mean-squared error
estimation in the presence of model uncertainties,” IEEE Trans. Signal Pro-
cessing, vol. 53, no. 1, pp. 168–181, Jan. 2005.

[42] T. G. Dvorkind, H. Kirshner, Y. C. Eldar, and M. Porat, “Minimax approx-
imation of representation coefficients from generalized samples,” IEEE
Trans. Signal Processing, vol. 55, pp. 4430–4443, Sep. 2007.

[43] M. Sion, “On general minimax theorems,” Pac. J. Math., vol. 8, pp. 171–
176, 1958.

[44] A. Beck and Y. C. Eldar, “Strong duality in nonconvex quadratic optimiza-
tion with two quadratic constraints,” Siam J. Optimization, vol. 17, no. 3,
pp. 844–860, 2006.

[45] Y. C. Eldar and O. Christansen, “Characterization of oblique dual frame
pairs,” J. Applied Signal Processing, pp. 1–11, 2006, article ID 92674.

[46] O. Christansen and Y. C. Eldar, “Oblique dual frames and shift-invariant
spaces,” Appl. Comp. Harm. Anal., vol. 17, no. 1, pp. 48–68, 2004.

[47] Y. C. Eldar, A. Ben-Tal, and A. Nemirovski, “Linear minimax regret esti-
mation of deterministic parameters with bounded data uncertainties,” IEEE
Trans. Signal Processing, vol. 52, pp. 2177–2188, Aug. 2004.

[48] Y. C. Eldar and N. Merhav, “A competitive minimax approach to robust
estimation of random parameters,” IEEE Trans. Signal Processing, vol. 52,
pp. 1931–1946, July 2004.



References 53

[49] E. Lieb and M. Loss, Analysis. American Mathematical Society, 2001.
[50] A. Ben-Tal and M. Teboulle, “Hidden convexity in some nonconvex quadrat-

ically constrained quadratic programming,” Mathematical Programming,
vol. 72, no. 1, pp. 51–63, 1996.

[51] H. G. Feichtinger and T. Werther, “Robustness of minimal norm interpo-
lation in sobolev algebras,” in Sampling, Wavelets and Tomography, A. I.
Zayed and J. J. Benedetto, Eds. Boston, MA: Birkhäuser, 2004.
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