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Abstract

One of the prime goals of statistical estimation theory is the develop-
ment of performance bounds when estimating parameters of interest
in a given model, as well as constructing estimators that achieve these
limits. When the parameters to be estimated are deterministic, a pop-
ular approach is to bound the mean-squared error (MSE) achievable
within the class of unbiased estimators. Although it is well-known that
lower MSE can be obtained by allowing for a bias, in applications it is
typically unclear how to choose an appropriate bias.

In this survey we introduce MSE bounds that are lower than the
unbiased Cramér–Rao bound (CRB) for all values of the unknowns.
We then present a general framework for constructing biased estima-
tors with smaller MSE than the standard maximum-likelihood (ML)
approach, regardless of the true unknown values. Specializing the
results to the linear Gaussian model, we derive a class of estimators
that dominate least-squares in terms of MSE. We also introduce meth-
ods for choosing regularization parameters in penalized ML estimators
that outperform standard techniques such as cross validation.



1
Introduction

The problem of estimating a set of unknown deterministic parameters
is ubiquitous in a vast variety of areas in science and engineering includ-
ing, for example, communication, economics, signal processing, seismol-
ogy, and control. Many engineering systems rely on estimation theory to
extract required information by estimating values of unknown param-
eters. Statisticians use parameter estimation techniques to extract and
infer scientific, medical, and social conclusions from numerical data
which are subject to random uncertainties.

Parameter estimation has a rich history dating back to Gauss and
Legendre who used the least-squares (LS) method to predict movements
of planets [62, 63, 97]. Mathematically, in an estimation problem, we are
given a set of observations x which we assume depend on an unknown
parameter vector θ0. In this survey, we treat the setting in which θ0 is
an unknown deterministic vector, i.e., the classical estimation setting
as opposed to Bayesian inference. The problem then is to infer θ0 from
the data using an estimate θ̂ which is a function of x, and to gain insight
into the theoretical effects of the parameters on the system output.

One of the prime goals of statistical estimation theory is the devel-
opment of bounds on the best achievable performance in inferring
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parameters of interest in a given model, as well as determining estima-
tors that achieve these limits. Such bounds provide benchmarks against
which we can compare the performance of any proposed estimator, and
insight into the fundamental limitations of the problem.

A classic performance benchmark is the Cramér–Rao bound (CRB)
[27, 28, 30, 60, 119, 120], which characterizes the smallest achievable
total variance of any unbiased estimator of θ0. Although other variance
bounds exist in the literature, the CRB is relatively easy to deter-
mine, and can often be achieved by the maximum likelihood (ML)
method [100, 120]. Despite its popularity, the CRB limits only the
variance of unbiased estimators. However, in some problems, restrict-
ing attention to unbiased approaches leads to unreasonable solutions,
that may, for example, be independent of the problem parameters
[71, 98]. More importantly, in many cases the variance can be made
smaller at the expense of increasing the bias, while ensuring that the
overall estimation error is reduced. Therefore, even though unbiased-
ness may be appealing intuitively, it does not necessarily lead to a
small estimation error θ̂ − θ0 [34]. Consequently, the design of esti-
mators is typically subject to a tradeoff between variance and bias
[50, 58, 81, 104, 107, 136].

In this survey, we discuss methods to improve the accuracy of unbi-
ased estimators used in many signal processing problems. At the heart
of the proposed methodology is the use of the mean-squared error
(MSE) as the performance criteria. The MSE is the average of the
squared-norm error ‖θ̂ − θ0‖2, and is equal to the sum of the variance
and the squared-norm of the bias. In an estimation context, where our
prime concern is inferring θ0, the MSE (or weighted MSE) provides a
direct measure of the relevant performance. Although herein we focus
on the MSE, the essential ideas can be easily generalized to include
weighted MSE criteria which measure the average weighted squared-
norm error [48].

The approach we present is based on introducing a bias as a means
of reducing the MSE. Biased estimation strategies are used exten-
sively in a variety of different signal processing applications, such
as image restoration [31, 108] where the bias corresponds to spatial
resolution, smoothing techniques in time series analysis [115, 137],
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spectrum estimation [131], wavelet denoising [33], and diagonal loading
in beamforming applications [21, 26, 56]. Despite the fact that biasing
as a method for improving performance is a mainstream approach,
very often the choice of bias is rather ad-hoc. In particular, although
the biased algorithms mentioned above will improve the performance
for certain choices of θ0, they can in fact deteriorate the MSE for other
parameter values. Thus, in general, conventional biasing methods are
not guaranteed to dominate ML, i.e., do not necessarily have lower MSE
for all choices of θ0. Furthermore, many of these techniques include
regularization parameters which are typically chosen by optimizing a
data-error measure, i.e., an objective that depends on the estimated
data x̂ obtained by replacing θ0 by θ̂ in the model equations. Here, we
focus on biasing in a way that is guaranteed to improve the MSE for all
parameter values. This is achieved by using objectives that are directly
related to the estimation error and are not data-error driven.

In their seminal work, Stein and James showed that for the indepen-
dent, identically-distributed (iid) linear Gaussian model, it is possible
to construct a nonlinear estimate of θ0 with lower MSE than that of
ML for all values of the unknowns [88, 128]. Such a strategy is said to
dominate ML. In general an estimator θ̂1 dominates a different estima-
tor θ̂2 if its MSE is no larger than that of θ̂2 for all feasible θ0, and is
strictly smaller for at least one choice of θ0; an estimator is admissible
if it is not dominated by any other approach. Stein’s landmark idea has
since been extended in many different directions and has inspired the
work on ML-dominating methods which is the focus of this survey.

Here we go beyond the iid Gaussian model, and address a broad
variety of estimation problems within an unified, systematic framework.
To characterize the best possible bias-variance tradeoff in a general
setting we would like to obtain a bound on the smallest achievable
MSE in a given estimation problem. However, since θ0 is deterministic,
the MSE will in general depend on θ0 itself. Therefore, the MSE cannot
be used as a design criterion for choosing an optimal bias. Indeed, the
point-wise minimum of the MSE is given by the trivial zero bound,
which can be achieved with θ̂ = θ0.

To overcome this obstacle, instead of attempting to minimize the
MSE over all possible estimators, which includes the trivial solution
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θ̂ = θ0, we restrict attention to methods that lie in a suitable class;
the CRB is an example where we consider only methods with zero
bias. Allowing for a broader set of bias vectors will result in MSE
bounds that are lower than the CRB for all values of θ0. Furthermore,
as part of the proposed framework we introduce explicit methods that
achieve these lower bounds resulting in estimators with performance
superior to unbiased approaches. In cases where the ML is efficient,
namely it achieves the CRB, this methodology guarantees the existence
of estimators that have lower MSE than ML for all values of θ0.

The strategy we outlined is based on first developing MSE perfor-
mance bounds, and then designing estimators that achieve these limits,
thus ensuring MSE improvement over existing unbiased solutions. An
alternative technique to improve traditional estimates which is preva-
lent in the literature is the use of regularization, first systematically
studied by Tikhonov [135, 136] and later extended to general estima-
tion problems via the penalized ML (PML) approach [65, 66]. In gen-
eral, regularization methods measure both the fit to the observed data
and the physical plausibility of the estimate. Traditional applications of
PML and regularization techniques have relied on data-error measures
for selecting the regularization parameters [17, 61, 64, 72, 73, 89, 110].

As part of the proposed framework in this survey, we introduce
methods for choosing the required regularization parameters based on
measures of estimation error rather than data error. A popular design
strategy in this spirit is to minimize Stein’s unbiased risk estimate
(SURE) [32, 122, 129, 130], which is an unbiased estimate of the MSE.
This method is appealing as it allows to directly approximate the
MSE of an estimate from the data, without requiring knowledge of θ0.
Besides leading to significant performance improvement over standard
data-driven approaches in many practical problems, this technique can
often be shown to dominate ML. In fact, the celebrated James–Stein
estimate [88, 128], although originally derived based on different con-
siderations, can be obtained from the SURE principle, as can many
other ML-dominating approaches.

In most of the survey, we focus on problems in which the relation-
ship between the data x and the unknown parameters θ0 is given by
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a statistical model. In the last section, we depart from this framework
and discuss methods for bounded error estimation in which the sta-
tistical model is replaced by the assumption that θ0 is restricted to
some deterministic set, defined by prior constraints. The link to the
rest of the survey is that in this context as well, we can replace tra-
ditional data-error strategies by methods that are inherently based on
the error between the estimate θ̂ and the true parameter θ0. Although
this approach is deterministic in nature, it can also be used in a sta-
tistical setting where the constraints are dictated by the underlying
statistical properties. For example, given measurements x = θ0 + w,
where w ∈ R

n is a zero-mean random vector with covariance σ2I, we
can assume that θ0 lies in the constraint set ‖x − θ0‖2 ≤ nσ2. Despite
the fact that this restriction is not always satisfied, using it in conjunc-
tion with the proposed estimation strategy leads to an estimate that
dominates the constrained ML solution. Therefore, this approach can
also be used to develop MSE-dominating techniques when a statistical
model exists.

Our focus here is on static models. In recent years, there has been
increasing interest in inference techniques and performance bounds for
dynamical systems [134]. We believe that the essential ideas introduced
can be extended to the dynamical setting as well.

1.1 Estimation Model

Throughout the survey, our goal is to estimate a deterministic param-
eter vector θ0 from measurements x. For concreteness, we assume that
θ0 is a real length-m vector, and x is a real length-n vector. How-
ever, all the results are valid for the complex case as well with obvious
modifications. The relationship between x and θ0 is described by the
probability density function (pdf) p(x;θ0) of x characterized by θ0.
We emphasize that θ0 is a deterministic unknown vector, so that no
Bayesian prior is assumed on θ0. Consequently, p(x;θ0) is not a joint
pdf, but rather a pdf of x in which θ0 figures as an unknown param-
eter. As we will see throughout the survey, this renders the problem
considerably more challenging, but at the same time more intriguing
than its Bayesian counterpart.
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As an example, suppose we have a Bernoulli random variable xi

which takes on the value 1 with probability (w.p.) θ0 and 0 w.p. 1 − θ0.
Our goal is to estimate θ0 from n iid measurements. Denoting by x =
(x1, . . . ,xn)T the vector whose components are the measurements xi,
the pdf of x can be written as

p(x;θ0) = θ
∑n

i=1 xi

0 (1 − θ0)n−
∑n

i=1 xi . (1.1)

Another important class of examples, which we will study in detail
in Section 4, is the linear Gaussian model. In this case the unknown
vector θ0 ∈ R

m is related to x ∈ R
n through the linear model:

x = Hθ0 + w. (1.2)

Here H is a known n × m model matrix with full column-rank, and
w is a zero-mean Gaussian random vector with covariance matrix C,
which for simplicity is assumed to be positive definite. For the model
(1.2), the pdf of x is

p(x;θ0) =
1√

(2π)n|C|
exp
{
−1

2
(x − Hθ0)TC−1(x − Hθ0)

}
. (1.3)

Although we assume that H is known in the model (1.2), similar ideas
to those developed here can be used when H is subject to deterministic
or random uncertainty [8, 44, 51, 56, 144, 145].

A broader class of pdfs which includes (1.3) is the exponential family
of distributions which can expressed in the form:

f(x;θ0) = r(x)exp{θT
0 φ(x) − g(θ0)}, (1.4)

where r(x) and φ(x) are functions of the data only, and g(θ0) depends
on the unknown parameter θ0. Exponential pdfs play an important
role in statistics due to the Pitman–Koopman–Darmois theorem [29,
94, 117], which states that among distributions whose domain does
not vary with the parameter being estimated, a sufficient statistic with
bounded dimension as the sample size increases can be found only in
exponential families [100]. Furthermore, efficient estimators achieving
the CRB exist only when the underlying model is exponential. Many
known distributions are of the exponential form, such as Gaussian,
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gamma, chi-square, beta, Dirichlet, Bernoulli, binomial, multinomial,
Poisson, and geometric distributions. Exponential families will play an
important role in Section 5 in the context of estimation based on the
SURE criterion.

1.2 Minimum Variance Unbiased Estimation

Given data x and a model p(x;θ0) a pervasive inference strategy in
signal processing applications is to seek a minimum variance unbiased
(MVU) estimate of θ0. This is typically accomplished by using the the-
ory of sufficient statistics or the attainment of the CRB [93]. Although
an MVU solution is not guaranteed to exist, in many problems of inter-
est such an estimate can be found, at least asymptotically. The con-
straint of unbiasedness is often a practical one, since in many cases
the variance, or the MSE, can be minimized over this class using func-
tions of the data that are truly estimators, i.e., the statistic does not
depend on the unknown parameter. However, there are several severe
limitations of unbiased methods.

First, unbiased estimators are not always guaranteed to exist.
An example is when inferring the odds ratio p = θ0/(1 − θ0) from n

Bernoulli trials. It can be shown that there is no unbiased estimate
for p [124, Sec. 7.12]. On the other hand, there exist many reasonable
approximations such as p = θ̂/(1 − θ̂), where θ̂ = (1/n)

∑n
i=1xi.

Second, the unbiasedness requirement can sometimes produce non-
sensical results. As an example, consider the problem of estimating the
probability of success θ0 in a set of Bernoulli trials, from the number
of experiments x until success [25]. The pdf of x is given by

p(x;θ0) = θ0(1 − θ0)x−1, x = 1,2, . . . . (1.5)

The only unbiased estimate for this problem, and hence the MVU solu-
tion, is

θ̂0 =
{

1, x = 1;
0, otherwise.

(1.6)

Clearly this is an unreasonable estimate of θ0. A more appealing choice
is θ̂ = 1/x.
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As another example, suppose that x is a Poisson random variable
with mean θ0 > 0, and we would like to estimate p = exp{−2θ0}, which
is the probability that no events occur in two units of time. Clearly the
true value of p satisfies p ∈ (0,1). However, the only unbiased estimate
is given by

p̂ =
{

1, x even;
−1, x odd,

(1.7)

which always falls outside the range (0,1), and is extremely unrea-
sonable [99] [132, Exercise 17.26] [124, Sec. 7.16]. A somewhat more
complex example, in which the only unbiased estimator always ends
up considerably outside the problem bounds, can be found in [77].

Finally, the most important objection to the constraint of unbiased-
ness is that it produces estimators θ̂ whose optimality is based on the
error between θ̂ and the average value, not θ̂ and the true value as mea-
sured by the MSE. It is the latter that is actually of prime importance
in an estimation context as it is a direct measure of estimation error.
Specifically, the MSE is defined by

E
{

‖θ̂ − θ0‖2
}

=
∫

‖θ̂ − θ0‖2f(x;θ0)dx = ‖b(θ0)‖2 + v(θ0), (1.8)

where b(θ0) = E{θ̂} − θ0 is the bias of the estimate, and v(θ0) =
E{‖θ̂ − E{θ̂}‖2} is its variance. Note that the MSE depends explicitly
on θ0. An MVU method minimizes the MSE only over a constrained
class for which b(θ0) = 0 for all θ0. Thus, even in problems in which the
MVU approach leads to reasonable estimates, the MSE performance
may still be improved using a biased technique.

The difficulty in using the MSE as a design objective is that in
general it depends explicitly on θ0. This parameter dependency also
renders comparison between different estimators a difficult (and often
impossible) task. Indeed, one method may be better than another for
some values of θ0, and worse for others. For instance, the trivial esti-
mator θ̂ = 0 achieves optimal MSE when θ0 = 0, but its performance
is otherwise poor. Nonetheless, it is possible to impose a partial order
among inference techniques [100] using the concepts of domination and
admissibility. An estimator θ̂1 dominates an estimator θ̂2 on a given set
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U if

E
{
‖θ̂1 − θ‖2

}
≤ E

{
‖θ̂2 − θ‖2

}
, for all θ ∈ U ;

E
{
‖θ̂1 − θ‖2

}
< E

{
‖θ̂2 − θ‖2

}
, for some θ ∈ U .

(1.9)

The estimator θ̂1 strictly dominates θ̂2 on U if

E
{
‖θ̂1 − θ‖2} < E

{
‖θ̂2 − θ‖2}, for all θ ∈ U . (1.10)

If θ̂1 dominates θ̂2 then clearly it is better in terms of MSE. An esti-
mator θ̂ is admissible if it is not dominated by any other method. If
an estimator is inadmissible, then there exists another approach whose
MSE is no larger than the given method for all θ in U , and is strictly
smaller for some θ in U .

The study of admissibility is sometimes restricted to linear meth-
ods. A linear admissible estimator is one which is not dominated by
any other linear strategy. The class of linear admissible techniques can
be characterized by a simple rule [24, 43, 83, 121], and given any lin-
ear inadmissible estimator, it is possible to construct a linear admissible
alternative which dominates it by using convex analysis tools [43]. How-
ever, the problem of admissibility is considerably more intricate when
the linearity restriction is removed; generally, admissible estimators
are either trivial (e.g., θ̂ = 0) or exceedingly complex [105]. As a result,
much research has focused on finding simple nonlinear techniques that
dominate ML.

1.3 Maximum Likelihood Estimation

One of the most popular estimation strategies is the ML method
in which the estimate θ̂ is chosen to maximize the likelihood of the
observations:

θ̂ = argmax
θ

p(x;θ). (1.11)

This approach was pioneered by Fisher between 1912 and 1922 [1, 59]
and has widespread applications in various fields. The ML estima-
tor enjoys several appealing properties, including asymptotic efficiency
under suitable regularity conditions. Thus, asymptotically, and in many
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non-asymptotic cases, the ML approach is MVU optimal. Nonetheless,
its MSE can be improved upon in the non-asymptotic regime in many
different settings.

As is evident from (1.11) the ML technique is data driven, meaning
the quality of the estimator is determined by how well it describes
the observations. However, the ML objective is not related to the MSE
which is a direct measure of estimation error. This distinction is clearly
seen when considering the linear Gaussian model (1.2). In this case the
ML criterion coincides with the weighted LS objective:

argmax
θ

p(x;θ) = argmin
θ

(x − Hθ)TC−1(x − Hθ). (1.12)

Evidently, the ML solution is designed to minimize the error between
the given data and the estimated data x̂ = Hθ̂. Assuming H has full
column-rank, the resulting LS estimate is given by

θ̂LS = (HTC−1H)−1HTC−1x. (1.13)

It is well known that θ̂LS is also MVU optimal for Gaussian noise [93].
To illustrate the fact that minimizing data error does not neces-

sarily imply a small estimation error, in Figure 1.1 we consider an
example of the model (1.2) in which θ0 represents the 2D signal in
Figure 1.1(a). Our goal is to recover this image from the observation
x of Figure 1.1(b) which is obtained after shifting and blurring with a
Gaussian kernel, and corruption by additive Gaussian noise. We assume
that the distortion and noise variance are known. Using the LS esti-
mate results in the image in Figure 1.1(c) in which the original signal

Fig. 1.1 Image recovery using least-squares (LS) and a biased minimax estimate. (a) original
2D signal. (b) Corrupted image. (c) Recovery using LS. (d) Recovery based on a minimax
strategy.
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is completely destroyed. On the other hand, using a minimax estimate,
which we will discuss in Section 4, we obtain a pretty good recovery
of the signal, as can be seen in Figure 1.1(d). Clearly the fact that the
data error is smaller in Figure 1.1(c) is not sufficient to guarantee good
signal recovery.

As another example, consider estimating a signal θ0(t) that is
observed through the heat integral equation and corrupted by addi-
tive noise. The true and observed signals are shown in Figures 1.2(a)
and 1.2(b), respectively. In Figure 1.2(c) we compare the estimated
signal using LS and a bounded-error approach (RCC) based on con-
trolling the minimax estimation error, which we present in Section 6.
Evidently, the latter strategy, referred to as the Chebyshev center, leads
to substantial performance improvement.
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Fig. 1.2 Signal recovery using least-squares (CLS) and the Chebyshev estimate (RCC).
(a) True signal. (b) Observed signal. (c) Recovery using CLS and RCC.
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These examples illustrate that minimizing data error does not nec-
essarily imply a small estimation error. From a statistical perspective,
MVU methods do not guarantee satisfactory estimation performance,
even when they exist and lead to reasonable strategies.

1.4 Outline and Goals

Stein’s discovery of ML-dominating techniques in the linear Gaussian
model, half a century ago, shocked the statistics community. Since
then many other examples of ML improvement have been discov-
ered and analyzed. In this survey, we present a broad framework for
constructing ML-dominating solutions in a broad variety of estimation
problems. More specifically, we present general tools for reducing MSE
by introducing a bias. An important aspect of the proposed approach is
that the reduction in MSE is guaranteed for all choices of the unknown
parameter vector. The methods we outline for constructing estima-
tors are designed to explicitly optimize an objective based on estima-
tion error rather than data error. The performance advantage of the
algorithms we present is greatest in difficult problems, i.e., short data
records or lower signal-to-noise ratios (SNRs). Applications include the
design of estimation algorithms for sonar, radar, and communications,
as well as a myriad of other disciplines that rely heavily on precise
measurement of parameters.

It is our hope that this framework will provide additional support for
ML dominating methods, both by supplying an intuitive understanding
of this phenomenon, and by providing a wide class of powerful new
estimators.

1.4.1 Outline

In Section 2, we begin by reviewing the standard unbiased CRB and
then discuss extensions to biased estimation. In particular, we introduce
the uniform CRB which provides a benchmark on the variance of any
biased estimator with bias-gradient matrix whose norm is limited by a
constant. This bound is asymptotically achieved by the PML method
with a suitable regularization function. The uniform CRB is useful in
problems in which the bias gradient norm has a physical interpretation;
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this is the case in some imaging applications where the norm is related
to image resolution [80, 108]. Furthermore, it requires the specification
of only one parameter (the norm bound) rather than the entire bias
gradient matrix, as in the standard biased CRB [140].

In Section 3, we study MSE bounds which directly limit the estima-
tion error. These bounds depend on the unknown parameter vector θ0,
as well as on the bias of the estimate θ̂. In order to optimize the bound
we first consider the class of estimates with linear bias vectors, and seek
the member from this set that minimizes the bound. A nice aspect of
this approach is that once an optimal bias of this form is found, it
can be used to construct a linear modification of the ML estimate that
dominates ML whenever the latter is efficient. We demonstrate this
methodology through several examples which illustrate how scaling can
be used to reduce the MSE. As we show, it is often possible to improve
the MSE for all θ0 using a linear modification, without any prior knowl-
edge on the true parameter values. This linear scaling is chosen as a
solution to a minimax optimization problem.

Building on the linear results, in Section 4, we present the blind
minimax technique which leads to nonlinear modifications of the ML
solution. The approach is illustrated in the context of the linear Gaus-
sian model and makes use of a two-stage process: first, a set is esti-
mated from the measurements; next, a linear minimax method for this
set is used to estimate the parameter itself. Surprisingly, the resulting
estimate can be shown to dominate the ML solution even though no
prior information is assumed. The blind minimax technique provides a
framework whereby many different estimators can be generated, and
provides insight into the mechanism by which these techniques out-
perform ML. In particular, we show how the celebrated James–Stein
estimate can be derived within this framework.

An alternative approach for deriving ML-dominating methods is to
use the SURE principle. In Section 5, we introduce the SURE objective
and illustrate how it can be applied to construct methods that have
lower MSE than ML. The essential idea is to choose a class of estimates,
and then select the member that minimizes the MSE estimate. We
demonstrate, in particular, the use of the SURE design method for
selecting regularization parameters in PML estimation.
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Finally, in Section 6, we extend the estimation-error methodology to
a deterministic setting. We treat estimation problems in which there are
prior constraints on θ0, such as weighted norm restrictions or interval
constraints on the individual components of θ0. The standard approach
in such settings is constrained ML in which the likelihood is maximized
subject to the given restrictions. Instead, we introduce the Chebyshev
center estimator which is based on minimizing the worst-case estima-
tion error ‖θ̂ − θ0‖2 over all feasible solutions. As we show, this strat-
egy can reduce the estimation error dramatically with respect to the
constrained ML method. This design technique can also be used in a
statistical setting by replacing the statistical model with an appropri-
ate constraint on θ0. Even though this later restriction is not always
satisfied in practice, the resulting estimate can be shown in some cases
to dominate the constrained ML for the same problem setting.

The procedures we develop throughout the survey are based on
convex optimization tools and minimax formulations. In the Appendix,
we provide a brief overview of the basics of convex analysis, emphasizing
the results needed in our presentation.



2
The Cramér–Rao Bound and Extensions

In this section we begin the search for good estimates of θ0 by discussing
bounds on the variance of different estimation strategies. Although sev-
eral bounds appear in the literature, for concreteness we focus on the
CRB since it is relatively easy to determine, and can often be achieved.
In the next section we will see how these variance limits can be used
to directly control the MSE rather than only the variability of the
estimators. The ideas we develop can be applied to other performance
benchmarks by following the same essential steps.

2.1 Cramér–Rao Bound (CRB)

2.1.1 Unbiased CRB

One of the primary approaches to recover θ0 given the data x is to seek
an MVU solution θ̂. Any estimate θ̂ (for which the MSE is defined) can
be characterized by its bias

b(θ0) = E{θ̂} − θ0, (2.1)

and covariance matrix

C(θ0) = E{(θ̂ − E{θ̂})(θ̂ − E{θ̂})T }. (2.2)

An unbiased estimate satisfies b(θ0) = 0 for all θ0.

321



322 The Cramér–Rao Bound and Extensions

Under suitable regularity conditions on p(x;θ) (see e.g., [28, 119,
120]), the covariance of any unbiased estimate θ̂ of θ0 is bounded by
the CRB which states that

C(θ0) � J−1(θ0). (2.3)

Here J(θ0) is the Fisher information matrix defined by

J(θ0) = E

{[
d logp(x;θ0)

dθ

]T [d logp(x;θ0)
dθ

]}
, (2.4)

which depends in general on the true unknown parameter vector θ0,
and A � B means that A − B � 0, where A � 0 (A � 0) denotes a
symmetric and nonnegative (positive) definite matrix.

In order to simplify the derivations, we assume throughout the sur-
vey that J(θ0) is invertible. The CRB was first published by Frechet
[60] and later by Darmois [30], Cramér [27], and Rao [119]. Using (2.3)
we can bound the total variance that is achievable using any unbi-
ased technique, where the total variance is the sum of the variances in
estimating the individual components of θ0:

v(θ0) = E{‖θ̂ − E{θ̂}‖2} =
m∑

i=1

E{(θ̂i − E{θ̂i})2}. (2.5)

From (2.2) and (2.3) we have immediately that

E
{
‖θ̂ − E{θ̂}‖2} = Tr(C(θ0)) ≥ Tr

(
J−1(θ0)

)
. (2.6)

An unbiased estimate achieving the CRB is called efficient. It can be
shown that if an estimate is efficient, then it is necessarily ML optimal.
Furthermore, under suitable regularity assumptions on p(x;θ0), the
unique ML solution is asymptotically unbiased and achieves the CRB
[100, 119, 120].

The importance of the CRB is that it allows the assessment of how
close to optimality a given unbiased recovery method is. In particular,
if the variance of an unbiased estimate θ̂ is equal to the CRB, then it
has minimal variance. Consequently, the ML approach is often MVU
optimal.
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As an example, consider the linear Gaussian model (1.2). The Fisher
information for this problem can be readily computed and is equal to

J = HTC−1H. (2.7)

Therefore the minimal attainable variance using any unbiased approach
is Tr((HTC−1H)−1). To determine an MVU method, consider the ML
estimate (1.13), which coincides with the LS solution. It is easy to see
that E{θ̂LS} = θ0 and

E
{
‖θ̂LS − θ0‖2} = Tr

(
GCGT

)
= Tr

(
(HTC−1H)−1) , (2.8)

where we defined G = (HTC−1H)−1HTC−1. Evidently, the ML esti-
mate in this problem is MVU optimal.

2.1.2 Biased CRB

A simple modification of the CRB renders it applicable to biased esti-
mates as well [140]. Specifically, let θ̂ denote an arbitrary estimator of
θ0 with bias b(θ0). Then its covariance must satisfy

C(θ0) � (I + D(θ0))J−1(θ0)(I + D(θ0))
T �

= C(D), (2.9)

where D(θ0) is the bias gradient matrix defined by

D(θ0) =
db(θ0)
dθ0

. (2.10)

Substituting D(θ0) = 0 in (2.9), the bound reduces to the unbiased
CRB (2.3). Note that the biased CRB depends on the bias gradient and
not the bias itself. This makes intuitive sense since any constant bias is
removable, even if it is very large, and therefore should not affect the
variance. From (2.9) it follows immediately that the total variance of
any estimate with bias gradient matrix D(θ0) is bounded below by

E
{
‖θ̂ − E{θ̂}‖2} ≥ Tr

((
I + D(θ0))J−1(θ0)(I + D(θ0)

)T)
. (2.11)

Continuing with the linear Gaussian model, suppose we now restrict
attention to estimators with linear bias so that b(θ0) = Mθ0 for some
matrix M. Then it is easy to see that the biased CRB is attained by

θ̂ = Gx = (I + M)θ̂LS , (2.12)
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with G = (I + M)(HTC−1H)−1HTC−1. Indeed, the bias of θ̂ is

b(θ0) = (GH − I)θ0 = Mθ0 (2.13)

so that the bias gradient matrix is M. The total variance of θ̂ = Gx is

E
{
‖θ̂ − GHθ0‖2} = E

{
‖G(x − Hθ0)‖2} = Tr(GCGT ), (2.14)

which is equal to (2.9). When M = 0 so that the estimator is unbiased,
θ̂ of (2.12) reduces to the LS solution, as we expect.

2.1.3 CRB with Constraints

In some applications, the possible values of θ0 may be confined to a
known subset of the parameter space through smooth functional con-
straints. If the restrictions are in the form of equality constraints, then
the CRB under these limitations can be found in principle by reparam-
eterizing the original problem. However, this approach can be difficult
in general models, and obscures insight into the problem. Instead, a
constrained CRB under general equality restrictions was derived in
[67, 106]. When the constraint set is expressed as a smooth inequality
restriction, the constrained CRB is identical to the unconstrained CRB
at all regular points of the space, i.e., all points where the constraints
are not active [67]. Therefore, in practice, in the presence of inequality
restrictions on θ0, the performance of an estimate with a particular
bias structure is still limited by the CRB.

2.2 Bias Gradient Matrix

Typically in estimation problems there are two conflicting objectives:
We would like to choose θ̂ to achieve the smallest possible total variance
and the smallest bias. However, generally, minimizing the bias results
in an increase in variance and vice versa. The MSE allows an optimal
tradeoff between the variance and bias in terms of estimation error by
considering their sum rather than each separately; we discuss MSE opti-
mization in the next section. In some signal processing applications the
bias gradient is related to a physical parameter such as image resolution
in the context of imaging [108]. In such settings the problem definition
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may impose a-priori constraints on the bias gradient. It may then be
useful to optimize the variance subject to the given bias constraints.
Even when no prior restrictions are given, it can still be of interest to
characterize the fundamental bias–variance tradeoff by analyzing the
lowest possible variance achievable for different limitations on the bias.
This idea was first introduced in [78, 80] for estimating a scalar parame-
ter, and then extended in [41] to the vector case. A concrete application
to pinhole SPECT system design is developed in [108].

To characterize the bias–variance tradeoff we need a measure of the
bias. Choosing the bias itself is not useful since an estimate can be
found that makes both the bias and the variance equal to zero at a
given point. Indeed, for any fixed value of θ0 we can choose θ̂ = θ0.
Clearly, this estimate is not useful for values other than θ0. However,
when the unknown parameter θ is equal to θ0 this choice will lead to a
zero bias and zero variance. An alternative suggestion which we adopt
in this section, is to explore the smallest variance attainable when the
bias gradient norm is limited by some constant [41, 78, 80, 108].

The uniform CRB (UCRB) is a bound on the variance achievable
with any estimate whose bias gradient matrix D(θ0) has bounded
norm. Note that D(θ0) is invariant to a constant bias term, so that
in effect it characterizes the part of the bias that cannot be removed.
To better understand the role of D(θ0), and why we choose to bound
its norm, recall that a fundamental difficulty in characterizing the bias–
variance tradeoff is that we can reduce both measures to zero by using
the estimate θ̂ = θ0. Clearly, this choice is only meaningful for a par-
ticular value of θ0. In order to focus attention on a class of reason-
able estimates we constrain the bias function to be slowly varying so
that it does not change too rapidly over a neighborhood of θ0. More
specifically, we restrict the squared-norm ‖b(θ) − b(θ0)‖2 over the unit
sphere

S = {θ|(θ − θ0)T (θ − θ0) ≤ 1}. (2.15)

The norm ‖b(θ) − b(θ0)‖2 depends on the specific choice of θ ∈ S.
In our development, we consider two measures of the norm: A worst-
case approach in which we treat the largest norm over S, and an average
strategy in which the norm is evaluated at an “average” point in S.
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To relate the resulting norm constraints to the bias gradient D(θ0), we
use a first-order Taylor approximation to write

b(θ) − b(θ0) ≈ D(θ − θ0)
�
=Du, (2.16)

where u = θ − θ0, and for brevity we omitted the dependency of D on
θ0. As we now show, the largest and average norm variation over S are
both related to matrix norms of D.

Using (2.16), we can approximate the maximal variation of ‖b(θ) −
b(θ0)‖2 over S as

max
θ∈S

‖b(θ) − b(θ0)‖2 ≈ max
‖u‖2≤1

‖Du‖2 = ‖D‖2, (2.17)

where ‖D‖ denotes the spectral norm of D [84], i.e., the largest singular
value. The worst case variation ‖D‖2 occurs when u is chosen to be a
unit-norm vector in the direction of the eigenvector corresponding to
the largest eigenvalue of DTD. To develop an average bias measure,
instead of choosing u to be in the direction of the worst-case eigen-
vector, we select a weighted average of the eigenvectors u =

∑m
i=1aivi,

where vi,1 ≤ i ≤ m are the eigenvectors of DTD, and ai > 0 are arbi-
trary coefficients satisfying

∑m
i=1a

2
i = 1, so that ‖u‖ = 1. For this choice

of u,

‖Du‖2 = Tr
(
VAVTDTD

)
= Tr

(
DTDQ

)
, (2.18)

where V is the matrix of eigenvectors vi, A = diag(a2
1, . . . ,a

2
m) and

Q = VAVT .
Motivated by these observations, we consider the following two mea-

sures of bias gradient: an average measure corresponding to a weighted
squared Frobenius norm,

DAVG = Tr
(
DTDW

)
, (2.19)

where W � 0, and a worst case bias gradient measure corresponding
to a weighted squared spectral norm,

DWC = max
‖z‖=1

zTSDTDSz, (2.20)

for some S � 0.
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2.3 Uniform Cramér–Rao Bound (UCRB)

The UCRB limits the variance of any estimate with bias gradient norm
bounded by a constant, where we treat both norms DAVG and DWC .

In the sequel, we omit the dependency of b,D, and J on θ0, for
simplicity of notation.

2.3.1 Average Bias Constraint

We first treat the problem of minimizing Tr(C(D)) with C(D) given
by (2.9) subject to DAVG ≤ γ:

min
D

(I + D)J−1 (I + D)T

s.t. Tr
(
DTDW

)
≤ γ.

(2.21)

If γ ≥ Tr(W), then we can choose D = −I which results in
Tr(C(D)) = 0. This corresponds to using the estimate θ̂ = 0. We next
consider the case 0 < γ < Tr(W). Since Tr(C(D)) and DAVG are both
convex in D, and (2.21) is strictly feasible, we can find the optimal
D using the Karush–Kuhn–Tucker (KKT) conditions [16] (see Theo-
rem A.2 in the Appendix). To this end, we form the Lagrangian

L = Tr((I + D)J−1 (I + D)T
)

+ α
(
Tr(DTDW) − γ

)
, (2.22)

where α ≥ 0. The optimal solution D = D̂AVG is determined by setting
the derivative of L to 0 which results in

D̂AVG = −J−1 (J−1 + αW
)−1 = −I + α

(
W−1 + αJ

)−1J. (2.23)

The last equality follows from the matrix inversion lemma. If α = 0,
then D̂AVG = −I which violates the constraint (2.21). Therefore, α > 0
which from the KKT conditions implies that (2.21) is satisfied with
equality so that

Tr(D̂T
AVGD̂AVGW) = Tr

(
(W−1 + αJ)−2W−1) = γ. (2.24)

We conclude that the total variance of any estimator with bias gra-
dient D satisfying (2.21) with 0 < γ < Tr(W) is bounded by

Tr(C) ≥ Tr
(
(I + D̂AVG)J−1(I + D̂AVG)T

)
= α2Tr

(
(W−1 + αJ)−2J

)
, (2.25)

where α > 0 is the unique solution of (2.24).
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2.3.2 Worst-Case Bias Constraint

We now treat the constraint

DWC = max
‖z‖=1

zTSDTDSz ≤ γ, (2.26)

for some positive definite matrix S. Denoting by λmax(S) the largest
eigenvalue of S, it is clear that for γ ≥ λ2

max(S) we can choose D =
−I, which results in zero total variance. The derivation of the UCRB
when γ < λ2

max(S) is considerably more involved. Therefore, we omit
the details here, and refer the interested reader to [41]. When S has the
same eigenvectors as J, the D minimizing the total variance subject to
(2.26) is

D̂WC =
(
I − √

γS−1)P − I. (2.27)

Here P is the orthogonal projection onto the space spanned by the
eigenvectors of S corresponding to eigenvalues larger than

√
γ. The

total variance is then bounded by

Tr(C) ≥ Tr
((

I − √
γS−1)2PJ−1), (2.28)

where we used the fact that J−1,P, and S−1 all commute.
In the special case in which S = I, all the eigenvalues of S, which

are equal to 1, are larger than γ, which is constrained to be smaller
than λ2

max(S) = 1. Thus, P = I, and

Tr(C) ≥ Tr
(
(1 − √

γ)2J−1). (2.29)

As we expect, when γ → 0, the UCRB coincides with the CRB.
We summarize the UCRB in the following theorem.

Theorem 2.1. Let x denote measurements of a deterministic param-
eter vector θ0 with pdf p(x;θ0) and Fisher information matrix J =
J(θ0). Let θ̂ be an arbitrary estimate of θ0 with covariance matrix
C = C(θ0) and bias gradient matrix D = D(θ0). Then we have the
following:

(1) If Tr(DTDW) ≤ γ < Tr(W) for some W � 0 then

Tr(C) ≥ α2Tr
(
(W−1 + αJ)−2J

)
,
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where α > 0 is chosen such that

Tr
(
(W−1 + αJ)−2W−1) = γ.

(2) If max‖z‖=1 zTSDTDSz ≤ γ < λ2
max(S) for some S � 0 that

has the same eigenvector matrix as J then

Tr(C) ≥ Tr
(
(I − √

γS−1)2PJ−1),
where P is the orthogonal projection onto the space spanned
by the eigenvectors of S corresponding to eigenvalues larger
than

√
γ.

2.3.3 Geometrical Interpretation

Geometrically, the UCRB divides the bias–variance plane into two
regions, and limits the boundary of the achievable points, namely the
points (γ,minD∈V Tr(C(D))). Here V is the set of bias gradient matri-
ces D for which the appropriate norm (average, or worst-case) is con-
strained by γ. All points on one part of the plane are unachievable,
while the points on the other part can possibly be attained (depending
on whether or not the UCRB is tight). As we will see in the next sec-
tion, at least asymptotically, the boundary can typically be achieved.
Since both the bias and the variance depend on θ0, the curve will be
different for varying choices of θ0. Figure 2.1 illustrates an example for
a particular θ0. Two important points shown in Figure 2.1 are the circle
on the x-axis, corresponding to D = −I for which the total variance is
0, and the circle on the y-axis, which represents the unbiased CRB cor-
responding to γ = 0. The points on the boundary are the UCRB which
follow from minimizing the total variance subject to the appropriate
norm constraint.

2.4 Achieving the UCRB

An interesting aspect of the UCRB is that in many settings it can be
achieved, at least asymptotically. We begin with the linear Gaussian
model for which the bounds are achieved exactly by linear estimators.
We then show that for general pdfs, the bounds can be approached
asymptotically using a PML approach.



330 The Cramér–Rao Bound and Extensions

Fig. 2.1 A qualitative example of the optimal bias–variance tradeoff curve.

2.4.1 Linear Gaussian Model

We first treat the class of estimation problems represented by the linear
Gaussian model (1.2).

As we have seen, in this setting J = HTC−1H. Furthermore, any
estimator of the form (2.12) achieves the biased CRB on estimators
with bias gradient M. Since in this case D̂AVG is independent of θ0,
we can choose M = D̂AVG , which leads to an estimate that achieves the
average UCRB:

θ̂ =

{
(HTC−1H + δW−1)−1HTC−1x, 0 ≤ γ < Tr(W);

0, γ ≥ Tr(W),
(2.30)

where δ = 1/α > 0 satisfies Tr
(
(W−1 + (1/δ)HTC−1H)−2W−1

)
= γ.

The estimator θ̂ of (2.30) is equal to the ridge estimator proposed by
Hoerl and Kennard [81] (also known as Tikhonov regularization [136]),
and is widely used for solving inverse problems [70, 111].
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Similarly, the worst-case UCRB is achieved with M = D̂WC , which
leads to the estimate

θ̂ =

{
(I − √

γS−1)P(HTC−1H)−1HTC−1x, 0 ≤ γ < λ2
max(S);

0, γ ≥ λ2
max(S).

(2.31)
Here P is an orthogonal projection onto the space spanned by the
eigenvectors of S corresponding to eigenvalues larger than

√
γ. When

S = I, (2.31) is equal to the shrunken estimator proposed by Mayer and
Willke [107], which is simply a scaled version of the LS solution.

We conclude that Tikhonov regularization and the shrunken estima-
tor have a strong optimality property: among all linear and nonlinear
estimators of θ0 in the linear Gaussian model (1.2) with bounded bias
gradient, they minimize the total variance. This provides further justi-
fication for these methods, which are used in many applications. It is
also easy to see that when γ → 0, both solutions converge to LS.

2.4.2 Asymptotic Optimality of the PML Estimator

As we have just seen, in the linear Gaussian model, the UCRB can
be achieved with a linear estimator. When the average bias is consid-
ered, the estimator takes on the form of Tikhonov regularization. The
Tikhonov solution also maximizes the penalized log-likelihood

θ̂ = argmax
{

logp(x;θ) − β

2
θTWθ

}
= argmin

{
(x − Hθ)TC−1(x − Hθ) + βθTWθ

}
, (2.32)

where p(x;θ) is the Gaussian distribution with mean Hθ and covariance
C, and β is a regularization parameter. When the worst-case bias is
considered with weighting S = I, the shrunken estimator achieves the
UCRB. We can immediately verify that this method also maximizes
(2.32), with W = −HTH. A similar result holds when S has the same
eigenvector matrix as J. Evidently, the PML solution with an appro-
priate choice of penalizing function achieves the UCRB in the linear
Gaussian model. In [41], it is shown that this optimality property of
the PML approach holds more generally asymptotically.
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The PML estimator of θ0, denoted θ̂PML , is chosen to maximize the
penalized log-likelihood function

logp(x;θ) − βR(θ), (2.33)

where β > 0 is a regularization parameter, and R(θ) is a penalizing
function. The PML approach is equivalent to the maximum a posteriori
method in Bayesian estimation if we interpret e−βR(θ) as the prior pdf
of θ0. When N iid (vector) measurements x1, . . . ,xN are given, θ̂PML is
chosen to maximize

PL(θ) =
N∑

i=1

logp(xi;θ) − βNR(θ), (2.34)

where βN is a regularization parameter that depends on N and satisfies
βN/N → β0 as N → ∞.

The asymptotic distribution of any PML estimate with smooth
penalizing function was derived in [41] based on which it was shown
that in many cases the penalizing function R(θ) can be chosen such
that the resulting PML solution asymptotically achieves the UCRB.
This provides a method for selecting the penalizing function by achiev-
ing an optimal bias–variance tradeoff.

In the special case of estimating a scalar θ0, we have the following
proposition.

Proposition 2.2. Let x1, . . . ,xN denote N iid measurements of a
deterministic parameter θ0 with pdf p(x;θ0). Let θ̂PML denote the PML
estimator of θ0 that maximizes the penalized log-likelihood (2.34) with
penalizing function R(θ). Suppose that dθ̌(θ0)/dθ0 ≤ 1, where

θ̌(θ) = argmax
θ

{E {logp(x;θ)} − β0R(θ)} ,

and β0 = limN→∞βN/N . Then θ̂PML asymptotically achieves the UCRB
if and only if R(θ) is chosen such that

d logp(x; θ̌)
dθ

− E

{
d logp(x; θ̌)

dθ

}
= c

d logp(x;θ0)
dθ

, (2.35)

for some deterministic constant c.

The more general case can be found in [41].



2.4 Achieving the UCRB 333

2.4.3 Example of PML Optimality

We now consider an example, taken from [41], that illustrates the PML
estimator and its asymptotic optimality.

Suppose we are given N scalar iid measurements x1, . . . ,xN of an
exponential random variable with unknown mean 1/θ0 > 0. Thus,

p(xi;θ0) = θ0e
−xiθ0 , xi ≥ 0, 1 ≤ i ≤ N. (2.36)

The PML estimate θ̂PML with penalizing function R(θ) is given by the
value of θ that maximizes

PL(θ) = N logθ − θ

N∑
i=1

xi − βNR(θ), (2.37)

for some parameter βN > 0 such that βN/N → β0 as N → ∞. We seek
a penalizing function R(θ) that is optimal in the sense that the resulting
estimator asymptotically achieves the UCRB.

From (2.36),

d logp(x;θ)
dθ

=
1
θ

− x, (2.38)

so that

E

{
d logp(x; θ̌)

dθ

}
=

1
θ̌

− 1
θ0
. (2.39)

Therefore,

d logp(x; θ̌)
dθ

− E

{
d logp(x; θ̌)

dθ

}
=

1
θ0

− x, (2.40)

and (2.35) is satisfied with c = 1. From Proposition 2.2 it follows that
for any choice of R(θ) such that dθ̌/dθ0 ≤ 1, the resulting PML infer-
ence asymptotically achieves the UCRB. Note, however, that for finite
values of N , the performance of the PML estimator will depend on the
specific choice of R(θ).

As an example, suppose that R(θ) = θ. The resulting PML estima-
tor is given by

θ̂PML = argmax

{
N logθ − θ

(
N∑

i=1

xi + βN

)}
=

N∑N
i=1xi + βN

.

(2.41)
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From the definition of θ̌ we have that

θ̌ = argmax
{

logθ − θ

θ0
− β0R(θ)

}
=

θ0
1 + βθ0

. (2.42)

Therefore, dθ̌(θ0)/dθ0 ≤ 1, and from Proposition 2.2 the estimator of
(2.41) asymptotically achieves the UCRB.

As another example, suppose that R(θ) = logθ. In this case

θ̌ = (1 − β0)θ0, (2.43)

so that again dθ̌(θ0)/dθ0 ≤ 1. We therefore conclude that the resulting
PML estimator, given by

θ̂PML = argmax

{
(N − βN ) logθ − θ

N∑
i=1

xi

}
=
N − βN∑N

i=1xi

, (2.44)

asymptotically achieves the UCRB.
In Figure 2.2 we compare the performance of the PML methods

of (2.41) and (2.44) with the UCRB, for different values of N . In the
figures, the variance and the squared bias gradient of the estimators
are approximated from the measurements. Specifically, for each γ we
generate L = 5,000 PML estimators, where each one is based on N iid
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Fig. 2.2 Performance of the PML estimators (2.41) (denoted “1”) and (2.44) (denoted “2”)
for different values of N in comparison with the UCRB. The line denotes the UCRB, the
stars denote the performance of PML estimator 1, and the circles denote the performance
of PML estimator 2. (a) N = 10. (b) N = 30.
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measurements. The variance is approximated by the empirical variance;
the squared bias gradient is estimated using the procedure detailed in
[80] (see also an explanation in [41]). In Figure 2.2(a) we plot the vari-
ance of the PML estimators as a function of the squared bias gradient
for N = 10, and in Figure 2.2(b) we choose N = 30.

From the figures it is apparent that even for small N the UCRB
serves as a good approximation to the estimator’s variance, particularly
for large values of bias gradient norm. As we expect from our analysis,
for increasing values of N the variance of both estimators approaches
that of the UCRB for all values of squared bias gradient. Note, however,
that for small values of N the performance of the two estimators is
different. In particular, the estimator given by (2.41) results in smaller
variance.

In this section we outlined tools to characterize the fundamental
tradeoff between variance and bias, by deriving lower bounds on the
minimal achievable total variance subject to constraints on the norm of
the bias gradient matrix. We then showed that for an appropriate choice
of penalizing function, the PML estimator asymptotically achieves the
UCRB. In the next section we treat the more general scenario in which
we do not know in advance properties of the desired bias gradient, and
instead would like to directly optimize the MSE.



3
Mean-Squared Error Bounds

We now focus our attention on the MSE and develop bounds on the
minimal achievable MSE of biased estimators. Our goal is to choose
the bias in an optimal way such that the overall MSE is reduced with
respect to unbiased estimation. In this section the biasing is accom-
plished by multiplying an unbiased estimator by a suitable matrix (or
by scaling the unbiased method when the estimator is a scalar) which
introduces some bias but lessens the variability in such a way that the
overall MSE is reduced. The important aspect of the framework we
introduce is that the reduction in MSE is guaranteed for all choices of
the unknown parameter vector. In subsequent sections we will discuss
nonlinear modifications of the MVU solution.

Although in our derivations we treat the (unweighted) MSE, the
essential ideas introduced in this section can be generalized to include
weighted MSE criteria which measure the average weighted squared-
norm error [48].

3.1 MSE Bound

Recall that the MSE of a given estimate θ̂ of θ0 is given by

E
{
‖θ̂ − θ0‖2} = ‖b(θ0)‖2 + Tr(C(θ0)), (3.1)

336
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where b(θ0) is the estimator bias and C(θ0) is its covariance matrix.
In the previous section we discussed bounds on Tr(C(θ0)) for a given
choice of b(θ0), or for estimates with bias gradient in a suitable set.
A method achieving the corresponding CRB has minimum variance
among its class.

Instead of limiting only the variance of a biased estimator we can
bound the MSE which is a direct measure of estimator performance.
Substituting the biased CRB (2.11) into (3.1) it follows that the MSE
of any estimator with bias b(θ0) is bounded below by

‖b(θ0)‖2 + Tr
(
(I + D(θ0))J−1(θ0)(I + D(θ0))T

)
. (3.2)

A similar expression can be obtained for the weighted MSE [48]. Ideally,
to obtain the tightest possible MSE bound, we would like to minimize
(3.2) over all bias vectors b(θ0). For every fixed value of θ0 the mini-
mum can be obtained with b(θ) = θ0 − θ; for this choice b(θ0) = 0 and
D(θ0) = −I. The minimum of (3.2) is equal to 0 and is achieved at θ0 by
the estimate θ̂ = θ0 which clearly cannot be implemented. Furthermore,
θ̂ optimizes the bound for any specific θ = θ0 but not for all values
of θ. Thus, in general we cannot minimize (3.2) point-wise, for all θ0.
Nonetheless, in some cases, we may be able to minimize the bound over
all bias vectors in a suitable class. In the more challenging setting, in
which the bound cannot be minimized directly, it still may be possible
to find a bias b(θ0) such that the resulting MSE bound is smaller than
the unbiased CRB for all possible values of θ0. Our goal therefore is to
minimize the MSE benchmark over all bias vectors in a suitable class
(which includes the zero bias), when possible. Otherwise, we aim at
finding a bias vector such that the resulting MSE limit is smaller than
the unbiased CRB for all values of θ0 in a predefined set [47].

The class of bias functions we consider in this section are linear bias
vectors of the form:

b(θ0) = Mθ0, (3.3)

for some m × m matrix M. With this choice, the MSE bound of (3.2)
becomes:

MSEB(M,θ0) = θT
0 MTMθ0 + Tr

(
(I + M)J−1(θ0)(I + M)T

)
.

(3.4)
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If M = 0, then as we expect the bound coincides with the CRB:
MSEB(0,θ0) = Tr(J−1(θ0)). In the next section we show how these
ideas can be extended to nonlinear bias functions via the blind mini-
max framework.

Throughout this section, we will assume that an estimate exists that
achieves the unbiased CRB. The estimators we develop are obtained
by linearly transforming the given efficient strategy. Nonetheless, there
are a variety of problems in which the CRB cannot be achieved, but
an MVU solution can be found. An example is when p(x;θ0) is the
uniform distribution on [0,θ0] [93]. Our approach can be applied to
this setting as well by replacing the CRB by the variance of an MVU
solution. The proposed estimators are then linear transformations of
the corresponding MVU method.

An advantage of restricting attention to linear bias vectors is that we
can use results on unbiased estimation to find estimators that achieve
the corresponding MSE bound. Specifically, if θ̂ is an efficient unbiased
method whose MSE is given by the CRB, then the MSE of

θ̂b = (I + M)θ̂ (3.5)

is equal to MSEB(M,θ0). To see this, since E{θ̂} = θ0,

b
θ̂b

(θ0) = (I + M)E{θ̂} − θ0 = Mθ0. (3.6)

Using the fact that θ̂b − E{θ̂b} = (I + M)(θ̂ − θ0) and C(θ0) =
J−1(θ0),

C
θ̂b

(θ0) = (I + M)E
{
(θ̂ − θ0)(θ̂ − θ0)T

}
(I + M)T

= (I + M)J−1(θ0)(I + M)T , (3.7)

so that the MSE of θ̂b is given by MSEB(M,θ0). Therefore, if θ̂ achieves
the CRB and we find an M such that MSEB(M,θ0) < MSEB(0,θ0)
for all feasible θ0 in a given set, then the MSE of θ̂b will be smaller
than that of θ̂ for all θ0 in the set. This allows us to reduce the MSE
by a simple linear transformation. The important point is that this
improvement is for all choices of θ0 in the set (which can be the entire
space R

m). This essential concept is illustrated in Figure 3.1. The solid
line represents the bound on unbiased estimates, and is assumed to be
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Fig. 3.1 Illustration of the linear bias bound.

achieved by an efficient ML estimate or an MVU solution. The dashed
line is the bound corresponding to M which is lower for all choices of
θ0 and is achieved by a simple transformation of the MVU method.

In contrast, if we consider nonlinear bias vectors, then even if we
find a bias that results in an MSE bound that is lower than the CRB,
and an efficient estimator exists, it is still unclear in general how to
construct a method achieving the resulting MSE bound.

3.1.1 Scaling to Reduce MSE

To illustrate the idea we just outlined, we now examine in more detail
the use of scaling to reduce the MSE in a scalar setting [92].

Consider estimating a scalar θ0 from the available data x =
(x1,x2, . . . ,xn)T . Suppose that θ̂ is an efficient (or MVU) estimator
with variance var(θ̂). To reduce the MSE, we bias θ̂ using a linear bias
so that the biased estimate is

θ̂b = (1 + M)θ̂, (3.8)

where M will be chosen to reduce the MSE E{(θ̂b − θ0)2}. Using the
fact that E{θ̂} = θ, the MSE of θ̂b becomes:

MSE(θ̂b) = M2θ2
0 + (1 + M)2var(θ̂). (3.9)

Our goal is to choose M so that MSEB(θ̂b) is less than the MSE of
the original unbiased estimator θ̂, which is its variance var(θ̂). Of course,
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Fig. 3.2 Trading off bias for variance to reduce the MSE. The biased estimator is θ̂b =
(1 + M)θ̂, which is a scaled version of the unbiased MVU solution.

we would like the reduction in MSE to be as large as possible. From
(3.9) we see immediately that to reduce the MSE we must have −1 ≤
M < 0. In this interval, the bias M2θ2 increases as M departs from
zero, while the variance (1 + M)2var(θ̂) decreases. This behavior is
illustrated in Figure 3.2, where the MSE is plotted versus M over its
allowable range −1 ≤ M ≤ 0 for a particular choice of θ0. Evidently,
there is a value of M that minimizes the overall MSE, trading off an
increase in bias for a decrease in variability. Since with M = 0 we have
θ̂b = θ̂, an optimal value of M �= 0 will produce an estimator with a
smaller MSE.

The key issue is whether the optimal M depends on the unknown
value of θ0. If it does not, then the biased estimator θ̂b is realizable and
the MSE can be minimized over linear-bias approaches. However, if M
depends on θ0, then the minimum MSE estimator cannot be imple-
mented and it is not immediately obvious how to proceed. This latter
case is the subject of Sections 3.3–3.6 in which we show that often it is
still possible to choose a scaling such that the MSE of θ̂b is reduced in
comparison with var(θ̂) for all θ0.

3.2 Minimal MSE Bound with Linear Bias

Returning to the general vector problem, in this section we discuss
cases in which the bound (3.4) can be minimized directly.
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Since the objective in (3.4) is convex in M, we can find the minimal
value by setting the derivative to 0, which yields

M̂(J−1(θ0) + θ0θ
T
0 ) = −J−1(θ0). (3.10)

Using the matrix inversion lemma the optimal M can be written as

M̂ = −I +
1

1 + θT
0 J(θ0)θ0

θ0θ
T
0 J(θ0). (3.11)

In general M will depend on θ0 which is unknown, so that there is no
constant value of M that optimizes the bound. However, if (3.11) is
independent of θ0, then this choice of M minimizes the bound for
all possible values of θ0. This occurs when θ0 = θ0 is a scalar, and
J−1(θ0) = αθ2

0 for some α > 0. In this case the optimal choice of M = M̂

follows from (3.11) as

M̂ = − α

1 + α
, (3.12)

and the corresponding bound is

MSEB(M̂,θ) =
α

1 + α
θ2
0 =

1
1 + α

J−1(θ0) < MSEB(0,θ0) (3.13)

for all θ0 such that J−1(θ0) > 0. If θ̂ achieves the CRB, then an esti-
mator achieving MSEB(M̂,θ0) can be found using (3.5), which leads
to the following theorem [47].

Theorem 3.1. Let x denote measurements of a deterministic param-
eter θ0 with pdf p(x;θ0). Assume that the Fisher information with
respect to θ0 has the form J(θ0) = 1/(αθ2

0) for some α > 0. Then the
MSE of any estimate θ̂ of θ0 with linear bias satisfies

E
{
|θ̂ − θ0|2

}
≥ α

1 + α
θ2
0. (3.14)

Furthermore, if there exists an efficient estimate θ̂, then

θ̂b =
1

1 + α
θ̂

achieves the bound (3.14), and has smaller MSE than θ̂ for all θ0 �= 0.

We now consider several examples illustrating Theorem 3.1.
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Example 3.1. I. Suppose we are given n iid measurements xi,1 ≤ i ≤
n that are each distributed uniformly on [0,θ0], and we wish to estimate
θ0. As mentioned in Section 3.1, in this case the CRB is not defined;
however, an MVU estimator exists and is given by θ̂ = (1 + 1/n)xmax,
where xmax = maxixi [146, p. 108]. Its variance, which is the minimum
variance achievable with an unbiased estimator, is equal to [1/(n(n +
2))]θ2

0. Using Theorem 3.1 with the minimum variance replacing the
inverse Fisher information, we conclude that the estimator

θ̂b =
n + 2
n + 1

xmax (3.15)

has smaller MSE for all values of θ0. The same estimator also min-
imizes the MSE among invariant estimates with the property that
θ̂(cx1, . . . , cxn) = cθ̂(x1, . . . ,xn) for all c > 0 [98].

II. Consider the problem of estimating the variance σ2 of a Gaussian
random variable with known mean µ from n iid measurements xi,1 ≤
i ≤ n. An efficient estimate of σ2 achieving the unbiased CRB J−1(θ) =
2σ4/n is

θ̂ =
1
n

n∑
i=1

(xi − µ)2. (3.16)

In this case α = 2/n. Therefore, from Theorem 3.1 it follows that the
estimator

θ̂b =
1

n + 2

n∑
i=1

(xi − µ)2 (3.17)

has smaller MSE than θ̂ for all values of σ2 > 0. This estimate is also
minimum risk scale equivariant, i.e., it minimizes the MSE among all
estimates satisfying θ̂(bx) = b2θ̂(x) [100].

If µ is unknown, then the CRB cannot be achieved. However,

θ̂ =
1

n − 1

n∑
i=1

(xi − x̄)2 (3.18)

with x̄ = (1/n)
∑n

i=1xi is MVU optimal with MSE 2σ4/(n − 1).
Applying Theorem 3.1 with the minimum variance replacing the Fisher
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information, we conclude that

θ̂b =
1

n + 1

n∑
i=1

(xi − x̄)2 (3.19)

has smaller MSE than θ̂ of (3.18) for all values of µ and σ2. This
estimate is also minimum risk equivariant [100].

III. As a final example, suppose we wish to estimate the mean θ0 of
an exponential random variable from n iid measurements xi,1 ≤ i ≤ n

where

p(x;θ0) =
1
θ0
e−x/θ0 , θ0 ≥ 0. (3.20)

An efficient estimator is the ensemble average θ̂ = (1/n)
∑n

i=1xi, whose
MSE is θ2

0/n. From Theorem 3.1, the MSE of the estimator

θ̂b =
1

n + 1

n∑
i=1

xi (3.21)

is θ2
0/(n + 1), which is less than the CRB for all θ0 > 0.
The results of this example are easily extended to the scale param-

eter for any member of the exponential family for which a scale exists.
As an example, the MVU estimator of the scale for a Gamma distri-
bution with shape parameter β > 0 is θ̂ = 1/(βn)

∑n
i=1xi. Our results

imply that the MSE of θ̂ can be reduced for all θ by using the modified
estimator 1/(βn + 1)

∑n
i=1xi. The relative MSE improvement over the

MVU method is 1 + 1/(nβ), so that the smaller the values of n and β,
the more substantial the gain.

In the more general case in which M̂ of (3.11) depends on θ0, we can
approximate it by substituting the ML estimate θ̂ for θ0, resulting in

θ̂b = (I + M̂(θ̂))θ̂ =
θ̂

T
J(θ̂)θ̂

1 + θ̂
T
J(θ̂)θ̂

θ̂. (3.22)

We may next try and further improve θ̂b by plugging it into M̂ and
creating a new estimate (I + M̂(θ̂b))θ̂b. Continuing recursively we have
that at the kth iteration,

θ̂k = (I + M̂(θ̂k−1))θ̂k−1, (3.23)
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where θ̂0 is the ML solution. The effect of each iteration is to multiply
the previous estimate by a nonlinear shrinkage factor, resulting in a
nonlinear modification of ML. This strategy is studied in detail in [52]
for estimating θ0 in the linear Gaussian model (1.2). In this setting it
is shown that the above iterations converge to

θ̂b =


(
1 +

√
1 − 4

a(x)

)
θ̂, a(x) > 4;

0, a(x) ≤ 4,
(3.24)

where a(x) = θ̂
T
Qθ̂ with Q = HTC−1H and θ̂ = θ̂LS is the LS estimate

given by (1.13). Furthermore, this estimate is shown to dominate the
LS solution when the effective dimension deff = Tr(Q−1)/λmax(Q−1)
satisfies deff ≥ 4.

The iterations defined above lead to a nonlinear modification of the
ML estimate. In the next section, we study linear corrections, that are
guaranteed to dominate ML in a general (not necessarily Gaussian)
setting.

3.3 Dominating the CRB with Linear Bias

We have seen in the previous section that in some special cases we
can minimize the MSE over all linear bias vectors. Even when direct
minimization is not possible, we may still be able to find a matrix M
such that the resulting MSE bound is smaller than the unbiased CRB
for all possible values of the true parameter θ0.

Before developing a general theory to improve the CRB using a
linear bias, we return to the scalar case and consider an example which
illustrates the main ideas [92].

3.3.1 Constant Minimum Variance

When θ = θ0 is a scalar, the optimal scaling M̂ = M̂ of (3.10) becomes

M̂ = − J−1(θ0)
J−1(θ0) + θ2

0
= − 1

1 + θ2
0/J

−1(θ0)
. (3.25)

If θ2
0/J

−1(θ0) depends upon θ0, then exact minimization is not possible.
Nonetheless, we illustrate in the ensuing sections that the MSE can still
be improved uniformly for all θ0 in many cases.
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A simple scenario in which M̂ depends on θ0 is when J−1(θ0) is
equal to a constant, denoted V . In this situation we can no longer
improve the MSE over the entire range θ0 in R using a linear bias.
However, as we now show, it is still possible to derive a bias such that

MSEB(θ̂b) = (1 + M)2V + M2θ2
0 < V, (3.26)

over a restricted parameter range. (In fact, lower MSE can be attained
for all θ0 if we allow for a nonlinear bias as we show in the next section.)

Suppose it is known that |θ0| ≤ U for some U > 0. Since MSEB(θ̂b)
is monotonically increasing in |θ0|, it is enough to require that (3.26)
holds for |θ0| = U . Thus, we would like to choose M such that

max
|θ|≤U

MSEB(θ̂b) = (1 + M)2V + M2U2 < V (3.27)

or equivalently

max
|θ|≤U

{MSEB(θ̂b) − MSEB(θ̂)} = (1 + M)2V + M2U2 − V < 0,

(3.28)
where we used the fact that MSEB(θ̂) = var(θ̂) = V is independent of
θ. After some simplification, (3.28) reduces to

1 + M >
U2 − V

U2 + V
. (3.29)

Any estimator of the form (3.8) withM satisfying (3.29) will have lower
MSE than θ̂.

As our goal is to reduce the MSE as much as possible, we can choose
M that produces the most negative value of max|θ|≤U{MSEB(θ̂b) −
MSEB(θ̂)}. Since MSEB(θ̂) is independent of θ, this approach is equiv-
alent to selecting the M that minimizes (3.28), resulting in

1 + M =
U2

U2 + V
, (3.30)

which satisfies (3.29). Thus, the estimator with linear bias that mini-
mizes the maximum MSE over |θ0| ≤ U is

θ̂b = (1 + M)θ̂ =
U2

U2 + V
θ̂. (3.31)
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Interestingly, if U → ∞, then the biased estimator approaches the
unbiased solution. Using (3.9) and (3.30) the resulting MSE can be
shown to be

MSEB(θ̂b) = V

[
U4 + θ2

0V

(U2 + V )2

]
. (3.32)

For |θ0| ≤ U the term in brackets is less than or equal to U2/(U2 + V ).
Thus, a sizable reduction in the MSE results if U2/V � 1. We next
consider a specific example in which the inverse Fisher is constant and
θ0 is constrained in range.

Example 3.2. Suppose we have n iid observations xi,1 ≤ i ≤ n,
where each xi is a Gaussian random variable with mean θ0 and variance
σ2. Our goal is to estimate the location parameter θ0.

The sample mean θ̂ = x̄ = (1/n)
∑n

i=1xi is an efficient estimate,
whose variance is the constant V = σ2/n. If θ0 is restricted to |θ0| ≤ U ,
then the MSE of θ̂ can be improved by using the biased estimator of
(3.31)

θ̂b = (1 + M)θ̂ =
U2

U2 + σ2/n
x̄, (3.33)

whose MSE is given by (3.32) with V = σ2/n. The condition for a
sizable reduction in MSE becomes U2/(σ2/n) � 1, namely a short data
record or low SNR.

The last example treats a scalar linear Gaussian model. Extensions to
the vector case will be discussed in detail in the next section.

3.3.2 The Minimax Approach

The preceding discussion illustrates that even when the optimal M of
(3.11) depends on θ0, we may still be able to reduce the MSE uniformly
over all allowable θ0 by employing a minimax strategy. To state these
results more generally, suppose we have an efficient estimate θ̂ with
MSE given by J−1(θ0) which now may depend on θ0. Our goal is to
reduce the MSE of θ̂ by considering biased estimators of the form (3.5),
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where we choose M so that

MSEB(M,θ0) < MSEB(0,θ0) (3.34)

for all values of θ0 in some set U . If the matrix M satisfies (3.34),
then we will say that M (strictly) dominates [100] the CRB on U .
This will ensure that if θ̂ is an efficient estimator, then the estimator
θ̂b = (I + M)θ̂ will have smaller MSE than θ̂ for all values of θ0 ∈ U .
In addition to satisfying (3.34), we would like M to have the property
that there is no other matrix M′ �= M such that

MSEB(M′,θ0) ≤ MSEB(M,θ0) (3.35)

for all θ0 in U . Such a matrix M will be called admissible [100]. Our
problem therefore is to find an admissible M that dominates the CRB
on U .

The concepts of domination and admissability are intuitively desir-
able. However, it is not immediately obvious how to use them as a
design criterion. Fortunately, it turns out that an admissible dominat-
ing matrix can be found as a solution to a convex optimization problem,
as incorporated in the following theorem.

Theorem 3.2. Let x denote measurements of a deterministic param-
eter vector θ0 with pdf p(x;θ0). Let

MSEB(M,θ0) = θT
0 MTMθ0 + Tr

(
(I + M)J−1(θ0)(I + M)T

)
,

be a bound on the MSE of any estimate θ̂ of θ0 with linear bias b(θ0) =
Mθ0, where J(θ0) is the Fisher information matrix, and let U ⊆ R

m.
Define

M̂ = argmin
M

sup
θ∈U

{MSEB(M,θ) − MSEB(0,θ)} . (3.36)

Then

(1) M̂ is unique;
(2) M̂ is admissible on U ;
(3) If M̂ �= 0, then MSEB(M,θ0) < MSEB(0,θ0) for all θ0 ∈ U .
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Note that the minimum in (3.36) is well defined since the objective is
continuous and coercive (a function f(x) is coercive if f(x) → ∞ when
‖x‖ → ∞) [16].

Proof. The proof follows directly from the proof of [43, Theorem 1] by
noting that MSEB(M,θ) is continuous, coercive, and strictly convex
in M.

We point out that a dominating and admissible M can be obtained
using other objectives besides the MSE difference. For example, we
can consider the ratio between MSEB(M,θ) and MSEB(0,θ). The
only properties required are that the error is continuous, coercive, and
strictly convex in M.

From Theorem 3.2 we conclude that if the solution M̂ of (3.36) is
nonzero, and if θ̂ achieves the CRB, then the MSE of θ̂b = (I + M̂)θ̂ is
smaller than that of θ̂ for all θ0 ∈ U ; furthermore, no other estimator
with linear bias exists that has a smaller (or equal) MSE than θ̂b for all
values of θ0 ∈ U . Our construction also ensures that the improvement
in performance is the largest possible, for the worst-case choice of θ0.

To interpret (3.36) note that it can be written equivalently in max–
min form as maxM g(M) where

g(M) = inf
θ∈U

{MSEB(0,θ) − MSEB(M,θ)} . (3.37)

For every value of θ, there will be a certain difference between the MSEs
of the unbiased and biased estimators. Our choice of M is guaranteed
to make the smallest difference (with respect to θ) between the MSEs
as large as possible (with respect to M). Since with M = 0, we have
g(M) = 0, the minimal value of g(M) must be either positive, indicat-
ing a reduction in MSE using θ̂b, or at worst zero, indicating no change
in the worst-case MSE. Since M̂ is unique due to the strict convexity of
(3.36), it follows that if M̂ �= 0, then we are guaranteed that g(M̂) > 0
which means that MSEB(M,θ) < J−1(θ) = MSEB(0,θ) for all θ.

An important observation is that even in the absence of constraints
on θ0, a biased estimator can yield reduced MSE over an unbiased
method. Concrete examples will be given in the next section.



3.4 Quadratic Inverse Fisher Information 349

The problem (3.36) is convex in M for any constraint set U since the
supremum of a convex function over any set U is convex. For arbitrary
forms of J−1(θ0) we can solve (3.36) by using any one of the known
iterative algorithms for solving minimax problems, such as subgradi-
ent algorithms [95] or the prox method [112]. To obtain more efficient
solutions, in the following sections we restrict the structure of J−1(θ0)
such that the resulting optimization problem can be converted into
one of the standard convex forms for which very efficient software is
available.

3.4 Quadratic Inverse Fisher Information

A broad class of convex problems for which polynomial-time algo-
rithms exists are semidefinite programs (SDPs) [113, 141] (see also the
Appendix). These are optimization problems that involve minimizing a
linear function subject to linear matrix inequalities (LMIs), i.e., matrix
inequalities of the form G(M) � 0, where G(M) is linear in M. Once a
problem is formulated as an SDP, standard software packages, such as
the Self-Dual-Minimization (SeDuMi) package [133] or CVX [68], can
be used to solve the problem in polynomial time within any desired
accuracy. Using principles of duality theory in vector space optimiza-
tion, the SDP formulation can also be used to derive necessary and
sufficient optimality conditions.

It turns out that for a large class of inverse Fisher matrices, the
minimax problem (3.36) can be reduced to a single minimization that
takes on the form of an SDP [47]. Specifically, we consider the class of
problems represented by J−1(θ0) with quadratic form:

J−1(θ0) =
�∑

i=1

Biθ0θ
T
0 BT

i +
k∑

i=1

(Ciθ0zT
i + ziθ

T
0 CT

i ) + A, (3.38)

for some matrices A � 0, Bi,Ci, and vectors zi. (Alternatively, when
considering MVU estimators, we assume that the minimum variance
has the form (3.38)). Besides leading to analytically tractable expres-
sions, there are many cases in which the inverse Fisher information can
be written as in (3.38). Several examples are presented below.
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Example 3.3. I. A simple example is estimating the vector θ0 in the
linear Gaussian model (1.2). In this case the inverse Fisher information
matrix is the constant J−1 = (HTC−1H)−1 which is clearly a special
case of (3.38) with

A = (HTC−1H)−1, Ci = 0, zi = 0, Bi = 0. (3.39)

This setting will be discussed in Section 4.
II. Consider the problem of estimating the mean µ and variance σ2

of a Gaussian random variable from n iid measurements. In this case
θ0 = (µ σ2)T , and

J−1(θ0) =
σ2

n

[
1 0
0 2σ2

]
, (3.40)

which has the form (3.38) with 
 = 1, k = 1,

A = 0, C1 =
1
n

[
0 1
0 0

]
, z1 =

[
1
0

]
, B1 =

√
2
n

[
0 0
0 1

]
. (3.41)

For known µ, the inverse Fisher information with respect to σ2 is
J−1(σ2) = 2σ4/n, in which case 
 = 1, B1 =

√
2/n and all the remain-

ing parameters are equal to 0.
If σ2 is known and µ is Gaussian with zero mean and unknown

variance σ2
µ, then

J−1(σ2
µ) = 2

(
σ2

µ +
σ2

n

)2

, (3.42)

so that now 
 = 1,k = 1,

A = 2
σ4

N2 , C1 = 4
σ2

n
, z1 = 1, B1 =

√
2. (3.43)

III. As another example, suppose that µ is an unknown scalar in
additive white Gaussian noise with unknown variance σ2. The inverse
Fisher information for estimating the SNR θ0 = µ2/σ2 is

J−1(θ0) =
1
n

(4θ0 + 2θ2
0), (3.44)
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which has the form (3.38) with 
 = 1,k = 1,

A = 0, C1 =
4
n
, z1 = 1, B1 =

√
2
n
. (3.45)

We will consider this example in detail in Section 3.6.
IV. As a final example, suppose that x is a vector of counts with

mean g(θ0) where

g(θ0) = Hθ0 + c (3.46)

for some known invertible matrix H and known constant vector c. The
elements xi of x are independent, with a Poisson distribution

lnp(xi;θ0) = xi ln(gi(θ0)) − gi(θ0) + a,

where a is a known constant. This problem arises for example in
emission-computed tomography [126]. The inverse Fisher information
in this case is given by [79]

J−1(θ0) = H−1 diag(g1(θ0), . . . ,gm(θ0))H−T , (3.47)

where H−T = (H−1)T . We can express J−1(θ0) of (3.47) in the form
(3.38) with 
 = 0,k = m

A = H−1 diag(c1, . . . , cm)H−T ,

Ci = H−1Ei([H]i), zi = [H−T ]i, 1 ≤ i ≤ m, (3.48)

where [H]i denotes the ith row of H and Ei(d) is the matrix whose ith
row is equal to d, and whose remaining elements are equal to zero.

In Section 3.4.1 we treat the case in which U = R
m so that θ0 is not

restricted, and show that with J−1(θ0) given by (3.38), the optimal M
can be found as a solution to an SDP. We also develop necessary and
sufficient optimality conditions on M that lead to further insights into
the solution.

In some settings, we may have additional information on the param-
eter vector θ0 which can result in a lower MSE bound. The set U is then
chosen to capture these properties of θ0. For example, we may know
that the norm of θ0 is bounded: θT

0 θ0 ≤ U for some U > 0. There are
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also examples where there are natural restrictions on the parameters,
for example if θ0 represents the variance or the SNR of a random vari-
able, then θ0 > 0. More generally, θ0 may lie in a specified interval
α ≤ θ0 ≤ β. These constraints can all be viewed as special cases of the
quadratic constraint θ0 ∈ Q where

Q = {θ|θTA1θ + 2bT
1 θ + c1 ≤ 0}, (3.49)

for some A1,b1, and c1. Note that we do not require that A1 � 0 so that
the constraint set (3.49) is not necessarily convex. In Section 3.4.4, we
discuss the scenario in which θ0 ∈ Q, and show that again an admissible
dominating M can be found by solving an SDP. Using the results of
[7], the ideas we develop can also be generalized to the case of two
quadratic constraints of the form Q.

Before proceeding to the detailed developments, it is important to
note, that even in cases where M is computed numerically via an SDP,
i.e., a closed form solution does not exist, the calculation of M does not
depend on the data x. Therefore, M can be computed off line. Once
the data is received, to implement the proposed estimator all that is
needed is to multiply the unbiased method by the matrix I + M so
that the additional cost incurred is negligible.

3.4.1 Dominating Bound on the Entire Space

We first treat the case in which U = R
m so that θ0 is not restricted and

show how to solve (3.36) with J−1(θ0) given by (3.38).
Defining,

A0(M) = MTM +
�∑

i=1

BT
i

(
(I + M)T (I + M) − I

)
Bi;

b0(M) =
k∑

i=1

CT
i

(
(I + M)T (I + M) − I

)
zi;

c0(M) = Tr
((

(I + M)T (I + M) − I
)
A
)
, (3.50)

we can write (3.36) as

min
M

max
θ

{
θTA0(M)θ + 2bT

0 (M)θ + c0(M)
}
. (3.51)



3.4 Quadratic Inverse Fisher Information 353

The problem (3.51) is equivalent to

min
t,M

t

s.t. θTA0(M)θ + 2bT
0 (M)θ + c0(M) ≤ t, for all θ.

(3.52)

Using [12, p. 163], we can rewrite (3.52) as

min
t,M

t

s.t. G(M)
�
=

[
A0(M) b0(M)

bT
0 (M) c0(M) − t

]
� 0.

(3.53)

Since the choice of parameters M = 0, t = 0 satisfies the constraint
(3.53), the problem is always feasible. In our development below, we
consider the case in which (3.53) is strictly feasible, i.e., there exists a
matrix M such that G(M) ≺ 0. It can be shown that strict feasibility
is equivalent to

∑�
i=1BT

i Bi � 0 [47, Lemma 1]. If (3.53) is not strictly
feasible then as shown in [47, Appendix II], it can always be reduced
to a strictly feasible problem with additional linear constraints on M.
A similar approach to that taken here can then be followed for the
reduced formulation. Therefore, in the remainder of this section we
assume that (3.53) is strictly feasible.

3.4.2 SDP Formulation

The constraint (3.53) is not written in convex form, so that we cannot
directly apply standard convex algorithms or Lagrange duality theory
to find the optimal M. Fortunately, it can be converted into a convex
constraint, leading to a convex formulation of (3.53). This result is
incorporated in the following proposition [47, Lemma 2].

Proposition 3.3. Consider the setting of Theorem 3.2 with U = R
m

and J−1(θ0) given by (3.38). Then M̂ is the solution to the SDP

min
t,M,X

t

s.t. Z(M,X) � 0[
X MT

M I

]
� 0,

(3.54)
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where

Z(M,X) =

[
X +

∑�
i=1BT

i ΦBi
∑k

i=1CT
i Φzi∑k

i=1 zT
i ΦCi Tr(AΦ) − t

]
, (3.55)

and for brevity we denoted Φ = X + M + MT .

Note that the constraints in (3.54) are LMIs, since the unknown matri-
ces appear linearly. Therefore, (3.54) is indeed an SDP and can be
solved using standard optimization software.

3.4.3 Dual Problem

Once we have formulated our problem as an SDP we can use duality
theory to gain more insight into the form of the optimal M, and to
provide an alternative method of solution.

Since (3.54) is convex and strictly feasible, the optimal value of t
is equal to the optimal value of the dual problem. Direct calculation
shows that the dual is

min
w,Π

Tr
(
S(Π,w)(S(Π,w) + Π)−1S(Π,w)

)
s.t.

[
Π w
wT 1

]
� 0,

(3.56)

where

S(Π,w) =
�∑

i=1

BiΠBT
i +

k∑
i=1

(ziwTCT
i + CiwzT

i ) + A. (3.57)

The optimal matrix M is related to the optimal dual variables via

M = −S(Π,w)(S(Π,w) + Π)−1 . (3.58)

Note that S(Π,w) is guaranteed to be invertible [47]. Using Schur’s
lemma (see Lemma A.3 in the Appendix), (3.56) can be written as

min
Y,w,Π

Tr(Y)

s.t.
[

Y S(Π,w)
S(Π,w) S(Π,w) + Π

]
� 0[

Π w
wT 1

]
� 0,

which is again an SDP.
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As illustrated in the following example, in some cases the dual prob-
lem may admit a closed form solution, leading to an explicit expression
for M via (3.58).

Example 3.4. Suppose that θ0 = θ0 is a scalar and J−1(θ0) = a +
b2θ2

0 with a > 0. The dual problem (3.59) becomes

min
π≥0

(a + b2π)2

a + (b2 + 1)π
. (3.59)

The optimal solution can be shown to be

π = max
(
a(1 − b2)
b2(b2 + 1)

,0
)
, (3.60)

leading to

M̂ = max
(
− 2b2

b2 + 1
,−1
)
. (3.61)

Therefore, if θ̂0 achieves the CRB J−1(θ0) = a + b2θ2
0, then the

estimator

θ̂b =


1 − b2

1 + b2
θ̂0, |b| ≤ 1;

0, |b| ≥ 1
(3.62)

achieves the MSE

MSEB(M̂,θ0) =

a
(1 − b2)2

(1 + b2)2
+ b2θ2

0, |b| ≤ 1;

θ2
0, |b| ≥ 1,

(3.63)

which is smaller than J−1(θ0) for all θ0.

The last example illustrates that the CRB can be improved uniformly
even without any prior knowledge on θ0.

Using the KKT conditions it can be shown that the matrix M is
optimal if and only if there exists a matrix Π and a vector w such that
Π � wwT and the following conditions hold:

M = −S(Π,w)(S(Π,w) + Π)−1 ;[
A0(M) b0(M)
bT

0 (M) c0(M) − Tr(MS(Π,w))

]
� 0, (3.64)
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where A0(M),b0(M), c0(M) are defined by (3.50), and S(Π,w) is given
by (3.57).

An important observation from (3.64) is that regardless of Π, the
optimal M is not equal to 0. Therefore, from Theorem 3.2 it follows
that as long as the problem is strictly feasible, we can improve the CRB
for all values of θ0 by a linear transformation. Moreover, it is proven in
[47] that M is also nonzero when the problem is not strictly feasible, as
long as Bi �= 0 for some i. We therefore have the following proposition.

Proposition 3.4. Consider the setting of Theorem 3.2 with U = R
m

and J−1(θ0) of (3.38). Then M̂ = 0 if and only if Bi = 0 for all i.

An immediate consequence of Proposition 3.4 is that when J−1(θ0)
is a constant, as in the linear Gaussian model, the CRB cannot be
improved upon uniformly for all θ0 using a linear bias. In the next
section we will see that when the parameter values are restricted, uni-
form improvement is possible. On the other hand, if we allow for a
nonlinear modification, then even in the linear Gaussian case we can
improve the CRB and MVU estimation uniformly over the entire space
(as long as the effective dimension is large enough). This will be proven
in Sections 4 and 5.

3.4.4 Dominating Bound on a Quadratic Set

We now treat the scenario in which θ0 is restricted to the quadratic set
Q of (3.49). To find an admissible dominating matrix in this case we
need to solve the minimax problem

min
M

max
θ∈Q

{MSEB(M,θ) − MSEB(0,θ)}. (3.65)

We assume that there exists a θ in the interior of Q. However, we do
not impose any further restrictions on the parameters A1,b1, and c1.

The optimal M can be found following similar steps as those used
in the previous section. The main difference is that now the inner max-
imization in (3.51) needs to be solved over a quadratic set. Omitting
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the dependence on M, the resulting problem is

max
θ

θTA0θ + 2bT
0 θ + c0

s.t. θTA1θ + 2bT
1 θ + c1 ≤ 0.

(3.66)

This is a special case of a trust region problem, for which strong duality
holds (assuming that there is a strictly feasible point) even though the
problem is not convex [20]. Using this strong duality result we can
convert the problem into

min
λ≥0,t,M

t

s.t.

[
λA1 λb1

λbT
1 λc1 + t

]
�
[
A0(M) b0(M)
bT

0 (M) c0(M)

]
.

(3.67)

The detailed derivation is given [47]. It is easy to see that (3.67) is
always feasible, since both matrices in (3.67) can be made equal to 0
by choosing M = 0, and λ = t = 0. A necessary and sufficient condition
for strict feasibility is [40]

�∑
i=1

BT
i Biv = 0, v �= 0 ⇒ vTA1v > 0. (3.68)

In particular, (3.67) is strictly feasible if
∑�

i=1BT
i Bi � 0 or A1 � 0.

Assuming strict feasibility, (3.67) can be converted into an SDP, in
a similar way to Proposition 3.3 [47, Lemma 3]:

Proposition 3.5. Consider the setting of Theorem 3.2 with U = Q
of (3.49) and J−1(θ0) given by (3.38). Then M̂ is the solution to the
SDP

min
t,λ≥0,M,X

t

s.t. Z(M,X) � λF[
X MT

M I

]
� 0,

(3.69)

where Z(M,X) is defined in (3.55), and

F =
[
A1 b1

bT
1 c1

]
. (3.70)



358 Mean-Squared Error Bounds

Using Lagrange duality it can be shown that the optimal matrix M
is given by (3.58), where Π and w are the solution to the dual problem

min
Y,w,Π

Tr(Y)

s.t.
[

Y S(Π,w)
S(Π,w) S(Π,w) + Π

]
� 0[

Π w
wT 1

]
� 0

Tr(ΠA1) + 2wTb1 + c1 ≤ 0,

(3.71)

which is again an SDP.
Finally, from the KKT conditions we conclude that M is optimal if

and only if there exists a matrix Π and a vector w such that Π � wwT

and the following conditions hold:

M = −S(Π,w)(S(Π,w) + Π)−1 ;

Tr(ΠA1) + 2wTb1 + c1 ≤ 0;

λ
(
Tr(ΠA1) + 2wTb1 + c1

)
= 0;[

A0(M) b0(M)
bT

0 (M) c0(M) − Tr(MS(Π,w))

]
� λ

[
A1 b1

bT
1 c1

]
, (3.72)

where A0(M),b0(M), c0(M) are defined by (3.50), and S(Π,w) is given
by (3.57).

As in the unconstrained case, regardless of Π, M of (3.72) is not
equal to 0. Therefore, from Theorem 3.2 it follows that as long as the
problem is strictly feasible, we can improve the CRB for all values of
θ ∈ Q by a linear transformation.

3.4.5 Constant Fisher Matrix

A special case of (3.38) is when J(θ0) = A−1 is a constant matrix.
Examples include the linear Gaussian model, and location estimation.

In a location estimation problem we are given measurements

x = θ0 + w, (3.73)
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where w is a random vector with pdf pw(w) > 0 that is supported on
the entire space. The pdf of x is then p(x;θ0) = pw(x − θ0). Now,

d lnp(x;θ0)
dθ0

= − 1
pw(x − θ0)

dpw(x − θ0)
dw

, (3.74)

where dpw(x − θ0)/dw is the derivative of pw(w) with respect to w
evaluated at x − θ0. From (3.74), the Fisher information is

J(θ0) =
∫

1
pw(x − θ0)

[
dpw(x − θ0)

dw

]T [dpw(x − θ0)
dw

]
dx

=
∫

1
pw(z)

[
dpw(z)
dw

]T [dpw(z)
dw

]
dz, (3.75)

where we used the change of variables z = x − θ0 and the last equality
follows from the fact that the integral boundaries do not depend on θ0.
It is evident from (3.75) that J(θ0) is independent of θ0.

From Proposition 3.4 it follows that the CRB cannot be improved
upon in this case over the entire space R

m using a linear modification.
However, if θ0 is restricted to a quadratic set, then the CRB can be
reduced, as incorporated in the following proposition.

Proposition 3.6. Let x denote measurements of a deterministic
parameter vector θ0 with pdf p(x;θ0). Assume that the Fisher informa-
tion with respect to θ0 has the form J(θ0) = A−1, and that ‖θ0‖2 ≤ c.
If there exists an efficient estimator θ̂, then

θ̂b =
c

Tr(A) + c
θ̂

has smaller MSE than θ̂ for all ‖θ0‖2 ≤ c.

Proof. The proof follows from showing that M = −Tr(A)/(Tr(A) + c)
satisfies the optimality conditions (3.72) with

Π =
c

Tr(A)
A, t = − Tr2(A)

Tr(A) + c
, λ =

Tr2(A)
(Tr(A) + c)2

. (3.76)

This can be established by direct substitution.
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The estimator θ̂b of Proposition 3.6 is a shrinkage method, i.e., a con-
stant multiple of the unbiased solution θ̂. Estimators of this type have
been used extensively in the literature [11, 18, 51, 103, 107] following
the seminal work of James and Stein [88].

Closed form expressions for θ̂b can also be obtained in the case of a
weighted norm constraint of the form θT

0 Tθ0 ≤ c for certain choices of
T � 0 using similar techniques as those used in [43]. These results will
be illustrated in the context of the linear Gaussian model (1.2) in the
next section.

3.4.6 Feasibility

In general, the minimax estimate θ̂b = (I + M̂)θ̂ obtained over the set
Q, does not always lie in Q. This is because we are constrained to
a linear modification. A simple way to render the resulting estimate
feasible so that it is in Q, when Q is a convex set, is to project it onto
the set. Thus, instead of θ̂b we may use θ̂p which is the solution to

min
θ̂p∈Q

‖θ̂b − θ̂p‖2. (3.77)

An important observation is that if θ̂b dominates θ̂, then we are
guaranteed that θ̂p will as well. To see this, note that for any θ,

‖θ̂b − θ‖2 = ‖θ̂b − θ̂p‖2 + ‖θ̂p − θ‖2 + 2(θ̂b − θ̂p)T (θ̂p − θ).
(3.78)

Now, by the projection theorem onto convex sets [16] we have that for
any θ ∈ Q,

(θ̂b − θ̂p)T (θ̂p − θ) ≥ 0. (3.79)

Combining (3.78) and (3.79),

‖θ̂p − θ‖2 ≤ ‖θ̂b − θ‖2, for all θ ∈ Q, (3.80)

which immediately implies that

E{‖θ̂p − θ‖2} ≤ E{‖θ̂b − θ‖2}, for all θ ∈ Q. (3.81)

Therefore, the projection can only decrease the MSE, with respect
to θ̂b.
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3.5 Affine Bias

Until now we considered linear bias vectors. An extension that can
further reduce the MSE is to allow for an affine bias of the form Mθ0 +
u rather than just a linear term [40]. In this case the biased estimator
will take on the form:

θ̂b = (I + M)θ̂ + u, (3.82)

and the MSE bound becomes

MSEB(M,u,θ0) = (Mθ0 + u)T (Mθ0 + u)

+Tr((I + M)J−1(θ0)(I + M)T ). (3.83)

Note that although the constant part of the bias u will not affect the
variance, it does influence the MSE through the bias.

To find an admissible and dominating pair (M,u) we can optimize
the MSE difference (3.36) over both M and u:

(M̂, û) = argmin
M,u

sup
θ∈U

{MSEB(M,u,θ) − MSEB(0,0,θ)} . (3.84)

In [40] it is shown that often allowing for an affine bias can substan-
tially improve the performance. Furthermore, when the inverse Fisher
contains a linear term, or the constraint set is not symmetric around
0, including an affine bias leads to bounds that are intuitively more
appealing.

The development of the optimal choice of M and u is similar to
that of the optimal linear bias. The details can be found in [40]. Some
examples of the use of an affine biased estimator are given next.

Example 3.5. Let x be a random vector with pdf p(x;θ0) such that
the Fisher information with respect to θ0 has the form J−1(θ0) = b2θ2

0 +
2cθ0 + a, where b,c are real constants and a > 0. Then the minimax M
and u that are the solution to (3.84) with U = R are given by

M =

− 2b2

1 + b2
, |b| < 1;

−1, |b| ≥ 1,
u =


− 2c

1 + b2
, |b| < 1;

− c

b2
, |b| ≥ 1.

(3.85)
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Furthermore, if there exists an efficient estimator θ̂, then

θ̂b =


1 − b2

1 + b2
θ̂ − 2c

1 + b2
, |b| < 1;

− c

b2
, |b| ≥ 1

has smaller MSE than θ̂ for all θ0.

The minimax linear modification for the Fisher information of Exam-
ple 3.5 with c = 0 was treated in Example 3.4. Substituting c = 0 in
(3.85) we see that the values of M coincide in both examples.

3.5.1 Constant Fisher Matrix

We next revisit the case of a constant Fisher matrix discussed in Sec-
tion 3.4.5, with θ0 restricted to a quadratic set. Specifically, suppose
that J(θ0) = A−1, and θ0 ∈ Q with

Q =
{
θ0 : θT

0 θ0 + 2bT
1 θ0 + c1 ≤ 0

}
. (3.86)

Then it can be shown that the optimal M and u that are the solution
to (3.84) are given by

M = − Tr(A)
Tr(A) + bT

1 b1 − c1
θ̂, u = − Tr(A)

Tr(A) + bT
1 b1 − c1

b1, (3.87)

which leads to the following proposition [40].

Proposition 3.7. Let x denote measurements of a deterministic
parameter vector θ0 with pdf p(x;θ0). Assume that the Fisher infor-
mation with respect to θ0 has the form J(θ0) = A−1, and that θ0 ∈ Q
of (3.86). If there exists an efficient estimator θ̂, then the estimator

θ̂b =
bT

1 b1 − c1

Tr(A) + bT
1 b1 − c1

θ̂ − Tr(A)
Tr(A) + bT

1 b1 − c1
b1 (3.88)

has smaller MSE than θ̂ for all θ0 ∈ Q. The corresponding affine MSE
bound is

Tr(A)
(Tr(A) + bT

1 b1 − c1)2
(
Tr(A)‖θ0 + b1‖2 + (bT

1 b1 − c)2
)
. (3.89)
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As we expect intuitively, when b1 = 0 so that the constraint set is
symmetric around 0, the optimal choice of u is u = 0. In this case the
minimax affine bias coincides with the minimax linear solution given
by Proposition 3.6. Another interesting case is when the set Q is given
by ‖θ − v‖2 ≤ c. For this choice,

M = − Tr(A)
Tr(A) + c

I, u =
Tr(A)

Tr(A) + c
v. (3.90)

The value of M is the same as that obtained with the linear minimax
correction when v = 0 (see Proposition 3.6). Therefore, the effect of
shifting the center of the set is to shift the estimator in the direction
of the center, with magnitude that takes into account both the set
(via c) and the Fisher information (via A). Note, however, that the
linear minimax M with respect to the shifted set ‖θ − v‖2 ≤ c will be
different than that given by (3.90).

It is interesting to consider the relative improvement over the CRB
afforded by using the optimal affine bias. Denoting by r(A,θ0) the ratio
between the affine bound (3.89) and the CRB (which is equal to Tr(A))
we have

r(A,θ0) =
Tr(A)‖θ0 + b1‖2 + (bT

1 b1 − c)2

(Tr(A) + bT
1 b1 − c1)2

. (3.91)

It is easy to see that the derivative of r(A,θ0) with respect to Tr(A)
is negative, as long as

‖θ0 + b1‖2 < 2(bT
1 b1 − c1). (3.92)

Since θ0 ∈ Q with Q defined by (3.86) we have that ‖θ0 + b1‖2 ≤
bT

1 b1 − c1 and therefore (3.92) is satisfied as long as bT
1 b1 − c1 > 0,

or equivalently, as long as there is more than one possible value of
θ0, which is our standing assumption. Thus, r(A,θ0) is monotonically
decreasing in Tr(A) and consequently the relative improvement is more
pronounced when the CRB is large. This makes intuitive sense: When
the estimation problem is difficult (such as small sample size, low SNR),
we can benefit from biased methods.
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Example 3.6. Consider the linear Gaussian model (1.2) for which
J−1(θ0) = (HTC−1H)−1. Suppose we know that ‖θ0 − v‖2 ≤ c for
some v and c > 0. From Proposition 3.7 the minimax MSE estimator
under this constraint is

θ̂ =
c

c + Tr((HTC−1H)−1)
θ̂LS +

Tr((HTC−1H)−1)
c + Tr((HTC−1H)−1)

v. (3.93)

As an example of the improvement afforded by the affine mod-
ification (3.93), in Figure 3.3 we compare its MSE with the MSE
of the minimax linear estimator which is a solution to (3.36), and
the MVU solution which coincides with the LS estimate (1.13). Note
that the resulting transformations M are different for the linear and
affine modifications. We assume that C = σ2I, where σ2 is varied to
achieve the desired SNR, defined by SNR [dB] = 10log‖θ0‖2/σ2. Here
v = (1,1,1,1)T , c = 4,θ0 = 2v, and HTH was generated as a realiza-
tion of a random matrix. As can be seen from the figure, allowing for
an affine transformation improves the performance significantly. It is
also apparent that as σ2 increases, the relative improvement is more
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Fig. 3.3 MSE in estimating θ0 in a linear Gaussian model as a function of the SNR using
the least-squares, linear modification and affine modifications of the least-squares estimator.
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pronounced. This follows from our general analysis in which we have
shown that the relative advantage increases when the CRB is large.

3.6 Application: SNR Estimation

Up until this point we have shown analytically that the CRB can be
uniformly improved upon using an affine bias. We also discussed how
to construct an estimator whose MSE is uniformly lower than a given
efficient method. Here we demonstrate that these results can be used in
practical settings even when an efficient approach is unknown. Specifi-
cally, we propose an affine modification of the ML estimator regardless
of whether the ML strategy is efficient. We illustrate this basic idea in
the context of SNR estimation.

Suppose we wish to estimate the SNR of a constant signal in Gaus-
sian noise, from n iid measurements

xi = µ + wi, 1 ≤ i ≤ n (3.94)

where wi is a zero-mean Gaussian random variable with variance σ2,
and the SNR is defined by θ0 = µ2/σ2. The ML estimate of θ0 is

θ̂ =
µ̂2

σ̂2 , (3.95)

where

µ̂ =
1
n

n∑
i=1

xi, σ̂2 =
1
n

n∑
i=1

(xi − µ̂)2. (3.96)

In general θ̂ is biased and does not achieve the CRB.
As we have seen in Example 3.3. III in Section 3.4, the inverse Fisher

information in this case is

J−1(θ0) =
1
n

(4θ0 + 2θ2
0). (3.97)

In addition, we know that θ0 ≥ 0 for all choices of µ and σ2. Thus, to
obtain a lower bound than the CRB we may seek the scalar M̂ that is
the solution to

min
M

max
θ≥0

{
θ2M2 + ((1 + M)2 − 1)J−1(θ)

}
. (3.98)
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Fig. 3.4 Estimating SNR using the ML and linearly transformed ML estimators. (a) MSE
as a function of the number of observations n for an SNR of 2. (b) 1 + M̂ as a function n.

The optimal value of M can be found using the SDP formulation of
Section 3.4.4. For our estimator, we then use (1 + M̂)θ̂. (It can be
shown that in this example the optimal affine choice is û = 0.)

In Figure 3.4(a) we compare the MSE of the ML and linearly mod-
ified ML estimators as a function of the number of observations n for
an SNR of θ0 = 2. For each value of n, the MSE is averaged over 10,000
noise realizations. As can be seen from the figure, the MSE of the lin-
early modified ML approach is smaller than that of the ML estimator
for all values of n. In Figure 3.4(b) we plot 1 + M̂ as a function of n.

In some cases we may have prior information on the range of SNR
values possible, which can be exploited to further improve the perfor-
mance. Suppose that the SNR satisfies α ≤ θ0 ≤ β for some values of α
and β. The ML solution is then

θ̂c =


θ̂, α ≤ θ̂ ≤ β;

α, θ̂ ≤ α;

β, θ̂ ≥ β,

(3.99)

where θ̂ = µ̂2/σ̂2. To develop an affine modification of ML we note that
the constraint α ≤ θ0 ≤ β can be written as

(θ0 − α)(θ0 − β) = θ2
0 − (α + β)θ0 + αβ ≤ 0. (3.100)
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Fig. 3.5 Estimating SNR using the ML, linearly transformed ML and affine transformed
ML estimators subject to the constraint (3.100). (a) MSE as a function of the number of
observations n for an SNR of 2. (b) 1 + M̂ as a function n.

Since the constraint is quadratic, the optimal M and u can be found
using an SDP formulation. They are then applied to the constrained
ML solution (3.99) to yield the estimate θ̂ = (1 + M̂)θ̂c + û.

In Figure 3.5 we compare the MSE of the ML, the linearly modified
ML and affine modified ML estimators subject to (3.100), for an SNR
of θ0 = 2 and SNR bounds α = 1,β = 5. For each value of n, the MSE is
averaged over 10,000 noise realizations. As can be seen from the figure,
the affine modification of the ML estimator performs significantly bet-
ter than the ML approach and also better than the linearly modified
ML method.

This example illustrates the fact that even when no efficient estima-
tor exists, our general ideas can still be used in practice to reduce the
MSE. Furthermore, we can improve the performance of constrained
estimates as well. In particular, here the linear and affine modifica-
tion were applied to the constrained ML solution. This is despite the
fact that the CRB may no longer be a bound on the constrained ML
performance, since the latter is heavily biased due to the parameter
restrictions. Nonetheless, we were able to improve the performance for
all values of n.

Another interesting point is that in this particular example, when
using the affine modification the resulting estimate resided in the inter-
val [α,β]. This is not true for the linear modification whose performance
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can be slightly improved by projection onto the constraint set. However,
the impact on performance is small, and is therefore not plotted.

Before concluding this section, we emphasize the key idea presented
herein: the CRB can be dominated for all parameter values by solving
a certain minimax optimization problem. Although we focused here on
the CRB, the basic concepts and tools we proposed are relevant in a
more general context and can be used for other variance measures, as
well as other classes of bias vectors.

In this section, we primarily discussed linear improvements of the
ML solution. In the next sections, we will consider nonlinear corrections
that may further improve the MSE. There are several strategies to
obtain nonlinear modifications that dominate the ML solution:

(1) Use the optimal linear correction (3.11) to generate a
sequence of iterations as in (3.23). This method is studied
for the linear Gaussian model in [52].

(2) Combine the linear minimax framework presented in this sec-
tion with a constraint set on θ0 that is estimated from the
data. This blind minimax technique is discussed in detail in
the next section.

(3) Instead of computing the exact MSE, use an estimate of the
MSE in order to design nonlinear estimates. This is the topic
of Section 5.

(4) Replace the MSE, which is hard to compute for nonlinear
estimates, by a deterministic error measure in conjunction
with a minimax approach for constrained estimation prob-
lems. This strategy will be discussed in Section 6.



4
Minimax and Blind Minimax Estimation

In this section we depart from the linearity assumption that was preva-
lent in the last section, and explore the use of nonlinear improvements of
the ML estimate. This will be the theme in the remainder of the survey.
The general strategy proposed here is the blind minimax framework in
which we first estimate a constraint set from the data, and then design
a linear minimax solution matched to the estimated set. Although this
essential idea is applicable to a broad class of problems, for concrete-
ness, we demonstrate the details of this approach on the linear Gaussian
model. Our starting point is the linear minimax approach presented in
the previous section to improve the CRB. As we show, when the CRB
is constant, this strategy reduces to finding the minimax MSE esti-
mate. We first study this problem in detail, and derive closed form
solutions. The heart of the section is in showing how the linear mini-
max strategy can be used as a basis for the development of nonlinear
improvements of the ML design method. This will lead to ML domi-
nation with no prior information on θ0 in the Gaussian setting when
the dimension is large enough, even though the Fisher information is
constant.

369
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4.1 Minimax MSE Estimation

Theorem 3.2 provides a general recipe for improving the CRB using a
linear modification. In this section we are concerned with the case in
which J(θ0) = Q is constant, independent of θ0. In this setting (3.36)
reduces to

argmin
M

sup
θ∈U

{
MSEB(M,θ) − Q−1}

= argmin
M

sup
θ∈U

MSEB(M,θ)

= argmin
M

sup
θ∈U

{
θTMTMθ + Tr

(
(I + M)Q−1(I + M)T

)}
. (4.1)

If θ̂ is an efficient estimate with variance Q−1, then the term in the
brackets in (4.1) is the MSE of θ̂b = (I + M)θ̂. Thus, our approach is
equivalent to finding the linear modification (I + M)θ̂ that minimizes
the worst-case MSE over the given parameter set U . If U is quadratic,
then the solution can be obtained using the results of Section 3.4.4.

4.1.1 Linear Gaussian Model

An interesting special case is the linear Gaussian model (1.2) for which

Q = HTC−1H. (4.2)

Our primary focus in this section is on this setting although the ideas
easily extend to the more general constant-Fisher case.

The MVU estimate for the linear Gaussian model is the LS solution
(1.13). An important property of the LS estimate is that it is linear in
the data x. Therefore, we can write

θ̂b = (I + M)θ̂LS = Gx, (4.3)

where G = (I + M)(HTC−1H)−1HTC−1 is an n × m matrix. Since
GH = I + M, the problem (4.1) can be written in terms of G as

min
G

sup
θ∈U

{
θT (I − GH)T (I − GH)θ + Tr

(
GH(HTC−1H)−1HTGT

)}
.

(4.4)
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It can be shown that (4.4) is equivalent to

min
G

sup
θ∈U

{
θT (I − GH)T (I − GH)θ + Tr

(
GCGT

)}
. (4.5)

This follows from the fact that the optimal solution to (4.5) satisfies
G = GH(HTC−1H)−1HTC−1 (see the proof of Proposition 1 in [51]).

To interpret (4.5), note that the MSE of any linear estimate θ̂ = Gx
of θ0 in the model (1.2) is given by the objective in (4.5). Therefore,
this problem can be interpreted as finding the linear estimate that
minimizes the worst-case MSE over U . This strategy is referred to in
the statistical literature as linear minimax MSE estimation [3, 43, 51,
82, 96, 116, 127].

The most common type of restriction treated in this context is an
ellipsoidal set of the form ‖θ0‖2

T = θT
0 Tθ0 ≤ U2 for some matrix T � 0

and constant U > 0. Earlier references derived the minimax MSE solu-
tion for the iid case in which H = C = I, and T is a diagonal matrix.
In [3] an approximate solution is developed for colored noise with
H = I. Several iterative algorithms were proposed in [82, 96]. However,
these methods are computationally demanding and have no conver-
gence proof. Furthermore, even upon convergence, they are not guar-
anteed to yield the minimax solution.

To obtain an efficient numerical algorithm to find the minimax MSE
estimator for general choices of H and C, note that (4.4) is a special
case of (3.36). Therefore, if θ0 ∈ Q, where Q is a quadratic set as in
(3.49), then an efficient SDP formulation of the minimax linear estimate
can be obtained by using Proposition 3.5 with values Bi = 0,Ci = 0,
and A = (HTC−1H)−1. The advantage of this representation is that
the solution of the SDP is guaranteed to be the minimax estimate, and
can be found in polynomial time within any desired accuracy using
off-the-shelf numerical packages.

4.1.2 Closed-Form Solutions

Once the minimax MSE estimate is formulated as a solution to an SDP,
the KKT conditions can be used to derive closed-form solutions. This
approach was used in [51] and [43] to derive explicit expressions for the
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minimax MSE estimate in the Gaussian model with a constraint set of
the form θT

0 Tθ0 ≤ U2.
One class of examples in which a closed form solution exists is when

T and Q of (4.2) have the same eigenvector matrix:

Proposition 4.1. Let θ0 denote the deterministic unknown parame-
ters in the model x = Hθ0 + w, where H is a known n × mmatrix with
rankm, and w is a zero-mean random vector with covariance C � 0. Let
Q = HTC−1H = VΣVT , where V is unitary and Σ = diag(σ1, . . . ,σm)
and let T = VΛVT , where Λ = diag(λ1, . . . ,λm) with λ1 ≥ ·· · ≥ λm >

0. Then the solution to (4.5) with U = {θ0 : θT
0 Tθ0 ≤ U2} is given by

θ̂ = P(I − αT1/2)(HTC−1H)−1HTC−1x = P(I − αT1/2)θ̂LS ,

where

P = V
[
0

Im−k

]
VT

is an orthogonal projection onto the space spanned by the last m − k

columns of V,

α =
∑m

i=k+1(λ
1/2
i /σi)

U2 +
∑m

i=k+1(λi/σi)
,

and k is the smallest index such that 0 ≤ k ≤ m − 1 and

αλ
1/2
k+1 < 1. (4.6)

For T = I,

θ̂ =
U2

U2 + Tr((HTC−1H)−1)
θ̂LS . (4.7)

Note that there always exists a 0 ≤ k ≤ m − 1 satisfying the condition
(4.6). Indeed, for k = m − 1 we have that

α =
∑m

i=k+1(λ
1/2
i /σi)

U2 +
∑m

i=k+1(λi/σi)
=

λ
1/2
m /σm

U2 + λm/σm
< λ−1/2

m (4.8)

so that αλ1/2
m < 1. For particular values of λi and σi, there may be

smaller values of k for which (4.6) holds.
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Another case in which a closed-form solution can be determined was
studied in [43], and is given in the following proposition.

Proposition 4.2. Consider the setting of Proposition 4.1 with arbi-
trary T satisfying

λmin
(
Q−1(QT−1Q)1/2) ≥ α, (4.9)

where

α =
Tr
(
(Q−1TQ−1)1/2

)
U2 + Tr(Q−1T)

. (4.10)

Then the solution to (4.5) is

θ̂ = (I − α
(
Q−1TQ−1)1/2Q)θ̂LS . (4.11)

The minimax estimator over any compact constraint set U was shown
in [10] to dominate the LS solution for all θ0 ∈ U . This also follows
from our general analysis in the previous section, since this estimate
is a special case of (3.36). To illustrate this result, consider the case
in which T = I. The minimax solution θ̂ follows from Proposition 4.1,
and has MSE given by

E
{
‖θ̂ − θ0‖2} =

Tr2(Q−1)‖θ0‖2 + U4Tr(Q−1)
(U2 + Tr(Q−1))2

. (4.12)

Since ‖θ0‖2 ≤ U2, the MSE is upper bounded by

E
{
‖θ̂ − θ0‖2} ≤ U2Tr(Q−1)

U2 + Tr(Q−1)
≤ Tr(Q−1), (4.13)

which is the MSE of θ̂LS .
In this section we focus on the case in which H and C are known.

However, similar minimax ideas can be used to estimate x when both
these variables are subject to uncertainty [6, 9, 44, 45, 51]. Minimax
approaches have also been thoroughly investigated in the Bayesian set-
ting in which θ0 is random but the statistics are not known exactly
[42, 46, 53, 54, 85, 91, 142].
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4.1.3 Minimax Regret Estimation

Although the minimax approach has enjoyed widespread use in the
design of robust methods for signal processing and communication
[90, 91], it may be overly conservative since it optimizes the perfor-
mance for the worst possible choice of unknowns. In [50] a new compet-
itive approach to linear estimation was proposed, based on the concept
of minimax regret. The idea is to seek a linear estimator whose perfor-
mance is as close as possible to that of the optimal linear approach, i.e.,
the one minimizing the MSE when θ0 is known. More specifically, the
minimax regret estimator minimizes the worst-case difference between
the MSE of a linear method θ̂ = Gx, which does not know θ0, and the
smallest attainable MSE with a linear estimator θ̂ = G(θ0)x that knows
θ0, so that G can depend explicitly on θ0. Since we are restricting our-
selves to linear estimators of the form θ̂ = Gx, we cannot achieve zero
MSE even when θ0 is known. The best possible MSE, which we denote
by MSE0, is illustrated schematically in Figure 4.1. Instead of choos-
ing an estimate to minimize the worst-case MSE, we propose designing
θ̂ to minimize the worst-case difference between its MSE and the best

Fig. 4.1 The line represents the best attainable MSE as a function of θ0 when θ0 is known,
and the dashed line represents a desirable graph of MSE with small regret as a function of
θ0 using some linear estimator that does not depend on θ0.
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possible MSE, as illustrated in Figure 4.1. By considering the difference
between the MSE and the optimal MSE rather than the MSE directly,
we can, in some cases, counterbalance the conservative character of the
minimax strategy.

To develop an explicit expression for MSE0 we first determine the
estimator θ̂ = G(θ0)x that minimizes the MSE when θ0 is known. Dif-
ferentiating the MSE (given by the objective in (4.5)) with respect to
G and equating to 0, results in

G(θ0)C + (G(θ0)H − I)θ0θ
T
0 HT = 0, (4.14)

so that, after applying the matrix inversion lemma,

G(θ0) =
1

1 + θT
0 HTC−1Hθ0

θ0θ
T
0 HTC−1. (4.15)

Substituting G(θ0) back into the expression for the MSE

MSE0 =
θT

0 θ0

1 + θT
0 HTC−1Hθ0

. (4.16)

Since θ0 is unknown, we cannot implement the optimal estimator
(4.15). Instead we design θ̂ = Gx to minimize the worst-case regret
R(θ0,G), where

R(θ0,G) = E
{
‖Gx − θ0‖2} − MSE0

= Tr(GCGT ) + θT
0 (I − GH)T (I − GH)θ0

− θT
0 θ0

1 + θT
0 HTC−1Hθ0

,

subject to the constraint ‖θ0‖T ≤ U . Thus we seek the matrix G that
is the solution to

min
G

max
θT Tθ≤U2

R(θ,G). (4.17)

Problem (4.17) is a nonconvex, difficult optimization problem. Nonethe-
less, in many cases it can be transformed into convex form. One class of
examples is when T and HTC−1H have the same eigenvector matrix,
as incorporated in the following proposition.
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Proposition 4.3. Consider the setting of Proposition 4.1. Then the
minimax regret estimator has the form

θ̂ = VDVT (HTC−1H)−1HTC−1x,

with D = diag(d1, . . . ,dm) where di are the solution to the convex opti-
mization problem

min
τ,di

τ

s.t.
m∑

i=1

d2
i

σi
≤ τ

max
si∈S

{
m∑

i=1

(1 − di)2si −
∑m

i=1 si

1 +
∑m

i=1σisi

}
+

m∑
i=1

d2
i

σi
≤ τ,

with

S =

{
si : si ≥ 0,

m∑
i=1

λisi = U2

}
.

In the special case in which θ0 = θ0 is a scalar so that x = hθ0 + w for
some known vector h, the minimax regret estimate over the interval
L ≤ |θ0| ≤ U is given by [55, 57]

θ̂ =

(
1 − 1√

(1 + L2hTC−1h)(1 + U2hTC−1h)

)
θ̂LS . (4.18)

Further special cases are discussed in [50].
The minimax regret concept has recently been used to develop com-

petitive beamforming approaches [55, 57]. It has also been applied
to linear models in which θ0 is random with unknown covariance
[42, 46, 53, 54].

In the sequel, we use the blind minimax framework to develop non-
linear estimation strategies based on the linear minimax solution. The
linear minimax regret estimate can also be used in a similar way as
a basis for blind regret techniques; this is an interesting direction for
further study.
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4.2 Stein-Type Estimates

Until now we have limited our discussion to linear modifications of the
ML or MVU method. In the remainder of this section, and in the suc-
ceeding next sections, we consider nonlinear extensions. In many cases
this allows for a more pronounced performance advantage. Further-
more, as we will show, using a nonlinear modification of LS, we can
dominate it in the linear Gaussian setting over all choices of θ0, not
only norm bounded values.

In his seminal paper, Stein showed that for H = I and white noise,
the LS strategy is inadmissible when the parameter dimension is larger
than 2 [128] meaning there exist estimates that dominate it for all θ0.
Several years later, James and Stein developed a nonlinear shrinkage
of the conventional LS and proved that it dominates the LS solution
[88]. The James–Stein class of estimators is given by

θ̂JS =
(

1 − rσ2

‖x‖2

)
x, (4.19)

where σ2 is the noise variance, and 0 ≤ r ≤ 2(m − 2) (Stein chose r = m

and James and Stein in [88] used r = (m − 2) which minimizes the
MSE among this class). A drawback of the James–Stein choice is that
the shrinkage factor can be negative. To remedy this deficiency, the
positive-part James–Stein estimate was suggested by Baranchik [4] and
is given by

θ̂ =
[
1 − rσ2

‖x‖2

]
+
x, (4.20)

where we used the notation

[x]+ =
{
x, x ≥ 0;
0, x ≤ 0.

(4.21)

This estimate yields lower MSE than the conventional James–Stein
method (4.19).

Various “extended” James–Stein methods were later constructed
for the general (non-iid) case [11, 15, 18, 36, 103]. One of the common
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strategies is Bock’s estimator [18] which is given by

θ̂ =

(
1 − deff − 2

θ̂
T

LSQθ̂LS

)
θ̂LS , (4.22)

where Q = HTC−1H and

deff =
Tr(Q−1)
λmax(Q−1)

(4.23)

is the effective dimension [103], and may be roughly described as the
number of independently measured parameters in the system. Indeed,
when Q = I, we have deff = m. However, none of these approaches has
become a standard alternative to the LS estimator, and they are rarely
used in practice in engineering applications [37, 103]. Perhaps one rea-
son for this is that some of the estimators are poorly justified and seem
counterintuitive, and as such they are sometimes regarded with skep-
ticism (see discussion following [35]). Another reason is that many of
these approaches (including Bock’s method) result in shrinkage estima-
tors, consisting of a gain factor multiplying LS. Shrinkage techniques
can certainly be used to reduce MSE; however, in the non-iid case, some
measurements are noisier than others, and thus a single shrinkage fac-
tor for all measurements can be considered suboptimal. Furthermore,
in some applications, a gain factor has no effect on final system per-
formance: for example, in image reconstruction, multiplying the entire
image by a constant does not improve quality.

In the next section, we provide a framework for generating a wide
class of low-complexity, LS-dominating estimators, which are con-
structed from a simple, intuitive principle, called the blind minimax
approach [11]. This method is used as a basis for selecting and gen-
erating techniques tailored for given problems. Many blind minimax
estimators (BMEs) reduce to Stein-type methods in the iid case, and
they continue to dominate the LS solution for all θ0 in the general,
non-iid setting as well. Thus, we show analytically that the proposed
technique achieves lower MSE than LS, when an appropriate condition
on the problem setting is satisfied. Unlike Bock’s approach, BMEs may
be constructed so that they are non-shrinkage, which improves their
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performance. Furthermore, extensive simulations show that BMEs con-
siderably outperform Bock’s method.

4.3 Blind Minimax Estimation

BMEs are based on linear minimax estimators over a bounded param-
eter set, introduced in Section 4.1. As we have seen, as long as some
bounded set is known to contain θ0, minimax techniques outperform
LS. However, in our setting now, no prior information about the param-
eter set is assumed. Instead, the blind minimax approach makes use of
a two-stage process:

(1) A parameter set U is estimated from the measurements;
(2) A minimax estimator designed for U is used to infer θ0.

The result may be viewed as a simple decision rule, independent of
this two-stage construction. In particular, the dominance results do not
rely on the parameter actually lying within the estimated set. Thus, the
blind minimax technique provides a framework whereby many different
estimators can be generated, and provides insight into the mechanism
by which these techniques outperform the LS approach.

BMEs differ in the way the parameter set U is estimated. Here,
we consider sets of the form {θ0 : θT

0 Tθ0 ≤ U2} for some T � 0. In
Section 4.3.1, we study the case in which T = I so that the estimated
set is a sphere; Section 4.3.2 derives estimators based on an ellipsoidal
parameter set corresponding to T = Qb for some real number b. In
Section 4.4, we demonstrate that several existing Stein-type methods
can also be derived within the blind minimax framework.

4.3.1 The Spherical Blind Minimax Estimator

We begin by applying the blind minimax technique using a spherical
parameter set U = {θ0 : ‖θ0‖2 ≤ U2}. For given U , the linear minimax
estimator is given by (4.7):

θ̂M =
U2

U2 + ε0
θ̂LS , (4.24)
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where

ε0 = Tr((HTC−1H)−1) = Tr(Q−1) (4.25)

is the MSE of θ̂LS . The resulting spherical BME (SBME) will have the
form (4.24), where U2 is estimated from the measurements. A natural
estimate of U2 is obtained by using the LS solution as ‖θ̂LS‖2. Substi-
tuting into (4.24), the SBME is

θ̂SBM =
‖θ̂LS‖2

‖θ̂LS‖2 + ε0
θ̂LS . (4.26)

Up to this point, we have arbitrarily chosen the parameter set to be
centered on the origin. As we shall see, the proposed BMEs outperform
the LS estimator. This demonstrates the fact that the LS approach
results in an overestimate: reducing the norm of θ̂LS improves its
performance. However, the choice of a parameter set centered on the
origin is completely arbitrary; shrinkage estimates may be constructed
around any constant center point θp [69]. This will result in a weighted
average between θ̂LS and θp, which may be useful if the parameter
vector is expected to lie near a particular point. Thus, the off-center
SBME is given by

θ̂ =

(
‖θ̂LS‖2

‖θ̂LS‖2 + ε0

)
θ̂LS +

(
ε0

‖θ̂LS‖2 + ε0

)
θp. (4.27)

All dominance results continue to hold for the off-center techniques as
well. For notational simplicity, in the sequel we assume θp = 0.

The following theorem demonstrates that the SBME is guaranteed
to outperform LS in terms of MSE.

Theorem 4.4. Suppose that deff > 4, where deff is defined by (4.23).
Then, the SBME (4.26) strictly dominates the LS estimator.

The condition of Theorem 4.4 can be roughly stated as a requirement
for a sufficient number of independent parameters.

Note that the SBME is a special case of the estimator

θ̂c =

(
1 − ε0

c + ‖θ̂LS‖2

)
θ̂LS , (4.28)

in which c = ε0. The proof of Theorem 4.4 follows from the more general
proposition below.
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Proposition 4.5. Under the conditions of Theorem 4.4, the estimator
θ̂c given by (4.28) strictly dominates the LS estimator, for any c ≥ 0.

To prove the proposition we rely on the following lemma [39, Proposi-
tion 1], which we will discuss in more detail in the next section in the
context of SURE estimation.

Lemma 4.6. Let x = Hθ0 + w denote measurements of an unknown
parameter vector θ0 where H is an n × m matrix of full column rank,
and w is a zero-mean Gaussian random vector with covariance C � 0.
Let h(u) with u = HTC−1x be an arbitrary function of u that is weakly
differentiable1 in u and such that E {|hi(u)|} is bounded. Then

E
{
hT (u)(θ0 − θ̂LS )

}
= −E

{
Tr
(
dh(u)
du

)}
, (4.29)

where θ̂LS = (HTC−1H)−1HTC−1x is the LS estimate.

Proof. To prove Proposition 4.5, first note that the MSE R(θ̂c) =
E
{
‖θ0 − θ̂c‖2

}
of θ̂c is given by

R(θ̂c) = ε0 + E

{
ε20‖θ̂LS‖2

(c + ‖θ̂LS‖2)2

}
+ 2E

{
hT (u)(θ0 − θ̂LS )

}
, (4.30)

where

h(u) =
ε0

c + ‖θ̂LS‖2
θ̂LS . (4.31)

Applying Lemma 4.6 we obtain

E

{
ε0

c + ‖θ̂LS‖2
θ̂

T

LS (θ0 − θ̂LS )

}

= −ε0E
{

Tr(Q−1)

c + ‖θ̂LS‖2

}
+ 2ε0E

{
θ̂

T

LSQ−1θ̂LS

(c + ‖θ̂LS‖2)2

}
. (4.32)

1 Roughly speaking, a function is weakly differentiable if it has a derivative almost every-
where, as long as the points that are not differentiable are not delta functions; see [101]
for a more formal definition.
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Substituting this result back into (4.30), we have

R(θ̂c) = ε0 + E

{
ε0

c + ‖θ̂LS‖2

·
(
ε0

‖θ̂LS‖2

c + ‖θ̂LS‖2
− 2ε0 + 4

θ̂
T

LSQ−1θ̂LS

c + ‖θ̂LS‖2

)}
. (4.33)

Since c ≥ 0,

R(θ̂c) ≤ ε0 + E

{
ε0

c + ‖θ̂LS‖2

(
−ε0 + 4λmax(Q−1)

)}
. (4.34)

If ε0 > 4λmax, then the expectation is taken over a strictly negative
range. Therefore R(θ̂c) < ε0, and θ̂c strictly dominates θ̂LS .

As we have shown, in terms of MSE, the SBME outperforms LS
over the entire space, providing us with a first example of the power
of blind minimax estimation. The SBME is a shrinkage estimator, i.e.,
it consists of the LS multiplied by a gain factor smaller than one. This
illustrates the fact that the LS technique tends to be an overestimate,
and shrinkage can improve its performance.

4.3.2 The Ellipsoidal Blind Minimax Estimator

Since the covariance of θ̂LS is Q−1 =
(
HTC−1H

)−1, not all elements
of θ̂LS are equally trustworthy. In this sense, the scalar shrinkage of the
SBME and other extended Stein estimators seems inadequate.

Indeed, several researchers have proposed shrinking each measure-
ment according to its variance. Efron and Morris [36] suggest an empir-
ical Bayes technique, in which high-variance components are shrunk
more than low-variance ones. However, obtaining an estimate requires
iteratively solving a set of nonlinear equations. Furthermore, it is not
known whether this method dominates LS. By contrast, Berger [15] pro-
vides an estimator in which more shrinkage is applied to low-variance
measurements, despite the fact that low-noise components are those for
which the LS is most accurate. Berger’s technique is constructed such
that the shrinkage of all components is negligible whenever there is a
substantial difference between the variances of different components.
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As a result, LS dominance is guaranteed, but the MSE gain is insub-
stantial unless all noise components have similar variances.

Minimax estimators can easily be adapted for non-scalar shrink-
age. Specifically, consider an ellipsoidal parameter set of the form
U = {θ0 : ‖θ0‖2

T = θT
0 Tθ0 ≤ U2} (see Figure 4.2). Let θ̂M represent the

linear minimax estimator for this set, which is a linear function of θ̂LS .
We can examine its effect on each component of θ̂LS . Consider first
components of θ̂LS in the direction of narrow axes of the ellipsoid
U . These components correspond to large eigenvalues of T, and are
denoted λmax(T) in Figure 4.2. The parameter set imposes a tight con-
straint in these directions, and there will thus be considerable shrink-
age of these elements. By contrast, components in the direction of wide
axes of U (small eigenvalues of T) are not constrained as tightly. Less
shrinkage will be applied in this case, since the LS method is the linear
minimax estimator for an unbounded set. In Figure 4.2, the shrinkage
of wide-axis and narrow-axis components is illustrated schematically
for a particular value of θ̂LS .

Typically, one would want to obtain higher shrinkage for high-
variance components. Since the covariance of θ̂LS is Q−1, we propose
a BME based on a parameter set of the form:

U = {θ0 : θT
0 Qbθ0 ≤ U2} (4.35)

Fig. 4.2 Illustration of the adaptive shrinkage of the minimax estimator θ̂M for the set
θT

0 Tθ0 ≤ U2. Low shrinkage is applied to elements of θ̂LS corresponding to small eigenval-
ues of T, while components in directions of large eigenvalues obtain higher shrinkage.
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for some constant b < 0. The bound U2 is estimated as U2 = θ̂
T

LSQbθ̂LS .
We refer to the resulting technique as the ellipsoidal BME (EBME).
Note that highly negative values of b yield an eccentric ellipsoid, and
hence result in a larger disparity between the shrinkage of different
measurements. Contrariwise, a choice of b = 0 yields scalar shrinkage,
and the resulting estimator is identical to the SBME. As we will demon-
strate, the EBME dominates the LS method under a condition similar
to that of the SBME. However, the dominance condition of the EBME
becomes stricter as b becomes more negative. Thus, there exists a trade-
off between selective shrinkage and a broad dominance condition. Fol-
lowing [11], in the numerical examples below we will choose a value of
b = −1 as a compromise.

As an additional motivation for the use of the EBME, consider the
following example illustrated in Figure 4.3, which is taken from [11].
Here, a 100-sample signal is to be estimated from measurements of
its discrete cosine transform (DCT). Each component of the DCT is
corrupted by Gaussian noise: high-variance noise is added to the 10
highest-frequency components, while the remaining components con-
tain much lower noise levels. In this example, H is the DCT matrix
and C is diagonal in the DCT domain. Consequently, the LS estima-
tor is equivalent to an inverse DCT transform, and thus ignores the
differences in noise level between measurements. This causes substan-
tial estimation error, as observed in Figure 4.3(a). The error is reduced
by the SBME (Figure 4.3(b)), which multiplies the LS estimate by
an appropriately chosen scalar; in this example, the squared error was
reduced by 20%. Evidently, merely multiplying the result of the LS
technique by an appropriately chosen scalar can significantly reduce
estimation error. However, the most significant advantage is obtained
by the EBME (Figure 4.3(c)), which shrinks the high-noise coefficients.
The choice b = −1 resulted in shrinkage of 0.44 for the high-noise coeffi-
cients, and shrinkage of only 0.98 for low-noise coefficients. The result-
ing squared error was 83% lower than that of LS.

4.3.3 Dominance

We begin our analysis by obtaining an expression for the EBMEs. Since
for T = Qb, T and Q are jointly diagonalizable, we can use the results of
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Fig. 4.3 Estimation of a signal from measurements of its DCT. Dashed line indicates original
signal; solid line indicates estimate. (a) LS estimate. (b) Spherical BME. (c) Ellipsoidal
BME.

Proposition 4.1 to obtain a closed-form solution for the corresponding
minimax estimate. By substituting the value of U2 into this closed form,
we obtain the following result:

Proposition 4.7. Let VΣVT be the eigenvalue decomposition
of Q = HTC−1H, where V is unitary and Σ = diag(σ1, . . . ,σm).
Let b ∈ R be any constant, and suppose the eigenvalues Σ are
ordered such that σb

1 ≥ σb
2 ≥ ·· · ≥ σb

m > 0. Then, the EBME for
the parameter set U = {θ0 : ‖θ0‖2

Qb ≤ U2} with U2 = ‖θ̂LS‖2
Qb is
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given by

θ̂EBM = Vdiag([1 − ασ
b/2
1 ]+, . . . , [1 − ασb/2

m ]+)VTθ̂LS (4.36)

when θ̂LS �= 0, and by θ̂EBM = 0 when θ̂LS = 0. Here

α =
r1

‖θ̂LS‖2
Qb + r2

, r1 =
m∑

i=k+1

σ
b/2−1
i , r2 =

m∑
i=k+1

σb−1
i (4.37)

and k is chosen as the smallest index 0 ≤ k ≤ m − 1 such that

ασ
b/2
k+1 < 1. (4.38)

Proof. In the case θ̂LS = 0, we need to find the linear minimax esti-
mator for the set U = {0}, which is clearly given by θ̂ = 0. For all
other values of θ̂LS , we seek the linear minimax estimator for the set
U = {θ0 : θT

0 Qbθ0 ≤ U2}, where U2 = θ̂
T

LSQbθ̂LS > 0. Substituting this
value of U2 into Proposition 4.1 yields

θ̂EBM = Vdiag(0, . . . ,0,1, . . . ,1)VT (I − αQb/2)θ̂LS

= Vdiag(0, . . . ,0,1 − ασ
b/2
k+1, . . . ,1 − ασb/2

m )VTθ̂LS , (4.39)

where there are k zeros in the diagonal matrix. From (4.38), 1 −
ασ

b/2
i < 0 for all i ≤ k, and therefore (4.39) can be written as (4.36).

We note that, as long as ‖θ̂LS‖2
Qb > 0, it is always possible to find

a value k which satisfies (4.38).
Like the SBME, the EBME also dominates the LS estimator under

suitable conditions, as shown in the following theorem. The proof is
quite involved and can be found in [11].

Theorem 4.8. Let θ̂EBM be the EBME (4.36) and suppose that

Tr(Qb/2−1) > 4λmax(Qb/2−1), (4.40)

where Q = HTC−1H. Then, θ̂EBM strictly dominates the LS estimator.

The dominance condition (4.40) is satisfied in many reasonable
problems. Assuming a sufficient number of parameters, the only case
in which this condition does not hold is the situation in which a small
number of parameters (less than four) have much higher variance than
all others; in this case, the LS method is admissible or nearly so.



4.4 Relation to Stein-type Estimation 387

4.4 Relation to Stein-type Estimation

Thus far, we have presented two examples of BMEs which dominate the
LS method under suitable conditions. We now demonstrate that other
BMEs extend Stein’s estimator (4.19) and Baranchik’s positive-part
improvement (4.20).

In Section 4.3.1, the SBME (4.26) was constructed by using U2 =
‖θ̂LS‖2 as an estimate of ‖θ0‖2. However, the fact that shrinkage tech-
niques such as the SBME dominate LS indicates that θ̂LS is in fact an
overestimate of θ0. It is arguably more accurate to use a smaller value
than ‖θ̂LS‖2 to estimate ‖θ0‖2. In particular, it is readily shown that

E
{
‖θ̂LS‖2} = ‖θ0‖2 + ε0. (4.41)

Hence, one may opt to use

U2 = ‖θ̂LS‖2 − ε0 (4.42)

as an estimate of ‖θ0‖2. Substituting (4.42) into the spherical minimax
method (4.24) yields the balanced BME

θ̂BBM =

(
1 − ε0

‖θ̂LS‖2

)
θ̂LS . (4.43)

The balanced BME reduces to Stein’s estimator [128] in the iid
case. Both techniques are well-defined unless θ̂LS = 0, an event which
has zero probability. Furthermore, the balanced BME extends Stein’s
method, in that it continues to dominate LS for the non-iid case, under
suitable conditions. This is shown by the following theorem.

Theorem 4.9. Suppose deff > 4, where deff is given by (4.23). Then,
the balanced BME (4.43) strictly dominates the LS estimator.

Proof. The theorem follows by substituting c = 0 in Proposition 4.5.

A well-known drawback of Stein’s approach is that it sometimes
causes negative shrinkage, i.e., the shrinkage factor in (4.43) is negative
with nonzero probability. This is known to increase the MSE [4]. From
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the blind minimax perspective, this negative shrinkage is a result of the
fact that U2 can become negative. Thus, it is natural to replace (4.42)
with

U2 =
[
‖θ̂LS‖2 − ε0

]
+. (4.44)

Substituting this value of U2 into the spherical minimax estimator
yields the positive-part BME, given by

θ̂PBM =

(
[‖θ̂LS‖2 − ε0]+

[‖θ̂LS‖2 − ε0]+ + ε0

)
θ̂LS . (4.45)

Note that when ‖θ̂LS‖2 − ε0 < 0, the estimator θ̂PBM equals 0; in all
other cases, θ̂PBM = θ̂BBM. Thus, (4.45) may be written as

θ̂PBM =

[
1 − ε0

‖θ̂LS‖2

]
+

θ̂LS . (4.46)

In other words, θ̂PBM is the positive part of the balanced BME, and
coincides with the Baranchik estimate in the iid case.

The balanced method presented in this section for estimating the
parameter set radius results in a value (4.42) of U2 which is smaller
than that of the SBME. As a result, the balanced approach causes
more shrinkage toward the origin. This tends to improve performance
for low SNR at the expense of performance degradation at high SNR. In
particular, θ̂PBM has a positive probability of yielding an estimate of 0.
This may indeed reduce the MSE when the parameter is exceedingly
small with respect to the noise variance, but will sacrifice high-SNR
performance. In general, the positive-part BME tends to perform as
well or worse than the SBME at SNR values above 0 dB, and better
for lower SNR values. Thus, in most applications, use of the SBME is
probably preferable. However, the fact that Stein’s estimator can be
derived and extended using blind minimax considerations illustrates
the versatility of this approach.

4.5 Numerical Results

We now present several computer simulations, taken from [11], that
illustrate the performance of the SBME and EBME. In these tests,
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a value of b = −1 was used for the parameter set (4.35) of the EBME.
Application of the minimax ideas presented here to beamforming in the
context of array processing can be found in [55, 57, 125].

In the first example, we show a typical scenario, in which the number
of parameters m and the number of measurements n are both 15. In
addition H = I and the noise covariance is given by

C = σ2 diag(1,1,1,1,0.5,0.2,0.2,0.2,0.2,0.1,0.1,0.1,0.1,0.05,0.05)
(4.47)

resulting in an effective dimension of (5.8). Here σ2 was selected to
achieve the desired SNR. To illustrate the dependence on the value of
the parameter vector θ0, in Figure 4.4(a), θ0 is in the direction of the
maximum eigenvector of Q−1, while in Figure 4.4(b), θ0 is chosen in the
direction of the minimum eigenvector. This corresponds to parameters
in the direction of maximal and minimal noise, respectively. Estimates
of the MSE were calculated for a range of SNR values by generating
10,000 random realizations of noise per SNR value.

It is evident from Figure 4.4 that substantial improvement in MSE
can be achieved by using BMEs in place of the LS approach: in some
cases the MSE of the LS estimator is nearly three times larger than
that of the BMEs. The performance gain is particularly noticeable at
low and moderate SNR. At infinite SNR, the LS technique is known to
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Fig. 4.4 MSE vs. SNR for a typical operating condition: effective dimension 5.8, m = n = 15.
(a) θ0 in direction of maximum noise. (b) θ0 in direction of minimum noise.
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be optimal [93], and all other methods converge to the value of the LS
estimate; as a result, performance gain is smaller at high SNR, although
substantial improvement can be obtained even at 10–15 dB.

To further compare the BMEs with Bock’s estimator (4.22), a large
set of parameter values θ0 were generated for different SNRs. For each
approach, and for each SNR, the lowest and highest MSE were deter-
mined, resulting in a measure of the performance range. This range is
displayed in Figure 4.5 for two different choices of C, which are indi-
cated in the figure caption. Evidently, both BMEs outperform Bock’s
estimator under nearly all circumstances. It is also interesting to note
that while the MSE of the EBME is highly dependent on the value of
θ0, the performance of the SBME is fairly constant. This is a result
of the symmetric form of the SBME. On the other hand, the EBME
achieves considerably lower MSE for most values of θ0.

It is insightful to compare the performance of the SBME and EBME
in Figures 4.4 and 4.5. While the worst-case performance of the two
blind minimax techniques is similar, the EBME performs considerably
better for some values of θ0. This is a result of the fact that the EBME
selectively shrinks the noisy measurements, whereas the SBME uses an
identical shrinkage factor for all elements. If one measurement contains
very little noise, the SBME is forced to reduce the shrinkage of all

10 5 0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

SBME

EBME

Bock

SNR (dB)

M
S

E
 (

as
 a

 fr
ac

tio
n 

of
 ε

0)

10 5 0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

SBME

EBME

Bock

SNR (dB)

M
S

E
 (

as
 a

 fr
ac

tio
n 

of
 ε

0)

Fig. 4.5 Range of possible MSE values for different values of θ0, as a function of SNR.
H = I for both figures. (a) m = n = 15, with eigenvalues of C distributed uniformly between
1 and 0.01, resulting in an effective dimension of 7.6. (b) m = n = 10, with C containing
five eigenvalues of 1 and five eigenvalues of 0.1, resulting in an effective dimension of 5.5.
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other measurements. The EBME, by contrast, can effectively reduce
the effect of noisy measurements without shrinking the clean elements.
As a result, the EBME is superior by far if θ0 is orthogonal to the
noisiest measurements; its performance gain is less substantial when
θ0 is in the direction of high shrinkage, since in these cases, shrinkage
is applied to the parameter as well as the noise.

Another important advantage of the blind minimax approach over
Bock’s estimator is that the latter converges to the LS technique when
the matrix Q is ill-conditioned, i.e., when some eigenvalues are much
larger than others. This is because the shrinkage in Bock’s method
(4.22) is a function of 1/‖θ̂LS‖2

Q. As a result, when θ̂LS contains a sig-
nificant component in the direction of a large eigenvalue of Q, shrinkage
becomes negligible. Yet, in this case, shrinkage is still desirable for the
remaining eigenvalues. This effect is demonstrated in Figure 4.6, which
plots the performance of the various approaches for matrices Q having
condition numbers between 1 and 1000. Here, 10 parameters and 10
measurements are used, H = I, and C is chosen such that the first five
eigenvalues equal 1 and the remaining five eigenvalues equal a value
v, selected to obtain the desired condition number. For each condition

1 10 100 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

SBME

EBME

Bock

Condition number

M
S

E
 (

as
 a

 fr
ac

tio
n 

of
 ε

0)

Fig. 4.6 Range of possible MSE values obtained for different values of θ0, as a function of
the condition number of Q, with SNR = 0 dB and m = n = 10.
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number, a large set of values θ0 are chosen such that the SNR is 0 dB;
as in Figure 4.5, the range of MSE values obtained for each estimate is
plotted. It is evident that Bock’s estimator approaches the LS method
for ill-conditioned matrices. The performance of the EBME improves
relative to the LS estimator for ill-conditioned matrices, since the high-
noise components are further reduced in this case.

In this section, we explored the idea of blind minimax estimation,
whereby one uses linear minimax estimators whose parameter set is
itself inferred from measurements. This simple concept was examined
in the setting of a linear system of measurements with colored Gaussian
noise, where we have shown that the BMEs dominate the LS solution.
Consequently, in any such problem, the proposed estimators can be
used in place of LS, with a guaranteed performance gain. Apart from
being useful in and of themselves, the proposed estimators support the
underlying concept of blind minimax estimation. This principle can
be applied to many other problems, such as estimation with uncertain
system matrices, estimation with non-Gaussian noise, and sequential
estimation.



5
The SURE Principle

In this section we continue our exploration of nonlinear ML modifi-
cations. The strategy we discuss here is based on the Stein unbiased
risk estimate (SURE), which is an unbiased assessment of the MSE.
Since the MSE in general depends on the true unknown parameter val-
ues it cannot serve as a design objective. Instead, the SURE principle
provides a method to directly approximate the MSE of an estimate
from the data, without requiring knowledge of the true parameter val-
ues. To use this approach as a design method, we choose a class of
parameterized estimates, and then seek the values that minimize the
SURE objective. We illustrate that this approach can be very effec-
tive in choosing regularization parameters in different signal recovery
problems, and can outperform standard selection techniques such as
cross-validation and the discrepancy method.

5.1 MSE Estimation

A common theme throughout this survey has been the desire to con-
trol the MSE of an estimate θ̂. Unfortunately, since the MSE depends
explicitly on the unknown parameter vector θ0, it cannot be used as a

393
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design objective. The idea behind the SURE method, which we outline
in this section, is to approximate the MSE of θ̂ from the given data
x. This MSE assessment can then be used to select between different
estimation strategies.

Suppose we are given some estimate θ̂
′
whose performance we would

like to improve. For concreteness, and in the spirit of the previous
sections, we assume that θ̂

′
= θ̂ML is an ML solution, however the ideas

we outline hold more generally. To refine θ̂ML , we consider estimators
of the form

θ̂ = θ̂ML + h(x), (5.1)

for some vector function h(x), which we would like to choose such that
the MSE is minimized. In practice, h(x) is typically chosen to have
a particular structure, parameterized by some vector α. For example,
h(x) = αx − θ̂ML where α is a scalar, or hi(x) = ψα(xi) − θ̂ML , where

ψα(x) = sign(x)[|x| − α]+ (5.2)

is a soft-threshold with cut-off α. Ideally, we would like to select α to
minimize the MSE. Since this is impossible, in the SURE approach α

is designed to minimize an unbiased estimate (referred to as the SURE
estimate) of the MSE.

To develop the SURE principle, we first compute the MSE of θ̂ given
by (5.1). Denoting by ε(θ0) the MSE of θ̂ML ,

E{‖θ̂ − θ0‖2} = E{‖θ̂ML − θ0 + h(x)‖2}
= ε(θ0) + E{‖h(x)‖2} − 2E{hT (x)(θ0 − θ̂ML )}.

(5.3)

In order to minimize the MSE over h(x) we need to evaluate explicitly

f(h,θ0) = E{‖h(x)‖2} − 2E{hT (x)(θ0 − θ̂ML )}, (5.4)

which unfortunately depends in general on θ0. Instead, we may seek
an unbiased estimate of f(h,θ0) and then choose h to minimize this
estimate. The difficult expression to approximate is E{hT (x)θ0} as the
dependency on θ0 is explicit. Therefore, we concentrate on estimating
this term. If this can be done, then we can easily obtain an unbiased
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MSE estimate. Indeed, suppose we construct a function g(h(x)) that
depends only on x (and not on θ0), such that

E{g(h(x))} = E{hT (x)θ0}
�
=Eh,θ0

. (5.5)

Then

f̂(h) = ‖h(x)‖2 − 2g(h(x)) + 2hT (x)θ̂ML , (5.6)

is an unbiased estimate of f(h,θ0), since clearly E{f̂(h)} = f(h,θ0).
A reasonable strategy therefore is to select h(x) to minimize our assess-
ment f̂(h) of the MSE.

The design framework proposed above reduces to finding an unbi-
ased estimate of Eh,θ0

. Clearly, any such estimate will depend on the
pdf p(x;θ0). In this section we broaden our scope with respect to the
previous section, and assume that p(x;θ0) belongs to the exponential
family of distributions (1.4) discussed in Section 1.1. For this class of
pdfs we develop an unbiased approximation of Eh,θ0

. Before addressing
the general setting, we illustrate the main idea by first considering the
simpler iid Gaussian case in which we seek to estimate a vector θ0 ∈ R

m

from measurements x = θ0 + w, where w is a zero-mean Gaussian ran-
dom vector with iid components of variance σ2. In Section 5.2.1 we treat
the more difficult scenario in which φ(x) lies in a subspace A of R

m,
and the pdf (1.4) depends on θ0 only through its orthogonal projec-
tion onto A. This situation arises, for example, in the linear Gaussian
model (1.2) when H is rank deficient. For this setup, we develop a
SURE estimate of the MSE in estimating the projected parameter.

5.1.1 IID Gaussian Model

In order to develop an unbiased estimate of Eh,θ0
in the iid Gaussian

setting, we exploit the fact that for the Gaussian pdf p(x;θ0)

(xi − θi)p(x;θ0) = −σ2dp(x;θ0)
dxi

, (5.7)

where θi is the ith component of θ0. Assuming that E{|hi(x)|}
is bounded and hi(x) is weakly differentiable in x, we have
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that

Eh,θ0
=

m∑
i=1

∫ ∞

−∞
hi(x)θip(x;θ0)dx

=
m∑

i=1

∫ ∞

−∞
hi(x)

(
xip(x;θ0) + σ2dp(x;θ0)

dxi

)
dx

= E{hT (x)x} + σ2
m∑

i=1

∫ ∞

−∞
hi(x)

dp(x;θ0)
dxi

dx, (5.8)

where the second equality is a result of (5.7). To evaluate the second
term in (5.8), we use integration by parts:∫ ∞

−∞
hi(x)

dp(x;θ0)
dxi

dx = −
∫ ∞

−∞
h′

i(x)pi(x;θ0)dx = −E{h′
i(x)}, (5.9)

where we denoted h′
i(x) = dhi(x)/dxi, and used the fact that

|hi(x)p(x;θ0)| → 0 for |xi| → ∞ since E{|hi(x)|} is bounded. We con-
clude from (5.8) and (5.9) that

Eh,θ0 = E{hT (x)x} − σ2
m∑

i=1

E{h′
i(x)} (5.10)

and therefore, hT (x)x − σ2∑m
i=1h

′
i(x) is an unbiased estimate of

Eh,θ0
. Plugging this expression into (5.3), and using the fact that in

our setting θ̂ML = x, we arrive at the following SURE assessment of
the MSE:

ε(θ0) + ‖h(x)‖2 + 2σ2
m∑

i=1

dhi(x)
dxi

. (5.11)

The MSE estimate (5.11) was first proposed by Stein in [129, 130].
We next illustrate how (5.11) can be used to design estimates.

Example 5.1. Suppose we are given Gaussian measurements x =
θ0 + w from which we want to recover θ0. We consider shrinkage esti-
mates of the form θ̂ = αx and want to select a good choice of α. To
this end, we propose minimizing the SURE estimate of the MSE (5.11).
Since θ̂ corresponds to h(x) = (α − 1)x, the optimal value α̂ minimizes

S(α) = (1 − α)2‖x‖2 + 2mσ2(α − 1), (5.12)
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and is given by

α̂ = 1 − mσ2

‖x‖2 . (5.13)

The resulting estimate is

θ̂ =
(

1 − mσ2

‖x‖2

)
x, (5.14)

which coincides with the Stein method (4.19) [128], discussed in Sec-
tion 4.2. This provides further justification for this approach. If in addi-
tion we require that α ≥ 0, then

θ̂ =
[
1 − mσ2

‖x‖2

]
+
x, (5.15)

which is equal to the positive-part Stein estimate (4.20).

The SURE strategy for the iid-Gaussian case has been applied to a vari-
ety of different denoising techniques [13, 33, 39, 102, 147]. The difference
between the proposed recovery strategies is in the parametrization of
h(x). For example, in the context of wavelet denoising [33], θ0 repre-
sents the wavelet coefficients of some underlying signal. Motivated by
the observation that these coefficients are often sparse, it was suggested
in [33] to recover θ0 using a component-wise soft-threshold correspond-
ing to the choice θ̂i = ψα(xi), where ψα(x) is given by (5.2). The popular
SUREShrink wavelet denoising strategy results when α is selected to
minimize1 (5.11). In [102], the parametrization in the wavelet domain
was chosen as θ̂i =

∑k
j=1ajφj(xi), where φj(x) are given nonlinear func-

tions of x, k is the number of parameters, and aj are the coefficients
that are optimized by SURE.

5.2 Generalized SURE Principle

In the previous section we illustrated the use of the SURE denoising
strategy in the context of an iid Gaussian problem. Extensions to inde-
pendent variables from an exponential family are treated in [14, 86, 87].

1 More precisely, in SUREShrink α is determined by SURE only if it is lower than some
upper limit.
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All of these generalizations are confined to the independent case which
precludes a variety of important applications such as image deblurring.

We now extend the approach, following the results of [39], to the
general class of exponential pdfs

f(x;θ0) = r(x)exp{θT
0 φ(x) − g(θ0)}. (5.16)

In order to address this model, some modifications to the basic tech-
nique outlined in the previous section are necessary. First, we note that
a sufficient statistic for estimating θ0 in the model (5.16) is [100]

u = φ(x). (5.17)

Therefore, any reasonable estimate of θ0 will be a function of u. More
specifically, from the Rao–Blackwell theorem [93] it follows that if θ̂ is
an estimate of θ0 which is not only a function of u, then the estimate
E{θ̂|u} has smaller or equal MSE than θ̂, for all θ0. Therefore, in the
sequel, we only consider methods that depend on the data via u. This
enables the use of integration by parts, similar to the iid Gaussian
setting for which u = φ(x) = (1/σ2)x. Note that u and θ0 have the
same length.

For our class of estimates, we choose

θ̂ = θ̂ML + h(u), (5.18)

for some function h(u). Note that from (5.16), θ̂ML is a solution of

dg(θ)
dθ

= φ(x) = u, (5.19)

and therefore depends only on u. The MSE of θ̂ is computed as in (5.3):

E{‖θ̂ − θ0‖2} = ε(θ0) + E{‖h(u)‖2} − 2E{hT (u)(θ0 − θ̂ML )}.
(5.20)

To assess the MSE, we seek an unbiased estimate of E
{
hT (u)θ0

}
.

The following theorem provides such an estimate, using similar ideas
to those used in the previous section [39].
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Theorem 5.1. Let x denote a random vector with exponential pdf
given by (5.16), and let u = φ(x) ∈ R

m be a sufficient statistic for esti-
mating θ0 ∈ R

m from x. Let h(u) be an arbitrary function of u that is
weakly differentiable in u and such that E {|hi(u)|} is bounded. Then

E
{
hT (u)θ0

}
= −

m∑
i=1

E

{
dhi(u)
dui

}
− E

{
hT (u)

d lnq(u)
du

}
, (5.21)

where

q(u) =
∫
r(x)δ(u − φ(x))dx, (5.22)

and δ(x) is the Dirac delta function. Therefore,

−
m∑

i=1

dhi(u)
dui

− hT (u)
d lnq(u)
du

(5.23)

is an unbiased estimate of E{hT (u)θ0}.

Note that the pdf f(u;θ0) of u is given by

f(u;θ0) = exp{θT
0 u − g(θ0)}q(u). (5.24)

Therefore, an alternative to computing q(u) using (5.22) is to evaluate
the pdf of u and then use (5.24).

Based on Theorem 5.1 we can develop a generalized SURE princi-
ple for estimating an unknown parameter vector θ0 in an exponential
model. Specifically, let θ̂ = θ̂ML + h(u) be an arbitrary estimate of θ0

where h(u) satisfies the regularity conditions of Theorem 5.1. Then,
combining (5.20) and Theorem 5.1, an unbiased estimate of the MSE
of θ̂ is given by

ε(θ0) + ‖h(u)‖2 + 2
m∑

i=1

dhi(u)
dui

+ 2hT (u)
(
d lnq(u)
du

+ θ̂ML

)
. (5.25)

We may then design θ̂ by choosing h(u) to minimize (5.25). We refer
to this technique as the generalized SURE principle.

To recover the iid Gaussian case, note that in this setting
u = (1/σ2)x. Therefore, d lnq(u)/du = −θ̂ML = −x, and dhi(u)/dui =
σ2h′

i(x). With these relations, (5.25) reduces to (5.11).
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5.2.1 Rank-Deficient Models

In some settings, the sufficient statistic u lies in a subspace A of R
m.

As an example, suppose that in the Gaussian model (1.2) H is rank-
deficient. In this case u = HTC−1x lies in the range space R(HT ) of
HT , which is a subspace of R

m. If θ0 is not restricted to a subspace,
then we do not expect to be able to reliably estimate θ0 from u, unless
some additional information on θ0 is known. Nonetheless, we may still
obtain a reliable assessment of the part of θ0 that lies in A.

Denote by P the orthogonal projection onto A. The MSE in esti-
mating θ0 can be written as

E{‖θ̂ − θ0‖2} = E{‖Pθ̂ − Pθ0‖2} + E{‖(I − P)θ̂ − (I − P)θ0‖2}.
(5.26)

As we show below, if u depends on θ0 only through Pθ0, and in addition
u has an exponential pdf, then we can obtain a SURE estimate of the
error in A, defined by

MSEA = E{‖Pθ̂ − Pθ0‖2}. (5.27)

If θ̂ lies in A, then (I − P)θ̂ = 0 and the second term in (5.26) is con-
stant, independent of θ̂. Therefore, up to a constant, an approximation
of MSEA is also an unbiased estimate of the true MSE E{‖θ̂ − θ0‖2}
so that to optimize θ̂ it is sufficient to estimate MSEA. Even if θ̂ does
not lie in A, the SURE estimate we develop may be used to approxi-
mate MSEA. Since u depends only on Pθ0, it is reasonable to restrict
attention to estimates θ̂ = hα(u), where the parameters α are tuned to
minimize MSEA, subject to any other prior information we may have,
such as norm constraints on θ0. In such cases we can use a regularized
SURE criterion with the SURE objective being an unbiased estimate of
MSEA and the regularization term provided by the prior information,
as discussed further in [39].

To derive a SURE estimate of MSEA we first note that if u lies in
A, then

θT
0 u = (Pθ0)T (Pu). (5.28)

Suppose that A has dimension r < m. Since Pθ0 lies in an r-
dimensional space, it can be expressed in terms of r components in
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an appropriate basis. Denoting by V an m × r matrix with orthonor-
mal vectors that span A = R(P), the vector Pθ0 can be expressed as
Pθ0 = Vθ′

0 for an appropriate length-r vector θ′
0. Similarly, Pu = Vu′.

Therefore, we can write θT
0 u = θ′T

0 u′, where we used the fact that
VTV = I. We assume that u′ is a sufficient statistic for θ′

0 and that
f(u′;θ′

0) has an exponential pdf:

f(u′;θ′
0) = q(u′)exp{θ′T

0 u′ − g(θ′
0)}. (5.29)

Let θ̂ = θ̂ML + h(u), where θ̂ML is some ML estimate (since the
model is rank deficient the ML solution may not be unique). Then
under the model (5.29) it can be shown [39] that an unbiased estimate
of the MSE E{‖Pθ̂ − Pθ0‖2} is given by

εA(θ0) + ‖Ph(u)‖2 + 2Tr
(
P
dh(u)
du

)
+ 2hT (u)

(
V
d lnq(u′)
du′ + θ̂ML

)
,

(5.30)
with u = Vu′ and V denoting an orthonormal basis for A, P = VVT

and εA(θ0) = E{‖Pθ̂ML − Pθ0‖2}. When A = R
m, P = I,V = I and

(5.30) reduces to (5.25). The proof of (5.30) follows from noting that

E{hT (u)Pθ0} = E{hT (u)Vθ′
0} = E{(VTh(u))T θ′

0}, (5.31)

and applying Theorem 5.1 to VTh(u).

5.2.2 Linear Gaussian Model

We now specialize the SURE principle to the linear Gaussian model
(1.2). We begin by treating the case in which H is an n × m matrix
with n ≥ m and full column rank. We then discuss the rank-deficient
scenario.

To use Theorem 5.1 we need to compute the pdf q(u) of u. Since
u = HTC−1x, it is a Gaussian random vector with mean HTC−1Hθ0

and covariance HTC−1H. As q(u) is the function multiplying the expo-
nential in the pdf of u, it follows that

q(u) = K exp{−(1/2)uT (HTC−1H)−1u}, (5.32)

where K is a constant, independent of u. Therefore,

d lnq(u)
du

= −(HTC−1H)−1u = −θ̂ML , (5.33)
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where θ̂ML is the ML estimate of θ0 given by

θ̂ML = (HTC−1H)−1HTC−1x. (5.34)

It then follows from Theorem 5.1 that

E{hT (u)(θ0 − θ̂ML )} = −
m∑

i=1

E

{
dhi(u)
dui

}
. (5.35)

An unbiased estimate of the MSE of θ̂ = θ̂ML + h(u) is

ε(θ0) + ‖h(u)‖2 + 2
m∑

i=1

dhi(u)
dui

. (5.36)

Next, suppose that H is rank deficient. In this case, the covariance
of u is not invertible and therefore q(u) can no longer be written as
in (5.32). Instead, we use the results of Section 5.2.1 and consider a
sufficient statistic for estimating the projection of θ0 onto R(HT ).

Let H have a singular value decomposition H = UΣQT for some
unitary matrices U and Q and Σ a diagonal n × m matrix with the
first r diagonal elements equal to σi > 0 and the remaining elements
equal 0 so that H has rank r. In this case, V is equal to the first
r columns of Q and θ′

0 = VT θ0. A sufficient statistic for estimating
θ′

0 is u′ = VTHTC−1x. Indeed, u′ is a Gaussian random vector with
mean µ′ = VTHTC−1Hθ0 and covariance C′ = VTHTC−1HV. Using
the SVD of H we have that

µ′ = Λ[UTC−1U]rθ′
0,

C′ = Λ[UTC−1U]r, (5.37)

where Λ is an r × r diagonal matrix with diagonal elements σ2
i > 0 and

[A]r is the r × r top-left principle block of size r of the matrix A. Since
C � 0, C′ is invertible. Therefore, f(u′;θ′

0) has the form (5.29) with

q(u′) = K exp{−(1/2)u′TC′−1u′}, (5.38)

where K is a constant. Using (5.30) together with the fact that

VC′−1u′ = (HTC−1H)†HTC−1x = θ̂ML , (5.39)

leads to the following proposition.
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Proposition 5.2. Let x denote measurements of an unknown param-
eter vector θ0 in the linear Gaussian model (1.2), where w is a zero-
mean Gaussian random vector with covariance C � 0. Let h(u) with
u = HTC−1x be an arbitrary function of θ0 that is weakly differen-
tiable in u and such that E {|hi(u)|} is bounded, and let P be an
orthogonal projection onto R(HT ). Then

E{hT (u)P(θ − θ̂ML )} = −E
{
Tr
(
P
dh(u)
du

)}
,

where

θ̂ML = (HTC−1H)†HTC−1x

is an ML estimate of θ0. An unbiased estimate of the MSE E{‖Pθ̂ −
Pθ0‖2} is

S(h) = εA(θ0) + ‖Ph(u)‖2 + 2Tr
(
P
dh(u)
du

)
, (5.40)

where εA(θ0) = E{‖θ̂ML − Pθ0‖2}.

The next example extends Example 5.1 to the non-iid setting.

Example 5.2. Suppose we are given measurements x that obey
the linear Gaussian model (1.2). We seek an estimate of θ0 of the
form θ̂ = αθ̂ML , where θ̂ML is given by (5.34). To choose α, we mini-
mize the SURE unbiased MSE estimate (5.40). Note that in this case
h(u) = (α − 1)θ̂ML ∈ R(HT ) so that S(h) + ‖(I − P)θ0‖2 is an unbi-
ased estimate of the total MSE E{‖θ̂ − θ0‖2} and therefore it suffices
to minimize S(h), which is equivalent to minimizing

(1 − α)2‖θ̂ML‖2 + 2(α − 1)Tr((HTC−1H)†). (5.41)

The optimal α is given by

α̂ = 1 −
Tr
(
(HTC−1H)†)
‖θ̂ML‖2

. (5.42)
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The resulting estimate is

θ̂ =

(
1 −

Tr
(
(HTC−1H)†)
‖θ̂ML‖2

)
θ̂ML , (5.43)

which coincides with the balanced blind minimax method proposed
in (4.43), based on a minimax framework. Here we see that the same
technique results from applying the generalized SURE criterion. If in
addition we require that α ≥ 0, then (5.43) becomes

θ̂ =

[
1 −

Tr
(
(HTC−1H)†)
‖θ̂ML‖2

]
+

θ̂ML , (5.44)

which is the positive-part balanced method of (4.46).

5.3 Application to Regularization Selection

A popular strategy for solving inverse problems of the form (1.2) is to
use regularization techniques in conjunction with a LS objective. Specif-
ically, the estimate θ̂ is chosen to minimize a regularized LS criterion:

(x − Hθ̂)C−1(x − Hθ̂) + λ‖Lθ̂‖, (5.45)

where the norm is arbitrary. Here L is some regularization operator such
as the discretization of a first- or second-order differential operator that
accounts for smoothness properties of θ0, and λ is the regularization
parameter [72, 73]. An important problem in practice is the selection
of λ, which strongly effects the recovery performance. One of the most
popular approaches to choosing λ when the estimate is linear (as is
the case when a squared-
2 norm is used in (5.45)) is the generalized
cross-validation (GCV) method [64]. When the estimate takes on a
more complicated nonlinear form, a popular selection method is the
discrepancy principle [61].

Based on the generalized SURE criterion, we choose λ to minimize
the SURE objective (5.40). This allows SURE-based optimization of
a broad class of deblurring and deconvolution methods including both
linear and nonlinear techniques. As we demonstrate for the cases in
which the norm in (5.45) is the squared-
2 or 
1 norms, this method



5.3 Application to Regularization Selection 405

can dramatically outperform GCV and the discrepancy technique in
practical applications. When the estimate is not given explicitly but
rather as a solution of an optimization problem we can still employ the
SURE strategy by using a Monte-Carlo approach to approximate the
derivative of the estimate, which figures in the SURE expression [118].
Specifically,

m∑
i=1

dhi(u)
dui

≈ 1
ε2

zT (h(u + z) − h(u)), (5.46)

where ε is a small constant and z is a zero-mean iid random vector,
independent of u, with covariance ε2I.

Using several test images and a deconvolution problem, taken from
[39], we demonstrate below that this strategy often leads to significant
performance improvement over the standard GCV and discrepancy
selection criteria in the context of image deblurring and deconvolution.

5.3.1 Image Deblurring

We first consider the case in which the squared-
2 norm is used in
(5.45). The solution then has the form:

θ̂ = (Q + λLTL)−1HTC−1x, (5.47)

where for brevity we denoted

Q = HTC−1H. (5.48)

The estimate (5.47) is commonly referred to as Tikhonov regularization
[136].

In the GCV method, λ is chosen to minimize

G(λ) =
1

Tr2(I − (Q + λLTL)−1Q)

n∑
i=1

(xi − [Hθ̂]i)2. (5.49)

To apply the SURE criterion, we rewrite the estimate (5.47) as θ̂ =
θ̂ML + h(u), where u = HTC−1x and

h(u) = −λ(Q + λLTL)−1LTLQ−1u. (5.50)



406 The SURE Principle

We then suggest choosing the value of λ that minimizes the SURE
objective (5.40), which is equivalent to minimizing

S(λ) = ‖h(u)‖2 − 2λTr
(
(Q + λLTL)−1LTLQ−1) . (5.51)

The optimal value can be determined numerically. This approach was
first studied in the special case of Tikhonov regularization with white
noise in [32, 61, 122]. In our simulations below, minimization of the
GCV and SURE objectives were performed by using the fmincon func-
tion on Matlab.

We now demonstrate the performance of the SURE-based regular-
ization method with examples taken from [39]. Specifically, we con-
sider an image deblurring problem using the HNO deblurring package
for Matlab2 based on [76]. We chose several test images, and blurred
them using a Gaussian point-spread function of dimension 9 with stan-
dard deviation 6. We then added zero-mean, Gaussian white noise with
variance σ2. In Figures 5.1 and 5.2 we compare the deblurred images
resulting from using the Tikhonov estimate (5.47) with L = I where
the regularization parameter is chosen according to our new SURE
criterion (left) and the GCV method (right), for different noise levels.

As can be seen from the figures, the SURE based approach leads to a
substantial performance improvement over the standard GCV criterion.
This can also be seen in Tables 5.1 and 5.2 in which we report the
resulting MSE values.

5.3.2 Deconvolution Example

As another application of the SURE, consider the standard deconvolu-
tion problem in which a signal θ[
] is convolved by an impulse response
h[
] and contaminated by additive white Gaussian noise with variance
σ2. The observations x[
] can be written in the form of the linear model
(1.2) where x is the vector containing the observations x[
], θ0 consists
of the input signal θ[
], and H is a Toeplitz matrix, representing con-
volution with the impulse response h[
].

To recover θ[
] we may use a penalized LS approach (5.45) where we
assume that the original signal θ[
] is smooth. This can be accounted

2 The package is available at http://www2.imm.dtu.dk/˜pch/HNO/.
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Fig. 5.1 Deblurring of Lena using Tikhonov regularization with SURE (left) and GCV
(right) choices of regularization and different noise levels: (a), (b) σ = 0.01; (c), (d) σ = 0.05;
(e), (f) σ = 0.1.

for by choosing a penalization of the form ‖Lθ‖1, where L represents a
second order derivative operator. The resulting penalized LS estimate
can be determined by solving a quadratic optimization problem. In our
simulations, we used CVX, a package for specifying and solving convex
programs in Matlab [68].



408 The SURE Principle

Fig. 5.2 Deblurring of Cameraman using Tikhonov regularization with SURE (left) and
GCV (right) choices of regularization and different noise levels: (a), (b) σ = 0.01; (c), (d)
σ = 0.05; (e), (f) σ = 0.1.

Since the resulting estimate is non-linear, due to the 
1 penalization,
we cannot apply the GCV equation (5.49). Instead, a popular approach
to tune the parameter λ is to use the discrepancy principle in which λ
is chosen such that the residual ‖x − Hθ̂‖2 is equal to the noise level
nσ2 [32, 61].
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Table 5.1 MSE for Tikhonov Deblurring of Lena.

σ = 0.01 σ = 0.05 σ = 0.1
GCV 0.0022 0.0077 0.0133
SURE 0.0011 0.0025 0.0042

Table 5.2 MSE for Tikhonov Deblurring of Cameraman.

σ = 0.01 σ = 0.05 σ = 0.1
GCV 0.0033 0.0121 0.0221
SURE 0.0016 0.0039 0.0064

To evaluate the performance of the SURE principle in this context,
we consider an example from the Regularization Tools [74] for Matlab,
also taken from [39]. All the problems in this toolbox are discretized
versions of the Fredholm integral equation of the first kind:

g(s) =
∫ b

a
K(s, t)θ(t)dt, (5.52)

where K(s, t) is the kernel and θ(t) is the solution for a given g(s).
The problem is to estimate θ(t) from noisy samples of g(s). Using a
midpoint rule with n points, (5.52) reduces to an n × n linear system
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Fig. 5.3 The original signal θ0 (dashed), the clean convolved signal (star) and the observa-
tions x with σ = 1.
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Fig. 5.4 Deconvolution using weighted �1 regularization with the discrepancy principle,
SURE (star) and the original signal θ0 (dashed) with σ = 1.

xT = Hθ0. The functions in this toolbox differ in K(t,s) and θ(s).
Below we consider the function heat(n) with n = 80. The output of the
function is the matrix H and the true vector θ0 (which represents θ(t)).
The observations are x = xT + w, where w is a white Gaussian noise
vector with variance σ2 = 1.

In Figure 5.3 we plot the original signal along with the observa-
tions x, and the clean convolved signal xT = Hθ0. The original signal
along with the estimates using the SURE principle and the discrepancy
method are plotted in Figure 5.4. To evaluate the gradient of the esti-
mate we used (5.46). Evidently, the SURE method leads to superior
performance. The MSE using the SURE approach in this example is
0.10 while the discrepancy strategy leads to an MSE of 1.16.

To summarize, we developed an unbiased estimate of the MSE in
multivariate exponential families by extending the SURE method. This
generalized principle can now be used in exponential multivariate esti-
mation problems to develop estimators with improved performance over
existing approaches. As an application, we demonstrated the use of this
technique in choosing regularization parameters in penalized inverse
problems.



6
Bounded Error Estimation

In this last section, we depart from the statistical model that was an
integral part of our discussion so far. Instead, we consider a bounded-
error setting in which the measurement error is bounded. Our goal is to
illustrate that estimation error approaches, as well as minimax meth-
ods, are relevant in this context as well and can be used to improve the
performance substantially over standard LS-based objectives. Further-
more, this approach can be applied even when a statistical model exists
by replacing the statistical relationship between the unknown parame-
ter and the observed data by an appropriate bounded-error constraint.
As we show, even though the constraint will not necessarily be satisfied
for all realizations, the bounded error methodology can still result in
estimates that dominate constrained ML in an MSE sense.

6.1 The Chebyshev Center

Our focus here is on the linear regression model x = Hθ0 + w, where
w is a noise vector which is not assumed to have any particular pdf.
Instead, we adopt the bounded error approach, also referred to as set-
membership estimation [109, 114], in which it is assumed that the noise

411
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is norm bounded. We further suppose that there is prior deterministic
information on θ0, in the form of constraints. For example, a popu-
lar assumption is that ‖Lθ0‖ ≤ η for some η > 0, where L is the dis-
cretization of a first or second-order differential operator that accounts
for smoothness properties of θ0 [73, 75]. Another example are interval
restrictions on the components of θ0. More generally, we assume that
θ0 lies in the set C defined by the intersection of k ellipsoids:

C = {θ0 : fi(θ0)
�
=θT

0 Qiθ0 + 2gT
i θ0 + di ≤ 0,1 ≤ i ≤ k}, (6.1)

where Qi � 0,gi ∈ R
m, and di ∈ R.

In these settings, the most popular estimation strategy is the con-
strained LS (CLS) approach, which minimizes the data error ‖x̂ − x‖2

between the estimated data x̂ = Hθ̂ and the measurement vector x,
subject to θ̂ ∈ C [17]. Thus θ̂CLS is the solution to

min
θ∈C

‖x − Hθ‖2. (6.2)

Clearly θ̂CLS is feasible, namely it satisfies the constraints defining our
prior knowledge. However, the fact that it minimizes the data error over
C does not mean that it leads to a small estimation error ‖θ̂ − θ0‖. In
fact, the simulations in Section 6.2.3 demonstrate that the resulting
error can be quite large. Furthermore, the CLS solution often lies on
the boundary of the set C. It is well known that if the noise is random,
then the MSE of such an estimate can be improved by moving away
from the boundary toward the center of C [22].

To design an estimator with improved performance, we would like to
directly control the estimation error θ̂ − θ0. Since no statistical assump-
tions are made at this stage, to achieve this goal, we assume that the
noise is norm-bounded ‖w‖2 ≤ ρ; note however that the estimator we
develop can also be used when w is random by choosing ρ propor-
tional to its variance. In fact, in Section 6.4 we show that in the iid
Gaussian setting such a choice results in an estimate that dominates
the corresponding CLS method. Our framework can also easily incor-
porate other constraints on w such as bounds on the magnitudes of
the individual components. The key to improving the performance, is
that instead of minimizing the data error, we suggest minimizing the
worst-case estimation error ‖θ̂ − θ0‖2 over all feasible solutions.
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Combining the restrictions on θ0 and w, the feasible parameter set,
which is the set of all possible values of θ0, is given by

Q = {θ0 : θ0 ∈ C,‖x − Hθ0‖2 ≤ ρ}. (6.3)

We assume throughout for simplicity that there is at least one point
in the interior of Q, and that HTH is invertible. Our criterion then
becomes

min
θ̂

max
θ∈Q

‖θ̂ − θ‖2, (6.4)

which is equivalent to finding the Chebyshev center (CC) [2, 139] of Q
defined as the center of the minimal radius ball enclosing the set. To
see this, note that (6.4) can be written equivalently as

min
θ̂,r

{r : ‖θ̂ − θ‖2 ≤ r for all θ ∈ Q}. (6.5)

For a given r, the set of all values of θ satisfying ‖θ̂ − θ‖2 ≤ r defines
a ball with radius

√
r and center θ̂. Thus, the constraint in (6.5) is

equivalent to the requirement that the ball defined by r and θ̂ encloses
the set Q. Since the minimization is over the squared-radius r, it follows
that the solution is the center of the minimum radius ball enclosing Q.
The squared radius of the ball is the optimal minimax value of (6.4).
This CC is illustrated in Figure 6.1, taken from [49], as the dotted
center. The filled area is the intersection of three ellipsoids and the
dotted circle is the minimum inscribing circle of the intersection of the
ellipsoids. Evidently, in contrast with the CLS method, the CC will lie
in the center of the set.

The discussion above motivates the use of the CC as a viable
alternative to CLS. Unfortunately, however, computing the center (6.4)
is a hard optimization problem. To better understand the intrinsic
difficulty, note that the inner maximization is a non-convex quadratic
optimization problem since we need to maximize a convex function.
Nonetheless, as we show in the ensuing sections, using semidefinite
relaxation ideas we can develop a pretty good approximation of the
Chebyshev solution, referred to as the relaxed CC (RCC). The RCC
can often be computed efficiently and leads to good squared-error
performance. Furthermore, in many cases it actually coincides with
the true CC [7, 8, 38, 49].



414 Bounded Error Estimation

−3 −2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Chebyshev center

minimum enclosing circle

Fig. 6.1 The Chebyshev center of the intersection of three ellipsoids.

6.2 The Relaxed Chebyshev Center

To develop the RCC estimator, denoted θ̂RCC, consider the inner max-
imization in (6.4):

max
θ

{‖θ̂ − θ‖2 : fi(θ) ≤ 0,0 ≤ i ≤ k}, (6.6)

where fi(θ), 1 ≤ i ≤ k are defined by (6.1), and f0(θ) = ‖x − Hθ‖2 − ρ

is defined similarly with Q0 = HTH, g0 = −HTx,d0 = ‖x‖2 − ρ. Thus,
the set Q can be written as

Q = {θ : fi(θ) ≤ 0,0 ≤ i ≤ k}. (6.7)

Denoting ∆ = θθT , and using the fact that θTQθ = Tr(∆Q) for any
Q, (6.6) can be written equivalently as

max
(∆,θ)∈G

{‖θ̂‖2 − 2θ̂
T
θ + Tr(∆)}, (6.8)

where

G = {(∆,θ) : fi(∆,θ) ≤ 0, 0 ≤ i ≤ k,∆ = θθT }, (6.9)
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and we defined

fi(∆,θ) = Tr(Qi∆) + 2gT
i θ + di, 0 ≤ i ≤ k. (6.10)

The objective in (6.8) is concave (linear) in (∆,θ), but the set G is not
convex, so that the problem (6.8) is not convex. To obtain a convex
relaxation of (6.8) we may replace G by the convex set

T = {(∆,θ) : fi(∆,θ) ≤ 0, 0 ≤ i ≤ k,∆ � θθT }. (6.11)

Here we have changed the nonconvex constraint ∆ = θθT to a convex
restriction ∆ � θθT . Indeed, using Schur’s lemma (see Lemma A.3 in
the Appendix) the latter constraint can be written as an LMI. The
RCC is the solution to the resulting minimax problem:

min
θ̂

max
(∆,θ)∈T

{‖θ̂‖2 − 2θ̂
T
θ + Tr(∆)}. (6.12)

The objective in (6.12) is concave (linear) in ∆ and θ and con-
vex in θ̂. Furthermore, the set T is convex and bounded. Therefore,
we can replace the order of the minimization and maximization (see
Appendix), resulting in the equivalent problem

max
(∆,θ)∈T

min
θ̂

{‖θ̂‖2 − 2θ̂
T
θ + Tr(∆)}. (6.13)

The inner minimization is a simple quadratic problem, whose optimal
value is θ̂ = θ. Thus, (6.13) reduces to

max
(∆,θ)∈T

{−‖θ‖2 + Tr(∆)}, (6.14)

which is a convex optimization problem with a concave objective and
LMI constraints. The RCC estimate is the θ-part of the solution to
(6.14).

The RCC is not generally equal to the CC of Q. An exception is
when k = 1 with the problem defined over the complex domain [8].
Since clearly G ⊆ T , we have that

min
θ̂

max
θ∈Q

‖θ̂ − θ‖2 = min
θ̂

max
(∆,θ)∈G{‖θ̂‖2−2θ̂

T
θ+Tr(∆)}

≤ min
θ̂

max
(∆,θ)∈T

{‖θ̂‖2 − 2θ̂
T
θ + Tr(∆)}. (6.15)
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Therefore the RCC provides an upper bound on the minimax value.
In Theorem 6.1 below we present an explicit representation of

the RCC, which is obtained by computing the dual of (6.14) [49].
Before we present this result, we note that if we denote Z = ∆ −
θθT in (6.14), then the RCC can be written more explicitly as the
solution to

max
Z,θ

Tr(Z)

s.t. ‖x − Hθ‖2 − ρ + Tr(HTHZ) ≤ 0;
fi(θ) + Tr(QiZ) ≤ 0, 1 ≤ i ≤ k;
Z � 0.

(6.16)

Thus, the RCC satisfies the constraints fi(θ) ≤ 0 with margins given
by Tr(HTH) and Tr(QiZ), which are maximized in some sense (these
constraints include both the prior restrictions and the measurement-
error bound). This ensures that the RCC approaches the center of the
constraint set.

Theorem 6.1. The RCC which is the solution to (6.14), is given by

θ̂RCC = −
(

k∑
i=0

αiQi

)−1( k∑
i=0

αigi

)
, (6.17)

where (α0, . . . ,αk) is an optimal solution of the following convex opti-
mization problem in k + 1 variables:

min
αi


(

k∑
i=0

αigi

)T ( k∑
i=0

αiQi

)−1( k∑
i=0

αigi

)
−

k∑
i=0

diαi


s.t.

k∑
i=0

αiQi � I,

αi ≥ 0, 0 ≤ i ≤ k.

(6.18)
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Note that (6.18) can be cast as an SDP

min
αi

{
t −

k∑
i=0

diαi

}

s.t.


k∑

i=0

αiQi

k∑
i=0

αigi

k∑
i=0

αigT
i t

 � 0,

k∑
i=0

αiQi � I,

αi ≥ 0, 0 ≤ i ≤ k.

(6.19)

Therefore, the RCC can be determined efficiently using standard SDP
solvers such as SeDuMi [133], SDPT3 [138] or CVX [68].

An important feature of the RCC estimate is that it is unique, and
feasible, meaning it resides in the set Q [49].

6.2.1 Modeling of Linear Constraints

There are many signal processing examples in which there are inter-
val constraints on the elements of θ0. In this section we address the
question of how to best represent such restrictions.

Specifically, suppose that one of the constraints defining the set Q
is a double-sided linear inequality of the form:


 ≤ aT θ0 ≤ u, (6.20)

where 
 < u and a ∈ R
m is a nonzero vector. The constraint (6.20) can

also be written in quadratic form as

(aT θ0 − 
)(aT θ0 − u) ≤ 0. (6.21)

An important question that arises is whether or not the RCC depends
on the specific representation of the set Q. Clearly the CLS and CC
estimates are independent of the representation of Q, as they depend
only the set Q itself. However, the RCC estimate is more involved
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as it is a result of a relaxation of Q, so that different characteri-
zations may lead to different relaxed sets. In [49] it is shown that
indeed the RCC depends on the specific form of Q chosen. Fur-
thermore, the quadratic representation (6.21) is better than the lin-
ear characterization (6.20) in the sense that the resulting minimax
value is smaller. Consequently, in the presence of several double sided
linear constraints, it is best to represent all of them as quadratic
restrictions.

In practice, the linear representation often provides a much looser
bound on the squared radius of the minimum enclosing circle. A typical
example, taken from [49], can be seen in Figure 6.2. The filled region
describes the intersection of a randomly generated ellipsoid E with the
box [−1,1] × [−1,1]. The asterisk in Figure 6.2(a) is the RCC when
the box constraints are modeled as x2

i ≤ 1, i = 1,2, while the asterisk in
Figure 6.2(b) is the RCC using the representation −1 ≤ xi ≤ 1, i = 1,2.
Clearly, the RCC using the linear representation is far from the center
of the filled region (actually, it is on the boundary of the area!). In
contrast, the RCC corresponding to the quadratic representation seems
like a good measure of the center of the set. The minimax value in the
linear choice was approximately 37% higher than that resulting from
the quadratic representation.
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Fig. 6.2 The RCC of the intersection of an ellipsoid with the box [−1,1] × [−1,1] using a
quadratic representation (a) and a linear representation (b).
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6.2.2 Relation To The CLS

The RCC estimate was based on the prior information θ0 ∈ C with C
given by (6.1), and the bounded error constraint ‖x − Hθ0‖2 ≤ ρ. The
CLS estimate, which is the solution to (6.2), tries to minimize the noise
(or the data error) over θ0 ∈ C. As we show in this section, there are
some interesting relationships between the two approaches.

To obtain a more explicit expression for the CLS estimate we can
compute the dual of (6.2), from which we conclude that

θ̂CLS = −
(

Q0 +
k∑

i=1

αiQi

)−1(
g0 +

k∑
i=1

αigi

)
, (6.22)

where (α1, . . . ,αk) is an optimal solution of the following convex opti-
mization problem in k variables:

min
αi


(

g0 +
k∑

i=1

αigi

)T (
Q0 +

k∑
i=1

αiQi

)−1(
g0 +

k∑
i=1

αigi

)

−d0 −
k∑

i=1

diαi

}
s.t. αi ≥ 0, 1 ≤ i ≤ k.

Comparing with Theorem 6.1 we see that the RCC and CLS estimators
have very similar structures. However, in the CLS, α0 = 1 whereas in
the RCC it is a solution to an optimization problem. Furthermore, the
RCC has an additional LMI constraint.

Another interesting observation is that the CLS can also be obtained
as a relaxation of the CC [49]. However, this relaxation is looser than
that of the RCC meaning that the resulting bound on the minimax
value is larger. To see this, note that the RCC was obtained by replacing
θ ∈ Q (corresponding to θ ∈ C and ‖x − Hθ‖2 ≤ ρ) by the equivalent
set (θ,∆) ∈ G with G given by (6.9), and then relaxing the non-convex
constraint in G to obtain the convex set T of (6.11). The CLS can be
viewed as a relaxed CC where G is replaced by a different convex set
V, that is larger than T . To obtain V, note that G can be written as

G = {(∆,θ) : θ ∈ C,
Tr(HTH∆) − 2xTHT θ + ‖x‖2 − ρ ≤ 0,∆ = θθT }. (6.23)
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In this representation we substituted ∆ = θθT only in the noise con-
straint, but not in the restrictions θ ∈ C. Relaxing the non-convex
equality leads to the relaxed convex set

V = {(∆,θ) : θ ∈ C,
Tr(HTH∆) − 2xTHT θ + ‖x‖2 − ρ ≤ 0,∆ � θθT }. (6.24)

Evidently, the relaxation affected only the noise constraint and not
those in C. This results in a set V that includes the set T of (6.11). The
following theorem establishes that θ̂CLS is the solution to the resulting
minimax problem.

Theorem 6.2. The CLS estimate of (6.2) is the same as the relaxed
Chebyshev center

min
θ̂

max
(∆,θ)∈V

{‖θ̂‖2 − 2θ̂
T
θ + Tr(∆)}. (6.25)

As in (6.16), we can substitute Z = ∆ − θθT into (6.25) and obtain a
more explicit representation:

max
Z,θ

Tr(Z)

s.t. ‖x − Hθ‖2 − ρ + Tr(HTHZ) ≤ 0;
fi(θ) ≤ 0, 1 ≤ i ≤ k;
Z � 0.

(6.26)

Here we see that the CLS solution satisfies the measurement error con-
straint with a margin dictated by Tr(HTHZ). However, no margin is
enforced on the other prior requirements. This leads to the fact that the
CLS often lies on the boundary of the prior constraint set, in contrast
to the RCC solution (6.16) in which a margin is enforced on the prior
constraints as well.

6.2.3 Example

We now demonstrate the performance of the RCC approach via an
example.

We consider a discretization of the heat integral equation imple-
mented in the function heat(90,1) from the “Regularization Tools”



6.3 Special Cases 421

Matlab package [74]. In this case, Hθ0 = g, where H ∈ R
90×90 and

θ0,g ∈ R
90. The true vector θ0 is shown in Figure 6.3 (True Signal)

and resides in the set

C = {θ ∈ R
90 : θ ≥ 0,θT1 ≤ η}, (6.27)

where 1 is the vector of all ones. The observed vector is given by x =
g + w, where the elements of w are zero-mean, independent Gaussian
random variables with standard deviation 0.001. Both g and x are
shown in Figure 6.3 (Observation).

To compute the RCC, we chose the set Q as

Q = {‖Hθ − x‖2 ≤ ρ,θ ∈ C}

with ρ = α‖w‖2 for some constant α, and η = α(
∑90

i=1 θi). We then used
the following quadratic representation of C:

{θ ∈ R
90 : θi(θi − η) ≤ 0,(θT1)2 ≤ η2, i = 1, . . . ,90}.

For comparison, we computed the CLS estimate which is the solution
to min{‖Hθ − x‖2 : θ ∈ C}.

The results of the RCC and CLS estimates for α = 2 and α = 10 are
shown at the bottom of Figure 6.3. Evidently, the RCC approach leads
to the best performance. The squared error of the CLS estimate was
196 times larger than that of the RCC solution for α = 2, and 55 times
larger when α = 10. As expected, the performance of both methods is
better when α = 2. However, it is interesting to note that even when
α = 10, so that extremely loose prior information is used, the RCC
results in very good behavior.

6.3 Special Cases

In this section we treat some special cases in which a more explicit
expression for the RCC can be obtained.
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Fig. 6.3 Comparison between the RCC and CLS estimates.

6.3.1 IID Setting

Consider estimating θ0 from x = θ0 + w, where ‖w‖2 ≤ ρ, and ‖θ0‖2 ≤
η. A simple calculation shows that the CLS estimate is given by

θ̂CLS =

x, ‖x‖2 ≤ η;√
η

xTx
x, ‖x‖2 ≥ η.

(6.28)

In this special case the CC can be computed exactly. When m = 1
the set Q is just an interval in R, and therefore the CC is its mid-point.
When m ≥ 2, it can be shown that the RCC is the exact CC [5, 38].
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From (6.16), the Chebyshev estimate is therefore the solution to

max
θ,t≥0

t

s.t. ‖x − θ‖2 + t ≤ ρ

‖θ‖2 + t ≤ η,

(6.29)

where we denoted t = Tr(Z). Therefore, the CC tries to move the solu-
tion toward the center of the constraints: each constraint is satisfied
with a margin of t and the aim is to maximize this gap. Clearly, this
will move the solution away from the boundary of the set (unless the
optimal t is t = 0).

Interestingly, from (6.26) the CLS solution can be written in a sim-
ilar form:

max
θ,t≥0

t

s.t. ‖x − θ‖2 + t ≤ ρ

‖θ‖2 ≤ η.

(6.30)

Comparing (6.29) and (6.30) highlights the fundamental difference
between the two strategies: In the CLS the margin is only on the data
error constraint while in the CC formulation both restrictions are sat-
isfied with a gap.

Problem (6.29) is a simple convex optimization problem and there-
fore can be solved using duality theory which leads to the solution

θ̂CC =
1
2

[
1 − γ

‖x‖2

]
[0,2]

x. (6.31)

Here γ = ρ − η, and we used the notation

x[a,b] =


x, a ≤ x ≤ b;
a, x ≤ a;
b, x ≥ b.

(6.32)

It is interesting to note that θ̂CC has a similar form to the James–
Stein estimate (4.19). An important difference is the factor of 1/2 that
appears in (6.31). This factor can be explained in an empirical Bayes
setting [36, 38]. Specifically, suppose that θ0 is a Gaussian vector con-
sisting of iid elements with variance τ , and that w = x − θ0 is com-
prised of iid Gaussian variables with variance σ. If τ and σ are known,
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then the minimum MSE estimate of θ0 from x is

θ̂ =
τ

σ + τ
x. (6.33)

Empirical Bayes methods are based on using (6.33) in conjunction with
estimates for τ and σ.

Since from (6.31) the Chebyshev estimate depends only on the dif-
ference ρ − η, we assume that σ − τ is given. Using the fact that for
large m, ‖θ0‖2 → mσ and ‖w‖2 → mτ , we choose

σ − τ =
ρ − η

m
. (6.34)

Expressing the minimum MSE estimate of (6.33) as:

θ̂ =
τ

σ + τ
x =

1
2

(
1 − σ − τ

σ + τ

)
x, (6.35)

and using (6.34) together with the fact that in the limit of large m,
xTx → m(σ + τ), results in the unrestricted Chebyshev estimate (i.e.,
without limiting the shrinkage to the interval [0,2]).

The iid setting considered here reveals some of the essential prop-
erties of the Chebyshev approach: the estimate is in the center of the
set rather than the boundary, the measurement constraints and prior
constraints are treated equally, namely both are required to be satisfied
with a gap and not only the measurement error restriction, and finally
the CC can be interpreted in a Bayesian setting where both the error
and the unknown vector are random, with unknown variances. We only
assume that the variance difference is given. In Section 6.4 we show that
when w is an iid Gaussian vector and ρ is chosen appropriately, the
CC dominates the CLS solution.

6.3.2 Bounded-Norm Prior

The second special case we focus on is when the prior knowledge on θ0

is a single bounded-norm constraint of the form ‖Lθ0‖2 ≤ η. In this case
it is shown in [8] that the RCC is the exact CC when θ0 is defined over
the complex domain. Over the reals, a sufficient condition is developed
to guarantee that the RCC is the exact CC. Furthermore, an efficient
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algorithm based on the ellipsoid method [12] is provided to compute
the RCC.

When L = I, the task of calculating the RCC estimator reduces to
a single-variable convex minimization problem [8].

Proposition 6.3. Let L = I and denote δ = λmin(HTH). Then the
RCC estimator is given by

θ̂RCC =
{

(HTH + λI)−1HTx, 0 ≤ λ < ∞
0, λ = ∞,

where λ is determined as follows1:

(i) if δ > 0, then λ = 1/µ − δ, where µ is the solution of the convex
minimization problem

min
0≤µ≤1/δ

{(1 − δµ)η

+µ(ρ − ‖x‖2) + µ2xTH(µ(HTH − δI) + I)−1HTx
}

;

(6.36)

(ii) if δ = 0, then λ = 1/ξ, where ξ is the solution of the convex
minimization problem

min
ξ≥0

{
ξ(ρ − ‖x‖2) + ξ2xTH(ξHTH + I)−1HTx

}
. (6.37)

6.4 Statistical Analysis

6.4.1 Domination in the IID Gaussian Setting

Until now we did not assume a specific statistical model on the noise
w. Interestingly, it can be shown that for the iid Gaussian model
x = θ0 + w, where w is a vector consisting of zero-mean iid Gaussian
random variables, the value of ρ can be chosen such that the resulting
CC dominates the CLS solution in terms of MSE over all ‖θ0‖2 ≤ η.
Thus, despite the fact that the CC is derived based on deterministic

1 We use the standard terminology a/0 = ∞ whenever a > 0.
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considerations, it can be used as a viable alternative to constrained ML
techniques when a statistical model is given.

Domination of the CC estimate (6.31) over the CLS solution (6.28)
is discussed in detail in [23]. Clearly the performance of the CC will
depend on the choice of ρ. When the noise is Gaussian, w is not norm
bounded, and therefore in order to satisfy the constraint ‖x − θ0‖2 ≤ ρ

for all possible x we would need to choose ρ = ∞ which yields the trivial
estimate θ̂ = 0. In practice, we do not enforce the constraint for all x,
but rather choose ρ large enough so that for “reasonable” noise vectors
it is satisfied. An intuitive choice is to select ρ equal to the expected
value of the constraint:

ρ = E
{
‖x − θ0‖2} = E

{
‖w‖2} = nσ2, (6.38)

where n is the length of θ0. Interestingly, this choice is sufficient to
guarantee domination of the resulting CC over the CLS solution.

The proof of domination is based on the fact that under certain
technical conditions, for general shrinkage estimates, i.e., estimates of
the form θ̂ = µ(‖x‖2)x for some function µ, domination over the sphere
‖θ0‖2 ≤ η follows from domination over the boundary ‖θ0‖2 = η. Since
the MSE of θ̂ in our case depends on θ0 only through its norm, this
implies that to guarantee domination over the CLS solution it is suf-
ficient to select ρ such that domination holds for some value θ0 with
‖θ0‖2 = η. As shown in [23], there are many possible choices of ρ that
will ensure domination. One such possibility is the value given by (6.38).

It would be interesting to extend the statistical analysis beyond the
iid setting, to the general linear model x = Hθ0 + w, and to include
more general restrictions on the parameter vector θ0. Whether or not
domination over CLS continues to hold in this more general setting has
not yet been established. However, the example in Section 6.2.3 demon-
strates that the RCC can substantially improve the MSE performance
in Gaussian noise even in more general linear models.

6.4.2 Extension to General Statistical Models

In the previous section we showed that even though the CC is based
on deterministic considerations, in the Gaussian setting it can be used
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to derive dominating methods in terms of MSE. We now suggest some
ideas on how to extend the CC approach to more general statistical
models.

Suppose we are given data x that is related to the unknown parame-
ter θ0 through a pdf p(x;θ0). This is the model we considered through-
out the survey. In addition, θ0 is known to lie in the set C defined by
(6.1). The constrained ML approach in this setting is to seek the esti-
mate θ̂ that maximizes the likelihood over C:

max
θ∈C

p(x;θ). (6.39)

In order to improve its MSE performance, we would like to use the CC
methodology. The question is how to translate the relationship between
x and θ into a constraint that can be included in the set C. One possi-
bility is to bound the likelihood so as to ensure that θ explains the data
to some extent. Thus we may construct the set Q of (6.7) by adding
the restriction p(x;θ) ≥ α for some suitable choice of α. Alternatively,
we can rely on the fact that under suitable regularity conditions the
ML solution to the unconstrained problem θ̂ML = maxp(x;θ) is asymp-
totically unbiased and distributed as a Gaussian random vector with
covariance given by the inverse Fisher information matrix. Therefore,
the ellipsoid

(θ̂ML − θ)TJ−1(θ)(θ̂ML − θ) ≤ ρ, (6.40)

serves as a confidence interval for the true unknown value θ. Thus, we
can use this constraint together with the set C in order to determine
the CC estimate. Note, that in general the Fisher information matrix J
depends on θ. If the dependency results in a non-convex constraint, we
can replace θ by the ML estimate and define the quadratic restriction

(θ̂ML − θ)TJ−1(θ̂ML )(θ̂ML − θ) ≤ ρ. (6.41)

To conclude this section, we focused here on a new estimation strat-
egy that attempts to minimize the estimation error when there are
constraints on the true parameter value, in contrast to previous regular-
ization strategies which invoke a data-error based criterion. We showed
how to convert the resulting minimax problem into a convex formu-
lation, which is a pretty good approximation of the original problem.
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Several further extensions of these ideas as well as numerical issues are
treated in [8]. We also discussed how this methodology can be extended
to a statistical setting, and showed that in the iid Gaussian case this
method dominates the standard CLS solution. Thus, despite the fact
that the CC approach is deterministic in nature, it can yield improved
MSE performance over constrained ML techniques when a statistical
model exists.
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Notations and Acronyms

We summarize here the notation and acronyms used throughout the
survey.

We denote vectors in R
m by boldface lowercase letters, e.g., x, and

matrices in R
n×m by boldface uppercase letters, e.g., A. The identity

matrix of appropriate dimension is written as I, diag(δ1, . . . , δm) is an
m × m diagonal matrix with diagonal elements δi, (·)T is the transpose
of the corresponding matrix, and (̂·) is an estimated vector or matrix.
The ith component of a vector θ is denoted by θi. The true value of
an unknown vector parameter θ is written as θ0, and the true value
of an unknown scalar parameter θ is denoted by θ0. The gradient of
the function f(θ) evaluated at the point θ is written as df(θ)/dθ, and
is a row vector with jth element equal to df(θ)/dθj . The gradient of
a vector db(θ)/dθ is a matrix, with ijth element equal to dbi(θ)/dθj ,
i.e., the derivative of the ith component of the vector b(θ) with respect
to θj . For a square matrix A, Tr(A) is the trace of A, A � 0 (A � 0)
means that A is symmetric and positive (nonnegative) definite, and
A � B means that A − B � 0. The largest and smallest eigenvalues
of A are denoted by λmax(A) and λmin(A). The standard Euclidean
norm is denoted ‖x‖2 = xTx and ‖x‖2

Q = xTQx is the weighted
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norm with weighting Q. The range space of a matrix A is written
as R(A).

Following is a list of the most frequently used acronyms:

• BME — blind minimax estimator
• CC — Chebyshev center
• CRB — Cramér–Rao bound
• EBME — ellipsoidal BME
• iid — independent, identically-distributed
• LMI — linear matrix inequality
• LS — least squares
• ML — maximum likelihood
• MSE — mean-squared error
• MVU — minimum variance unbiased
• RCC — relaxed Chebyshev center
• SBME — spherical BME
• SURE — Stein’s unbiased risk estimate
• UCRB — uniform CRB.



A
Convex Optimization Methods

The mathematical machinery behind the estimation ideas presented in
this survey is that of convex optimization. In this appendix, we briefly
review the basics of this theory with an emphasize on the tools needed
in our presentation. Most of the material is taken from [12, 16, 20]. The
presentation largely follows [143].

A.1 Convex Sets, Functions, and Problems

We begin with the formal definitions of convex sets and convex func-
tions (see Figure A.1):

Definition A.1. A set C is convex if for any x1 ∈ C, x2 ∈ C and
0 < λ < 1, we have λx1 + (1 − λ)x2 ∈ C.

A function f(x) is (strictly) convex in x if for every x1 and x2 in
its domain and 0 < λ < 1, we have f(λx1 + (1 − λ)x2)(<) ≤ λf(x1) +
(1 − λ)f(x2).

These two definitions are the building blocks for convex optimiza-
tion methods which are aimed at minimizing convex functions over
convex sets.
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convex non-convex

f(x)f(x)

Fig. A.1 Convex sets and functions.

An important property of a convex function is that any local min-
imum is also a global minimum. Therefore, if f(x) is a differentiable
convex function of x, and df(x)/dx = 0 at a point x∗, then x∗ is a global
minimum of f(x). Furthermore, if f(x) is a strictly convex function,
then the minimum is unique. In several occasions throughout this sur-
vey, we determine an optimal solution by explicitly setting the deriva-
tive of a convex objective to 0. In this context, we make use of the
following rule: For any symmetric matrix A,

dTr(BABT )
dB

= 2BA. (A.1)

Often, in optimization problems there are constraints on the possi-
ble values of the input x, resulting in constrained optimization. Con-
sider the following general optimization problem

P :

{
min

x
f(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ N,
(A.2)

and denote its optimal solution by xopt, assuming it is attained. If f(x)
and fi(x) for 1 ≤ i ≤ N are convex functions then we call P a stan-
dard convex optimization problem. In general there may be equality
constraints which must be linear in order to ensure convexity; how-
ever, here we focus on inequalities. The problem is said to be feasible if
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there exists an x satisfying fi(x) ≤ 0,1 ≤ i ≤ N . It is strictly feasible if
fi(x) < 0,1 ≤ i ≤ N for some x. It is well known that in such programs
a local minimum is also a global minimum. Therefore, we can resort to
local optimization methods and under relatively mild conditions solve
the problem efficiently.

A.2 Duality Theory

Convex optimization methods provide efficient numerical algorithms
but also analytical insight through the use of Lagrange duality theory.
The first step in deriving this duality is associating a Lagrangian with
problem (A.2):

L(x;λ) = f(x) +
N∑

i=1

λifi(x), (A.3)

where λ = (λ1, . . . ,λN )T is a vector with the Lagrange dual variables.
The dual function is defined as

g(λ) = min
x
L(x;λ), (A.4)

and the dual program by

D :
{

maxλ g(λ)
s.t. λi ≥ 0, 1 ≤ i ≤ N.

(A.5)

The importance of duality theory stems from the following weak
inequality:

g(λopt) ≤ f(xopt), (A.6)

where λopt is the optimal solution to D (assuming it is attained). Thus,
the dual program provides a lower bound on the optimal value of the
primal program. This is useful as the dual is always a convex optimiza-
tion problem which may be easier to solve than the original primal
problem. In fact, the inequality holds for any feasible dual variable
λ and not only for λopt. This is an important property that allows
to bound the gap between the optimal solution and any suboptimal
approach.
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Moreover, under simple technical conditions strong duality holds,
namely there exists equality in (A.6). To state the results more formally
we need the following definition:

Definition A.2 (Constraint qualification). A convex problem of
the form (A.2) satisfies the constraint qualification if it is strictly fea-
sible, and bounded from below.

Using this definition, we have the following important result:

Theorem A.1 (Strong duality in convex programming). Let
(A.2) be a convex program which satisfies the constraint qualification in
Definition A.2. Then the optimal value of (A.5) is attained and strong
duality holds, i.e., g(λopt) = f(xopt).

Strong duality allows us to find the optimal value of P by solving
D. This may be advantageous when P is more complicated, or when
we prefer to solve a maximization over a minimization. For example,
duality can transform a minimax problem into a double minimization
by replacing the inner maximization with its dual. One of the main
disadvantages of solving P via D is that although their optimal values
are the same, it is not always trivial to find the optimal solution xopt

as a function of λopt.
Duality theory also leads to necessary and sufficient optimality

conditions that often lead to further insight into the problem, or to
closed form solutions. The most common are the Karush–Kuhn–Tucker
(KKT) conditions1:

Definition A.3 (KKT conditions). The KKT conditions associ-
ated with (A.2) are that there exist a dual vector λ � 0 such that

(1) Complementary slackness: λifi(x) = 0 for 1 ≤ i ≤ N .

(2) Zero derivative of the Lagrangian: dL(x;λ)
dx = 0, where L(x;λ)

is defined by (A.3).

1 We assume that all the functions are differentiable.
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The importance of this condition in convex programming lies in the
following result:

Theorem A.2 (KKT conditions in convex programming). Let
(A.2) be a convex program, and let x∗ be a feasible solution. Then the
KKT conditions are sufficient for x∗ to be optimal. Moreover, if the con-
straint qualification in Definition A.2 holds, then the KKT conditions
are also necessary.

A.3 Semidefinite Programs

The most common convex program is probably the linear program
(LP), i.e., an optimization with a linear objective function and linear
(affine) constraints:

LP :

{
min

x
fTx

s.t. Aix + bi � 0, 1 ≤ i ≤ N.
(A.7)

Here the inequality is an element-wise inequality. One of the main
advances in modern convex optimization methods is the generaliza-
tion of the results and algorithms for LP to conic programming, where
the scalar inequalities are replaced by generalized conic inequalities.

In this survey, the main conic program we discuss is the semidefinite
program (SDP), which is based on the notion of positive semi-definite
matrices [141]. SDPs rely on the fact that the set X � 0 is convex in
X. The standard form of an SDP is

SDP :

{
min

x
fTx

s.t. A0 +
∑N

i=1xiAi � 0,
(A.8)

where Ai for 0 ≤ i ≤ N are symmetric matrices. The constraint in (A.8)
is called a linear matrix inequality (LMI). LMIs are inequalities of the
form G(x) � 0, where G(x) is linear in x. Once a problem is formu-
lated as an SDP, standard software packages, such as the Self–Dual–
Minimization (SeDuMi) [133], SDPT3 [138] or CVX [68], can be used
to solve the problem in polynomial time within any desired accuracy.
In practice though, SDPs with large matrices are difficult to solve.
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Except for some slight differences, duality theory can be generalized
to deal with conic programs. The main difference is the definition of
the dual variables and the Lagrangian. With each conic inequality we
associate a dual variable of the dual cone (in LP and SDP the dual
cone is the cone itself). The Lagrangian is obtained by using the inner
product with respect to that cone. Duality theory for SDP is used
frequently and there are many good references on this topic [141]. The
main idea is to associate a dual matrix variable Π � 0 to each LMI
constraint, and define the Lagrangian as

L(x;Π) = fTx − Tr

(
Π

(
A0 +

N∑
i=1

xiAi

))
. (A.9)

Note that the Lagrangian is formulated by subtracting the term result-
ing from the constraint. This element is subtracted instead of added
(as in regular convex programming) because the cone is defined as
a “greater than or equal” generalized inequality and not as a “less
than or equal” inequality. The dual function is defined as before
g(Π) = minxL(x;Π), and the dual program is obtained by maximizing
g(Π) over Π � 0. The resulting dual turns out to also be an SDP. Conic
duality theory states that under the constraint qualification condition
in Definition A.2, the optimal values of the dual and primal programs
are equal and attained; furthermore, the KKT conditions are necessary
and sufficient for optimality of a feasible x.

Although not always immediate or trivial, many practical optimiza-
tion problems can be transformed into a standard conic program, and
in particular to an SDP. An important lemma which often allows such
a transformation is Schur’s lemma [19, p. 28].

Lemma A.3 (Schur’s Lemma). Let

M =
(
X YT

Y Z

)
be a Hermitian matrix. Then M � (�) 0 if and only if Z � (�) 0, X −
Y∗Z†Y � (�) 0 and YT (I − ZZ†) = 0. Equivalently, M � (�) 0 if and
only if X � (�) 0, Z − YX†YT � (�) 0, and Y(I − XX†) = 0.
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One of the uses of this lemma is in transforming quadratic con-
straints into standard LMIs. As a simple example, Schur’s lemma may
be used to transform the quadratic constraint Π � wwT into the LMI(

Π w
wT I

)
� 0. (A.10)

Another important lemma is the following [12, p. 163]:

Lemma A.4. Let A be a symmetric matrix. The condition xTAx +
2bTx + c ≥ 0 holds for all x if and only if(

A b
bT c

)
� 0. (A.11)

A.3.1 Semidefinite Relaxation

In many practical problems it is difficult (or even provably impossible)
to transform the problem into a convex form. In this case, a promising
alternative is convex relaxation which approximates the problem by
omitting the non-convex constraints. This approach is rather straight-
forward but will not necessarily lead to acceptable behavior. One of
the tricks to improve the performance is to first lift the problem into
a higher dimension and only then apply the relaxation. In many cases,
this considerably improves the result.

A particular method is semidefinite relaxation (SDR) [12, 141] in
which non-convex quadratic constraints are linearized in the space of
semidefinite matrices. For example, consider the following non-convex
problem:

P :

{
max

x
xTA0x

s.t. xTAix + 2bT
i x + ci ≤ 0, 1 ≤ i ≤ N.

(A.12)

where Ai � 0, 0 ≤ i ≤ N . The problem is non-convex due to the max-
imization of a convex function. To try and solve this problem, we can
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reformulate it by defining X = xxT :


max
x,X

TrA0X

s.t. Tr(XAi) + 2bT
i x + ci ≤ 0, 1 ≤ i ≤ N

X � 0
rank(X) = 1.

(A.13)

So far, we just complicated the problem using additional matrix vari-
ables. However, now the objective is linear in X, and the constraints
are linear in x and X. The only non-convex constraint is rank(X) = 1.
Omitting it yields the SDR:

SDR :


max
x,X

TrA0X

s.t. Tr(XAi) + 2bT
i x + ci ≤ 0, 1 ≤ i ≤ N

X � 0,

(A.14)

which is a convex relaxation of (A.12). If the optimal solution of the
SDR is of rank-one, then we say that the relaxation is tight and we
obtain an optimal solution for the original problem. Otherwise, we get
a bound on the optimal value of the original problem.

One of the interesting properties of the SDR is that, in some cases,
the same relaxation may be obtained using Lagrange duality theory. In
particular, the SDR is often the convex bidual (dual of the dual) of the
original problem. Indeed, for any optimization problem (not necessarily
convex) there is a convex Lagrange dual program. The optimal value
of the dual program is a bound on the optimal value of the original
program. If the original problem was convex, then the bidual is usually
the original problem itself (or a very similar problem with some change
of variables). In non-convex programs, the bidual cannot be exactly the
original problem, since it is always a convex program. Therefore, the
bidual is considered as a standard technique to convexify non-convex
problems. The interesting result is that in the example above, the bidual
is exactly the SDR. There are a few examples of non-convex problems
with a tight SDR. If it is also the Lagrange bidual, then this means
that strong duality holds even though the problem is non-convex [7].
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A.4 Minimax Problems

One of the important tools in convex optimization is minimax theory.
It is a main ingredient in the derivation of Lagrange duality (where
we minimize with respect to the primal variables, and maximize with
respect to the dual variables). Furthermore, it is applicable in robust
optimization problems which aim in optimizing worst case performance.
The main result in this theory is given in the following proposition [123].

Proposition A.5. Let X and Y be convex compact sets, and let
f(x,y) be a continuous function which is convex in x ∈ X for every
fixed y ∈ Y and concave in y ∈ Y for every fixed x ∈ X . Then,

min
x∈X

max
y∈Y

f(x,y) = max
y∈Y

min
x∈X

f(x,y),

and we can replace the order of the minimization and the maximization.

There are many variants of Proposition A.5 under weaker condi-
tions. In particular, it is sufficient that only one of the sets will be
compact, and convexity may be replaced by quasi-convexity.
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