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This chapter generalizes compressed sensing (CS) to reduced-rate sampling of

analog signals. It introduces Xampling, a unified framework for low rate sam-

pling and processing of signals lying in a union of subspaces. Xampling consists

of two main blocks: Analog compression that narrows down the input bandwidth

prior to sampling with commercial devices followed by a nonlinear algorithm that

detects the input subspace prior to conventional signal processing. A variety of

analog CS applications are reviewed within the unified Xampling framework

including a general filter-bank scheme for sparse shift-invariant spaces, periodic

nonuniform sampling and modulated wideband conversion for multiband com-

munications with unknown carrier frequencies, acquisition techniques for finite

rate of innovation signals with applications to medical and radar imaging, and

random demodulation of sparse harmonic tones. A hardware-oriented viewpoint

is advocated throughout, addressing practical constraints and exemplifying hard-

ware realizations where relevant.

3.1 Introduction

Analog-to-digital conversion (ADC) technology constantly advances along the

route that was delineated in the last century by the celebrated Shannon-Nyquist

[1, 2] theorem, essentially requiring the sampling rate to be at least twice the

highest frequency in the signal. This basic principle underlies almost all digital

signal processing (DSP) applications such as audio, video, radio receivers, wire-

less communications, radar applications, medical devices, optical systems and

more. The ever growing demand for data, as well as advances in radio frequency

(RF) technology, have promoted the use of high-bandwidth signals, for which the

rates dictated by the Shannon-Nyquist theorem impose demanding challenges on

the acquisition hardware and on the subsequent storage and DSP processors. A

holy grail of compressed sensing (CS) is to build acquisition devices that exploit

signal structure in order to reduce the sampling rate, and subsequent demands

on storage and DSP. In such an approach, the actual information contents should

dictate the sampling rate, rather than the ambient signal bandwidth. Indeed, CS

was motivated in part by the desire to sample wideband signals at rates far below
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the Shannon-Nyquist rate, while still maintaining the vital information encoded

in the underlying signal [3, 4].

At its core, CS is a mathematical framework that studies rate reduction in

a discrete setup. A vector x of length n represents a signal of interest. A mea-

surement vector y = Ax is computed using an m× n matrix A. In a typical

CS setup m� n, so that there are fewer measurements in y than the ambient

dimension of x. Since A is non-invertible in this setting, recovery must incorpo-

rate some prior knowledge on x. The structure that is widely assumed in CS is

sparsity, namely that x has only a few nonzero entries. Convex programming,

e.g., `1 minimization, and various greedy methods have been shown successful

in reconstructing sparse signals x from short measurement vectors y.

The discrete machinery nicely captures the notion of reduced-rate sampling by

the choice m� n and affirms robust recovery from incomplete measurements.

Nevertheless, since the starting point is of a finite-dimensional vector x, one

important aspect is not clearly addressed – how to actually acquire an analog

input x(t) at a low rate. In many applications, our interest is to process and rep-

resent signals which arrive from the physical domain and are therefore naturally

represented as continuous-time functions rather than discrete vectors. A concep-

tual route to implementing CS in these real-world problems is to first obtain a

discrete high-rate representation using standard hardware, and then apply CS

to reduce dimensionality. This, however, contradicts the motivation at the heart

of CS: reducing acquisition rate as much as possible. Achieving the holy grail

of compressive ADCs requires a broader framework which can treat more gen-

eral signal models including analog signals with various types of structure, as

well as practical measurement schemes that can be implemented in hardware.

To further gain advantage from the sampling rate decrease, processing speed in

the digital domain should also be reduced. Our goal therefore is to develop an

end-to-end system, consisting of sampling, processing and reconstruction, where

all operations are performed at a low rate, below the Nyquist-rate of the input.

The key to developing low-rate analog sensing methods is relying on structure

in the input. Signal processing algorithms have a long history of leveraging struc-

ture for various tasks. As an example, MUSIC [5] and ESPRIT [6] are popular

techniques for spectrum estimation that exploit signal structure. Model-order

selection methods in estimation [7], parametric estimation and parametric fea-

ture detection [8] are further examples where structure is heavily exploited. In

our context, we are interested in utilizing signal models in order to reduce sam-

pling rate. Classic approaches to sub-Nyquist sampling include carrier demodu-

lation [9], undersampling [10] and nonuniform methods [11–13], which all assume

a linear model corresponding to a bandlimited input with predefined frequency

support and fixed carrier frequencies. In the spirit of CS, where unknown nonzero

locations results in a nonlinear model, we would like to extend the classical treat-

ment to analog inputs with unknown frequency support, as well as more broadly

to scenarios that involve nonlinear input structures. The approach we take in this

chapter follows the recently proposed Xampling framework [14], which treats a
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nonlinear model of union of subspaces (UoS). In this structure, originally intro-

duced by Lu an Do [15], the input signal belongs to a single subspace out of

multiple, possibly even infinitely many, candidate subspaces. The exact subspace

to which the signal belongs is unknown a-priori.

In Section 3.2, we motivate the use of UoS modeling by considering two exam-

ple sampling problems of analog signals: an RF receiver which intercepts mul-

tiple narrowband transmissions, termed multiband communication, but is not

provided with their carrier frequencies, and identification of a fading channel

which creates echoes of its input at several unknown delays and attenuations.

The latter example belongs to a broad model of signals with finite rate of inno-

vation (FRI), discussed in detail in Chapter 4 of this book. FRI models also

include other interesting problems in radar and sonar. As we show throughout

this chapter, union modeling is a key to savings in acquisition and processing

resources.

In Section 3.3, we study a high-level architecture of Xampling systems [14].

The proposed architecture consists of two main functions: lowrate analog to dig-

ital conversion (X-ADC) and lowrate digital signal processing (X-DSP). The

X-ADC block compresses x(t) in the analog domain, by generating a version of

the input that contains all vital information but with relatively lower bandwidth,

often substantially below the Nyquist-rate of x(t). The important point is that

the chosen analog compression can be efficiently realized with existing hardware

components. The compressed version is then sampled at a low rate. X-DSP is

responsible for reducing processing rates in the digital domain. To accomplish

this goal, the exact signal subspace within the union is detected digitally, using

either CS techniques or comparable methods for subspace identification, such

as MUSIC [5] or ESPRIT [6]. Identifying the input’s subspace allows to exe-

cute existing DSP algorithms and interpolation techniques at the low rate of

the streaming measurements, that is without going through reconstruction of

the Nyquist-rate samples of x(t). Together, when applicable, X-ADC and X-

DSP alleviate the Nyquist-rate burden from the entire signal path. Pronounced

as CS-Sampling (phonetically /k"sæmplIN/), the nomenclature Xampling sym-

bolizes the combination between recent developments in CS and the successful

machinery of analog sampling theory developed on the past century.

The main body of this chapter is dedicated to study low-rate sampling of vari-

ous UoS signal models in light of Xampling, capitalizing on the underlying analog

model, compressive sensing hardware and digital recovery algorithms. Section 3.4

introduces a framework for sampling sparse shift-invariant (SI) subspaces [16],

which extends the classic notion of SI sampling developed for inputs lying in a

single subspace [17, 18]. Multiband models [11–13, 19–21] are considered in Sec-

tion 3.5 with applications to wideband carrier-unaware reception [22] and cog-

nitive radio communication [23]. In particular, this section achieves the X-DSP

goal, by considering multiband inputs consisting of a set of digital transmissions

whose information bits are recovered and processed at the low rate of the stream-
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ing samples. Sections 3.6 and 3.7 address FRI signals [24, 25] and sequences of

innovation [26], respectively, with applications to pulse stream acquisition and

ultrasonic imaging [27, 28]. In radar imaging [29], the Xampling viewpoint not

only offers a reduced-rate sampling method, but also allows to increase resolu-

tion in target identification and decrease the overall time-bandwidth product of

the radar system (when the noise is not too large). Section 3.8 describes sam-

pling strategies that are based on application of CS on discretized analog models,

e.g., sampling a sparse sum of harmonic tones [30] and works on quantized CS

radar [31–33].

Besides reviewing sampling strategies, we provide some insights into analog

sensing. In Section 3.5, we use the context of multiband sampling to exemplify

a full development cycle of analog CS systems, from theory to hardware. The

cycle begins with a nonuniform method [19] that is derived from the sparse-SI

framework. Analyzing this approach in a more practical perspective, reveals that

nonuniform acquisition requires ADC devices with Nyquist-rate frontend since

they are connected directly to the wideband input. We next review the hardware-

oriented design of the modulated wideband converter (MWC) [20, 22], which

incorporates RF preprocessing to compress the wideband input, so that actual

sampling is carried out by commercial lowrate and low bandwidth ADC devices.

To complete the cycle, we take a glimpse at circuit challenges and solutions as

reported in the design of an MWC hardware prototype [22]. The MWC appears

to be the first reported wideband technology borrowing CS ideas with provable

hardware that samples and processes wideband signals at a rate that is directly

proportional to the actual bandwidth occupation and not the highest frequency

(280 MHz sampling of 2 GHz Nyquist-rate inputs in [22]).

Xampling advocates use of traditional tools from sampling theory for modeling

analog signals, according to which a continuous-time signal x(t) is determined

by a countable sequence c[n] of numbers, e.g., a bandlimited input x(t) and its

equally-spaced pointwise values c[n] = x(nT ). The UoS approach is instrumental

in capturing similar infinite structures by taking to infinity either the dimensions

of the individual subspaces, the number of subspaces in the union or both. In

Section 3.8 we review alternative analog CS methods which treat continuous sig-

nals that are determined by a finite set of parameters. This approach was taken,

for example, in the development of the random demodulator (RD) [30] and works

on quantized CS radar [31–33]. Whilst effective in the finite scenarios for which

they were developed, the application of these methods to general analog models

(which possess a countable representation) can lead to performance degradation.

We exemplify differences when comparing hardware and software complexities

of the RD and MWC systems. Visualizing radar performance of quantized [33]

vs. analog [29] approaches further demonstrates the possible differences. Based

on the insights gained throughout this chapter, several operative conclusions are

suggested in Section 3.9 for extending CS to general analog signals.
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3.2 From Subspaces to Unions

The traditional paradigm in sampling theory assumes that x(t) lies in a single

subspace. Bandlimited sampling is undoubtedly the most studied example. Sub-

space modeling is quite powerful, as it allows perfect recovery of the signal from

its linear and nonlinear samples under very broad conditions [17,18,34–36]. Fur-

thermore, recovery can be achieved by digital and analog filtering. This is a very

appealing feature of the subspace model, which generalizes the Shannon-Nyquist

theorem to a broader set of input classes.

Despite the simplicity and intuitive appeal of subspace modeling, in modern

applications many signals are characterized by parameters which are not neces-

sarily known to the sampler. As we will show now via several examples, we can

often still describe the signal by a subspace model. However, in order to include

all possible parameter choices, the subspace has to have large dimension with

enough degrees of freedom to capture the uncertainty, leading to extremely high

sampling rates. The examples below build the motivation for lowrate sampling

solutions which we discuss in the rest of this chapter.

Consider first the scenario of a multiband input x(t), which has sparse spec-

tra, such that its continuous-time Fourier transform (CTFT) X(f) is supported

on N frequency intervals, or bands, with individual widths not exceeding B Hz.

Figure 3.1 illustrates a typical multiband spectra. When the band positions are

known and fixed, the signal model is linear, since the CTFT of any combination

of two inputs is supported on the same frequency bands. This scenario is typi-

cal in communication, when a receiver intercepts several RF transmissions, each

modulated on a different high carrier frequency fi. Knowing the band positions,

or the carriers fi, allows the receiver to demodulate a transmission of interest

to baseband, that is to shift the contents from the relevant RF band to the ori-

gin. Several demodulation topologies are reviewed in [37]. Subsequent sampling

and processing are carried out at the low rate corresponding to the individual

band of interest. When the input consists of a single transmission, an alternative

approach to shift contents to baseband is by uniform undersampling at a prop-

erly chosen sub-Nyquist rate [10]. Nonuniform sampling methods that can treat

more than a single transmission were developed in [12,13], under the assumption

that the digital recovery algorithm is provided with knowledge of the spectral

support.

When the carrier frequencies fi are unknown, we are interested in the set of

all possible multiband signals that occupy up to NB Hz of the spectrum. In this

scenario, the transmissions can lie anywhere below fmax. At first sight, it may

seem that sampling at the Nyquist rate

fNYQ = 2fmax, (3.1)

is necessary, since every frequency interval below fmax appears in the support of

some multiband x(t). On the other hand, since each specific x(t) in this model

fills only a portion of the Nyquist range (only NB Hz), we intuitively expect to
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Multiband communication

Union over possible band positions fi ∈ [0, fmax]

f

0 f1 fNf2 fmax

FM QAM BPSK

(a)

t
t1

a1

t2

a2

t3

a3

t
0

1
h(t)

τ

Fading channel

Time-delay estimation

Union over possible path delays t` ∈ [0, τ ]

(b)

Figure 3.1: Example applications of UoS modeling.

be able to reduce the sampling rate below fNYQ. Standard demodulation cannot

be used since fi are unknown, which makes this sampling problem challenging.

Another interesting application is estimation of time delays from observation

of a signal of the following form

x(t) =

L∑

`=1

a` h(t− t`), t ∈ [0, τ ]. (3.2)

For fixed time delays t`, (3.2) defines a linear space of inputs with L degrees

of freedom, one per each amplitude a`. In this case, L samples of x(t) can be

used to reconstruct the input x(t). In practice, however, there are many inter-

esting situations with unknown t`. Inputs of this type belong to the broader

family of FRI signals [24,25], and are treated in detail in Chapter 4 of this book.

For example, when a communication channel introduces multipath fading, the

transmitter can assist the receiver in channel identification by sending a short

probing pulse h(t). Since the receiver knows the shape of h(t), it can resolve the

delays t` and use this information to decode the following information messages.

Another example is radar, where the delays t` correspond to target locations,

while the amplitudes a` encode Doppler shifts indicating target speeds. Medi-

cal imaging techniques, e.g., ultrasound, use signals of the form (3.2) to probe

density changes in human tissues as a vital tool in medical diagnosis. Underwa-

ter acoustics also conform with (3.2). Since in all these applications, the pulse

h(t) is short in time, sampling x(t) according to its Nyquist bandwidth, which is

effectively that of h(t), results in unnecessary large sampling rates. In contrast,

it follows intuitively from (3.2), that only 2L unknowns determine x(t), namely

t`, a`, 1 ≤ ` ≤ L. Since with unknown delays, (3.2) describes a nonlinear model,

subspace modeling cannot achieve the optimal sampling rate of 2L/τ , which in

all the above applications can be substantially lower than Nyquist.

The example applications above motivate the need for signal modeling that

is more sophisticated than the conventional single subspace approach. In order

to capture real-world scenarios within a convenient mathematical formulation

without unnecessarily increasing the rate, we introduce in the next section the

Xampling framework which treats UoS signal classes and is applicable to many
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interesting applications. Using the Xampling framework, we will analyze sam-

pling strategies for several union models in detail, and show that although sam-

pling can still be obtained by linear filtering, recovery becomes more involved

and requires nonlinear algorithms, following the spirit of CS.

3.3 Xampling

In this section, we introduce Xampling – our proposed framework for acquisition

and digital processing of UoS signal models [14].

3.3.1 Union of Subspaces

As motivated earlier, the key to reduced-rate sampling of analog signals is based

on UoS modeling of the input set. The concept of allowing more than a single

input subspace was first suggested by Lu and Do in [15]. We denote by x(t)

an analog signal in the Hilbert space H = L2(R), which lies in a parameterized

family of subspaces

x(t) ∈ U 4=
⋃

λ∈Λ

Aλ, (3.3)

where Λ is an index set, and each individual Aλ is a subspace of H. The key

property of the UoS model (3.3) is that the input x(t) resides within Aλ∗ for

some λ∗ ∈ Λ, but a-priori, the exact subspace index λ∗ is unknown. For example,

multiband signals with unknown carriers fi can be described by (3.3), where each

Aλ corresponds to signals with specific carrier positions and the union is taken

over all possible fi ∈ [0, fmax]. Pulses with unknown time-delays of the form

(3.2) also obey UoS modeling, where each Aλ is an L dimensional subspace that

captures the coefficients a`, whereas the union over all possible delays t` ∈ [0, τ ]

provides an efficient way to group these subspaces to a single set U .

UoS modeling enables treating x(t) directly in its analog formulation. This

approach is fundamentally different than previous attempts to treat similar prob-

lems, which rely on discretization of the analog input to finite representations.

Namely, models in which both cardinalities, Λ and each Aλ, are finite. Standard

CS which treats vectors in Rn having at most k nonzeros is a special case of

a finite representation. Each individual subspace has dimensions k, defined by

the locations of the nonzeros, and the union is over
(
n
k

)
possibilities of choosing

the nonzero locations. In Section 3.8, we discuss in detail the difference between

union modeling and discretization. As we show, the major consequences of impos-

ing a finite representation on an analog signal that does not inherently conform

to a finite model are twofold: model sensitivity and high computational loads.

Therefore, the main core of this chapter focuses on the theory and applications

developed for general UoS modeling (3.3). We note that there are examples of

continuous-time signals that naturally possess finite representations. One such
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example are trigonometric polynomials. However, our interest here is in signals

of the form described in Section 3.2, that do not readily admit a finite represen-

tation.

The union (3.3) over all possible signal locations forms a nonlinear signal set U ,

where its nonlinearity refers to the fact that the sum (or any linear combination)

of x1(t), x2(t) ∈ U does not lie in U , in general. Consequently, U is a true subset

of the linear affine space

Σ =

{
x(t) =

∑

λ∈Λ

αλxλ(t) : αλ ∈ R, xλ(t) ∈ Aλ
}
, (3.4)

which we refer to as the Nyquist subspace of U . Since every x(t) ∈ U also belongs

to Σ, one can in principle apply conventional sampling strategies with respect to

the single subspace Σ [18]. However, this technically-correct approach often leads

to practically-infeasible sampling systems with a tremendous waste of expensive

hardware and software resources. For example, in multiband sampling, Σ is the

fmax-bandlimited space, for which no rate reduction is possible. Similarly, in

time-delay estimation problems, Σ has the high bandwidth of h(t), and again no

rate reduction can be achieved.

We define the sampling problem for the union set (3.3) as the design of a

system that provides:

1. ADC: an acquisition operator which converts the analog input x(t) ∈ U to a

sequence y[n] of measurements,

2. DSP: a toolbox of processing algorithms, which uses y[n] to perform classic

tasks, e.g., estimation, detection, data retrieval etc., and

3. DAC: a method for reconstructing x(t) from the samples y[n].

In order to exclude from consideration inefficient solutions, such as those treat-

ing the Nyquist subspace Σ and not exploiting the union structure, we adopt as

a general design constraint that the above goals should be accomplished with

minimum use of resources. Minimizing the sampling rate, for example, excludes

inefficient Nyquist-rate solutions and tunnel potential approaches to wisely incor-

porate the union structure to stand this resource constraint. For reference, this

requirement is outlined as

ADC + DSP + DAC→minimum use of resources. (3.5)

In practice, besides constraining the sampling rate, (3.6) translates to the min-

imization of several other resources of interest, including the number of devices

in the acquisition stage, design complexity, processing speed, memory require-

ments, power dissipation, system cost, and more. As we shall see via examples

in the sequel, the challenge posed in (3.6) is to treat a union model at an overall

complexity (of hardware and software) that is comparable with a system which

knows the exact Aλ∗ .
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ing the Nyquist subspace Σ and not exploiting the union structure, we adopt as

a general design constraint that the above goals should be accomplished with

minimum use of resources. Minimizing the sampling rate, for example, excludes

inefficient Nyquist-rate solutions and tunnel potential approaches to wisely incor-

porate the union structure to stand this resource constraint. For reference, this

requirement is outlined as

ADC + DSP + DAC→minimum use of resources. (3.6)

In practice, besides constraining the sampling rate, (3.6) translates to the min-

imization of several other resources of interest, including the number of devices

in the acquisition stage, design complexity, processing speed, memory require-

ments, power dissipation, system cost, and more. As we shall see via examples

in the sequel, the challenge posed in (3.6) is to treat a union model at an overall

complexity (of hardware and software) that is comparable with a system which

knows the exact Aλ∗ .
In essence, the UoS model follows the spirit of classic sampling theory by

assuming that x(t) belongs to a single underlying subspace Aλ∗ . However, in

contrast to the traditional paradigm, the union setting permits uncertainty in

the exact signal subspace, opening the door to interesting sampling problems.

The challenge posed in (3.6) is to treat the uncertainty of the union model at an

overall complexity (of hardware and software) that is comparable with a system

which knows the exact Aλ∗ . In Section 3.5, we describe strategies which acquire

and process signals from the multiband union at a low rate, proportional to NB.

Sections 3.6 and 3.7 describe variants of FRI unions, including (3.2), and their

lowrate sampling solutions, which approach the rate of innovation 2L/τ . A line

of other UoS applications that are described throughout this chapter exhibit

similar rationale – the sampling rate is reduced by exploiting the fact that the

input belongs to a single subspace Aλ∗ , even though the exact subspace index

λ∗ is unknown. The next subsection proposes a systematic architecture for the

design of sampling systems for UoS signal classes. As we show in the ensuing

sections, this architecture unifies a variety of sampling strategies developed for

different instances of UoS models.

3.3.2 Architecture

The Xampling system we propose has the high-level architecture presented in

Fig. 3.2 [14]. The first two blocks, termed X-ADC, perform the conversion of x(t)

to digital. An operator P compresses the high-bandwidth input x(t) into a signal

with lower bandwidth, effectively capturing the entire union U by a subspace S
with substantially lower sampling requirements. A commercial ADC device then

takes pointwise samples of the compressed signal, resulting in the sequence of

samples y[n]. The role of P in Xampling is to narrow down the analog bandwidth,

so that lowrate ADC devices can subsequently be used. As in digital compression,
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x(t) Union
compression
P : U → S

x̂(t)Detection
x(t) ∈ Aλ∗

Subspace
DSP

ADC device
Subspace

reconstruction

X-ADC X-DSP

y[n]

Commercial Nonlinear

Reduce analog bandwidth
prior to sampling

Reduce digital complexity
Gain backward compatability

Lowrate, Standard Lowrate, Standard

Compressed sensing algorithms /
MUSIC / ESPRIT

Analog

Figure 3.2: Xampling – A pragmatic framework for signal acquisition and processing in union
of subspaces (taken from [14]).

the goal is to capture all vital information of the input in the compressed version,

though here this functionality is achieved by hardware rather than software. The

design of P therefore needs to wisely exploit the union structure, in order not to

lose any essential information while reducing the bandwidth.

In the digital domain, Xampling consists of three computational blocks. A

nonlinear step detects the signal subspace Aλ∗ from the lowrate samples. CS

algorithms, e.g., those described in the relevant chapters of this book, as well

as comparable methods for subspace identification, e.g., MUSIC [5] or ESPRIT

[6], can be used for that purpose. Once the index λ∗ is determined, we gain

backward compatibility, meaning standard DSP methods apply and commercial

DAC devices can be used for signal reconstruction. The combination of nonlinear

detection and standard DSP is referred to as X-DSP. As we demonstrate, besides

backward compatibility, the nonlinear detection decreases computational loads,

since the subsequent DSP and DAC stages need to treat only the single subspace

Aλ∗ , complying with (3.6). The important point is that the detection stage can be

performed efficiently at the low acquisition rate, without requiring Nyquist-rate

processing.

Xampling is a generic template architecture. It does not specify the exact

acquisition operator P or nonlinear detection method to be used. These are

application-dependant functions. Our goal in introducing Xampling is to propose

a high-level system architecture and a basic set of guidelines:

1. an analog pre-processing unit to compress the input bandwidth,

2. commercial lowrate ADC devices for actual acquisition at a low rate,

3. subspace detection in software, and

4. standard DSP and DAC methods.

The Xampling framework is developed in [14] based on two basic assumptions:

(A1) DSP is the main purpose of signal acquisition, and

(A2) The ADC device has limited bandwidth.
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The DSP assumption (A1) highlights the ultimate use of many sampling sys-

tems – substituting analog processing by modern software algorithms. DSP is

perhaps the most profound reason for signal acquisition: Hardware development

can rarely compete with the convenience and flexibilities that software environ-

ments provide. In many applications, therefore, DSP is what essentially moti-

vates the ADC and decreasing processing speeds can sometimes be an important

requirement, regardless of whether the sampling rate is reduced as well. In partic-

ular, the digital flow proposed in Fig. 3.2 is beneficial even when a high ADC rate

is acceptable. In this case, x(t) can be acquired directly without narrowing down

its bandwidth prior to ADC, but we would still like to reduce computational

loads and storage requirements in the digital domain. This can be accomplished

by imitating rate reduction in software, detecting the signal subspace and pro-

cessing at the actual information bandwidth. The compounded usage of both

X-ADC and X-DSP is for mainstream applications, where reducing the rate of

both signal acquisition and processing is of interest.

Assumption (A2) basically says that we expect the conversion device to have

limited front-end bandwidth. The X-ADC can be realized on a circuit board, chip

design, optical system or other appropriate hardware. In all these platforms, the

front-end has certain bandwidth limitations which obey (A2), thereby motivat-

ing the use of a preceding analog compression step P in order to capture all vital

information within a narrow range of frequencies that the acquisition device can

handle. Section 3.5 elaborates on this property.

Considering the architecture of Fig. 3.2 in conjunction with requirement (3.6)

reveals an interesting aspect of Xampling. In standard CS, most of the sys-

tem complexity concentrates in digital reconstruction, since sensing is as simple

as applying y = Ax. In Xampling, we attempt to balance between analog and

digital complexities. As discussed in Section 3.8, a properly chosen analog pre-

processing operator P can lead to substantial savings in digital complexities and

vice versa.

We next describe sampling solutions for UoS models according to the Xampling

paradigm. In general, when treating unions of analog signals, there are three main

cases to consider:

• finite unions of infinite dimensional spaces;

• infinite unions of finite dimensional spaces;

• infinite unions of infinite dimensional spaces.

In each one of the three settings above there is an element that can take on

infinite values, which is a result of the fact that we are considering general ana-

log signals: either the underlying subspaces Aλ are infinite-dimensional, or the

number of subspaces |Λ| is infinite. In the next sections, we present general the-

ory and results behind each of these cases, and focus in additional detail on

a representative example application for each class. Sections 3.4 and 3.5 cover

the first scenario, introducing the sparse-SI framework and reviewing multiband

sampling strategies, respectively. Sections 3.6 and 3.7 discuss variants of inno-
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Digital
processing
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Figure 3.3: Sampling and reconstruction in shift-invariant spaces [16,34] (taken from [16]).

vation rate sampling and cover the other two cases. Methods that are based on

completely finite unions, when both |Λ| and Aλ are finite, are discussed in Sec-

tion 3.8. While surveying these different cases, we will attempt to shed light into

pragmatic considerations that underlie Xampling, and hint on possible routes to

promote these compressive methods to actual hardware realizations.

3.4 Sparse Shift-Invariant Framework

3.4.1 Sampling in Shift-Invariant Subspaces

We first briefly introduce the notion of sampling in SI subspaces, which plays a

key role in the development of standard (subspace) sampling theory [17,18]. We

then discuss how to incorporate the union structure into SI settings.

SI signals are characterized by a set of generators {h`(t), 1 ≤ ` ≤ N} where in

principle N can be finite or infinite (as is the case in Gabor or wavelet expansions

of L2). Here we focus on the case in which N is finite. Any signal in such an SI

space can be written as

x(t) =

N∑

`=1

∑

n∈Z
d`[n]h`(t− nT ), (3.7)

for some set of sequences {d`[n] ∈ `2, 1 ≤ ` ≤ N} and period T . This model

encompasses many signals used in communication and signal processing includ-

ing bandlimited functions, splines [38], multiband signals (with known carrier

positions) [11,12] and pulse amplitude modulation signals.

The subspace of signals described by (3.7) has infinite dimensions, since every

signal is associated with infinitely many coefficients {d`[n], 1 ≤ ` ≤ N}. Any such

signal can be recovered from samples at a rate of N/T ; one possible sampling

paradigm at the minimal rate is given in Fig. 3.3 [16,34].
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Here x(t) is filtered with a bank of N filters, each with impulse response s`(t)

which can be almost arbitrary. The outputs are uniformly sampled with period

T , resulting in the sample sequences c`[n]. Denote by c(ω) a vector collecting

the frequency responses of c`[n], 1 ≤ ` ≤ N , and similarly d(ω) for the frequency

responses of d`[n], 1 ≤ ` ≤ N . Then, it can be shown that [16]

c(ω) = G(ejωT )d(ω), (3.8)

where G(ejωT ) is an N ×N matrix, with entries

[
G(ejωT )

]
i`

=
1

T

∑

k∈Z
S∗i

(
ω

T
− 2π

T
k

)
H∗`

(
ω

T
− 2π

T
k

)
. (3.9)

The notations Si(ω), H`(ω) stand for the CTFT of si(t), h`(t), respectively. To

allow recovery, the condition on the sampling filters si(t) is that (3.9) results

in an invertible frequency response G(ejωT ). The signal is then recovered by

processing the samples with a filter bank with frequency response G−1(ejωT ). In

this way, we invert (3.8) and obtain the vectors

d(ω) = G−1(ejωT )c(ω). (3.10)

Each output sequence d`[n] is then modulated by a periodic impulse train∑
n∈Z δ(t− nT ) with period T , followed by filtering with the corresponding

analog filter h`(t). In practice, interpolation with finitely many samples gives

sufficiently accurate reconstruction, provided that h`(t) decay fast enough [39],

similar to finite interpolation in the Shannon-Nyquist theorem.

3.4.2 Sparse Union of SI Subspaces

In order to incorporate further structure into the generic SI model (3.7), we treat

signals of the form (3.7) involving a small number K of generators, chosen from

a finite set Λ of N generators. Specifically, we consider the input model

x(t) =
∑

|`|=K

∑

n∈Z
d`[n]h`(t− nT ), (3.11)

where |`| = K means a sum over at most K elements. If the K active generators

are known, then according to Fig. 3.3 it suffices to sample at a rate of K/T corre-

sponding to uniform samples with period T at the output ofK appropriate filters.

A more difficult question is whether the rate can be reduced if we know that only

K of the generators are active, but do not know in advance which ones. In terms

of (3.11) this means that only K of the sequences d`[n] have nonzero energy.

Consequently, for each value n, ‖d[n]‖0 ≤ K, where d[n] = [d1[n], · · · , dN [n]]T

collects the unknown generator coefficients for time instance n.

For this model, it is possible to reduce the sampling rate to as low as 2K/T [16]

as follows. We target a compressive sampling system that produces a vector of
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Figure 3.4: Compressive sensing acquisition for sparse union of shift-invariant subspaces

(taken from [16]).

lowrate samples y[n] = [y1[n], · · · , yp[n]]T at t = nT which satisfies a relation

y[n] = Ad[n], ‖d[n]‖0 ≤ K, (3.12)

with a sensing matrix A that allows recovery of sparse vectors. The choice p < N

reduces the sampling rate below Nyquist. In principle, a parameterized family

of underdetermined systems, by the time index n in the case of (3.12), can

be treated by applying CS recovery algorithms independently for each n. A

more robust and efficient technique which exploits the joint sparsity over n is

described in the next section. The question is therefore how to design a sampling

scheme which would boil down to a relation such as (3.12) in the digital domain.

Figure 3.4 provides a system for obtaining y[n], where the following theorem

gives the expression for its sampling filters w`(t) [16].

Theorem 3.1. Let s`(t) be a set of N filters and G(ejωT ) the response matrix

defined in (3.9) (so that s`(t) can be used in the Nyquist-rate scheme of Fig. 3.3),

and let A be a given p×N sensing matrix. Sampling x(t) with a bank of filters

w`(t), 1 ≤ ` ≤ p defined by

w(ω) = A∗G−∗(ejωT )s(ω), (3.13)

gives a set of compressed measurements y`[n], 1 ≤ ` ≤ p that satisfies (3.12). In

(3.13), the vectors w(ω), s(ω) have `th elements W`(ω), S`(ω), denoting CTFTs

of the corresponding filters, and (·)−∗ denotes the conjugate of the inverse.

The filters w`(t) of Fig. 3.4 form an analog compression operator P as sug-

gested in the X-ADC architecture. The sampling rate is effectively reduced by

taking linear combinations of the outputs c`[n] of the Nyquist scheme of Fig. 3.3,

with combination coefficients defined by the sensing matrix A. This structure

is revealed by examining (3.13) – sampling by w`[n] is tantamount to filtering

x(t) by s`(t), applying G−1(ejωT ) to obtain the sparse set of sequences d`[n],

and then combining these sequences by an underdetermined matrix A. A more

general result of [16] enables further flexibility in choosing the sampling filters

by letting w(ω) = P∗(ejωT )A∗G∗(ejωT )s(ω), for some arbitrary invertible p× p
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matrix P∗(ejωT ). In this case, (3.12) holds with respect to sequences obtained

by post-processing the compressive measurements y`[n] by P−1(ejωT ).

The sparse-SI model (3.11) can be generalized to a sparse sum of arbitrary

subspaces, where each subspace Aλ of the union (3.3) consists of a direct sum of

K low-dimensional subspaces [40]

Aλ =
⊕

|j|=K
Vj . (3.14)

Here {Vj , 1 ≤ j ≤ N} are a given set of subspaces with dimensions dim(Vj) = vj ,

and as before |j| = K denotes a sum over K indices. Thus, each subspace Aλ
corresponds to a different choice of K subspaces Vj that comprise the sum. The

sparse-SI model is a special case of (3.14), in which each Vj is an SI subspace

with a single shift kernel hj(t). In [40], sampling and reconstruction algorithms

are developed for the case of finite Λ and finite-dimensional Aλ. The approach

utilizes the notion of set transforms to cast the sampling problem into an under-

determined system with an unknown block-sparse solution, which is found via a

polynomial-time mixed-norm optimization program. Block-sparsity is studied in

more detail in [40–43].

3.4.3 Infinite Measurement Model and Continuous to Finite

In the sparse-SI framework, the acquisition scheme is mapped into the system

(3.12). Reconstruction of x(t) therefore depends on our ability to resolve d`[n]

from this underdetermined system. More generally, we are interested in solving

a parameterized underdetermined linear system with sensing matrix dimensions

p×N, p < N

y(θ) = Ax(θ), θ ∈ Θ, (3.15)

where Θ is a set whose cardinality can be infinite. In particular, Θ may be

uncountable, such as the frequencies ω ∈ [−π, π) of (3.13), or countable as in

(3.12). The system (3.15) is referred to as an infinite measurement vector (IMV)

model with sparsityK, if the vectors x(Θ) = {x(θ)} share a joint sparsity pattern

[44]. That is, the non-zero elements are supported within a fixed location set I

of size K.

The IMV model includes as a special case standard CS, when taking Θ = {θ∗}
to be a single element set. It also includes the case of a finite set Θ, termed

multiple measurement vectors (MMV) in the CS literature [44–49]. In the finite

cases it is easy to see that if σ(A) ≥ 2k, where σ(A) = spark(A)− 1 is the

Kruskal-rank of A, then x(Θ) is the unique K-sparse solution of (3.15) [47].

A simple necessary and sufficient condition in terms of rank(y(Θ)) is derived

in [50], which improves upon earlier (sufficient only) conditions in [47]. Similar

conditions hold for a jointly K-sparse IMV system [44].

The major difficulty with the IMV model is how to recover the solution set

x(Θ) from the infinitely many equations (3.15). One strategy is to solve (3.15)
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independently for each θ. However, this strategy may be computationally inten-

sive in practice, since it would require to execute a CS solver for each individual

θ; for example, in the context of (3.12), this amounts to solving a sparse recovery

problem for each time instance n. A more efficient strategy exploits the fact that

x(Θ) are jointly sparse, so that the index set

I = {l : xl(θ) 6= 0} , (3.16)

is independent of θ. Therefore, I can be estimated from several instances of y(Θ),

which increases the robustness of the estimate. Once I is found, recovery of the

entire set x(Θ) is straightforward. To see this, note that using I, (3.15) can be

written as

y(θ) = AIxI(θ), θ ∈ Θ, (3.17)

where AI denotes the matrix containing the columns of A whose indices belong

to I, and xI(θ) is the vector consisting of entries of x(θ) in locations I. Since

x(Θ) is K-sparse, |I| ≤ K. Therefore, the columns of AI are linearly independent

(because σ(A) ≥ 2K), implying that A†IAI = I, where A†I =
(
AH
I AI

)−1
AH
I is

the pseudo-inverse of AI and (·)H denotes the Hermitian conjugate. Multiplying

(3.17) by A†I on the left gives

xI(θ) = A†Iy(θ), θ ∈ Θ. (3.18)

The components in x(θ) not supported on S are all zero. In contrast to applying

a CS solver for each θ, (3.18) requires only one matrix-vector multiplication per

y(θ), typically requiring far fewer computations.

It remains to determine I efficiently. In [44] it was shown that I can be found

exactly by solving a finite MMV. The steps used to formulate this MMV are

grouped under a block referred to as continuous-to-finite (CTF). The essential

idea is that every finite collection of vectors spanning the subspace span(y(Θ))

contains sufficient information to recover I, as incorporated in the following

theorem [44]:

Theorem 3.2. Suppose that σ(A) ≥ 2K, and let V be a matrix with column

span equal to span(y(Θ)). Then, the linear system

V = AU (3.19)

has a unique K-sparse solution U whose support is equal I.

The advantage of Theorem 3.2 is that it allows to avoid the infinite structure

of (3.15) and instead find the finite set I by solving a single MMV system of the

form (3.19).

For example, in the sparse SI model, such a frame can be constructed by

Q =
∑

n

y[n]yH [n], (3.20)
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Figure 3.5: The fundamental stages for the recovery of the non-zero location set I in an IMV

model using only one finite-dimensional program (taken from [44]).

where typically 2K snapshots y[n] are sufficient [20]. Optionally, Q is decom-

posed to another frame V, such that Q = VVH , allowing removal of the noise

space [20]. Applying the CTF in this setting provides a robust estimate of

I = supp(d`[n]), namely the indices of the active generators that comprise x(t).

This is essentially the subspace detection part of X-DSP, where the joint support

set I determines the signal subspace Aλ∗ . The crux of the CTF now becomes

apparent – the indices of the nonidentically-zero rows of the matrix U0 that

solves the finite underdetermined system (3.19) coincide with the index set

I = supp(d`[n]) that is associated with the continuous signal x(t) [44]. Once

I is found, (3.12) can be inverted on the column subset I by (3.18), where the

time index n takes the role of θ. Reconstruction from that point on is carried

out in real time; one matrix-vector multiplication (3.18) per incoming vector of

samples y[n] recovers dI [n], denoting the entries of d[n] indicated by I.

Figure 3.5 summarizes the CTF steps for identifying the nonzero location set of

an IMV system. In the figure, the summation (3.20) is formulated as integration

over θ ∈ Θ for the general IMV setting (3.15). The additional requirement of

Theorem 3.2 is to construct a frame matrix V having column span equal to

span(y(Θ)), which, in practice, is computed efficiently from the samples.

The mapping of Fig. 3.4 to an IMV system (3.12) and the CTF recovery create

a nice connection to results of standard CS. The number of branches p is the

number of rows in A, and the choice of sampling filters w`(t) translate to its

entries via Theorem 3.1. Since recovery boils down to solving an MMV system

with sensing matrix A, we should design the hardware so that the resulting

matrix A in (3.13) has “nice” CS properties1. Precisely, an MMV system of size

p×N and joint sparsity of order K needs to be solved correctly with that A.

In practice, to solve the MMV (3.19), we can make use of existing algorithms

from the CS literature, cf. [44–48]. The Introduction and relevant chapters of

this book describe various conditions on CS matrices to ensure stable recovery.

The dimension requirements of the specific MMV solver in use will impact the

number of branches p, and consequently the total sampling rate.

1 We comment that most known constructions of “nice” CS matrices involve randomness. In
practice, the X-ADC hardware is fixed and defines a deterministic sensing matrix A for the
corresponding IMV system.
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The sparse-SI framework can be used, in principle, to reduce the rate of any

signal of the form (3.11). In the next section, we treat multiband signals and

derive a sub-Nyquist acquisition strategy for this model from the general sparse-

SI architecture of Fig. 3.4.

3.5 From Theory to Hardware of Multiband Sampling

The prime goal of Xampling is to enable theoretical ideas develop from the math

to hardware, to real-world applications. In this section, we study sub-Nyquist

sampling of multiband signals in the eyes of a practitioner, aiming to design

lowrate sampling hardware. We define the multiband model and propose a union

formulation that fits the sparse-SI framework introduced in the previous section.

A periodic nonuniform sampling (PNS) solution [19] is then derived from Fig. 3.4.

Moving on to practical aspects, we examine frontend bandwidth specifications

of commercial ADC devices, and conclude that devices with Nyquist-rate band-

width are required whenever the ADC is directly connected to a wideband input.

Consequently, although PNS as well as the general architecture of Fig. 3.4, enable

in principle sub-Nyquist sampling, in practice, high analog bandwidth is neces-

sary, which can be limiting in high-rate applications. To overcome this possible

limitation, an alternative scheme, the MWC [20], is presented and analyzed.

We conclude our study with a glimpse at circuit aspects that are unique to

Xampling systems, as were reported in the circuit design of an MWC prototype

hardware [22].

3.5.1 Signal Model and Sparse-SI Formulation

The class of multiband signals models a scenario in which x(t) consists of sev-

eral concurrent RF transmissions. A receiver that intercepts a multiband x(t)

sees the typical spectral support that is depicted in Fig. 3.1. We assume that

the multiband spectrum contains at most N (symmetric) frequency bands with

carriers fi, each of maximal width B. The carriers are limited to a maximal

frequency fmax. The information bands represent analog messages or digital bits

transmitted over a shared channel.

When the carrier frequencies fi are fixed, the resulting signal model can be

described as a subspace, and standard demodulation techniques may be used to

sample each of the bands at a low rate. A more challenging scenario is when the

carriers fi are unknown. This situation arises, for example, in spectrum sensing

for mobile cognitive radio (CR) receivers [23, 51], which aim at utilizing unused

frequency regions on an opportunistic basis. Commercialization of CR technology

necessitates a spectrum sensing mechanism that can sense a wideband spectrum

which consists of several narrowband transmissions, and determines in real time

which frequency bands are active.
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Figure 3.6: Spectrum slices of x(t) are overlayed in the spectrum of the output sequences
yi[n]. In the example, channels i and i′ realize different linear combinations of the spectrum

slices centered around lfp, l̄fp, l̃fp. For simplicity, the aliasing of the negative frequencies is not

drawn (taken from [22]).

Since each combination of carrier frequencies determines a single subspace, a

multiband signal can be described in terms of a union of subspaces. In principle,

fi lies in the continuum fi ∈ [0, fmax], so that the union contains infinitely many

subspaces. To utilize the sparse-SI framework with finitely many SI generators,

a different viewpoint can be used, which treats the multiband model as a finite

union of bandpass subspaces, termed spectrum slices [20]. To obtain the finite

union viewpoint, the Nyquist range [−fmax, fmax] is conceptually divided into

M = 2L+ 1 consecutive, non-overlapping, slices of individual widths fp = 1/T ,

such that M/T ≥ fNYQ, as depicted in Fig. 3.6. Each spectrum slice represents

an SI subspace Vi of a single bandpass slice. By choosing fp ≥ B, we ensure

that no more than 2N spectrum slices are active, namely contain signal energy.

Thus, (3.14) holds with Aλ being the sum over 2N SI bandpass subspaces Vi.
Consequently, instead of enumerating over the unknown carriers fi, the union is

defined over the active bandpass subspaces [16, 19, 20], which can be written in

the form (3.11). Note that the conceptual division to spectrum slices does not

restrict the band positions; a single band can split between adjacent slices.

Formulating the multiband model with unknown carriers as a sparse-SI prob-

lem, we can now apply the sub-Nyquist sampling scheme of Fig. 3.4 to develop

an analog CS system for this setting.

3.5.2 Analog Compressed Sensing via Nonuniform Sampling

One way to realize the sampling scheme of Fig. 3.4 is through PNS [19]. This

strategy is derived from Fig. 3.4 when choosing

wi(t) = δ(t− ciTNYQ), 1 ≤ i ≤ p, (3.21)
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Figure 3.7: Periodic nonuniform sampling for sub-Nyquist sensing. In the example, out of

M = 7 points, only p = 3 are active, with time shifts ci = 1, 3, 4.

where TNYQ = 1/fNYQ is the Nyquist period, and using a sampling period of

T = MTNYQ. Here ci are integers which select part of the uniform Nyquist grid,

resulting in p uniform sequences

yi[n] = x((nM + ci)TNYQ). (3.22)

The sampling sequences are illustrated in Fig. 3.7. It can be shown that the PNS

sequences yi[n] satisfies an IMV system of the form (3.12) with d`[n] representing

the contents of the `th bandpass slice. The sensing matrix A in this setting has

i`th entry

Ai` = ej
2π
M ci`, (3.23)

that is a partial discrete Fourier transform (DFT), obtained by taking only the

row indices ci from the full M ×M DFT matrix. CS properties of partial-DFT

matrices are studied in [4], for example.

To recover x(t), we can apply the CTF framework and obtain spectrum blind

reconstruction (SBR) of x(t) [19]. Specifically, a frame Q is computed with (3.20)

and is optionally decomposed to another frame V (to combat noise). Solving

(3.19) then indicates the active sequences d`[n], and equivalently estimates the

frequency support of x(t) at a coarse resolution of slice width fp. Continuous

reconstruction is then obtained by standard lowpass interpolation of the active

sequences d`[n] and modulation to the corresponding positions on the spec-

trum. This procedure is termed SBR4 in [19], where 4 designates that under

the choice of p ≥ 4N sampling sequences (and additional conditions), this algo-

rithm guarantees perfect reconstruction of a multiband x(t). With the earlier

choice fp = 1/T ≥ B, the average sampling rate can be as low as 4NB.

The rate can be further reduced by a factor of 2 exploiting the way a multiband

spectra is arranged in spectrum slices. Using several CTF instances, an algorithm

reducing the required rate was developed in [19] under the name SBR2, leading

to p ≥ 2N sampling branches, so that the sampling rate can approach 2NB.

This is essentially the provable optimal rate [19], since regardless of the sam-

pling strategy, theoretic arguments show that 2NB is the lowest possible sam-

pling rate for multiband signals with unknown spectrum support [19]. Figure 3.8

depicts recovery performance in Monte Carlo simulations of a (complex-valued)



Xampling: Compressed Sensing of Analog Signals 21

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

# sampling branches p

E
m
p
ir
ic
a
l
su
cc
es
s
ra
te

 

 

SBR4

SBR2

(a)

2 4 6 8 10 12 14 16

10
−2

10
−1

10
0

10
1

# sampling branches p

A
ve
ra
g
e
ru
n
ti
m
e
(s
ec
o
n
d
s)

 

 

SBR4

SBR2

(b)

Figure 3.8: Comparing algorithms SBR4 and SBR2. (a) Empirical recovery rate for different
sampling rates and (b) digital complexity as measured by average run time (taken from [19]).

multiband model with N = 3 bands, widths B = 1 GHz and fNYQ = 20 GHz.

Recovery of noisy signals is also simulated in [19]. We demonstrate robustness to

noise later on in this section in the context of MWC sampling. The robustness

follows from that of the MMV system used for SBR.

We note that PNS was utilized for multiband sampling already in classic stud-

ies, though the traditional goal was to approach a rate of NB samples/sec.

This rate is optimal according to the Landau theorem [52], though achieving it

for all input signals is possible only when the spectral support is known and

fixed. When the carrier frequencies are unknown, the optimal rate is 2NB [19].

Indeed, [11,53] utilized knowledge of the band positions to design a PNS grid and

the required interpolation filters for reconstruction. The approaches in [12, 13]

were semi-blind: a sampler design independent of band positions combined with

the reconstruction algorithm of [11] which requires exact support knowledge.

Other techniques targeted the rate NB by imposing alternative constraints on

the input spectrum [21]. Here we demonstrate how analog CS tools [16, 44] can

lead to a fully-blind sampling system of multiband inputs with unknown spectra

at the appropriate optimal rate [19]. A more thorough discussion in [19] studies

the differences between the analog CS method presented here based on [16,19,44]

and earlier approaches.

3.5.3 Modeling Practical ADC Devices

Analog CS via PNS results in a simple acquisition strategy, which consists of p

delay components and p uniform ADC devices. Furthermore, if high sampling

rate is not an obstacle and only low processing rates are of interest, then PNS

can be simluated by first sampling x(t) at its Nyquist rate and then reducing

the rate digitally by discarding some of the samples. Nonuniform topologies of

this class are also popular in the design of Nyquist-rate time-interleaved ADC

devices, in which case p = M [54, 55].
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Figure 3.9: (a) Datasheet of AD9057 (source: http://www.analog.com/static/

imported-files/data_sheets/AD9057.pdf). (b) Modeling the inherent bandwidth limi-

tation of the ADC front-end as a lowpass filter preceding pointwise acquisition (taken
from [20]).

Realization of a PNS grid with standard ADCs remains simple as long as the

input bandwidth is not too high. For high bandwidth signals, PNS is potentially

limited, as we now explain by zooming into the drawing of the ADC device

of Fig. 3.2. In the signal processing community, an ADC is often modeled as

an ideal pointwise sampler that takes snapshots of x(t) at a constant rate of r

samples/second. The sampling rate r is the main parameter that is highlighted

in the datasheets of popular ADC devices; see online catalogues [56,57] for many

examples.

For most analysis purposes, the first-order model of pointwise acquisition

approximates the true ADC operation sufficiently well. Another property of

practical devices, also listed in datasheets, is about to play a major role in

the UoS settings – the analog bandwidth power b. The parameter b measures

the −3 dB point in the frequency response of the ADC device, which stems

from the responses of all circuitries comprising the internal front-end. See the

datasheet quote of AD9057 in Fig. 3.9. Consequently, inputs with frequencies up

to b Hz can be reliably converted. Any information beyond b is attenuated and

distorted. Figure 3.9 depicts an ADC model in which the pointwise sampler is

preceded by a lowpass filter with cutoff b, in order to take into account the band-

width limitation [20]. In Xampling, the input signal x(t) belongs to a union set

U which typically has high bandwidth, e.g., multiband signals whose spectrum

reaches up to fmax or FRI signals with wideband pulse h(t). This explains the

necessity of an analog compression operator P to reduce the bandwidth prior to

the actual ADC. The next stage can then employ commercial devices with low

analog bandwidth b.

The Achilles heel of nonuniform sampling is the pointwise acquisition of a

wideband input. While the rate of each sequence yi[n] is low, namely fNYQ/M ,

the ADC device still needs to capture a snapshot of a wideband input with

http://www.analog.com/static/imported-files/data_sheets/AD9057.pdf
http://www.analog.com/static/imported-files/data_sheets/AD9057.pdf
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Figure 3.10: Block diagram of the modulated wideband converter. The input passes through

p parallel branches, where it is mixed with a set of periodic functions pi(t), lowpass filtered

and sampled at a low rate (taken from [22]).

frequencies possibly reaching up till fmax. In practice, this requires an ADC with

front-end bandwidth that reaches the Nyquist rate, which can be challenging in

wideband scenarios.

3.5.4 Modulated Wideband Converter

To circumvent analog bandwidth issues, an alternative to PNS sensing referred

to as the modulated wideband converter (MWC) was developed in [20]. The

MWC combines the spectrum slices d`[n] according to the scheme depicted in

Fig. 3.10. This architecture allows to implement an effective demodulator without

the carrier frequencies being known to the receiver. A nice feature of the MWC

is a modular design so that for known carrier frequencies the same receiver can

be used with fewer channels or lower sampling rate. Furthermore, by increasing

the number of channels or the rate on each channel the same realization can be

used for sampling full band signals at the Nyquist rate.

The MWC consists of an analog front-end with p channels. In the ith channel,

the input signal x(t) is multiplied by a periodic waveform pi(t) with period

T , lowpass filtered by an analog filter with impulse response h(t) and cutoff

1/2T , and then sampled at rate fs = 1/T . The mixing operation scrambles the

spectrum of x(t), such that a portion of the energy of all bands appears in
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baseband. Specifically, since pi(t) is periodic, it has a Fourier expansion

pi(t) =

∞∑

`=−∞
ci`e

j 2π
T `t. (3.24)

In the frequency domain, mixing by pi(t) is tantamount to convolution between

X(f) and the Fourier transform of pi(t). The latter is a weighted Dirac-comb,

with Dirac locations on f = l/T and weights ci`. Thus, as before, the spectrum

is conceptually divided into slices of width 1/T , represented by the unknown

sequences d`[n], and a weighted-sum of these slices is shifted to the origin [20].

The lowpass filter h(t) transfers only the narrowband frequencies up to fs/2

from that mixture to the output sequence yi[n]. The output has the same aliasing

pattern that was illustrated in Fig. 3.6. Sensing with the MWC results in the IMV

system (3.12) with a sensing matrix A whose entries are the Fourier expansion

coefficients ci`.

The basic MWC parameter setting is [20]

p ≥ 4N, fs =
1

T
≥ B. (3.25)

Using the SBR2 algorithm of [19], the required number of branches is p ≥ 2N so

that the sampling rate is reduced by a factor of 2 and can approach the minimal

rate of 2NB. Advanced configurations enable additional hardware savings by

collapsing the number of branches p by a factor of q at the expense of increasing

the sampling rate of each channel by the same factor, ultimately enabling a

single-channel sampling system [20]. This property is unique to MWC sensing,

since it decouples the aliasing from the actual acquisition.

The periodic functions pi(t) define a sensing matrix A with entries ci`. Thus,

as before, pi(t) need to be chosen such that the resulting A has “nice” CS

properties. In principle, any periodic function with high-speed transitions within

the period T can satisfy this requirement. One possible choice for pi(t) is a sign-

alternating function, with M = 2L+ 1 sign intervals within the period T [20].

Popular binary patterns, e.g., Gold or Kasami sequences, are especially suitable

for the MWC [58]. Imperfect sign alternations are allowed as long as periodicity

is maintained [22]. This property is crucial since precise sign alternations at

high speeds are extremely difficult to maintain, whereas simple hardware wirings

ensure that pi(t) = pi(t+ T ) for every t ∈ R [22]. Another important practical

design aspect is that a filter h(t) with nonflat frequency response can be used

since a nonideal response can compensated for in the digital domain, using an

algorithm developed in [59].

In practical scenarios, x(t) is contaminated by wideband analog noise eanalog(t)

and measurement noise e`,meas.[n] that is added to the compressive sequences

y`[n]. This results in a noisy IMV system

y[n] = A(d[n] + eanalog[n]) + emeas.[n] = Ad[n] + eeff.[n], (3.26)
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Figure 3.11: Image intensity represents percentage of correct recovery of the active slices set

I, for different number of sampling branches p and under several SNR levels. The collapsing

factors are (a) q = 1 and (b) q = 5. The markers indicate reference points with same total
sampling rate pfs as a fraction of fNYQ = 10 GHz (taken from [20]).

with an effective error term eeff.[n]. This means that noise has the same effects in

analog CS as it has in the standard CS framework with an increase in variance

due to the term Aeanalog[n]. Therefore, existing algorithms can be used to try

and combat the noise. Furthermore, we can translate known results and error

guarantees developed in the context of CS to handle noisy analog environments.

In particular, as is known in standard CS, the total noise, i.e., in both zero

and nonzero locations, is what dictates the behavior of various algorithms and

recovery guarantees. Similarly, analog CS systems, such as sparse-SI [16], PNS

[19] or MWC [20], aggregate wideband noise power from the entire Nyquist range

[−fmax, fmax] into their samples. This is different from standard demodulation

that aggregates only in-band noise, since only a specific range of frequencies is

shifted to baseband. Nonetheless, as demonstrated below, analog CS methods

exhibit robust recovery performance which degrades gracefully as noise levels

increase.

Numerical simulations were used in [58] to evaluate the MWC performance

in noisy environments. A multiband model with N = 6, B = 50 MHz and

fNYQ = 10 GHz was used to generate inputs x(t), which were contaminated

by additive wideband Gaussian noise. An MWC systems with fp = 51 MHz and

a varying number p of branches was considered, with sign alternating waveforms

of length M = 195. Performance of support recovery using CTF is depicted in

Fig. 3.11 for various (wideband) signal-to-noise ratio (SNR) levels. Two MWC

configurations were tested: a basic version with sampling rate fp per branch,

and an advanced setup with a collapsing factor q = 5, in which case each branch

samples at rate qfp. The results affirm saving in hardware branches by a factor

of 5 while maintaining comparable recovery performance. Signal reconstruction

is demonstrated in the next subsection using samples obtained by a hardware

MWC prototype.
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Figure 3.12: Hardware realization of the MWC consisting of two circuit boards. The left pane

implements m = 4 sampling channels, whereas the right pane provides four sign-alternating

periodic waveforms of length M = 108, derived from different taps of a single shift-register
(taken from [22,60]).

Note that the MWC achieves a similar effect of aliasing bandpass slices to

the origin as does the PNS system. However, in contrast to PNS, the MWC

accomplishes this goal with analog pre-processing prior to sampling, as proposed

in Xampling, which allows the use of standard low-rate ADCs. In other words, the

practical aspects of front-end bandwidth motivate a solution which departs from

the generic scheme of Fig. 3.4. This is analogous to the advantage of standard

demodulation over plain undersampling; both demodulation and undersampling

can shift a single bandpass subspace to the origin. However, while undersampling

requires an ADC with Nyquist-rate front-end bandwidth, demodulation uses RF

technology to interact with the wideband input, thereby requiring only lowrate

and low bandwidth ADC devices.

3.5.5 Hardware Design

The MWC has been implemented as a board-level hardware prototype [22]. The

hardware specifications cover inputs with 2 GHz Nyquist rate and NB = 120

MHz spectrum occupation. The prototype has p = 4 sampling branches, with

total sampling rate of 280 MHz, far below the 2 GHz Nyquist rate. In order

to save analog components, the hardware realization incorporates the advanced

configuration of the MWC [20] with a collapsing factor q = 3. In addition, a single

shift-register provides a basic periodic pattern, from which p periodic waveforms

are derived using delays, that is, by tapping p different locations of the register.

Photos of the hardware are presented in Fig. 3.12.

Several nonordinary RF blocks in the MWC prototype are highlighted in

Fig. 3.12. These nonordinary circuitries stem from the unique application of

sub-Nyquist sampling as described in detail in [22]. For instance, ordinary analog

mixers are specified and commonly used with a pure sinusoid in their oscillator

port. The MWC, however, requires simultaneous mixing with the many sinusoids

comprising pi(t). This results in attenuation of the output and substantial non-
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Figure 3.13: Three signal generators are combined to the system input terminal. The spectrum
of the lowrate samples (first channel) reveals overlapped aliasing at baseband. The recovery

algorithm finds the correct carriers and reconstructs the original individual signals (taken
from [22]).

linear distortion not accounted for in datasheet specifications. To address this

challenge, power control, special equalizers and local adjustments on datasheet

specifications were used in [22] in order to design the analog acquisition, taking

into account the nonordinary mixer behavior due to the periodic mixing.

Another circuit challenge pertains to generating pi(t) with 2 GHz alternation

rates. The waveforms can be generated either by analog or digital means. Analog

waveforms, such as sinusoid, square or sawtooth waveforms, are smooth within

the period, and therefore do not have enough transients at high frequencies which

is necessary to ensure sufficient aliasing. On the other hand, digital waveforms

can be programmed to any desired number of alternations within the period,

but require meeting timing constraints on the order of the clock period. For 2

GHz transients, the clock interval 1/fNYQ = 480 picosecs leads to tight timing

constraints that are difficult to satisfy with existing digital devices. The timing

constraints involved in this logic are overcome in [22] by operating commercial

devices beyond their datasheet specifications. The reader is referred to [22] for

further technical details.

Correct support detection and signal reconstruction in the presence of three

narrowband transmissions was verified in [22]. Figure 3.13 depicts the setup of

three signal generators that were combined at the input terminal of the MWC

prototype: an amplitude-modulated (AM) signal at 807.8 MHz with 100 kHz

envelope, a frequency-modulation (FM) source at 631.2 MHz with 1.5 MHz fre-

quency deviation and 10 kHz modulation rate, and a pure sine waveform at
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981.9 MHz. Signal powers were set to about 35 dB SNR with respect to the

wideband noise that folded to baseband. The carrier positions were chosen so

that their aliases overlay at baseband, as the photos in Fig. 3.13 demonstrate.

The CTF was executed and detected the correct support set I. The unknown

carrier frequencies were estimated up to 10 kHz accuracy. In addition, the fig-

ure demonstrates correct reconstruction of the AM and FM signal contents. Our

lab experiments also indicate an average of 10 millisecond duration for the digi-

tal computations, including CTF support detection and carrier estimation. The

small dimensions of A (12× 100 in the prototype configuration) is what makes

the MWC practically feasible from a computational perspective.

The results of Fig. 3.13 connect between theory and practice. The same dig-

ital algorithms that were used in the numerical simulations of [20] are suc-

cessfully applied in [22] on real data, acquired by the hardware. This demon-

strates that the theoretical principles are sufficiently robust to accommo-

date circuit non-idealities, which are inevitable in practice. A video recording

of these experiments and additional documentation for the MWC hardware

are available at http://webee.technion.ac.il/Sites/People/YoninaEldar/

Info/hardware.html. A graphical package demonstrating the MWC numerically

is available at http://webee.technion.ac.il/Sites/People/YoninaEldar/

Info/software/GUI/MWC_GUI.htm.

The MWC board appears to be the first reported hardware example borrowing

ideas from CS to realize a sub-Nyquist sampling system for wideband signals,

where the sampling and processing rates are directly proportional to the actual

bandwidth occupation and not the highest frequency. Alternative approaches

which employ discretization of the analog input are discussed in Section 3.8.

The realization of these methods recover signals with Nyquist-rates below 1

MHz, falling outside of the class of wideband samplers. Additionally, the sig-

nal representations that result from discretization have size proportional to the

Nyquist frequency, leading to recovery problems in the digital domain that are

much larger than those posed by the MWC.

3.5.6 Sub-Nyquist Signal Processing

A nice feature of the MWC recovery stage is that it interfaces seamlessly with

standard DSPs by providing (samples of) the narrowband quadrature informa-

tion signals Ii(t), Qi(t) which build the ith band of interest

si(t) = Ii(t) cos(2πfit) +Qi(t) sin(2πfit). (3.27)

The signals Ii(t), Qi(t) could have been obtained by classic demodulation had

the carriers fi been known. In the union settings, with unknown carrier fre-

quencies fi, this capability is provided by a digital algorithm, named Back-DSP,

http://webee.technion.ac.il/Sites/People/YoninaEldar/Info/hardware.html
http://webee.technion.ac.il/Sites/People/YoninaEldar/Info/hardware.html
http://webee.technion.ac.il/Sites/People/YoninaEldar/Info/software/GUI/MWC_GUI.htm
http://webee.technion.ac.il/Sites/People/YoninaEldar/Info/software/GUI/MWC_GUI.htm
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Figure 3.14: The flow of information extractions begins with detecting the band edges. The
slices are filtered, aligned and stitched appropriately to construct distinct quadrature sequences

si[n] per information band. The balanced quadricorrelator finds the carrier fi and extracts the

narrowband information signals.
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Figure 3.15: The distribution of CFO for fixed SNR=10 dB (a). The curves (b) represent the
percentage of simulations in which the CFO magnitude is within the specified range (taken

from [14]).

that is developed in [14] and illustrated in Fig. 3.14. The Back-DSP algorithm2

translates the sequences d[n] to the narrowband signals Ii(t), Qi(t) that standard

DSP packages expect to receive, thereby providing backward compatibility. Only

lowrate computations, proportional to the rate of Ii(t), Qi(t), are used. Back-DSP

first detects the band edges, then separates bands occupying the same slice to

distinct sequences and stitches together energy that was split between adjacent

slices. Finally, the balanced quadricorrelator [61] is applied in order to estimate

the carrier frequencies.

Numerical simulations of the Back-DSP algorithm, in a wideband setup simi-

lar to the one of Fig. 3.11, evaluated the Back-DSP performance in two aspects.

The carrier frequency offset (CFO), estimated vs. true value of fi, is plotted

in Fig. 3.15. In most cases, algorithm Back-DSP approaches the true carriers

as close as 150 kHz. For reference, the 40 part-per-million (ppm) CFO spec-

2 Matlab code is available online at http://webee.technion.ac.il/Sites/People/

YoninaEldar/Info/software/FR/FR.htm.

http://webee.technion.ac.il/Sites/People/YoninaEldar/Info/software/FR/FR.htm
http://webee.technion.ac.il/Sites/People/YoninaEldar/Info/software/FR/FR.htm
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ifications of IEEE 802.11 standards tolerate 150 kHz offsets for transmissions

located around 3.75 GHz [62]. To verify data retrieval, a binary phase-shift keying

(BPSK) transmission was generated, such that the band energy splits between

two adjacent spectrum slices. A Monte Carlo simulation was used to compute

bit error rate (BER) at the output of Back-DSP. Estimated BERs for 3 dB and

5 dB SNR, respectively, are better than 0.77 · 10−6 and 0.71 · 10−6. No erroneous

bits were detected for SNR of 7 and 9 dB. See [14] for full results.

3.6 Finite Rate of Innovation Signals

The second class we consider are analog signals in infinite unions of finite-

dimensional spaces; these are continuous-time signals that can be characterized

by a finite number of coefficients, also termed finite rate of innovaton (FRI) sig-

nals as coined by Vetterli et al. [24,25]. One important problem that is studied in

this framework is that of time-delay estimation, in which the input contains sev-

eral, say L, echoes of a known pulse shape h(t), though the echo positions t` and

amplitudes a` are unknown [63]. Time-delay estimation is analogous to estima-

tion of frequencies and amplitudes in a mixture of sinusoids. Both problems were

widely studied in the classic literature [5,64–68], with parametric estimation tech-

niques that date back to methods developed by Rife and Boorstyn in 1974 [69]

and earlier by David Slepian in the 1950s. The classic approaches focused on

improving estimation performance in the digital domain, so that the error in

estimating the time-delays, or equivalently the sinusoid frequencies, approaches

the optimal defined by the relevant Cramér-Rao bounds. The starting point, how-

ever, is discrete samples at the Nyquist rate of the input. The concept of FRI

is fundamentally different, as it aims to obtain similar estimates from samples

taken at the rate of innovation, namely proportional to 2L samples per obser-

vation interval, rather than at the typically much-higher rate corresponding to

the Nyquist bandwidth of h(t). Chapter 4 in this book provides a comprehensive

review of the FRI field. In the present chapter, we focus on Xampling-related

aspects, with emphasis on possible hardware configurations for sub-Nyquist FRI

acquisition. Recovery algorithms are briefly reviewed for the chapter to be self-

contained.

3.6.1 Analog Signal Model

As we have seen in Section 3.4, the SI model (3.7) is a convenient way to describe

analog signals in infinite-dimensional spaces. We can use a similar approach to

describe analog signals that lie within finite-dimensional spaces by restricting

the number of unknown gains a`[n] to be finite, leading to the parametrization

x(t) =

L∑

`=1

a`h`(t). (3.28)



Xampling: Compressed Sensing of Analog Signals 31

In order to incorporate infiniteness into this model, we assume that each gener-

ator h`(t) has an unknown parameter α` associated with it, which can take on

values in a continuous interval, resulting in the model

x(t) =

L∑

`=1

a`h`(t, α`). (3.29)

Each possible choice of the set {α`} leads to a different L-dimensional subspace

of signals Aλ, spanned by the functions {h(t, α`)}. Since α` can take on any value

in a given interval, the model (3.29) corresponds to an infinite union of finite

dimensional subspaces (i.e., |Λ| =∞), where each subspace Aλ in (3.3) contains

those analog signals corresponding to a particular configuration of {α`}L`=1.

An important example of (3.29) is when h`(t, α`) = h(t− t`) for some unknown

time delay t`, leading to a stream of pulses

x(t) =

L∑

`=1

a`h(t− t`). (3.30)

Here h(t) is a known pulse shape and {t`, a`}L`=1, t` ∈ [0, τ), a` ∈ C, ` = 1 . . . L

are unknown delays and amplitudes. This model was introduced by Vetterli et

al. [24,25] as a special case of signals having a finite number of degrees of freedom

per unit time, termed FRI signals. Our goal is to sample x(t) and reconstruct

it from a minimal number of samples. Since in FRI applications the primary

interest is in pulses which have small time-support, the required Nyquist rate

can be very high. Bearing in mind that the pulse shape h(t) is known, there

are only 2L degrees of freedom in x(t), and therefore, we expect the minimal

number of samples to be 2L, much lower than the number of samples resulting

from Nyquist rate sampling.

3.6.2 Compressive Signal Acquisition

To date, there are no general acquisition methods for signals of the form (3.29),

while there are known solutions to various instances of (3.30). We begin by

focusing on a simpler version of the problem, in which the signal x(t) of (3.30)

is repeated periodically leading to the model

x(t) =
∑

m∈Z

L∑

`=1

a`h(t− t` −mτ), (3.31)

where τ is a known period. This periodic setup is easier to treat because we

can exploit the properties of the Fourier series representation of x(t) due to the

periodicity. The dimensionality and number of subspaces included in the model

(3.3) remain unchanged.

The key to designing an efficient X-ADC stage for this model is in identifying

the connection to a standard problem in signal processing: the retrieval of the

frequencies and amplitudes of a sum of sinusoids. The Fourier series coefficients
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X[k] of the periodic pulse stream x(t) are actually a sum of complex exponentials,

with amplitudes {a`}, and frequencies directly related to the unknown time-

delays [24]:

X[k] =
1

τ
H(2πk/τ)

L∑

`=1

a`e
−j2πkt`/τ , (3.32)

whereH(ω) is the CTFT of the pulse h(t). Therefore, once the Fourier coefficients

are known, the unknown delays and amplitudes can be found using standard tools

developed in the context of array processing and spectral estimation [24,70]. For

further details see Chapter 4 in this book. Our focus here is on how to obtain

the Fourier coefficients X[k] efficiently from x(t).

There are several X-ADC operators P which can be used to obtain the Fourier

coefficients from time-domain samples of the signal. One choice is to set P to be

a lowpass filter, as suggested in [24]. The resulting reconstruction requires 2L+ 1

samples and therefore presents a near-critical sampling scheme. A general con-

dition on the sampling kernel s(t) that allows obtaining the Fourier coefficients

was derived in [27]: its CTFT S(ω) should satisfy

S(ω) =





0, ω = 2πk/τ, k /∈ K
nonzero, ω = 2πk/τ, k ∈ K
arbitrary, otherwise,

(3.33)

where K is a set of 2L consecutive indices such that H
(

2πk
τ

)
6= 0 for all k ∈ K.

The resulting X-ADC consists of a filter with a suitable impulse response s(t)

followed by a uniform sampler.

A special class of filters satisfying (3.33) are Sum of Sincs (SoS) in the fre-

quency domain [27], which lead to compactly supported filters in the time

domain. These filters are given in the Fourier domain by

G(ω) =
τ√
2π

∑

k∈K
bk sinc

(
ω

2π/τ
− k
)
, (3.34)

where bk 6= 0, k ∈ K. It is easy to see that this class of filters satisfies (3.33) by

construction. Switching to the time domain leads to

g(t) = rect

(
t

τ

)∑

k∈K
bke

j2πkt/τ . (3.35)

For the special case in which K = {−p, . . . , p} and bk = 1,

g(t) = rect

(
t

τ

) p∑

k=−p
ej2πkt/τ = rect

(
t

τ

)
Dp(2πt/τ), (3.36)

where Dp(t) denotes the Dirichlet kernel.

While periodic streams are mathematically convenient, finite pulse streams of

the form (3.30) are ubiquitous in real world applications. A finite pulse stream

can be viewed as a restriction of a periodic FRI signal to a single period. As
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long as the analog preprocessing P does not involve values of x(t) outside the

observation interval [0, τ ], this implies that sampling and reconstruction methods

developed for the periodic case also apply to finite settings. Treating time-limited

signals with lowpass P , however, may be difficult since it has infinite time sup-

port, beyond the interval [0, τ ] containing the finite pulse stream. Instead, we

can choose fast-decaying sampling kernels or SoS filters such as (3.35) that have

compact time support τ by construction.

To treat the finite case, a Gaussian sampling kernel was proposed in [24];

however, this method is numerically unstable since the samples are multiplied

by a rapidly diverging or decaying exponent. As an alternative, we may use

compactly supported sampling kernels for certain classes of pulse shapes based

on splines [25]; this enables obtaining moments of the signal rather than its

Fourier coefficients. These kernels have several advantages in practice as detailed

in the next chapter. The moments are then processed in a similar fashion (see the

next subsection for details). However, this approach is unstable for high values

of L [25]. To improve robustness, the SoS class is extended to the finite case by

exploiting the compact support of the filters [27]. This approach exhibits superior

noise robustness when compared to the Gaussian and spline methods, and can

be used for stable reconstruction even for very high values of L, e.g., L = 100.

The model of (3.30) can be further extended to the infinite stream case, in

which

x(t) =
∑

`∈Z
a`h(t− t`), t`, a` ∈ R. (3.37)

Both [25] and [27] exploit the compact support of their sampling filters, and

show that under certain conditions the infinite stream may be divided into a

series of finite problems, which are solved independently with the existing finite

algorithm. However, both approaches operate far from the rate of innovation,

since proper spacing is required between the finite streams in order to allow the

reduction stage, mentioned earlier. In the next section we consider a special case

of (3.37) in which the time delays repeat periodically (but not the amplitudes).

As we will show in this special case, efficient sampling and recovery is possible

even using a single filter, and without requiring the pulse h(t) to be time limited.

An alternative choice of analog compression operator P to enable recovery of

infinite streams of pulses is to introduce multichannel sampling schemes. This

approach was first considered for Dirac streams, where a successive chain of inte-

grators allows obtaining moments of the signal [71]. Unfortunately, the method

is highly sensitive to noise. A simple sampling and reconstruction scheme con-

sisting of two channels, each with an RC circuit, was presented in [72] for the

special case where there is no more than one Dirac per sampling period. A more

general multichannel architecture that can treat a broader class of pulses, while

being much more stable, is depicted in Fig. 3.16 [28]. The system is very similar

to the MWC presented in the previous section, and as such it also complies with

the general Xampling architecture. In each channel of this X-ADC, the signal is
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Figure 3.16: Extended sampling scheme using modulating waveforms for an infinite pulse

stream (taken from [28]).

mixed with a modulating waveform s`(t), followed by an integrator, resulting in

a mixture of the Fourier coefficients of the signal. By correct choice of the mix-

ing coefficients, the Fourier coefficients may be extracted from the samples by a

simple matrix inversion. This method exhibits superior noise robustness over the

integrator chain method [71] and allows for more general compactly supported

pulse-shapes. A recent method studied multi-channel sampling for analog signals

comprised of several, possibly overlapping, finite duration pulses with unknown

shapes and time positions [73].

From a practical hardware perspective it is often more convenient to imple-

ment the multichannel scheme rather than a single-channel acquisition with an

analog filter that satisfies the SoS structure. It is straightforward to show that

the SoS filtering approach can also be implemented in the form of Fig. 3.16 with

coefficient matrix S = Q where Q is chosen according to the definition follow-

ing (3.38), for the SoS case. We point out that the multichannel architecture

of Fig. 3.16 can be readily implemented using the MWC prototype hardware.

Mixing functions s`(t) comprised of finitely many sinusoids can be obtained by

properly filtering a general periodic waveform. Integration over T is a first order

lowpass filter which can be assembled in place of the typically higher-order filter

of the MWC system [60].

3.6.3 Recovery Algorithms

In both the single-channel and multichannel approaches, recovery of the unknown

delays and amplitudes proceeds according to Xampling by detecting the parame-

ters t` that identify the signal subspace. The approach consists of two steps. First,

the vector of samples c is related to the Fourier coefficients vector x through a

p× |K| mixing matrix Q, as

c = Qx. (3.38)

Here p ≥ 2L represents the number of samples. When using the SoS approach

with a filter S(ω), Q = VS where S is a p× p diagonal matrix with diagonal
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(c) L = 5

Figure 3.17: Performance comparison of finite pulse stream recovery using Gaussian, B-spline,

E-spline, and SoS sampling kernels. (a) Reconstructed signal using SoS filters vs. original one.

The reconstruction is exact to numerical precision. (b) L = 3 Dirac pulses are present, (c)
L = 5 pulses (taken from [27]).

elements S∗(−2π`/τ), 1 ≤ ` ≤ p, and V is a p× |K| Vandermonde matrix with

`th element given by ej2π`T/τ , 1 ≤ ` ≤ p, where T denotes the sampling period.

For the multichannel architecture of Fig. 3.16, Q consists of the modulation

coefficients s`k. The Fourier coefficients x can be obtained from the samples as

x = Q†c. (3.39)

The unknown parameters {t`, a`}L`=1 are then recovered from x using standard

spectral estimation tools, e.g. the annihilating filter method (see [24, 70] and

the next chapter for details). These techniques can operate with as low as 2L

Fourier coefficients. When a larger number of samples are available, alternative

techniques that are more robust to noise can be used, such as the matrix-pencil

method [74], and the Tufts and Kumaresan technique [75]. In Xampling termi-

nology, these methods detect the input subspace, analogous to the role that CS

plays in the CTF block for sparse-SI or multiband unions.

Reconstruction results for the sampling scheme using an SoS filter (3.34) with

bk = 1 are depicted in Fig. 3.17. The original signal consists of L = 5 Gaussian

pulses, and N = 11 samples were used for reconstruction. The reconstruction

is exact to numerical precision. A comparison of the performance of various

methods in the presence of noise is depicted in Fig. 3.17 for a finite stream

consisting of 3 and 5 pulses. The pulse-shape is a Dirac delta, and white gaussian

noise is added to the samples with a proper level in order to reach the desired SNR

for all methods. All approaches operate using 2L+ 1 samples. The results affirm

stable recovery when using SoS filters. Chapter 4 of this book reviews in detail

FRI recovery in the presence of noise [76] and outlines potential applications in

superresolution imaging [77], ultrasound [27] and radar imaging [29].
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3.7 Sequences of Innovation Signals

The conventional SI setting (3.7) treats a single input subspace spanned by the

shifts of N given generators h`(t). Combining the SI setting (3.7) and the time

uncertainties of Section 3.6, we now incorporate structure by assuming that

each generator h`(t) is given up to some unknown parameter α` associated with

it, leading to an infinite union of infinite-dimensional spaces. As with its finite

counterpart, there is currently no general sampling framework available to treat

such signals. Instead, we focus on a special time-delay scenario of this model for

which efficient sampling techniques have been developed.

3.7.1 Analog Signal Model

An interesting special case of the general model (3.29) is when h`(t) = h(t) and

α` = t` represent unknown delays, leading to [26,28,29]

x(t) =
∑

n∈Z

L∑

`=1

a`[n]h(t− t` − nT ), (3.40)

where t = {t`}L`=1 is a set of unknown time delays contained in the time interval

[0, T ), {a`[n]} are arbitrary bounded energy sequences, presumably representing

lowrate streams of information, and h(t) is a known pulse shape. For a given set

of delays t, each signal of the form (3.40) lies in an SI subspace Aλ, spanned

by L generators {h(t− t`)}L`=1. Since the delays can take on any values in the

continuous interval [0, T ), the set of all signals of the form (3.40) constitutes an

infinite union of SI subspaces, i.e., |Λ| =∞. Additionally, since any signal has

parameters {a`[n]}n∈Z, each of the Aλ subspaces has infinite cardinality. This

model generalizes (3.37) with time delays that repeat periodically, where (3.40)

allows the pulse shapes to have infinite support.

3.7.2 Compressive Signal Acquisition

To obtain a Xampling system, we follow a similar approach to that in Section 3.4,

which treats a structured SI setting where there are N possible generators. The

difference though is that in this current case there are infinitely many possibil-

ities. Therefore, we replace the CTF detection in the X-DSP of Fig. 3.4 with a

detection technique that supports this continuity: we will see that the ESPRIT

method essentially replaces the CTF block [6].

A sampling and reconstruction scheme for signals of the form (3.40) is depicted

in Fig. 3.18 [26]. The analog compression operator P is comprised of p parallel

sampling channels, where p = 2L is possible under mild conditions on the sam-

pling filters [26]. In each channel, the input signal x(t) is filtered by a band-limited

sampling kernel s∗`(−t) with frequency support contained in an interval of width

2πp/T , followed by a uniform sampler operating at a rate of 1/T , thus providing
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Figure 3.18: Sampling and reconstruction scheme for signals of the form (3.40) (taken

from [26])
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Figure 3.19: Stream of Diracs. (a) L = 2 Diracs per period T = 1. (b)-(d) The outputs of the

first three sampling channels, the dashed lines denote the sampling instances (taken from [26]).

the sampling sequence c`[n]. Note that just as in the MWC (Section 3.5.4), the

sampling filters can be collapsed to a single filter whose output is sampled at

p times the rate of a single channel. In particular, acquisition can be as simple

as a single channel with a lowpass filter followed by a uniform sampler. Analog

compression of (3.40) is obtained by spreading out the energy of the signal in

time, in order to capture all vital information with the narrow range 2πp/T of

frequencies. To understand the importance of this stage, consider the case where

g(t) = δ(t) and there are L = 2 Diracs per period of T = 1, as illustrated in

Fig. 3.19(a). We use a sampling scheme consisting of a complex bandpass filter-

bank with 4 channels, each with width 2π/T . In Fig. 3.19(b) to (d), the outputs

of the first 3 sampling channels are shown. It can be seen that the sampling ker-

nels “smooth” the short pulses (Diracs in this example) in the time domain so

that even when the sampling rate is low, the samples contain signal information.

In contrast, if the input signal was sampled directly, then most of the samples

would be zero.
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3.7.3 Recovery Algorithms

To recover the signal from the samples, a properly designed digital filter cor-

rection bank, whose frequency response in the DTFT domain is given by

W−1(ejωT ), is applied to the sampling sequences in a manner similar to (3.10).

The matrix W(ejωT ) depends on the choice of the sampling kernels s∗`(−t) and

the pulse shape h(t). Its entries are defined for 1 ≤ `,m ≤ p as

W
(
ejωT

)
`,m

=
1

T
S∗` (ω + 2πm/T )H(ω + 2πm/T ). (3.41)

After the digital correction stage, it can be shown that the corrected sample

vector d[n] is related to the unknown amplitudes vector a[n] = {a`[n]} by a

Vandermonde matrix which depends on the unknown delays [26]. Therefore,

subspace detection can be performed by exploiting known tools from the direc-

tion of arrival [78] and spectral estimation [70] literature to recover the delays

t = {t1, . . . , tL}, such as the well-known ESPRIT algorithm [6]. Once the delays

are determined, additional filtering operations are applied on the samples to

recover the information sequences a`[n]. In particular, referring to Fig. 3.18, the

matrix D is a diagonal matrix with diagonal elements equal to e−jωtk , and N(t)

is a Vandermonde matrix with elements e−j2πmtk/T .

In our setting, the ESPRIT algorithm consists of the following steps:

1. Construct the correlation matrix Rdd =
∑
n∈Z d [n] dH [n].

2. Perform an SVD decomposition of Rdd and construct the matrix Es consisting

of the L singular vectors associated with the non-zero singular values in its

columns.

3. Compute the matrix Φ = E†s↓Es↑. The notations Es↓ and Es↑ denote the sub

matrices extracted from Es by deleting its last/first row respectively.

4. Compute the eigenvalues of Φ, λi, i = 1, 2, . . . , L.

5. Retrieve the unknown delays by ti = − T
2πarg (λi).

In general, the number of sampling channels p required to ensure unique

recovery of the delays and sequences using the proposed scheme has to satisfy

p ≥ 2L [26]. This leads to a minimal sampling rate of 2L/T . For certain signals,

the sampling rate can be reduced even further to (L+ 1)/T [26]. Interestingly,

the minimal sampling rate is not related to the Nyquist rate of the pulse h(t).

Therefore, for wideband pulse shapes, the reduction in rate can be quite sub-

stantial. As an example, consider the setup in [79], used for characterization of

ultra-wide band wireless indoor channels. Under this setup, pulses with band-

width of W = 1GHz are transmitted at a rate of 1/T = 2MHz. Assuming that

there are 10 significant multipath components, we can reduce the sampling rate

down to 40MHz compared with the 2GHz Nyquist rate.

We conclude by noting that the approach of [26] imposes only minimal condi-

tions on the possible generator h(t) in (3.40), so that in principle almost arbitrary

generators can be treated according to Fig. 3.18, including h(t) with unlimited
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Figure 3.20: Channel estimation with p = 5 sampling channels, and SNR=20dB. (a) Delay
recovery. (b) Recovery of the time-varying gain coefficient of the first path (taken from [26]).

time support. As mentioned earlier, implementing this sampling strategy can be

as simple as collapsing the entire system to a single channel that consists of a

lowpass filter and a uniform sampler. Reconstruction, however, involves a p× p
bank of digital filters W−1(ejωT ), which can be computationally demanding.

In scenarios with time-limited h(t) sampling with the multichannel scheme of

Fig. 3.16 can be more convenient, since digital filtering is not required so that

ESPRIT is applied directly on the samples [28].

3.7.4 Applications

Problems of the form (3.40) appear in a variety of different settings. For exam-

ple, the model (3.40) can describe multipath medium identification problems,

which arise in applications such as radar [80], underwater acoustics [81], wireless

communications [82], and more. In this context, pulses with known shape are

transmitted through a multipath medium, which consists of several propagation

paths, at a constant rate. As a result the received signal is composed of delayed

and weighted replicas of the transmitted pulses. The delays t` represent the prop-

agation delays of each path, while the sequences a`[n] describe the time-varying

gain coefficient of each multipath component.

An example of multipath channel identification is shown in Fig. 3.20. The

channel consists of four propagation paths and is probed by pulses at a rate

of 1/T . The output is sampled at a rate of 5/T , with white gaussian noise

with SNR of 20dB added to the samples. Fig. 3.20 demonstrates recovery of

the propagations delays, and the time-varying gain coefficients, from low rate

samples corrupted by noise. This is essentially a combination of X-ADC and

X-DSP, where the former is used to reduce the sampling rate, while the latter is

responsible for translating the compressed sample sequences c`[n] to the set of

low rate streams d`[n], which convey the actual information to the receiver. In

this example the scheme of Fig. 3.18 was used with a bank of ideal band-pass
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filters covering consecutive frequency bands:

S` (ω) =

{
T, ω ∈

[
(`− 1) 2π

T , `
2π
T

]

0, otherwise.
(3.42)

As can be seen, even in the presence of noise, the channel is recovered almost

perfectly from low rate samples. Applications to radar are explored in Chapter 4

and later on in Section 3.8.5.

3.8 Union Modeling vs. Finite Discretization

The approach we have been describing so far treats analog signals by taking

advantage of a UoS model, where the inherent infiniteness of the analog signal

enters either through the dimensions of the underlying subspaces Aλ, the car-

dinality of the union |Λ| or both. An alternative strategy is to assume that the

analog signal has some finite representation to begin with, i.e., that both Λ and

Aλ are finite. Sampling in this case can be readily mapped to a standard under-

determined CS system y = Ax (that is with a single vector of unknowns rather

than infinitely many as in the IMV setting).

The methods we review in this section treat continuous signals that have an

underlying finite parameterization: the RD [30] and quantized CS radar [31–33].

In addition to surveying [30–33], we examine the option of applying sampling

strategies developed for finite settings on general analog models with infinite

cardinalities. To address this option, we compare hardware and digital complex-

ities of the RD and MWC systems when treating multiband inputs, and imaging

performance of quantized [31–33] vs. analog radar [29]. In order to obtain a close

approximation to union modeling, a sufficiently dense discretization of the input

is required, which in turn can degrade performance in various practical met-

rics. Thus, whilst methods such as [30–33] are effective for the models for which

they were developed, their application to general analog signals, presumably by

discretization, may limit the range of signal classes that can be treated.

3.8.1 Random Demodulator

The RD approach treats signals consisting of a discrete set of harmonic tones

with the system that is depicted in Fig. 3.21 [30].

Signal model. A multitone signal f(t) consists of a sparse combination of

integral frequencies:

f(t) =
∑

ω∈Ω

aωe
j2πωt, (3.43)

where Ω is a finite set of K out of an even number Q of possible harmonics

Ω ⊂ {0,±∆,±2∆, · · · ,±(0.5Q− 1)∆, 0.5Q∆} . (3.44)
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Figure 3.21: Block diagram of the random demodulator (taken from [30]).

The model parameters are the tone spacing ∆, number of active tones K and

grid length Q. The Nyquist rate is Q∆. Whenever normalized, ∆ is omitted

from formulas under the convention that all variables take nominal values (e.g.,

R = 10 instead of R = 10 Hz).

Sampling. The input signal f(t) is mixed by a pseudorandom chipping

sequence pc(t) which alternates at a rate of W . The mixed output is then inte-

grated and dumped at a constant rate R, resulting in the sequence y[n], 1 ≤ n ≤
R. The development in [30] uses the following parameter setup

∆ = 1, W = Q, R ∈ Z such that
W

R
∈ Z. (3.45)

It was proven in [30] that if W/R is an integer and (3.45) holds, then the vector

of samples y = [y[1], . . . , y[R]]T can be written as

y = Φx, x = Fs, ‖s‖0 ≤ K. (3.46)

The matrix Φ has dimensions R×W , effectively capturing the mechanism of

integration over W/R Nyquist intervals, where the polarity of the input is flipped

on each interval according to the chipping function pc(t). See Fig. 3.23(a) in the

sequel for further details on Φ. The W -squared DFT matrix F accounts for the

sparsity in the frequency domain. The vector s has Q entries sω which are up to

a constant scaling from the corresponding tone amplitudes aω. Since the signal

has only K active tones, ‖s‖0 ≤ K.

Reconstruction. Equation (3.46) is an underdetermined system that can be

solved with existing CS algorithms, e.g., `1-minimization or greedy methods. As

before, a “nice” CS matrix Φ is required in order to solve (3.46) with sparsity

order K efficiently with existing polynomial-time algorithms. In Fig. 3.21, the

CS block refers to solving (3.46) with a polynomial-time CS algorithm and a

“nice” Φ, which requires a sampling rate on the order of [30]

R ≈ 1.7K log(W/K + 1). (3.47)

Once the sparse s is found, the amplitudes aω are determined from sω by constant

scaling, and the output f̂(t) is synthesized according to (3.43).
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Figure 3.22: Effects of non-integral tones on the output of the random demodulator. Panels

(a),(b) plot the recovered signal in the time domain. The frequency contents are compared in

panels (c),(d) (taken from [14]).

3.8.2 Finite-Model Sensitivity

The RD system is sensitive to inputs with tones slightly displaced from the

theoretical grid, as was indicated by several studies [14,83,84]. For example, [14]

repeated the developments of [30] for an unnormalized multitone model, with ∆

as a free parameter and W,R that are not necessarily integers. The measurements

still obey the underdetermined system (3.46) as before, where now [14]

W = Q∆, R = NR∆,
W

R
∈ Z, (3.48)

and NR is the number of samples taken by the RD. The equalities in (3.48) imply

that the rates W,R need to be perfectly synchronized with the tones spacing ∆.

If (3.48) does not hold, either due to hardware imperfections so that the rates

W,R deviate from their nominal values, or due to model mismatch so that the

actual spacing ∆ is different than what was assumed, then the reconstruction

error grows high.

The following toy-example demonstrates this sensitivity. Let W = 1000, R =

100 Hz, with ∆ = 1 Hz. Construct f(t) by drawing K = 30 locations uniformly at

random on the tones grid and normally-distributed amplitudes aω. Basis pursuit

gave exact recovery f̂(t) = f(t) for ∆ = 1. For 5 part-per-million (ppm) deviation

in ∆ the squared-error reached 37%:

∆ = 1 + 0.000005 → ‖f(t)− f̂(t)‖2
‖f(t)‖2 = 37%. (3.49)

Figure 3.22 plots f(t) and f̂(t) in time and frequency, revealing many spurious

tones due to the model mismatch. The equality W = Q in the normalized setup

(3.45) hints at the required synchronization, though the dependency on the tones

spacing is implicit since ∆ = 1. With ∆ 6= 1, this issue appears explicitly.

The sensitivity that is demonstrated in Fig. 3.22 is a source of error already in

the finite multitone setting (3.43). The implication is that utilizing the RD for

the counterpart problem of sampling multiband signals with continuous spectra

requires a sufficiently dense grid of tones. Otherwise, a non-negligible portion of

the multiband energy resides off the grid, which can lead to recovery errors due
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to the model mismatch. As discussed below, a dense grid of tones translates to

high computational loads in the digital domain.

The MWC is less sensitive to model mismatches in comparison. Since only

inequalities are used in (3.25), the number of branches p and aliasing rate fp can

be chosen with some safeguards with respect to the specified number of bands

N and individual widths B. Thus, the system can handle inputs with more

than N bands and widths larger than B, up to the safeguards that were set. The

band positions are not restricted to any specific displacement with respect to the

spectrum slices; a single band can split between slices, as depicted in Fig. 3.6.

Nonetheless, both the PNS [19] and MWC [20] approaches require specifying the

multiband spectra by a pair of maximal quantities (N,B). This modeling can be

inefficient (in terms of resulting sampling rate) when the individual band widths

are significantly different from each other. For example, a multiband model with

N1 bands of lengths B1 = k1b and N2 bands of lengths B2 = k2b is described

by a pair (N1 +N2,max(B1, B2)), with spectral occupation potentially larger

than actually used. A more flexible modeling in this scenario would assume only

the total actual bandwidth being occupied, i.e., N1B1 +N2B2. This issue can

partially be addressed at the expense of hardware size by designing the system

(PNS/MWC) to accommodate N1k1 +N2k2 bands of lengths b.

3.8.3 Hardware Complexity

We next compare the hardware complexity of the RD/MWC systems. In both

approaches, the acquisition stage is mapped into an underdetermined CS system:

Fig. 3.21 leads to a standard sparse recovery problem (3.46) in the RD system,

while in the MWC approach, Fig. 3.10 results in an IMV problem (3.12). A crucial

point is that the hardware needs to be sufficiently accurate for that mapping

to hold, since this is the basis for reconstruction. While the RD and MWC

sampling stages seem similar, they rely on different analog properties of the

hardware to ensure accurate mapping to CS, which in turn imply different design

complexities.

To better understand this issue, we examine Fig. 3.23. The figure depicts the

Nyquist-equivalent of each method, which is the system that samples the input at

its Nyquist rate and then computes the relevant sub-Nyquist samples by applying

the sensing matrix digitally. The RD-equivalent integrates and dumps the input

at rate W , and then applies Φ on Q serial measurements, x = [x[1], · · · , x[Q]]T .

To coincide with the sub-Nyquist samples of Fig. 3.21, Φ = HD is used, where D

is diagonal with ±1 entries, according to the values pc(t) takes on t = n/W , and

H sums over W/R entries [30]. The MWC-equivalent has M channels, with the

`th channel demodulating the relevant spectrum slice to the origin and sampling

at rate 1/T , which results in d`[n]. The sensing matrix A is applied on d[n].

While sampling according to the equivalent systems of Fig. 3.23 is a clear waste

of resources, it enables us to view the internal mechanism of each strategy. Note

that the reconstruction algorithms remain the same; it does not matter whether
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Figure 3.23: The Nyquist-equivalents of the RD (a) and MWC (b) sample the input at its

Nyquist rate and apply the sensing matrix digitally (taken from [14]).

the samples were actually obtained at a sub-Nyquist rate, according to Figs. 3.21

or 3.10, or if they were computed after sampling according to Fig. 3.23.

Analog compression. In the RD approach, time-domain properties of the

hardware dictate the necessary accuracy. For example, the impulse-response of

the integrator needs to be a square waveform with a width of 1/R seconds, so

that H has exactly W/R consecutive 1’s in each row. For a diagonal D, the sign

alternations of pc(t) need to be sharply aligned on 1/W time intervals. If either

of these properties is nonideal, then the mapping to CS becomes nonlinear and

signal dependent. Precisely, (3.46) becomes [30]

y = H(x)D(x)x. (3.50)

A noninteger ratio W/R affects both H and D [30]. Since f(t) is unknown, x,

H(x) and D(x) are also unknown. It is suggested in [30] to train the system on

example signals, so as to approximate a linear system. Note that if (3.48) is not

satisfied, then the DFT expansion also becomes nonlinear and signal-dependent

x = F(∆)s. The form factor of the RD is therefore the time-domain accuracy

that can be achieved in practice.

The MWC requires periodicity of the waveforms pi(t) and lowpass response

for h(t), which are both frequency-domain properties. The sensing matrix A is

constant as long as pi(t) are periodic, regardless of the time-domain appearance

of these waveforms. Therefore, nonideal time-domain properties of pi(t) have no

effect on the MWC. The consequence is that stability in the frequency domain

dictates the form factor of the MWC. For example, 2 GHz periodic functions

were demonstrated in a circuit prototype of the MWC [22]. More broadly, cir-

cuit publications report the design of high-speed sequence generators up to 23

and even 80 GHz speeds [85, 86], where stable frequency properties are verified

experimentally. Accurate time-domain appearance is not considered a design fac-

tor in [85,86], and is in fact not maintained in practice as shown in [22,85,86]. For

example, Fig. 3.24 demonstrates frequency stability vs. inaccurate time-domain

appearance [22].
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(a) (b)

Figure 3.24: The spectrum (a) and the time-domain appearance (b) of a 2 GHz sign-

alternating periodic waveform (taken from [22]).

The MWC scheme requires an ideal lowpass filter h(t) with rectangular fre-

quency response, which is difficult to implement due to its sharp edges. This

problem appears as well in Nyquist sampling, where it is addressed by alter-

native sampling kernels with smoother edges at the expense of oversampling.

Similar edge-free filters h(t) can be used in the MWC system with slight oversam-

pling [73]. Ripples in the passband and non-smooth transitions in the frequency

response can be compensated for digitally using the algorithm in [59].

Sampling rate. In theory, both the RD and MWC approach the minimal

rate for their model. The RD system, however, requires in addition an integer

ratio W/R; see (3.45) and (3.48). In general, a substantial rate increase may be

needed to meet this requirement. The MWC does not limit the rate granularity;

See a numerical comparison in the next subsection.

Continuous reconstruction. The RD synthesizes f̂(t) using (3.43). Realiz-

ing (3.43) in hardware can be excessive, since it requires K oscillators, one per

each active tone. Computing (3.43) digitally needs a processing rate of W , and

then a DAC device at the same rate. Thus, the synthesis complexity scales with

the Nyquist rate. The MWC reconstructs x̂(t) using commercial DAC devices,

running at the low rate fs = 1/T . It needs N branches. Wideband continuous

inputs require prohibitively large K,W to be adequately represented on a dis-

crete grid of tones. In contrast, despite the infinitely many frequencies that

comprise a multiband input, N is typically small. We note however that the

MWC may incurr difficulties in reconstructing contents around the frequencies

(`+ 0.5)fp, −L ≤ ` ≤ L, since these are irregular points of transitions between

spectrum slices. Reconstruction accuracy of these irregular points depends on the

cutoff curvature of h(t) and relative amplitudes of consecutive ci`. Reconstruction

of an input consisting of pure tones at these specific frequencies may be imper-

fect. In practice, the bands encode information signals, which can be reliably

decoded, even when signal energy is located around the frequencies (l + 0.5)fp.

As discussed in Section 3.5.6, when the bands contain digital transmissions and

the SNR is sufficiently high, algorithm Back-DSP [14] enables recovery of the
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Table 3.1: Model and Hardware Comparison

RD (multitone) MWC (multiband)

Model parameters K,Q,∆ N,B, fmax

System parameters R,W,NR m,1/T

Setup (3.45) (3.25)

Sensitive, eq. (3.48), Fig. 3.22 Robust

Form factor time-domain appearance frequency-domain stability

Requirements accurate 1/R integration periodic pi(t)

sharp alternations pc(t)

ADC topology integrate-and-dump commercial

Rate gap due to (3.45) approach minimal

DAC 1 device at rate W N devices at rate fs

underlying information bits, and in turn allows DSP at a low rate, even when a

band energy is split between adjacent slices. This algorithm also allows recon-

structing x(t) with only N DAC devices instead of 2N that are required for

arbitrary multiband reconstruction. Table 3.1 summarizes the model and hard-

ware comparison.

3.8.4 Computational Loads

In this subsection, we compare computational loads when treating multiband

signals, either using the MWC system or in the RD frameword by discretizing

the continuous frequency axis to a grid of Q = fNYQ tones, out of which only

K = NB are active [30]. We emphasize that the RD system was designed for

multitone inputs, though for the study of computational loads we examine the

RD on multiband inputs by considering a comparable grid of tones of the same

Nyquist bandwidth. Table 3.2 compares between the RD and MWC for an input

with 10 GHz Nyquist rate and 300 MHz spectral occupancy. For the RD we

consider two discretization configurations, ∆ = 1 Hz and ∆ = 100 Hz. The table

reveals high computational loads that stem from the dense discretization that is

required to represent an analog multiband input. We also included the sampling

rate and DAC speeds to complement the previous section. The notation in the

table is self-explanatory, though a few aspects are emphasized below.

The sensing matrix Φ = HD of the RD has dimensions

Φ : R×W ∝ K ×Q (huge). (3.51)

The dimension scales with the Nyquist rate; already for Q = 1 MHz Nyquist-rate

input, there are 1 million unknowns in (3.46). The sensing matrix A of the MWC

has dimensions

A : m×M ∝ N × fNYQ

B
(small). (3.52)

For the comparable spectral occupancy we consider, Φ has dimensions that are 6

to 8 orders of magnitude higher, in both the row and column dimensions, than the
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Table 3.2: Discretization Impact on Computational Loads

RD MWC

Discretization spacing ∆ = 1 Hz ∆ = 100 Hz

Model
K tones 300 · 106 3 · 106 N bands 6

out of Q tones 10 · 109 10 · 107 width B 50 MHz

Sampling setup

alternation speed W 10 GHz 10 GHz m channelsS 35

M Fourier coefficients 195

rate R, eq. (3.47), theory 2.9 GHz 2.9 GHz fs per channel 51 MHz

eq. (3.45), practice 5 GHz 5 GHz total rate 1.8 GHz

Underdetermined system (3.46): y = HDFs, ‖s‖0 ≤K (3.19): V = AU, ‖U‖0 ≤ 2N

Preparation

Collect samples Num. of samples NR 5 · 109 5 · 107 2N snapshots of y[n] 12 · 35 = 420

Delay NR/R 1 sec 10msec 2N/fs 235nsec

Complexity

Matrix dimensions Φ = HDF = NR ×Q 5 · 109 × 1010 5 · 107 × 108 A = m×M 35× 195

Apply matrix] O(W logW ) O(mM)

Storage] O(W ) O(mM)

Realtime (fixed support) sΩ = (ΦF)†Ωy dλ[n] = A†λy[n]

Memory length NR 5 · 109 5 · 107 1 snapshot of y[n] 35

Delay NR/R 1 sec 10msec 1/fs 19.5nsec

Mult.-ops. (per window) KNR 1.5 · 1018 1.5 · 1014 2Nm 420

(100 MHz cycle) KNR/((NR/R) · 100M) 1.5 · 1010 1.5 · 106 2Nmfs/100M 214

Reconstruction 1 DAC at rate W = 10 GHz N = 6 DACs at individual rates fs = 51 MHz

Technology barrier (estimated) CS algorithms (∼10 MHz) Waveform generator (∼23 GHz)

S with q = 1; in practice, hardware size is collapsed with q > 1 [22]. ] for the RD, taking into account the structure HDF.

MWC sensing matrix A. The size of the sensing matrix is a prominent factor

since it affects many digital complexities: the delay and memory length that

are associated with collecting the measurements, the number of multiplications

when applying the sensing matrix on a vector and the storage requirement of

the matrix. See the table for a numerical comparison of these factors.

We also compare the reconstruction complexity, in the more simple scenario

that the support is fixed. In this setting, the recovery is merely a matrix-vector

multiplication with the relevant pseudo-inverse. As before, the size of Φ results

in long delay and huge memory length for collecting the samples. The number of

scalar multiplications (Mult.-ops.) for applying the pseudo-inverse reveals again

orders of magnitude differences. We expressed the Mult.-ops. per block of sam-

ples, and in addition scaled them to operations per clock cycle of a 100 MHz

DSP processor.

We conclude the table with our estimation of the technology barrier of each

approach. Computational loads and memory requirements in the digital domain

are the bottleneck of the RD approach. Therefore the size of CS problems that

can be solved with available processors limits the recovery. We estimate that

W ≈ 1 MHz may be already quite demanding using convex solvers, whereas

W ≈ 10 MHz is probably the barrier using greedy methods3. The MWC is limited

3 A bank of RD channels was studied in [87], the parallel system duplicates the analog issues
and its computational complexity is not improved by much.
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by the technology for generating the periodic waveforms pi(t), which depends

on the specific choice of waveform. The estimated barrier of 23 GHz refers to

implementation of the periodic waveforms according to [85,86], though realizing

a full MWC system at these high rates can be a challenging task. Our barrier

estimates are roughly consistent with the hardware publications of these system:

[88,89] report the implementation of (single, parallel) RD for Nyquist-rate W =

800 kHz. An MWC prototype demonstrates faithful reconstruction of fNYQ = 2

GHz wideband inputs [22].

3.8.5 Analog vs. Discrete CS Radar

The question of whether finite modeling can be used to treat general analog sce-

narios was also studied in [29] in the context of radar imaging. Here, rate reduc-

tion can be translated to increased resolution and decreased time-bandwidth

product of the radar system.

An intercepted radar signal x(t) has the form

x(t) =

K∑

k=1

αkh(t− tk)ej2πνkt (3.53)

with each triplet (tk, νk, αk) corresponding to an echo of the radar waveform

h(t) from a distinct target [90]. Equation (3.53) represents an infinite union,

parameterized by λ = (tk, νk), of K-dimensional subspaces Aλ which capture

the amplitudes αk within the chosen subspace. The UoS approach was taken

in [29], where reconstruction is obtained by the general scheme for time delay

recovery of [26], with subspace estimation that uses standard spectral estimation

tools [70]. A finite modeling approach to radar assumes that the delays tk and

frequencies νk lie on a grid, effectively quantizing the delay–Doppler space (t, ν)

[32,33,91]. CS algorithms are then used for reconstruction of the targets scene.

An example of identification of nine targets (in a noiseless setting) is illus-

trated in Fig. 3.25 for three approaches: the union-based approach [29] with

a simple lowpass acquisition, classic matched filtering and quantized-CS recov-

ery. The discretization approach causes energy leakage in the quantized space

into adjacent grid points. As the figure shows, union modeling is superior with

respect to both alternative approaches. Identification results in the presence of

noise appear in [29] and affirm imaging performance that degrades gracefully as

noise levels increase, as long as the noise is not too large. These results affirm

that UoS modeling not only offers a reduced-rate sampling method, but allows

to increase the resolution in target identification, as long as the noise is not too

high. At high noise levels, match-filtering is superior. We refer to [76] for rigorous

analysis of noise effects in general FRI models.

A property of great interest in radar applications is the time-bandwidth WT
product of the system, whereW refers to the bandwidth of the transmitted pulse

h(t) and T indicates the round-trip time between radar station and targets. Ulti-
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Figure 3.25: Recovery of the Doppler-delay plane using (a) a union of subspaces approach,

(b) a standard matched filter, and (c) a discretized delay-Doppler plane (taken from [29]).

mately we would like to minimize both quantities, since W impacts antenna size

and sampling rate, while T poses a physical limitation on latency, namely the

time it takes to identify targets. Uncertainty principles, though, imply that we

cannot minimize both W and T simultaneously. The analog CS radar approach

results in minimal time-bandwidth product, much lower than that obtained using

standard matched-filtering techniques; see [29] for a precise comparison. Practi-

cal aspects of sparsity-based radar imaging, such as improved decoding time of

target identification from compressive measurements as well as efficient matrix

structures for radar sensing, are studied in [92].

3.9 Discussion

Table 3.3 summarizes the various applications we surveyed, suggesting that Xam-

pling is broad enough to capture a multitude of engineering solutions, under the

same logical flow of operations. We conclude with a discussion on the properties

and insights into analog sensing highlighted throughout this chapter.

3.9.1 Extending CS to Analog Signals

The influential works by Donoho [3] and Candès et al. [4] coined the CS termi-

nology, in which the goal is to reduce the sampling rate below Nyquist. These

pioneering works established CS via a study of underdetermined systems, where

the sensing matrix abstractly replaces the role of the sampling operator, and the

ambient dimensions represent the high Nyquist rate. In practice, however, the

study of underdetermined systems does not hint at the actual sub-Nyquist sam-

pling of analog signals. One cannot apply a sensing matrix on a set of Nyquist

rate samples, as performed in the conceptual systems in Fig. 3.23, since that

would contradict the whole idea of reducing the sampling rate. The previous

sections demonstrate how extensions of CS to continuous signals can be signifi-

cantly different in many practical aspects. Based on the insights gained, we draw

several operative conclusions in Table 3.4 regarding the choice of analog com-
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Table 3.3: Applications of union of subspaces

Signal Cardinality Analog Subspace

Application model union subspaces compression detection

Sparse-SI [16] see (3.11) finite ∞ filter-bank, Fig. 3.4 CTF

PNS [19] multiband, Fig. 3.6 finite ∞ time shifts CTF [44]

MWC [20] multiband, Fig. 3.6 finite ∞ periodic mixing + lowpass CTF [44]

RD [30] f(t) =
∑
ω
aωe

j2πωt finite finite sign flipping + CS

ω ∈ discrete grid Ω integrate-dump

FRI x(t) =
L∑̀
=1

d` g(t− t`)

periodic [24,93] x(t) = x(t+ T ) ∞ finite lowpass annihilating filter [24,93]

finite [25] 0 ≤ t ≤ T ∞ finite splines moments factoring [25]

periodic/finite [27,28] either of the above ∞ finite SoS filtering annihilating filter

Sequences of see (3.40) ∞ ∞ lowpass, or MUSIC [5] or

innovation [26,28] periodic mixing + integrate-dump ESPRIT [6]

NYFR [94] multiband finite ∞ jittered undersampling (nonlinear) n/a

Table 3.4: Suggested Guidelines for Extending CS to Analog Signals

#1 set system parameters with safeguards to accommodate possible model
mismatches

#2 incorporate design constraints on P that suit the technology generating
the source signals

#3 balance between nonlinear (subspace detection) and linear (interpolation)
reconstruction complexities

pression P in continuous-time CS systems. The first point follows immediately

from Fig. 3.22 and basically implies that model and sampler parameters should

not be tightly related, implicitly or explicitly. We elaborate below on the other

two suggestions.

Input signals are eventually generated by some source, which has its own

accuracy specifications. Therefore, if designing P imposes constraints on the

hardware that are not stricter than those required to generate the input signal,

then there are no essential limitations on the input range. We support this con-

clusion by several examples. The MWC requires accuracy that is achieved with

RF technology, which also defines the possible range of multiband transmis-

sions. The same principle of shifting spectral slices to the origin with different

weights can be achieved by PNS [19]. This strategy, however, can result in a

narrower input range that can be treated, since current RF technology can gen-

erate source signals at frequencies that exceed front-end bandwidths of existing

ADC devices [20]. Multiband inputs generated by optical sources, however, may

require a different compression stage P than that of the RF-based MWC system.

Along the same line, time-domain accuracy constraints may limit the range

of multitone inputs that can be treated in the RD approach, if these signals
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are generated by RF sources. On the other hand, consider a model of piecewise

constant inputs, with knots at the integers and only K nonidentically-zero pieces

out of Q. Sampling these signals with the RD system would map to (3.46), but

with an identity basis instead of the DFT matrix F. In this setting, the time-

domain accuracy required to ensure that the mapping to (3.46) holds is within

the tolerances of the input source.

Moving on to our third suggestion, we attempt to reason the computational

loads encountered in Table 3.2. Over 1 second, both approaches reconstruct

their inputs from a comparable set of numbers; K = 300 · 106 tone coefficients

or 2Nfs = 612 · 106 amplitudes of active sequences d`[n]. The difference is, how-

ever, that the RD recovers all these unknowns by a single execution of a nonlinear

CS algorithm on the system (3.46), which has large dimensions. In contrast, the

MWC splits the recovery task to a small-size nonlinear part (i.e., CTF) and real-

time linear interpolation. This distinction can be traced back to model assump-

tions. The nonlinear part of a multitone model, namely the number of subspaces

|Λ| =
(
Q
K

)
, is exponentially larger than

(
M
2N

)
which specifies a multiband union

of the same Nyquist bandwidth. Clearly, a prerequisite for balancing computa-

tion loads is an input model with as many unknowns as possible in its linear

part (subspaces Aλ), so as to decrease the nonlinear cardinality |Λ| of the union.

The important point is that in order to benefit from such modeling, P must be

properly designed to incorporate this structure and reduce computational loads.

For example, consider a block-sparse multitone model with K out of Q tones,

such that the active tones are clustered in K/d blocks of length d. A plain RD

system which does not incorporate this block structure would still result in a

large R×W sensing matrix with its associated digital complexities. Block-sparse

recovery algorithms, e.g., [42], can be used to partially decrease the complexity,

but the bottleneck remains the fact that the hardware compression is mapped

to a large sensing matrix4. A potential analog compression for this block-sparse

model can be an MWC system designed for N = K/d and B = d∆ specifications.

Our conclusions here stem from the study of the RD and MWC systems, and

are therefore mainly relevant for choosing P in Xampling systems that map

their hardware to underdetermined systems and incorporate CS algorithms for

recovery. Nonetheless, our suggestions above do not necessitate such a relation to

CS, and may hold more generally with regard to other compression techniques.

Finally, we point out the Nyquist-folding receiver (NYFR) of [94] which

suggests an interesting alternative route towards sub-Nyquist sampling. This

method introduces a deliberate jitter in an undersampling grid, which results

in induced phase modulations at baseband such that the modulation magni-

tudes depend on the unknown carrier positions. This strategy is exceptional as

4 Note that simply modifying the chipping and integrate-dumping intervals, in the existing
scheme of Fig. 3.21, to d times larger results in a sensing matrix smaller by the same factor,

though (3.46) in this setting would force reconstructing each block of tones by a single tone,

presumably corresponding to a model of K/d active tones out of Q/d at spacing d∆.
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Figure 3.26: Analog compression operator P in X-ADC architecture consists of a sparisfying
stage and sensing matrix, which are combined into one efficient analog preprocessing stage.

it relies on a nonlinear acquisition effect, which departs from the linear P that

has been utilized in all previous applications. In principle, to enable recovery, one

would need to infer the magnitudes of the phase modulations. A reconstruction

algorithm was not reported yet for this class of sampling, which is why we do

not elaborate further on this method. Nonetheless, the innovative idea of using

nonlinear compression P opens a wide range of possibilities to explore.

3.9.2 Is CS a Universal Sampling Scheme ?

The discussion on extending CS to analog signals draws an interesting connection

to the notion of CS universality. In the discrete setup of sensing, the measurement

model is y = Φx and the signal is sparse in some given transform basis x = Ψs.

The concept of CS universality refers to the attractive property of sensing with Φ

without knowledge of Ψ, so that Ψ enters only in the reconstruction algorithm.

This notion is further emphasized with the default choice of the identity basis

Ψ = I in many CS publications, which is justified by no loss of generality, since

Ψ is conceptually absorbed into the sensing matrix Φ.

In contrast, in many analog CS systems, the hardware design benefits from

incorporating knowledge on the sparsity basis of the input. Refer to the Nyquist-

equivalent system of the MWC in Fig. 3.23(b), for example. The input x(t) is

conceptually first preprocessed into a set of high-rate streams of measurements

d[n], and then a sensing matrix A = {ci`} is applied to reduce the rate. In

PNS [20], the same set of streams d[n] is sensed by the partial DFT matrix

(3.23), which depends on the time shifts ci of the PNS sequences. This sensing

structure also appears in Theorem 3.1, where the term G−∗(ejωT )s(ω) in (3.13)

first generates d[n], and then a sensing matrix A is applied. In all these scenarios,

the intermediate sequences d[n] are sparse for all n, so that the sensing hardware

effectively incorporates knowledge on the (continuous) sparsity basis of the input.

Figure 3.26 generalizes this point. The analog compression stage P in Xam-

pling systems can be thought of a two stages sampling system. First, a sparisfying

stage which generates a set of high-rate streams of measurements, out of which

only a few are nonidentically zero. Second, a sensing matrix is applied, where in
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principle, any sensing matrix can be used in that stage. In practice, however, the

trick is to choose a sensing matrix which can be combined with the sparsifying

part into a single hardware mechanism, so that the system does not actually go

through Nyquist-rate sampling. This combination is achieved by periodic mixing

in the MWC system, time-delays in the case of PNS, and the filters w`(t) in the

sparse-SI framework of Theorem 3.1. We can therefore suggest a slightly differ-

ent interpretation of the universality concept for analog CS systems, which is

the flexibility to choose any sensing matrix A in the second stage of P , provided

that it can be efficiently combined with the given sparsifying stage.

3.9.3 Concluding Remarks

Starting from the work in [15], union of subspaces models appear at the frontier of

research on sampling methods. The ultimate goal is to build a complete sampling

theory for UoS models of the general form (3.3) and then derive specific sampling

solutions for applications of interest. Although several promising advances have

already been made [15,16,26,40,43], this esteemed goal is yet to be accomplished.

In this chapter we described a line of works which extend CS ideas to the analog

domain based on UoS modeling. The Xampling framework of [14] unifies the

treatment of several classes of UoS signals, by leveraging insights and pragmatic

considerations into the generic architecture of Fig. 3.2.

Our hope is that the template scheme of Fig. 3.2 can serve as a substrate

for developing future sampling strategies for UoS models, and inspire future

developments that will eventually lead to a complete generalized sampling theory

in unions of subspaces.
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