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1 Introduction

Compressed sensing (CS) is an exciting, rapidly
growing field that has attracted considerable at-
tention in electrical engineering, applied mathe-
matics, statistics, and computer science. CS of-
fers a framework for simultaneous sensing and
compression of finite-dimensional vectors that re-
lies on linear dimensionality reduction. Quite sur-
prisingly, it predicts that sparse high-dimensional
signals can be recovered from highly incomplete
measurements by using efficient algorithms.

To be more specific, let x be an n-vector. In CS
we do not measure x directly, but rather acquire
m < n linear measurements of the form y = Ax
using an m×n CS matrix A. Ideally, the matrix is
designed to reduce the number of measurements
as much as possible while allowing for recovery
of a wide class of signals from their measurement
vectors y. Thus, we would like to choose m� n.

Since A has fewer rows than columns it has a
nonempty null space. This implies that for any
particular signal x0, an infinite number of signals
x yield the same measurements y = Ax = Ax0.
To enable recovery, we must therefore limit our-
selves to a special class of input signals x.

Sparsity is the most prevalent signal structure
used in CS. In its simplest form, sparsity im-
plies that x has only a small number of nonzero
values but we do not know which entries are
nonzero. Mathematically, we express this con-
dition as ‖x‖0 ≤ k where ‖x‖0 denotes the `0-
“norm” of x, which counts the number of nonze-
ros in x (note that ‖·‖0 is not a true norm, since in
general ‖αx‖0 6= |α|‖x‖0 for α ∈ R). More gener-
ally, CS ideas can be applied when a suitable rep-
resentation of x is sparse. A signal x is k-sparse in
a basis Ψ if there exists a vector θ ∈ Rn with only
k � n nonzero entries such that x = Ψθ. As an
example, the success of many compression algo-
rithms, such as JPEG2000, is tied to the fact that
natural images are often sparse in an appropriate

wavelet transform.

Finding a sparse vector x that satisfies the mea-
surement equation y = Ax can be performed by
an exhaustive search over all possible sets of size
k. In general, however, this is impractical; in fact,
the task of finding such an x is known to be NP-
hard. The surprising result at the heart of CS
is that if x (or a suitable representation of x) is
k-sparse, then it can be recovered from y = Ax
using a number of measurements m that is on the
order of k log n, under certain conditions on the
matrix A. Furthermore, recovery is possible us-
ing polynomial-time algorithms that are robust
to noise and mismodelling of x. In particular,
the essential results hold when x is compressible,
namely, when it is well approximated by its best
k-term representation min‖v‖0≤k ‖x − v‖, where
the norm in the objective is arbitrary.

CS has led to a fundamentally new approach
to signal processing, analog-to-digital converter
(ADC) design, image recovery, and compression
algorithms. Consumer electronics, civilian and
military surveillance, medical imaging, radar and
many other applications rely on efficient sam-
pling. Reducing the sampling rate in these appli-
cations by making efficient use of the available de-
grees of freedom can improve the user experience,
increase data transfer, improve imaging quality,
and reduce power, cost and exposure time.

2 Design of Measurement Matrices

The ability to recover x from a small number of
measurements y = Ax depends on the properties
of the CS matrix A. In particular, A should be
designed so as to enable unique identification of a
k-sparse signal x. Let the support S of x be the
set of indices over which x is nonzero, and denote
by xS the vector x restricted to its support. We
similarly denote by AS the columns of A corre-
sponding to this support so that y = Ax = ASxS .
When the support is known, we can recover x
from y via xS = (AT

SAS)−1AT
Sy, assuming that

AS has full column rank. The difficulty in CS
arises from the fact that the support of x is not
known in advance. Therefore, determining condi-
tions on A that ensure recovery is more involved.

As a first step, we would like to choose A
such that every two distinct signals x, x′ that
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are k-sparse lead to different measurement vec-
tors Ax 6= Ax′. This can be ensured if the spark
of A satisfies spark(A) ≥ 2k + 1 where spark(A)
is the smallest number of columns of A that are
linearly dependent. Since spark(A) ∈ [2,m + 1],
this yields the requirement that m ≥ 2k.

Unfortunately, computing the spark of a gen-
eral matrix A has combinatorial computational
complexity, since one must verify that all sets of
columns of a certain size are linearly independent.
Instead, one can provide (sub-optimal) recovery
guarantees using the coherence µ(A), which is
easily computable, and defined as

µ(A) = max
1≤i 6=j≤n

|aTi aj |
‖ai‖2‖aj‖2

,

where ai is the ith column of A. For any A,

spark(A) ≥ 1 +
1

µ(A)
.

Therefore, if

k <
1

2

(
1 +

1

µ(A)

)
, (1)

then for any y ∈ Rm there exists at most one
k-sparse signal x ∈ Rn such that y = Ax.

In order to ensure stable recovery from noisy
measurements y = Ax + w, where w repre-
sents noise, more stringent requirements on A are
needed. One such condition is the restricted isom-
etry property (RIP). A matrix A has the (k, δ)-
RIP for δ ∈ (0, 1) if, for all k-sparse vectors x,

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22.

This means that all submatrices of A of size m×k
are close to an isometry, and therefore distance-
preserving. Clearly if A has the (2k, δ)-RIP with
0 < δ < 1, then spark(A) ≥ 2k + 1.

The RIP enables recovery guarantees that are
much stronger than those based on spark and co-
herence. Another property used to characterize
A is the null space condition. This requirement
ensures that the null space of A does not contain
vectors that are concentrated on a small subset of
indices. If a matrix satisfies the RIP, then it also
has the null space property. However, checking
whether A satisfies either of these conditions has
combinatorial computational complexity.

Random matrices A of size m × n with m <
n, whose entries are independent and identically
distributed (i.i.d.) with continuous distributions,
have spark(A) = m + 1 with high probabil-
ity. When the distribution has zero mean and
finite variance, then in the asymptotic regime
(as m and n grow) the coherence converges to
µ(A) = 2

√
log n/m. Random matrices from

Gaussian, Rademacher, or more generally a sub-
gaussian distribution have the (k, δ)-RIP with
high probability if m = O(k log(n/k)/δ2). Simi-
larly, it can be shown that a partial Fourier ma-
trix with m = O(k log4 n/δ2) rows, namely a ma-
trix formed from the n × n Fourier matrix by
taking m of its rows uniformly at random, sat-
isfies the RIP of order k with high probability.
A similar result holds for random submatrices of
orthogonal matrices.

There are also deterministic matrices that sat-
isfy the spark and RIP conditions. For exam-
ple, an m × n Vandermonde matrix constructed
from n distinct scalars has spark equal to m+ 1.
Unfortunately, these matrices are poorly condi-
tioned for large values of n, rendering the re-
covery problem numerically unstable. It is also
possible to construct deterministic CS matrices
of size m × n that have the (k, δ)-RIP for k =
O(
√
m logm/ log(n/m)).

3 Recovery Algorithms

Many algorithms have been proposed to recover
a sparse vector x from measurements y = Ax.
When the measurements are noise free, and A
satisfies the spark requirement, the unique sparse
vector x can be found by solving the optimization
problem

x̂ = arg min
x∈Rn

‖x‖0 subject to y = Ax. (2)

Solving (2) relies on an exhaustive search. There-
fore, a variety of computationally feasible alter-
natives have been developed.

One popular approach to obtain a tractable
problem is to replace the `0 norm by the `1 norm,
which is convex. The resulting adaptation of (2),
known as basis pursuit (BP), is defined by

x̂ = arg min
x∈Rn

‖x‖1 subject to y = Ax.
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This algorithm can be implemented as a linear
program, making its computational complexity
polynomial in n. BP is easily modified to allow for
noisy measurements by changing the constraint to
‖y−Ax‖22 ≤ ε, where ε is an appropriately chosen
bound on the noise magnitude. The Lagrangian
relaxation of the resulting problem is given by

x̂ = arg min
x∈Rn

‖x‖1 + λ‖y −Ax‖22,

and is known as basis pursuit denoising (BPDN).
Many fast methods have been developed in order
to find BPDN solutions.

An alternative to optimization-based tech-
niques are greedy algorithms for sparse signal re-
covery. These methods are iterative in nature and
select columns of A according to their correlation
with the measurements y. Several greedy meth-
ods can be shown to have performance guarantees
that match those obtained for BPDN.

For example, the matching pursuit (MP) and
orthogonal matching pursuit (OMP) algorithms
proceed by finding the column aj of A most cor-
related to the signal residual, where

j = arg max
i

|aTi r|2

‖ai‖22
.

The residual r is obtained by subtracting the con-
tribution of a partial estimate of the signal from
y: r = y − ASxS where S is the current guess of
the support set. The convergence criterion used
to find sparse representations consists of check-
ing whether y = Ax exactly or approximately.
The difference between the two techniques is in
the coefficient update stage. While in OMP in
each stage all nonzero elements are chosen so as
to minimize the residual error ‖y − ASxS‖22, in
MP only the component associated with the cur-
rently selected column is updated to aTj r/‖aj‖22.

Another popular approach is known as iterative
hard thresholding (IHT): starting from an initial
estimate x̂0 = 0, the algorithm iterates a gradient
descent step followed by hard thresholding, i.e.,

x̂i = Hk(x̂i−1 +AT (y −Ax̂i−1)).

Here Hk(v) returns the k entries of v that are
largest in absolute value.

Many of the CS algorithms above come with
guarantees on their performance. For example,

BP and OMP recover a k-sparse vector from
noiseless measurements when the matrix A sat-
isfies (1). There also exist coherence-based guar-
antees designed for measurements corrupted with
arbitrary noise. In general, though, results based
on coherence typically suffer from the so-called
square-root bottleneck: they require m = O(k2)
measurements to ensure good recovery.

Stronger guarantees are available based on the
RIP, which motivates the popularity of random
CS matrices. In particular, OMP recovers a k-
sparse vector from exact measurements if A has
the (k+ 1, δ)-RIP with a small enough value of δ.
More generally, a sparse vector x can be recov-
ered with small error from noisy measurements
using IHT and BPDN when A has the (ck, δ)-
RIP, with appropriate values of c and δ. These
results also hold when x is not exactly sparse but
only compressible. The recovery error in this case
is proportional to that of the best k-sparse ap-
proximation of x and to the norm of the noise.
Since random matrices satisfying the RIP can be
constructed as long as m = O(k log(n/k)) it fol-
lows that with high probability on the order of
k log(n/k) measurements suffice to guarantee re-
covery of sparse vectors in the noise free setting
and to ensure recovery with small error in the
noisy case.

4 Applications

4.1 Imaging

One of the first applications of CS is the single-
pixel camera. This camera uses a single photon
detector (the single pixel) to measure m inner
products of a desired image, represented by a vec-
tor x in Rn, and a set of test vectors. Each vec-
tor represents the pattern of a digital micromir-
ror device (DMD) which consists of n tiny mirrors
that are individually oriented in a pseudo random
fashion either towards the photodiode (represent-
ing a 1) or away from it (representing a 0). The
incident light-field is reflected off the DMD, col-
lected by a lens and then focused onto the photo-
diode which computes the inner product between
x and the random DMD pattern. This process is
repeated m times with different patterns. Good
recovery of the underlying image has been ob-
tained using about 60% fewer random measure-
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ments than the reconstructed pixels, assuming
sparsity of the image in the wavelet domain.

Another application in which the measure-
ments are performed in the transform domain is
magnetic resonance imaging (MRI). In MRI the
measurements correspond to samples of the im-
age’s 2D continuous Fourier transform. By ex-
ploiting the principles of CS, one can recover an
MRI image from fewer Fourier-domain measure-
ments assuming sparsity of the image in an ap-
propriate transform domain. For example, MR
angiography images are typically sparse in the
pixel domain. The sparsity of these images can
be increased by considering spatial finite differ-
ences. Brain MRI’s are known to be sparse in the
wavelet domain and dynamic MRI is sparse in the
temporal domain.

MRI scanning time strictly depends on the
number of samples taken during acquisition.
Therefore, applications of CS to MRI offer signifi-
cant improvement in image acquisition speed. As
current MRI scanning time lasts at least 30 min-
utes, rapid MRI will reduce patient discomfort
and image distortion due to patient movement
during acquisition. An important factor affecting
the performance of CS-based MRI recovery is the
sampling trajectory chosen in the frequency do-
main. Pure random sampling is impractical, due
to hardware and physiological constraints. This
directly impacts the RIP and coherence of the
resulting measurement matrix. Different appli-
cations of MRI impose varying constraints on the
possible trajectories which must be taken into ac-
count when designing a CS-based MRI system.

4.2 Analog-to-Digital Conversion

To date, essentially all ADCs follow the cele-
brated Shannon-Nyquist theorem, which states
that in order to avoid information loss when con-
verting an analog signal to digital the sampling
rate must be at least twice the signal bandwidth.
On going demand for data, as well as advances in
radio frequency technology and the desire to im-
prove resolution, have promoted the use of high-
bandwidth signals. The resulting rates dictated
by the Shannon-Nyquist theorem impose severe
challenges both on the acquisition hardware and
on the subsequent storage and processors.

Combining ideas of sampling theory with the

principles of CS, several new paradigms have been
developed that allow sampling and processing a
wide class of analog signals at sub-Nyquist rates
using practical hardware architectures. One such
framework is referred to as Xampling, and has
led to sub-Nyquist prototypes for a variety of
problems including cognitive radio, radar, ultra-
sound imaging, ultra wideband communication
and more. Two of the hardware boards devel-
oped for cognitive radio and radar are presented
in Fig. 1.

Figure 1: Sub-Nyquist hardware prototypes for cog-

nitive radio (left) and radar (right).

In a cognitive radio setting the signal x(t) is
modeled as a multiband input with sparse spec-
tra, such that its continuous-time Fourier trans-
form is supported on N frequency intervals with
individual widths not exceeding B Hz. Each in-
terval is centered around an unknown carrier fre-
quency fi that is no larger than a maximum fre-
quency fmax. Using the Xampling paradigm, a
sub-Nyquist prototype referred to as the modu-
lated wideband converter (MWC) has been de-
veloped that can sample and process such signals
at rates as low as 2NB, despite the fact that the
signal may be spread over a very wide frequency
range. This rate is much lower than the Nyquist
rate, corresponding to fmax.

The MWC modulates the incoming signal with
a pseudo-random periodic sequence, applies a
lowpass filter to the result, and then samples
the output at a low rate. The mixing operation
aliases the spectrum to baseband with different
weights for each frequency interval. The signal is
recovered using CS techniques which account for
the signal structure. The board in Fig. 1 samples
signals with a Nyquist rate of 2.4GHz and spec-
tral occupancy of 120MHz at a rate of 280MHz.

Another signal class that can be sampled at
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sub-Nyquist rates are streams of pulses:

x(t) =

L∑
`=1

a` h(t− t`), t ∈ [0, τ ],

where the time delays t` and amplitudes a` are
unknown. Such signals arise, for example, in
communication channels which introduce multi-
path fading, ultrasound imaging, and radar. Here
again the Xampling paradigm can be used to sam-
ple and process such signals at rates as low as
2L/τ irrespective of the signal’s bandwidth.

Figure 2: Sub-Nyquist ultrasound imaging. Stan-

dard image (left) and an image formed at 1/28 of

the Nyquist rate (right).

The board in Fig. 1 allows, for example, de-
tection of radar signals at 1/30 of the signal’s
Nyquist rate. Figure 2 demonstrates fast ultra-
sound imaging using Xampling. On the left is
an ultrasound frame obtained by standard imag-
ing techniques, while the right-hand side image is
formed from samples at 1/28 of the Nyquist rate.
All the processing is performed at this low rate
as well.

5 Extensions

In recent years, the area of CS has branched out
to many new fronts and has worked its way into
several application areas. This, in turn, necessi-
tates a fresh look at many of the basics of CS.

A significant part of recent work on CS can be
classified into three major areas. The first group
consists of theory and applications related to CS
matrices that are not completely random, or en-
tirely deterministic, and that often exhibit con-
siderable structure. This largely follows from ef-
forts to model the way samples are acquired in

practice, which leads to sensing matrices that in-
herit their structure from the real world.

The second group includes signal representa-
tions that exhibit structure beyond sparsity and
broader classes of signals, such as low-rank matri-
ces and matrix completion; exploiting the distri-
bution of the nonzero coefficients or other struc-
tured knowledge on the nonzero entries of x;
and continuous-time signals with finite or infinite-
dimensional representations. In the context of
analog signals, large efforts are being devoted to
the development of efficient ADC prototypes that
achieve sub-Nyquist sampling in practice.

Finally, a very recent trend in CS is to move
away from the linear measurement model, and
consider various types of nonlinear measure-
ments. One particular example is phase retrieval
problems in which the measurements have the
form yi = |aTi x|2 for a set of vectors ai. Note
that here only the magnitude of aTi x is measured,
and not the phase. Phase retrieval problems arise
in many areas of optics, where the detector can
only measure the magnitude of the received opti-
cal wave. Several important applications of phase
retrieval include X-ray crystallography, transmis-
sion electron microscopy and coherent diffractive
imaging. Exploiting sparsity and ideas related
to low-rank matrix representations results in effi-
cient algorithms for phase retrieval with provable
recovery guarantees. Another example of nonlin-
ear measurements are quantized measurements.
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