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Abstract

The problem addressed is to design a detector which is maximally sensitive to specific quantum
states. Here we concentrate on quantum state detection using theworst-case a posteriori probability
of detectionas the design criterion. This objective is equivalent to asking the question: if the detector
declares that a specific state is present, what is the probability of that state actually being present?
We show that maximizing this worst-case probability (maximizing the smallest possible value of this
probability) is aquasiconvex optimizationover the matrices of the POVM (positive operator valued
measure) which characterize the measurement apparatus. Wealso show that with a given POVM, the
optimization is quasiconvex in the matrix which characterizes the Kraus operator sum representation
(OSR) in a fixed basis. We use Lagrange Duality Theory to establish the optimality conditions for
both deterministic and randomized detection. We also examine the special case of detecting a single
pure state. Numerical aspects of using convex optimizationfor quantum state detection are also
discussed.
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1 Introduction

why Information is extracted from a quantum system by measurement. The most information that it is
possible to extract from the quantum system is given by its state, specified by a density operator, and it
is impossible to determine this from a single measurement. The problem of detecting information stored
in the state of a quantum system is therefore a fundamental problem in quantum information theory.
The nature of this problem is essentially the design of measurements such that they yield the optimum
information for the specified purpose. That is, the construction of matrices representing positive operator
valued measures (POVMs) which give the best performance against a given set of criteria, subject to
constraints reflecting the underlying properties of the quantum mechanics, or costs associated with the
implementation of certain operations.

The emergence of quantum information processing has raisedimportant new issues, and made more
urgent the development of tools for the design of quantum measurements. In this paper we present a gen-
eral formalism that enables this design across a wide range of applications. In particular we show that the
problem may be cast in the form of a convex optimization over the possible POVMs, and that this allows
powerful numerical tools to identify the globally optimal measurements to achieve the desired objective.
Such optimizations are useful even if they turn out to be difficult to implement in the laboratory, since
they provide a benchmark for the performance of experimentally feasible measurements.

The objective of a measurement in quantum information theory depends on the way in which infor-
mation is encoded into the quantum system to begin with, and this is in turn, depends on the application.
In quantum cryptography, for example, the information is encoded by the sender choosing randomly
between two non-orthogonal bases, both of which can encode asingle bit. The ability of an eavesdrop-
per, who is in principle unable to influence the choice of preparation and measurement bases chosen by
the sender and receiver of this information, to extract information from the transmitted quantum bits,
depends on her ability to determine which of four non-orthogonal states were sent. In a quantum infor-
mation processor, the information in the register at the endof a computation often resides in orthogonal
states, and the goal of the measurement is simply to read out the register by distinguishing among the
sets of such states. However, the operation of such a processor may itself depends on measurements.
For example, quantum error correction protocols require the measurement of an ancilla to preserve the
quantum state of the register itself. In another example, the cluster computing model[40] and thelinear
optical quantum computer[29], both rely on measurements of ancillary qubits for the operation of the
logic gates themselves.

In these examples of conditional state preparation, it is vital that there is a high degree of correlation
between the outcome of the measurement and the quantum stateprepared in the register by the measure-
ment. The structure of the measurement should therefore be such that this correlation is maximized. Thus
it is vital to consider the case when the detectors have noise, and to develop strategies for optimizing the
measurement in the presence of this and inherent inefficiencies. Despite the fundamental inability to de-
termine the quantum state of a system from a single measurement, it is sometimes useful to make such a
determination from a set of independent measurements on identically prepared systems. This procedure
is calledquantum state tomography.Similarly, one may characterize the action of a quantum operation
by determining its effect on a known input quantum state froma determination of the output state. In
this application, the central questions are: how many measurements are needed to determine the state to
within a given precision, and how should these measurementsbe constructed? That is, it is essentially a
problem ofexperiment design. Optimal experiment for quantum state tomography and quantum process
tomography is considered in [30].

In this work, we concentrate on the problem ofquantum state detection. That is, the design of
POVMs that can determine whether or not a particular component was present in the input state to the
detector. The problem is thus equivalent to the design of a quantum channel that optimally transforms
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the input state distribution (assumed to be given, and including non-orthogonal states) to the output
measurement outcomes. The channel may be lossy, and may introduce noise, and thus there may be
latency in the measurement, in which certain outcomes are ambiguous.

previous work Several approaches have emerged for distinguishing between a collection of non-
orthogonal quantum states. An accessible review can be found in the article by Chefles [8]. In one
approach, called quantum hypothesis testing, a measurement is designed to minimize the probability of
a detection error [25, 23, 44, 17, 6, 35, 2, 15, 16, 14]. Necessary and sufficient conditions for an opti-
mum measurement maximizing the probability of correct detection have been developed in [17] using a
semidefinite programming approach, and earlier in [25] (thedrawback of this approach is that it does not
readily lend itself to efficient computational algorithms). Closed-form analytical expressions for the op-
timal measurement have been derived for several special cases [23, 6, 35, 2, 15, 16]. Iterative procedures
maximizing the probability of correct detection have also been developed for cases in which the optimal
measurement cannot be found explicitly [24, 17]. A specific design for achieving the optimal discrimina-
tion between non-orthogonal coherent states has been givenin [3], and for non-orthogonal polarization
states of a single photon by [4]. Optimal discrimination amongst more than two non-orthogonal states
has also been analyzed [39] and demonstrated experimentally [10].

A more recent approach, referred to as unambiguous detection [27, 11, 36, 28, 38, 7, 9, 13, 12, 18], is
to design a measurement that with a certain probability returns an inconclusive result, but such that if the
measurement returns an answer, then the answer is correct with probability1. Chefles [7] showed that
a necessary and sufficient condition for the existence of unambiguous measurements for distinguishing
between a collection ofpure quantum states is that the states are linearly independent.Necessary and
sufficient conditions on the optimal measurement minimizing the probability of an inconclusive result for
pure states were derived in [13]. The optimal measurement when distinguishing between a broad class of
symmetric pure-state sets was also considered in [13]. The problem of unambiguous detection between
mixedstate ensembles was first considered in [41]. Necessary and sufficient optimality conditions for
unambiguous mixed state detection were developed in [18].

Experimental configurations may not allow the ideal measurements to be made, and thus the per-
formance of feasible apparatuses have been analyzed. For example, an apparatus for the unambiguous
discrimination between two orthogonal states of a single photon using homodyne detection, rather than
photon counting, which has higher losses and more noise, hasbeen examined in [22] and [33]. An exper-
imental implementation of the process for discriminating unambiguously between two non-orthogonal
states of polarization of a single photon has been demonstrated in [26].

An interesting alternative approach for distinguishing between a collection of quantum states, which
is a combination of the previous two approaches, is to allow for a certain probability of an inconclusive
result, and then maximize the probability of correct detection [12, 45, 20].

what’s new here Prior work has considered optimal detector design only for an average measure of
the probability of detection, such as theaverage joint probability of detection. For example, in [17, 13]
it is shown that using this criterion, detector design can beformulated as a convex optimization over the
matrices in the POVM, specifically asemidefinite program(SDP). Here we concentrate on quantum state
detection using theworst-case a posteriori probability of detectionas the design criterion. This objective
is equivalent to asking the question: if the detector declares that a specific state is present, what is the
probability of that state actually being present? We show that maximizing the smallest possible value of
this probability is aquasiconvex optimizationover the POVM matrices, or over the Krause operator-sum-
representation (OSR) in a fixed basis. Issues relating to conditions of optimality and numerical aspects
of convex optimization of state detection are also discussed.
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We will show that many of the standard measures of detector performance (including those previously
considered) are also convex functions of the detector design parameters. In addition, we will see that the
design parameters, either POVM or OSR, are in a convex set. Asa result we can cast a number of detector
design problems as a convex optimization. Details and underlying theory about convex optimization are
in the text by Boyd and Vandenberghe [5]. As stated there, thegreat advantage of convex optimization
is a globally optimal solution can be found efficiently and reliably, and perhaps most importantly, can be
computed to within any desired accuracy using aninterior-point method.

Another advantage to being able to obtain a globally optimalsolution is that the resulting perfor-
mance can be used as a benchmark against which the initial detector design can be compared. If the
optimal performance is significantly better, then there is compelling reason to try and implement the
optimal solution or to try and modify the initial design in the “direction” of the optimal solution, if that
is clear from the physical implementation.

In a few instances we use Lagrange Duality Theory to derive formulas for direct calculation of the
optimal objective value and the associated POVM matrices. These calculations only involve singular
value decomposition of the problem data.

2 Problem formulation

2.1 Detector

A quantum state detectoris considered here as an input/output device mapping a state(density matrix)
ρ ∈ Cn×n at the input into one of a number of discrete outcomes at the output as illustrated in Figure 1.

ρ ∈ Din =⇒ Detector =⇒ d ∈ Dout

Figure 1: Quantum state detector

Specifically, the input state is drawn randomly from

Din =
{

ρi ∈ Cn×n, 0 ≤ pi ≤ 1 | i = 1, . . . ,m
}

(1)

wherepi is the occurence probability ofρi, that is,

pi = Prob {ρ = ρi} , i = 1, . . . ,m (2)

The set of detector outcomes is,
Dout = { i | i = 1, . . . ,m } (3)

The problem addressed is to design the detector to be able to determine the presence of some or all
of the specified set of input states given knowledge of the input setDin and the associated occurrence
probabilities. Although the principal focus is on an equal number of state inputs and detector outcomes,
this is not always the case ,e.g., noisy measurements can result in unequal inputs and outcomes as briefly
discussed in Section 5.1.
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2.2 Performance probabilities

Detector performance is usually assessed by examination ofone or more of the following probability
matrices:

joint probability matrix pjoint(i, j) = Prob {detecti AND input j}

conditional probability matrix pout|in(i|j) = Prob {detecti GIVEN input j}

a posterioriprobability matrix pin|out(j|i) = Prob {input j GIVEN detecti}

(4)

As shown in any standard text [21] these probabilities are related as follows:

pjoint(i, j) = pout|in(i|j)pj = pin|out(j|i)pout(i)

pout(i) =
∑m

j=1 pout|in(i|j)pj
(5)

Without loss of generality we can order the input and output events so that detector event 1 corresponds
to input event 1, detector event 2 to input event 2, and so on. With this ordering, detector performance
can be assessed by theerror probabilities:

ejoint(i) = Prob {detecti AND input j 6= i} = pout(i) − pjoint(i, i)

econd(i) = Prob {detectj 6= i GIVEN input i} = 1 − pout|in(i|i)

epost(i) = Prob {detecti GIVEN input j 6= i} = 1 − pin|out(i|i)

(6)

Observe that each of these is the sum of the off-diagonal elements of the corresponding probability
matrices (4). Being error probabilities, they all range from zero to one:

ejoint(i), econd(i), epost(i) ∈ [0, 1], i = 1, . . . ,m (7)

As we will see shortly, it is convenient to express each of theerror probabilities in terms ofpout|in(i|j)
andpi. Using (5) gives,

ejoint(i) =
∑m

j=1 pout|in(i|j) pj − pout|in(i|i) pi

econd(i) = 1 − pout|in(i|i)

epost(i) = 1 −
pout|in(i|i) pi

pout(i)
= 1 −

pout|in(i|i) pi
∑m

j=1 pout|in(i|j) pj

(8)

The expression forepost(i) is valid only if pout(i) 6= 0 which is assumed.

2.3 Perfect and unambiguous detection

Perfect detectionoccurs when the detector readsi only if the ith input is present. Thus the detector is
correct all the time. In this case thea posterioriprobability matrix is identity which can only occur when
the conditional probability matrix is identity,i.e.,

pout|in(i|j) = δij , i, j = 1, . . . ,m (9)

Under this condition,all the error probabilities in (8) are simultaneously identically zero. As might also
be expected, perfect performance isindependentof the input distribution{pj}. For quantum systems,
this is possible if and only if the input states are orthogonal [37].
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A weaker condition, referred to asunambiguous detection, occurs when the detector either provides
the correct answer or one that is inconclusive with some probability (see,e.g., [12, 13]. This detector
requires an additional outcome corresponding to the inconclusive result. There are nowm+ 1 detector
outcomes,Dout = { i | i = 0, . . . ,m }, where outcome0 means the result is inconclusive. As before,
for i = 1, . . . ,m, outcomei means that inputi is declared to be present. For the detector to be correct
when i, i = 1, . . . ,m is declared, thea posteriori probability of input i given outcomei must be
1. Equivalently, the submatrix of the conditional probability matrix corresponding to them states is
diagonal but not necessarily identity, as in perfect detection. Thus (9) now becomes,

pout|in(i|j) = p̄(i)δij , i, j = 1, . . . ,m (10)

Under this condition, thea posteriorierror probability is,

epost(i) = 1 −
pout|in(i|i) pi

∑

j pout|in(i|j) pj
= 1 − p̄(i) pi

p̄(i) pi
= 0 (11)

for all i = 1, . . . ,m, and the probability of an inconclusive result is,

pincl = 1 −
m
∑

i=1

p̄(i)pi (12)

If the probability of an inconclusive result is non-zero, then this detector is a type ofrandomized detector.
A detector designed without this feature will be referred toas adeterministic detector. We will return to
the problem of designing an unambiguous and/or randomized detector in Section 5.2.

2.4 Partial state detection

It is often the case that not all the input states are to be detected. We will show that it is not necessary to
have a detector outcome for all the states. Consider the input set,

Din = { ρi, pi | i = 1, . . . , ℓ } (13)

Suppose only the statesρ1, . . . , ρk, k < ℓ are to be detected. Theℓ− k states that are not being detected
can be lumped into one state, the statistical mixture,

r =

ℓ
∑

i=k+1

piρi (14)

with occurrence probability
∑ℓ

i=k+1 pi. Thus the set (13) ofℓ states can be replaced with the statistically
equivalent set ofk + 1 < ℓ states

Din = {(ρ1, p1), . . . , (ρk, pk), (r,

ℓ
∑

i=k+1

pi)} (15)

The detector then only requiresk+1 outcomes, notℓ outcomes. To adhere to the previous notation,e.g.,
(1), definem = k + 1.

An important application of the above procedure is detection of a single pure state. In this case the
input state set, in the form of (15), becomes,

Din = {(ψψ∗, 1 − β), (r, β)} (16)

with the pure stateψ ∈ Cn, ψ∗ψ = 1 occurring with probability1 − β and the remaining states
represented by the mixed stater ∈ Cn×n, r > 0, Tr r = 1 occurring with probabilityβ. We use this
example to illustrate the structure of the optimal detectorin some cases.
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2.5 Measures of performance

The goal is to design the detector to minimize the size of an error probability. The size of the error is
set by selecting a norm. Here we will consider two common norms referred to asaverageandworst-
case. Since (7) holds – the errors are always non-negative – we candefine the average error norm by
‖e‖avg =

∑m
i=1 wi e(i) and the worst-case norm by‖e‖wc = maxi=1,...,m wi e(i). These norms are

weighted error probabilities: the weights,wi ≥ 0, are selected to emphasize specific outcomes – a larger
weight emphasizes the desire to detect a particular state. Table 1 shows these norms for the specific error
probabilities (8).

e ‖e‖avg ‖e‖wc

ejoint

∑

i

wi

(

pout(i) − pout|in(i|i) pi

)

max
i

wi

(

pout(i) − pout|in(i|i) pi

)

econd

∑

i

wi

(

1 − pout|in(i|i)
)

max
i

wi

(

1 − pout|in(i|i)
)

epost

∑

i

wi

(

1 −
pout|in(i|i) pi

∑

j pout|in(i|j) pj

)

max
i

wi

(

1 −
pout|in(i|i) pi

∑

j pout|in(i|j) pj

)

Table 1: Norms of error probabilities.

In Table 1, the performance measures‖ejoint‖avg
, ‖econd‖avg , ‖ejoint‖wc

, ‖econd‖wc are convex
functions of the elements of the conditional probability matrix. In the next section we will show that
the conditional probabilities are affine functions of the design parameters, specifically, the elements of
the POVM characterizing the detector. Hence, these are convex functions of the design parameters. Of
these measures of performance, only‖ejoint‖avg

, ‖econd‖avg, or slight variations thereof, have been
addressed in the literature. Section 4 briefly describes theconvex optimization problem associated with
the performance measure‖ejoint‖avg

and is to some extent a partial review of known results,e.g., [17].
The performance measure‖epost‖wc

, which is the focus of this paper, is aquasiconvexfunction
of the conditional probabilities, and hence, a quasiconvexfunction of the design parameters,e.g., the
POVM elements. As we will show in Section 5, the optimal design can be obtained by solving a convex
optimization problem.

The performance measure‖epost‖avg
is neither a convex nor quasiconvex function, hence, only local

solutions are guaranteed to be found numerically.

3 Detector as a POVM

We start with the assumption that the detector can be completely described by a POVM (positive operator
valued measure) with matrix elements{Oi ∈ Cn×n | i = 1, . . . ,m } which, by definition, satisfy,1

m
∑

i=1

Oi = In, Oi ≥ 0, i = 1, . . . ,m (17)

1The notationX ≥ 0 or X > 0 means thatX = X
∗ and all the eigenvalues ofX are, respectively, non-negative or strictly

positive.
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In consequence, designing anoptimal detector means selecting the matrices that form the POVM to
minimize a selected performance measure from Table 1. To this end we express the error probabilities
in terms of the problem data{ρi, pi} and the design variables{Oi}. First, the conditional probability of
detectingi given statej is,

pout|in(i|j) = Tr Oiρj (18)

From (5), the total probability of detector eventi is then,

pout(i) =
m
∑

j=1

pout|in(i|j) pj =
m
∑

j=1

(Tr Oiρj)pj = Tr Oi ρ (19)

whereρ is the statistical mixture of all the possible input states,

ρ =

m
∑

j=1

pj ρj (20)

Throughout we make the assumption that,
ρ > 0 (21)

This is a not a limiting condition; it is easily satisfied in most practical situations and if necessary can be
overcome by restricting attention to the range space ofρ.

The error probabilities in (8) can now be expressed as follows for i = 1, . . . ,m

ejoint(i) = Tr Oi (ρ− piρi)
econd(i) = 1 − Tr Oiρi

epost(i) = 1 − pi Tr Oiρi

Tr Oiρ

(22)

Observe thatepost(i) is meaningful only ifTr Oiρ > 0. SinceOi ≥ 0 from (17), it follows that if the
mixed stateρ > 0, thenTr Oiρ = 0 only whenOi = 0 which is a pathological case.

Using (22), the entries in Table 1 are given explicitly as shown in Table 2. The first observation to
make is that the POVM matrices{Oi} form a convex set (17). As already stated, sinceejoint(i) and
econd(i) are affine functions ofOi, it follows that these errors are both convex functions of theOi matri-
ces. Further, since all norms are convex functions, the performance measures‖ejoint‖avg

, ‖ejoint‖wc
and

‖econd‖avg , ‖econd‖wc are all convex functions of the POVM matrices. Again, we notethat‖epost‖wc

is a quasiconvex function of{Oi} and‖epost‖avg
is not convex. Therefore, minimizing any of these

(quaisi)convex measures over the POVM matrices can be cast as a convex optimization problem.

Optimality conditions

Lagrange Duality Theory [5, Ch.5] provides a means for establishing a lower bound on the optimal
objective value, establishing conditions of optimality, and providing, in some cases, a more efficient
means to numerically solve the original problem. In the sections to follow we will present the optimality
conditions in a form which involves only the problem data,ρi, pi, i = 1, . . . ,m, and the design variables,
the POVM matrices,Oi, i = 1, . . . ,m. The details are presented in the Appendix. The optimality
conditions can also be used for determining if a known POVM set is optimal, what the authors in [1]
call: “testing an Ansatz.” Such a POVM could be obtained fromsome analytic means, from data, or
from imagination.
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e ‖e‖avg ‖e‖wc

ejoint

∑

i

wi (Tr Oi (ρ− piρi)) max
i

wiTr Oi (ρ− piρi)

econd

∑

i

wi (1 − Tr Oiρi) max
i

wi (1 − Tr Oiρi)

epost

∑

i

wi

(

1 − pi Tr Oiρi

Tr Oiρ

)

max
i

wi

(

1 − pi Tr Oiρi

Tr Oiρ

)

Table 2: Norms of error probabilities as functions of POVM elements.

Implementation of a POVM

As shown in [34,§2.2.8], any POVM can be implemented by a unitary matrix in an expanded space
together with rank-one projective measurements in the natural basis on the ancilla outputs. Some general
implementations of a POVM are also presented in [32]. Realizing the resulting unitary and rank-one
projections withspecificphysical components is, in general, a more difficult problem.

4 Optimal average joint performance

In this section we briefly discuss optimal detector design for ‖ejoint‖avg
. This problem, with slight vari-

ations, has been essentially completely analyzed in [17]. The presentation here is primarily to illustrate
a few of the ideas which repeatedly occur. Following this, the main focus of this paper, presented in
Section 5, is on detector design for‖epost‖wc

, the optimal worst-casea posterioridesign.
A detector which minimizes the objective‖ejoint‖avg

in Table 2 is obtained by solving the following
optimization problem for the POVM matrices{Oi}:

minimize ‖ejoint‖avg
=
∑m

i=1 wi

(

Tr Oi (ρ− piρi)
)

subject to
∑m

i=1 Oi = In, Oi ≥ 0, i = 1, . . . ,m
(23)

This problem was addressed in [17] for equal weights,wi = 1, where the objective becomes1 −
∑

i piTr Oiρi. As observed in [17], problem (23), with or without equal weights, is asemidefinite
program(SDP) [5,§4.6.2]. An SDP is a generalization of linear programming where the linear inequal-
ities are replaced with matrix inequalities. Although it does not make any physical sense, if the{Oi} are
constrained to be diagonal, then the problem reduces to alinear programming problem.

Optimality conditions

As derived in Appendix A.1, any feasible POVM,i.e., any set ofOi ∈ Cn×n, i = 1, . . . ,m which
satisfy (17), is optimal for problem (23) if and only if,

Ai −
∑m

j=1 AjOj ≥ 0, i = 1, . . . ,m
(

Ai −
∑m

j=1 AjOj

)

Oi = 0, i = 1, . . . ,m
(24)
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with all the problem data in the matrices,

Ai = wi (ρ− piρi) , i = 1, . . . ,m (25)

Two state detection

As an application consider the two state detection problem using the state set (16). For equal weights
w1 = w2 = 1, the data matrices are,

A1 = ρ− (1 − β)ψψ∗ = βr
A2 = ρ− βr = (1 − β)ψψ∗ (26)

UsingO1 +O2 = I, the optimality conditions become,

AO2 ≥ 0 AO2O1 = 0
AO1 ≤ 0 AO1O2 = 0

(27)

with
A = A1 −A2 = βr − (1 − β)ψψ∗ (28)

SinceA is Hermitian it can be decomposed as,

A = [U+ U−]

[

Ω+ 0
0 Ω−

] [

U∗
+

U∗
−

]

(29)

whereU = [U+ U−] ∈ Cn×n is unitary and(Ω+ ≥ 0, Ω− ≤ 0) are diagonal matrices consisting,
respectively, of the positive and negative eigenvalues ofA. Make the choice,

O1 = U−U
∗
−, O2 = U+U

∗
+ (30)

This is a feasible POVM set becauseU is unitary. This choice also satisfies the optimality conditions
(27). Specifically,AO1 = U−Ω−U

∗
− ≤ 0, AO2 = U+Ω+U

∗
+ ≥ 0, and because unitaryU requires

U∗
−U+ = 0, it follows thatO1O2 = U−U

∗
−U+U

∗
+ = 0. After some algebra, the optimal objective value

is found to be,
∥

∥

∥
eopt
joint

∥

∥

∥

avg
= Tr(O1A1 +O2A2) = β − Tr Ω+ (31)

As a further illustration, assume thatr is completely randomized, that is,r = In/n. In this caseU can be
chosen such that the pure state in refeqomin pure has the decompositionψψ∗ = U diag(0, . . . , 0, 1) U∗.
It then follows that:

A = diag (β/n, . . . , β/n,−1 + β(1 + 1/n))
ρ = diag (β/n, . . . , β/n, 1 − β(1 − 1/n))

Ω+ = diag (β/n, . . . , β/n)
Ω− = −1 + β(1 + 1/n)

(32)

Observe thatΩ− ≤ 0 if and only if β ≤ n/(1 + n). In general, as we show below, the assumption that
A has both positive and negative eigenvalues places a limit onthe size ofβ.

SinceΩ+ is n− 1 × n− 1, we getTr Ω+ = β(n− 1)/n, and hence the objective value becomes
∥

∥

∥
eopt
joint

∥

∥

∥

avg
= β/n (33)

For this detector the correspondinga posterioriprobabilities are

pin|out(1|1) =
(1 − β)Tr O1ψψ

∗

Tr O1ρ
=

1 − β

1 − β(1 − 1/n)

pin|out(2|2) =
βTr O2r

Tr O2ρ
=

(n− 1)β

n− β

(34)
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This result shows that asn → ∞, ‖ejoint‖avg
→ 0, pin|out(1|1) → 1, andpin|out(2|2) → β. Thus, if the

state dimension is large and the statistical mixture of the residual states tends to average out to a random
distribution over all states, then the probability of detecting a single pure state is very high.

Restrictions onβ From (28),A has non-negative eigenvalues (A ≥ 0) only if βr ≥ (1 − β)ψψ∗, or
equivalently, if,

β ≥ β0 =
ψ∗r−1ψ

1 + ψ∗r−1ψ
(35)

Hence, forβ < β0, A will have both positive and negative eigenvalues. If as in the above example,
r = In/n, thenψ∗r−1ψ = n and thusβ0 = n/(1 + n).

Suppose thatA > 0 (β > β0). Then the only way to satisfy the optimality conditions (27) is to set

O1 = 0, O2 = In (36)

The optimal objective value is now
∥

∥

∥
eopt
joint

∥

∥

∥

avg
= Tr(A2) = 1 − β (37)

This is just the occurrence probability of the pure stateψ; essentially the detector does nothing. Observe
that similar remarks can be made whenA < 0.

5 Optimal worst-casea posteriori design

In this section the detector is designed to minimize the objective ‖epost‖wc
in Table 2. This requires

solving the following optimization problem for the POVM matrices{Oi}:

minimize ‖epost‖wc
= max

i=1,...,m
wi

(

1 − pi Tr Oi ρi

Tr Oiρ

)

subject to
∑m

i=1 Oi = In, Oi ≥ 0, i = 1, . . . ,m
Tr Oiρ > 0, i = 1, . . . ,m

(38)

As shown in [5,§4.3.2], the objective function,‖epost‖wc
, is a maximum over a set ofquasiconvex

functionseach with domainTr Oiρ > 0, ∀i, and hence, is a quasiconvex function over the domain
{Tr Oiρ > 0 | i = 1, . . . ,m }. Since the POVM matrices{Oi} form a convex set, (38) is aquasiconvex
optimization problemin the POVM matrices. Technically this means that for any positive scalarδ, the
sublevel setsof POVMs

{

Oi, Tr Oiρ > 0, ∀i
∣

∣ ‖epost‖wc
≤ δ

}

(39)

are convex. To see that these sets are convex in this case, observe that for POVMs in the domain
Tr Oiρ > 0, ∀i, the sublevel sets are equivalently,

Tr OiAi(δ) ≤ 0 (40)

with
Ai(δ) = (wi − δ)ρ − wipiρi, i = 1, . . . ,m (41)

The sets defined by (40) are affine in the POVM elements, and hence, are convex sets. We will refer to
the matricesAi(δ) as thedata matrices.
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This effectively shows (see also Appendix A.2) that (38) is equivalent to,

minimize δ
subject to

∑m
i=1 Oi = In, Oi ≥ 0, i = 1, . . . ,m

Tr OiAi(δ) ≤ 0, i = 1, . . . ,m
(42)

The optimization variables for (42) are now the real positive scalarδ as well as the POVM matrices{Oi}.
Observe that (42) does not include the constraint setTr Oiρ > 0, i = 1, . . . ,m. Sinceρ > 0, the only
way this constraint can be violated is if a POVM element is zero. If this occurs then the problem is ill-
posed and most likely that POVM element can be eliminated. Hence, from now on we do not explicitly
state this constraint.

As shown in [5,§4.2.5] and described in Appendix A.2, a solution to the quasiconvex optimization
problem (38) or (42) can be obtained by solving a series of convex feasibility problems together with a
bisection method.

Optimality conditions

As derived in Appendix A.2, any feasible POVM (17) is optimalif and only if there exist real constants
δopt andλi, i = 1, . . . ,m such that,

λi > 0, i ∈ S
λi = 0, i 6∈ S

∑m
i=1 λi = 1

λiAi(δ
opt) −∑m

j=1 λjAj(δ
opt)Oj ≥ 0, i = 1, . . . ,m

(

λiAi(δ
opt) −

∑m
j=1 λjAj(δ

opt)Oj

)

Oi = 0, i = 1, . . . ,m

(43)

The index setS consists only of those indices where the optimalδopt in (42) is achieved. ThusS is
equivalently expressed by,

S =
{

i = 1, . . . ,m
∣

∣Tr OiAi(δ
opt) = 0

}

=

{

i = 1, . . . ,m

∣

∣

∣

∣

δopt = wi

(

1 − pi Tr Oi ρi

Tr Oiρ

) } (44)

Some special cases follow.

Equal weights: one active linear constraint

For equal weights,wi = 1, ∀i, (38) can be expressed equivalently by,

maximize γ

subject to pin|out(i|i) =
pi Tr Oi ρi

Tr Oiρ
≥ γ, i = 1, . . . ,m

∑m
i=1 Oi = In, Oi ≥ 0, i = 1, . . . ,m

(45)

Clearlyγ = 1 − δ with δ from (42). Letγopt denote the optimal objective value in (45). Suppose only
one linear constraint is active, that is, fori = k, Tr OkAk(γ

opt) = 0 and fori 6= k, Tr OiAi(γ
opt) < 0.

Then, as shown in Appendix A.2, the optimality conditions (43) become,

Ak(γ
opt) (I −Ok) ≥ 0
Ak(γ

opt)Ok ≤ 0
Ak(γ

opt) (I −Ok)Ok = 0
Ak(γ

opt)OkOi = 0, i 6= k
Tr OkAk(γ

opt) = 0

(46)
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with γopt given by,
γopt = pk σmax(ρ

−1/2ρkρ
−1/2) (47)

whereσmax(·) is the maximum singular value of the matrix argument. (Note thatρ−1/2 exists because
ρ > 0 is assumed (21)). Since only one constraint is assumed active, (47) is equivalent to,

γopt = min
i=1,...,m

pi σmax(ρ
−1/2ρiρ

−1/2) (48)

If the input states arepure, that is,
ρi = ψiψ

∗
i , i = 1, . . . ,m (49)

with ψ ∈ Cn, ψ∗ψ = 1, then (47) becomes,

γopt = min
i=1,...,m

pi ψ
∗
i ρ

−1ψi (50)

Single pure state detection

Consider again the input set (16) where the goal is to detectψ. With the weights set tow1 = 1, w2 = 0,
the data matrices are,

A1(γ) = γρ− (1 − β)ψψ∗

A2(δ) = −δρ (51)

with γ = 1 − δ. Unlessγopt = 1 (δopt = 0), it follws that Tr O2A2(δ
opt) = −δoptTr O2ρ < 0.

Thus, the only active constraint isTr O1A1(γ
opt) = 0 which makes the index setS the singleton

S = {1}, and hence, (46)-(47) applies. Using the Matrix Inversion Lemma to computeψ∗ρ−1ψ with
ρ = (1 − β)ψψ∗ + βr gives,

γopt = (1 − β)ψ∗ρ−1ψ =
1 − β

1 − β(1 − 1/ψ∗r−1ψ)
(52)

Observe thatγopt increases asψ∗r−1ψ increases. Ifψ is close to a singular vector ofr which has a
very small singular value, thenψ∗r−1ψ will be large, and hence,γopt ≈ 1. This can be construed as an
approximate orthogonality condition. In the special case whenr = In/n, thenψ∗r−1ψ = n, and hence,

γopt =
1 − β

1 − β(1 − 1/n)
(53)

This is exactly the result in (34), which in general is not to be expected.
The (two) POVM elementsO1 andO2 associated with the two state input set (16) can be directly

calculated from the optimality conditions (46). Using the fact thatO1+O2 = I, the optimality conditions
(46) become:

A1(γ
opt)O2 ≥ 0 A1(γ

opt)O2O1 = 0
A1(γ

opt)O1 ≤ 0 A1(γ
opt)O1O2 = 0

(54)

Observe that becauseλ2 = 0, the data matrixA2(δ
opt) plays no part in the optimality conditions. Using

γopt from (52) makesrank A1(γ
opt) = n− 1, and hence has the decomposition,

A1(γ
opt) = γoptρ− (1 − β)ψψ∗ = [U+ U0]

[

Ω+ 0n−1

0T
n−1 0

] [

U∗
+

U∗
0

]

Ω+ = diag(ω1, . . . , ωn−1), ω1 ≥ ω2 ≥ · · · ≥ ωn−1 ≥ 0, ω1 > 0

(55)
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for unitary [U+ U0] ∈ Cn×n with U+ ∈ Cn×n−1 andU0 ∈ Cn×1. Setting,

O1 = U0U
∗
0 , O2 = U+U

∗
+ (56)

givesA1(γ
opt)O2 = U+Ω+U

∗
+ ≥ 0, A1(γ

opt)O1 = 0, O1O2 = 0, thus satisfying the optimality
conditions (54). Observe also thatO1 is a rank1 projector, andO2 is a rankn− 1 projector.

If r = In/n, then thea posterioriprobabilities are exactly the same as given by (34); again, this is
not the case in general.

Single state detection with pure residual state

In the previous example, as long as the residual stater > 0, then it it is not possible to makeγopt = 1.
To see this, observe thatA1(γ

opt = 1) = ρ − (1 − β)ψψ∗ = βr > 0, and hence has only positive
eigenvalues. Thus, the optimality conditions can only be satisfied withO1 = 0, O2 = I. (EffectivelyU0

in (55) is null.) This choice ofγopt is therefore infeasible.
Now consider the input set,

Din = {(ρ0, 1 − β), (φφ∗, β)} (57)

with the pure residual stateφ ∈ Cn, φ∗φ = 1 occurring with probabilityβ and the state to be detected
ρ0 ∈ Cn×n, ρ ≥ 0 occurring with probability1 − β. In this case forγopt = 1, we get,

A1(γ
opt = 1) = ρ− (1 − β)ρ0

= βφφ∗ = β [U+ U0]

[

1 0T
n−1

0n−1 0n−1×n−1

] [

U∗
+

U∗
0

]

(58)

with U+ ∈ Cn×1, U0 ∈ Cn×n−1. The choiceO1 = U0U
∗
0 , O2 = U+U

∗
+ satisfies the optimality

conditions. Hence, perfect deterministic detection of a single state, pure or mixed, is possible if the
residual state is pure.

5.1 Noisy measurements

The optimal detector design problem can be modified to handlea “noisy” set of measurements. In general
there can be more noisy measurements than noise-free measurements. Consider, for example, a photon
detection device with two photon-counting detectors. If both are noise-free, meaning, perfect efficiency
and no dark count probability, then, provided one photon is always present at the input of the device,
there only two possible outcomes:{10, 01}. If, however, each detector is noisy, then either or both
detectors can misfire or fire even with a photon always presentat the input. Thus in the noisy case there
are four possible outcomes:{10, 01, 11, 00}.

As before, let{Oi} denote them noise-free POVM matrices. Now let{Onoisy
i } denote thêm noisy

measurements witĥm ≥ m. The noisy measurements can be expressed as,

Onoisy
i =

m
∑

j=1

νij Oj , i = 1, . . . , m̂ (59)

The{νi} represents the noise in the measurement, specifically, the conditional probability thati is mea-
sured given the noise-free outcomej. Since

∑m
i=1 νij = 1, ∀j, it follows that the noisy set{Onoisy

i } is
also a POVM. Thus,

m̂
∑

i=1

Onoisy
i = In, Onoisy

i ≥ 0, i = 1, . . . , m̂ (60)
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In matrix form,






Onoisy
1
...

Onoisy
m̂






=







ν11 In · · · ν1m In
...

...
...

νm̂1 In · · · νm̂m In













O1

...
Om






(61)

When the equivalent noisy POVM matrices,{Onoisy
i }, are inserted into (38), either objective function

retains the same form with the{Onoisy
i } replacing the{Oi}. The design variables are still the noise-free

POVM matrices{Oi}. Since the noisy POVM matrices,{Onoisy
i }, are linear in the noise-free POVM

matrices,{Oi}, the design problems in Table 2 remain convex or quasiconvexoptimization problems
over the noise-free POVM matrices{Oi}.

Optimal worst-casea posteriori performance with noisy measurements

With noisy measurements, (38) becomes,

minimize ‖epost‖wc
= max

i=1,...,m
wi

(

1 − pi Tr Onoisy
i ρi

Tr Onoisy
i ρ

)

subject to Onoisy
i =

∑m
j=1 νij Oj, i = 1, . . . , m̂

∑m
i=1 Oi = In, Oi ≥ 0, i = 1, . . . ,m

(62)

Under the assumption thatTr Onoisy
i ρ > 0,∀i, (62) is equivalent to,

minimize δ

subject to Onoisy
i =

∑m
j=1 νij Oj , i = 1, . . . , m̂

∑m
i=1 Oi = In, Oi ≥ 0, i = 1, . . . ,m

Tr Onoisy
i Ai(δ) ≤ δ, i = 1, . . . ,m

(63)

The optimization variables for (62) are now the real positive scalarδ as well as the noise-free POVM
matrices{Oi}. The data matrices,Ai(δ), are given by (41).

Optimality conditions

As derived in the Appendix A.3, any feasible POVM (17) is optimal if and only if there exist real con-
stantsλi, i = 1, . . . ,m such that,

λi > 0, i ∈ S
λi = 0, i 6∈ S

∑m
i=1 λi = 1

λiAi(δ
opt, ν) −∑m

j=1 λjAj(δ
opt, ν)Oj ≥ 0, i = 1, . . . ,m

(

λiAi(δ
opt, ν) −∑m

j=1 λjAj(δ
opt, ν)Oj

)

Oi = 0, i = 1, . . . ,m
∑m

i=1 Tr Ai(δ
opt, ν)Oi = 0

(64)

with

Ai(δ, ν) =
m
∑

j=1

λjνjiAj(δ), i = 1, . . . ,m (65)

and the index setS given by,

S =
{

i = 1, . . . ,m
∣

∣Tr OiAi(δ
opt, ν) = 0

}

(66)

whereδopt is the optimal objective value from (63).
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Single pure state detection

Consider again the input set (16) with weightsw1 = 1, w2 = 0. Suppose the measurement noise matrix
is,

ν =

[

1 − ν0 ν0

ν0 1 − ν0

]

(67)

Assuming the only active constraint to beTr Onoisy
1 A1(δ) = 0, then the multipliers areλ1 = 1, λ2 = 0

and the optimality conditions become:

(1 − 2ν0)A1(γ
opt
noisy)O2 ≥ 0 A1(γ

opt
noisy)O2O1 = 0

(1 − 2ν0)A1(γ
opt
noisy)O1 ≤ 0 A1(γ

opt
noisy)O1O2 = 0

Tr A1(γ
opt
noisy)

(

O1 +
ν0

1 − ν0

O2

)

= 0

(68)

with A1(γ) from (51). Assume further thatν0 < 1/2. Then the matrix inequalities in (68) are the same
as in (54), namely,

A1(γ
opt
noisy)O2 ≥ 0, A1(γ

opt
noisy)O1 ≤ 0 (69)

Now again introduce the decomposition,

A1(γ
opt
noisy) = γopt

noisyρ− (1 − β)ψψ∗ = [U+ U−]

[

Ω+ 0
0 Ω−

] [

U∗
+

U∗
−

]

(70)

where(Ω+, Ω−) are diagonal matrices consisting, respectively, of the positive and negative eigenvalues
of A1(γ

opt
noisy). As in the previous examples, make the choice,O1 = U−U

∗
−, O2 = U+U

∗
+ The matrix

inequalities and equalities in the optimality conditions are satisfied by this choice. The scalar (trace)
condition is satisfied provided that,

Tr Ω− = − ν0

1 − ν0

Tr Ω+ (71)

The noise-free case,ν0 = 0, requires thatTr Ω− = 0, which means thatΩ− = 0. This is the condition
for the decomposition in (55) which can only occur forγopt

noisy = γopt from (52). When noise is present,

ν0 > 0, it is necessary thatΩ− < 0, and hence,γopt
noisy < γopt as might be expected; noise reduces thea

posterioriprobability of detection.
To illustrate this further, suppose again thatr = In/n and we use the decompositionψψ∗ =

U diag(0, . . . , 0, 1) U∗. This gives,

Ω+ = (γopt
noisyβ/n) In−1, Ω− = γopt

noisy (1 − β(1 − 1/n)) − (1 − β) (72)

Consequently, (71) holds if

γopt
noisy =

1 − β

1 − β
(

1 − 1
n − ν0

1−ν0

n−1
n

) (73)

This clearly shows thatγopt
noisy < γopt = (1 − β)/(1 − β(1 − 1/n)). In addition ,asn→ ∞,

γopt
noisy → 1 − β

1 − β
(

1−2ν0

1−ν0

) (74)

Whenν0 > 1/2, the matrix inequalities in (68) reverse and become,

A1(γ
opt
noisy)O2 ≤ 0, A1(γ

opt
noisy)O1 ≥ 0 (75)
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These are satisfied if the POVM matrices forν0 < 1/2 are also reversed, that is, set toO1 = U+U
∗
+, O2 =

U−U
∗
− with (U+, U−) from the decomposition (70). For a fixedβ, the optimal objective value with

ν0 < 1/2 will always be greater than the value withν0 > 1/2. Whenν0 = 1/2, this type of detector can
do no better thanγ = 1 − β, the occurrence probability for the pure state.

5.2 Unambiguous detection

As discussed briefly in Section 2.3, an unambiguous detectoris one that with some probability either
detects the correct state or else declares the result inconclusive. This requires an additional POVM
element to account for the inconclusive result. Specifically, as before, letOi, i = 1, . . . ,m correspond
to them input statesρi, i = 1, . . . ,m and letO0 correspond to the inconclusive result. Thus there are
m+ 1 POVM elements,Oi, i = 0, . . . ,m. The probability of an inconclusive result is therefore,

pincl = Tr O0ρ (76)

The ideal unambiguous detector is one where thea posterioriprobability error is zero, or equivalently
pin|out(i|i) = 1, i = 1, . . . ,m which can only occur when (10) holds which here becomes,

pout|in(i|j) = Tr Oiρj = p̄(i) δij , i, j = 1, . . . ,m (77)

Observe that if̄p(i) = 1, i = 1, . . . ,m then from (12)pincl = 0, and hence,O0 = 0, which eliminates
the need for the extra (inconclusive) detector outcome and reduces to the condition forperfectdetection
(9). Allowing for a non-zero probability of an inconclusiveresult opens the possibility that a detector
can be designed to satisfy (11), and thus,epost(i) = 0, i = 1, . . . ,m.

Optimal a posteriori performance with an inconclusive outcome

By relaxing the requirement for zero error we can find a randomized detector by solving the following
problem.

minimize ‖epost‖wc
= max

i=1,...,m
wi

(

1 − pi Tr Oi ρi

Tr Oiρ

)

subject to
∑m

i=0 Oi = In, Oi ≥ 0, i = 0, . . . ,m
(78)

If ‖epost‖wc
= 0 then we have found anunambiguous detector, one that either produces the correct

result or is inconclusive. Otherwise the detector is randomized, but not unambiguous. However, the
extra design freedom in the inconclusive POVM matrix,O0, insures that the resulting‖epost‖wc

will
always be smaller than the value obtained for a detector without the additional inconclusive outcome.

Optimality conditions

Observe also that the only difference between problem (78) and problem (38)is the extra POVM element
O0. As a result the optimality conditions have extra constraints to account for the additional element.
Specifically, any feasible POVM is optimal if and only if there exist real constantsλi, i = 1, . . . ,m such
that,

λi > 0, i ∈ S
λi = 0, i 6∈ S

∑m
i=1 λi = 1

λiAi(δ
opt) −∑m

j=1 λjAj(δ
opt)Oj ≥ 0, i = 1, . . . ,m

(

λiAi(δ
opt) −∑m

j=1 λjAj(δ
opt)Oj

)

Oi = 0, i = 1, . . . ,m
∑m

j=1 λjAj(δ
opt)Oj ≤ 0

(

∑m
j=1 λjAj(δ

opt)Oj

)

O0 = 0

(79)
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The index setS consists only of those indices where the optimal objective value from (78) is achieved.
Thus,

S =
{

i = 1, . . . ,m
∣

∣Tr OiAi(δ
opt) = 0

}

(80)

If the optimal is achieved at only one constraint, sayi = k, thenλk = 1λi = 0, i 6= k, and the optimality
conditions become:

Ak(δ
opt)(I −Ok) ≥ 0
Ak(δ

opt)Ok ≤ 0
Ak(δ

opt)(I −Ok)Ok = 0
(

Ak(δ
opt)Ok

)

Oi = 0, i ∈ {1, . . . ,m} 6= k
Ak(δ

opt)OkO0 = 0

(81)

Optimal a posteriori performance with an inconclusive outcome and measurement noise

Problem (78) can be modified to account for measurement noise.

minimize ‖epost‖wc
= max

i=1,...,m
wi

(

1 − pi Tr Onoisy
i ρi

Tr Onoisy
i ρ

)

subject to Onoisy
i =

∑m
j=0 νij Oj, i = 0, . . . ,m

∑m
i=0 Oi = In, Oi ≥ 0, i = 0, . . . ,m

(82)

In this case because of the noise, it is doubtful that an unambiguous detector can be found. Nonetheless,
the resulting randomized detector will still outperform one without an inconclusive outcome.

5.3 Example

Consider the following two (pure) input states and corresponding occurrence probabilities:

ρ1 =

[

1/
√

2

1/
√

2

] [

1/
√

2

1/
√

2

]T

ρ2 =

[

1
0

] [

1
0

]T

pin(1) = 2/3 pin(2) = 1/3

(83)

Throughout this example we place equal weights on each state,

[w1, w2] = [1, 1] (84)

Optimizing the worst-casea posterioriprobability measure, (38), returnsa posterioriprobabilities2

pin|out(1|1) = 0.87 pin|out(2|2) = 0.87 (85)

and POVM matrices which are well approximated by the rank-one projectors3

{ [

0.53
0.85

]

,

[

−0.85
0.53

] }

(86)

Optimizing the worst-casea posterioriprobability measure with the additional inconclusive outcome,
(78), for the boundpincl ≤ 1, returns an unambiguous detector witha posterioriand inconclusive prob-
abilities,

pin|out(1|1) = 1 pin|out(2|2) = 1 pincl = 0.75 (87)
2All numerical results were obtained usingSEDUMI [42]. The numbers shown are rounded to two significant digits.
3The positive semi-definite matrices returned by the convex program are approximated by rank-one projectors using a

singular value decomposition only when the maximum singular value is much greater than all the others.
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The associated POVM matrices (rank-one projectors) are
{ [

0
0.62

]

,

[

−0.62
0.62

]

,

[

0.79
0.49

] }

(88)

This is an unambiguous detector which is perfectly correct 75% of the time.
Now we add 2% noise and solve (62) with

ν =

[

0.98 0.02
0.02 0.98

]

(89)

By comparison with (85)-(86) we now get

pin|out(1|1) = 0.86 pin|out(2|2) = 0.86 (90)

and similar POVM rank-one projectors
{ [

0.55
0.83

]

,

[

−0.83
0.55

] }

(91)

Solving (82) with a similar 2% noise

νincl =





0.98 0.01 0.01
0.01 0.98 .01
0.01 0.01 0.98



 (92)

gives the probabilities,

pin|out(1|1) = 0.96 pin|out(2|2) = 0.96 pincl = 0.76 (93)

and POVM matrices which are well approximated by the rank-one projectors,
{ [

0.04
0.46

]

,

[

−0.68
0.66

]

,

[

0.73
0.59

] }

(94)

This is no longer an unambiguous detector but rather a randomized detector. For 76% of the time an
inconclusive result will occur. When the detector declareseither state 1 or state 2, the probability of
being correct is 96% which is better than the deterministic detector with probabilities of 86%. If the
situation is such that there is little penalty in waiting, then a higher probability outcome is promised by
the randomized detector.

We now repeat all the above optimal designs for varying noiselevels:

ν(ν0) =

[

1 − ν0 ν0

ν0 1 − ν0

]

, νincl(ν0) =





1 − ν0 ν0/2 ν0/2
ν0/2 1 − ν0 ν0/2
ν0/2 ν0/2 1 − ν0



 , ν0 ∈ [0, 0.20] (95)

The results are plotted in Figure 2 forν0 from 0 to 0.20 in 0.02 increments. The solid curves are the two
diagonal elements of thea posterioriprobability matrix for the optimal randomized detector. Associated
with them is the dotted curve showingpincl, the probability of an inconclusive result. The dashed curves
are the two diagonal elements of thea posterioriprobability matrix for the optimal deterministic detector.
As expected, the randomized detector outperforms the deterministic detector as seen by the fact that
the lower solid curve is always larger than the lower dashed curve. (The optimal worst-case design
maximizes the minimum error, which is equivalent to making the lower of the two curves as large as
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possible.) In all cases the POVMs were easily approximated by rank-one projectors, but in no case were
the projectors in the natural basis.

The behavior ofpincl(ν0) is quite interesting. The inconclusive probability and theassociated POVM
matrix become small at a noise levelη ≈ 0.12, in effect, turning off the randomized feature.

Figure 3 shows the robustness properties of the randomized and deterministic detectors. We fixed
the POVMs for the two cases at their optimal settings corresponding to the noise-free case(ν0 = 0).
The plots show what happens as the noise level increases. Theprobability levels are not all that different
from the optimal noisy results in Figure 2, but are of course not as good.
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Figure 2:pin|out(i|i), i = 1, 2 optimized for each noise level via (38) and (78).
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Figure 3:pin|out(i|i), i = 1, 2 optimized only for the zero noise level.
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6 Extensions and Other Considerations

6.1 Uncertain dynamics

The goal is to design the POVM{Oi} in the presence of uncertain detector dynamicsQ ∈ Ddyn as
illustrated in Figure 4.

ρ ∈ Din =⇒ Uncertain Dynamics
Q ∈ Ddyn

=⇒ POVM
{Oi}

=⇒ d ∈ Dout

Figure 4: Detector with uncertain dynamics.

We will assume thatDdyn consists of a finite number of unitary operators{Uk} with corresponding
occurrence probabilities{pdyn(k)}. Thus,

Ddyn = {Uk ∈ Cn×n | k = 1, . . . , ℓ }
pdyn(k) = Prob {Q = Uk}

(96)

The conditional probability (18) now becomes,

pout|in(i|j) = Tr Oiρ̂j , ρ̂j =
ℓ
∑

k=1

pdyn(k)UkρjU
∗
k (97)

This clearly shows that the only changes to make is to replaceρj with ρ̂j everywhere, specifically, in the
error probabilities (22) and in the output stateρ as defined by (20).

The above representation ofQ is an example of a the more genericKraus operator sum representation
(OSR). Specifically, theKraus matrices, {Kk ∈ Cn×n | k = 1, . . . , ℓ } with ℓ ≤ n2, can characterize a
large class of possibilities for theQ-system as follows:

Q(ρ,K) =
ℓ
∑

k=1

KkρK
∗
k ,

ℓ
∑

k=1

K∗
kKk = K0 ≤ In (98)

Comparing this with (96) givesKk =
√

pdyn(k)Uk andK0 = In, which clearly is just one possibility.
For example, whenK0 < In, additional measurement operations withinQ are included. The OSR also
accounts for many forms of error sources as well as decoherence,e.g., [34], [31].

6.2 Detector with fixed POVM

In this section we consider designing the detector for a fixedPOVM set. We will show that the detector
dynamics when represented as an OSR (Operator-Sum-Representation) can also be designed by solving
a quasiconvex optimization problem.

Suppose we aregiven the POVM,{Oi}, and wish to designQ for optimal detection as shown in
Figure 5.

ρ ∈ Din =⇒ Detector
Q

=⇒ Fixed POVM
{Oi}

=⇒ d ∈ Dout

Figure 5: Detector with fixed POVM.
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The POVM would be most likely selected as rank-one projectors in the natural basis. For example, for
i = 1, . . . ,m, fix bi ∈ Cm andOi = Iℓ ⊗ bi b

∗
i with ℓ +m = n, the dimension of the input state. The

input state might also consist of prepared ancilla states. In the natural basisbT1 = [1 0 · · · 0], b2 =
[0 1 0 · · · 0], . . . , bTm = [0 · · · 0 1].

As noted in Section 6.1, a very general form to characterizeQ is the Krause OSR. Using (98), thea
posterioriperformance probability is now,

ppost(i) =
pi Tr Oi Q(ρi,K)

Tr OiQ(ρ,K)
(99)

which is quadratic (fractional) in the Kraus matrices. It can be transformed into a quasiconvex function
by expanding the Kraus matrices in a fixed basis. The procedure, described in [34,§8.4.2], is as follows:
since any matrix inCn×n can be represented byn2 complex numbers, let

{

Bµ ∈ Cn×n
∣

∣µ = 1, . . . , n2
}

(100)

be a basis for matrices inCn×n. The Kraus matrices can thus be expressed as,

Kk =
n2

∑

µ=1

akµBµ, k = 1, . . . , ℓ (101)

where then2 coefficients{akµ} are complex scalars. As shown in [34] the representation (98) now
becomes,

Q(ρ,X) =

n2

∑

µ,ν=1

Xµν BµρB
∗
ν ,

n2

∑

µ,ν=1

Xµν B
∗
µBν ≤ In (102)

with

Xµν =

ℓ
∑

k=1

a∗kµakν , µ, ν = 1, . . . , n2 (103)

The matrixX ∈ Cn2×n2

with the above coefficients must also be non-negative in order to maintain
probabilities. The number of free (real) variables inX is thusn4 − n2. In addition, we can write,

pout(i) = Tr Oi Q(ρ,X) = Tr XRi(ρ), i = 1, . . . ,m (104)

where the matrixRi(ρ) ∈ Cn2×n2

has elements given by,

[Ri(ρ)]µν = Tr BνρB
∗
µOi, µ, ν = 1, . . . , n2 (105)

The problem of optimally designing the “system” part of the detector, theQ-system, is equivalent to the
following optimization problem over the positive semidefinite matrixX ∈ Cn2×n2

.

minimize ‖epost‖wc
= max

i=1,...,m
wi

(

1 − pi Tr XRi(ρi)

Tr XRi(ρ)

)

subject to
∑

µν Xµν B
∗
µBν ≤ In, X ≥ 0

(106)

This problem, like (38), is also a quasiconvex optimizationproblem with the optimization variables being
the elements of the matrixX.
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Implementation of OSR

An OSR can be implemented using unitary operations (and if necessary projection measurements) and
theX-matrix can be transformed to Kraus operators via the singular value decomposition [34]. Specif-
ically, letX = V SV ∗ with unitaryV ∈ Cn2×n2

andS = diag(s1 · · · sn2) with the singular values
ordered so thats1 ≥ s2 ≥ · · · ≥ sn2 ≥ 0. Then the coefficients in the basis representation of the Kraus
matrices (101) are,

akµ =
√
sk V

∗
µk, k, µ = 1, . . . , n2 (107)

Theoretically there can be fewer thenn2 Kraus operators. For example, if theQ system is unitary, then,

Q(ρ) = UρU∗ (108)

In effect, there is one Kraus operator,U , which is unitary and of the same dimension as the input state
ρ. The correspondingX matrix is a dyad, hencerank X = 1. Adding a rank constraint would thus
force a simplification of the implementation. Unfortunately, a rank constraint is not convex. However,
theX matrix is symmetric and positive semidefinite, hence the heuristic from [19] applies where the
rank constraint is replaced by the trace constraint,

Tr X ≤ η (109)

From the singular value decomposition ofX, Tr X =
∑

k sk. Adding the constraint (109) to (106)
will force some (or many) of thesk to be small which can be eliminated (post-optimization) thereby
reducing the rank. The auxiliary parameterη can be used to find a tradeoff between simpler realizations
and performance.
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A Optimality Conditions

Optimality conditions are derived from Lagrange Duality Theory for the following detection criteria: (i)
average joint performance, (ii) worst-casea posterioriperformance with noise-free measurements, and
(iii) worst-casea posterioriperformance with noisy measurements.

Caveat emptorThe material in this section is meant to be a “scaffold” to what can be found in some
of the recent texts on convex optimization,e.g., see [5] and the references therein. More specifically,
we refer principally to the sections in [5] where detailed information and proofs can be found for any
axiomatic statements made here. The same caution applies toour references to computational methods:
interested readers should refer directly to the available convex solvers which can be downloaded from
the web,e.g., SDPSOL[43] or SEDUMI [42].

A.1 Optimality conditions for average joint performance

We will apply Lagrange Duality Theory [5, Ch.5] to the optimization problem (23) referred to in this
context as theprimal problem. The Lagrange function associated with the primal problem (23) is,

L(O,Z, Y ) =

m
∑

i=1

Tr OiAi − Tr ZiOi + Tr Y
(

In −
m
∑

i=1

Oi

)

(110)
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with Lagrange multipliersZi ∈ Cn×n, Zi ≥ 0 for the inequality constraintOi ≥ 0, and Y ∈
Rn×n, Y = Y T for the equality constraint

∑m
i=1 Oi = In. The first term inL(O,Z, Y ) is the objective

function in (23) expressed in terms of the data matricesAi from (25). TheLagrange dual functionis
defined as,,

g(Z, Y ) = inf
O

L(O,Z, Y )

=

{

Tr Y Ai − Zi − Y = 0, i = 1, . . . ,m
−∞ otherwise

(111)

One of the important properties of the dual function is that for anyZi ≥ 0 and anyY , we get the lower
bound,

g(Z, Y ) ≤ δopt (112)

whereδopt is the optimal objective value from solving (23). TheLagrange dual problemestablishes the
largest lower bound from,

maximize g(Z, Y )
subject to Zi ≥ 0, i = 1, . . . ,m

(113)

where the optimization variables are(Z, Y ). Using (111) we can eliminate theZi variables and write the
dual problem explicitly in terms of theY variables as,

maximize Tr Y
subject to Ai − Y ≥ 0, i = 1, . . . ,m

(114)

A solution,Y opt, thedual optimal multiplier, also returns the maximum objective value,dopt = Tr Y opt,
thedual optimal value. From (112) we getdopt ≤ δopt. A numerical solution of the primal problem (23)
always returnŝδ ≥ δopt, and likewise numerically solving the dual problem (114) will always return
d̂ ≤ dopt. Thus, the optimal solution is always contained in the knowninterval d̂ ≤ dopt ≤ sopt ≤ ŝ
. For this primal-dual pair we also havestrong duality, that is,dopt = sopt. This follows because the
primal problem satisfiesSlater’s condition[5, §5.2.3], which in this case means that the primal problem
is convex and there exist strictly feasible(Oi), i.e., Oi > 0, i = 1, . . . ,m,

∑m
i=1 Oi = In. (For

example, letOi = In/m). The optimal and computed objective values then satisfy,

d̂ ≤ Tr Y opt = δopt ≤ δ̂ (115)

Strong duality also implies the followingcomplementary slacknessconditions, [5,§5.5.2],

Zopt
i Oopt

i =
(

Ai − Y opt
)

Oopt
i = 0, i = 1, . . . ,m (116)

The last line usesZi = Ai−Y from (111). Combining
∑m

i=1 O
opt
i = I with (Ai−Y opt)Oopt

i = 0, i =
1, . . . ,m gives,

Y opt =

m
∑

i=1

AiO
opt
i (117)

This can be used in to eliminateY opt in (114) and (116) yielding the constraints,

Ai −
∑m

j=1 AjOj ≥ 0, i = 1, . . . ,m
(

Ai −
∑m

j=1 AjOj

)

Oi = 0, i = 1, . . . ,m
(118)

These are the conditions stated in (24) as being necessary and sufficient for optimality of any feasible
POVM set{Oi}. The proof of this statement relies on the fact that if strongduality holds and the
primal problem is convex – both true for this problem – then the above conditions (118) are equivalent
to the Karush-Kuhn-Tucker (KKT) conditions for optimality, which in this case are both necessary and
sufficient [5,§5.5.3]. Thus,any feasible POVM set which satisfies (118) is optimal.
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A.2 Optimality conditions for worst-casea posteriori performance

As shown in [5,§4.2.5], a solution to the quasiconvex optimization problem(38) can be obtained by
solving a series of convex feasibility problems together with a bisection method. We start with the
equivalence,

‖epost‖wc
≤ δ ⇔ wi

(

1 − pi Tr Oi ρi

Tr Oiρ

)

≤ δ ⇔







Tr OiAi(δ) ≤ 0

Ai(δ) = (wi − δ)ρ− wipiρi

(119)

Problem (38) is then equivalent to,

minimize δ
subject to Tr OiAi(δ) ≤ 0

∑m
i=1 Oi = In, Oi ≥ 0, i = 1, . . . ,m

(120)

where the variables are now the real scalarδ as well as the POVM matrices{Oi ∈ Cn×n}. The algorithm
below requires knowing an upper and lower bound on the optimal δopt. Without loss of generality we
can normalize the weights so that0 ≤ wi ≤ 1. Since the objective is a weighted error probability, the
feasible range is0 ≤ δopt ≤ 1. The bisection algorithm as presented in [5,§4.2.5] now becomes:

Bisection-Feasibility Method

given δmin = 0, δmax = 1, toleranceǫ > 0.

repeat

1. δ = (δmin + δmax)/2

2. Solve the convex feasibility problem

find Oi, i = 1, . . . ,m
subject to Tr OiAi(δ) ≤ 0

∑m
i=1 Oi = In, Oi ≥ 0, i = 1, . . . ,m

(121)

3. if feasible,δmax = δ; elseδmin = δ

until δmax − δmin ≤ ǫ.

The feasibility step is equivalent to solving the followingSDP in the variables(s,Oi):

minimize s
subject to Tr OiAi(δ) ≤ s

∑m
i=1 Oi = In, Oi ≥ 0, i = 1, . . . ,m

(122)

Let sopt, Oopt
i denote the optimal solution. Under the temporary assumption thatTr Oopt

i ρ > 0, the
inequalityTr Oopt

i Ai(δ) ≤ sopt is equivalent to,

‖epost‖wc
= max

i
wi

(

1 − piTr Oopt
i ρi

Tr Oopt
i ρ

)

≤ δ +
sopt

mini Tr Oopt
i ρ

(123)

It follows that if sopt > 0 thenδ is feasible, and hence,δopt < δ. If sopt < 0 thenδ is infeasible,i.e.,
δopt > δ. The optimal valueδopt is clearly the solution tosopt(δopt) = 0. The bisection algorithm
together with using an interior-point method to solve the SDP (122) will return a value ofδ to within any
desired, but finite, accuracy of the optimal.
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The key computational step is solving the feasibility problem (122). High quality code which uses
an interior-point method is recommended such as those foundin SDPSOL[43] or SEDUMI [42]. In many
cases the optimal POVM matrices are rank deficient which may result in a large condition number in the
linear equations to be solved in the Newton step. This shouldnot be a problem for well conceived code.

To obtain the optimality conditions we will now apply Lagrange Duality Theory to the feasibility
problem (122) in the Bisection-Feasibility method. Problem (122) is the primal problem. As previously
noted, the primal optimal value,sopt(δ), determines ifδ is feasible, Specifically,

sopt < 0 ⇔ δ > δopt

sopt > 0 ⇔ δ < δopt

sopt = 0 ⇔ δ = δopt

(124)

The Lagrange function associated with the primal problem (122) is,

L(s,O, λ, Z, Y ) = s+

m
∑

i=1

(

λi(Tr OiAi(δ) − s) − Tr ZiOi

)

+ Tr Y
(

In −
m
∑

i=1

Oi

)

(125)

with Lagrange multipliersλi ∈ R, λi ≥ 0 for the inequality constraintTr OiAi(δ) ≤ s, Zi ∈
Cn×n, Zi ≥ 0 for the inequality constraintOi ≥ 0, andY ∈ Rn×n, Y = Y T for the equality
constraint

∑m
i=1 Oi = In. The Lagrange dual function is then,

g(λ,Z, Y ) = inf
s,O

L(s,O, λ, Z, Y )

=

{

Tr Y
∑m

i=1 λi = 1, λiAi(δ) − Zi − Y = 0, i = 1, . . . ,m
−∞ otherwise

(126)

The Lagrange dual problem establishes the largest lower bound from,

maximize g(λ,Z, Y )
subject to λi ≥ 0, Zi ≥ 0, i = 1, . . . ,m

(127)

where the optimization variables are(λ,Z, Y ). Using (126) we can eliminate theZi variables and write
the dual problem explicitly in terms of theλi andY variables as,

maximize Tr Y
subject to λi ≥ 0, λiAi(δ) − Y ≥ 0, i = 1, . . . ,m

∑m
i=1 λi = 1

(128)

The dual optimal solution is(λopt, Y opt). Strong duality also holds for this problem because Slater’s
condition holds [5,§5.2.3]: there exist strictly feasible(s, Oi), such thatTr OiAi(δ) < s, Oi > 0, i =
1, . . . ,m,

∑m
i=1 Oi = In. Since the primal (feasibility) problem is convex, the optimal primal and dual

objective values are equal,
Tr Y opt = sopt (129)

Strong duality also implies the following complementary slackness conditions, [5,§5.5.2],

λopt
i

(

Tr Oopt
i Ai(δ) − sopt

)

= 0, i = 1, . . . ,m

Zopt
i Oopt

i =
(

λopt
i Ai(δ) − Y opt

)

Oopt
i = 0, i = 1, . . . ,m

(130)

The last line usesZi = λiAi(δ) − Y from (126). Combining
∑m

i=1 Oopt
i = I with (λopt

i Ai(δ
opt) −

Y opt)Oopt
i = 0, i = 1, . . . ,m gives,

Y opt =

m
∑

i=1

λopt
i Ai(δ)O

opt
i (131)
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We now put all the primal and dual equality and inequality constraints together at the optimalδ = δopt,
sopt = Tr Y opt = 0, and use (131) to eliminateY opt. To simplify notation we drop the superscript
(·)opt from all the variables(O,λ, Y, Z, δ). This gives:

∑m
i=1 Oi = I

Oi ≥ 0, i = 1, . . . ,m
λiTr OiAi(δ) = 0, i = 1, . . . ,m

λiAi(δ) −
∑m

j=1 λjAj(δ)Oj ≥ 0, i = 1, . . . ,m
(

λiAi(δ) −
∑m

j=1 λjAj(δ)Oj

)

Oi = 0, i = 1, . . . ,m

λi ≥ 0, i = 1, . . . ,m
∑m

i=1 λi = 1

(132)

These can also be established directly from the KKT conditions for optimality which in this case are
both necessary and sufficient [5,§5.5.3]. For the linear constraints, either the constraint is active,
Tr Ai(δ)Oi = 0, λi > 0, or inactive,Tr Ai(δ)Oi < 0, λi = 0. Combining this with (132) gives
the optimality conditions in (43).

Suppose the weights are all equal withwi = 1, ∀i. Then,

Ai(δ) = γρ− piρi ≡ Ai(γ) (133)

with γ = 1 − δ. From now on we will useAi(γ) orAi(δ) as appropriate to the context.
Suppose the optimal is achieved by only one constraint, thatis, for i = k, Tr OkAk(γ) = 0 and for

i 6= k, Tr OiAi(γ) < 0. Then,λk = 1, λi6=k = 0 and the optimality conditions (132) reduce to,

Ak(γ) (I −Ok) ≥ 0
Ak(γ)Ok ≤ 0

Ak(γ) (I −Ok)Ok = 0
Ak(γ)OkOi = 0, i 6= k
Tr OkAk(γ) = 0

(134)

Sinceρ > 0 by assumption (21),

det Ak(γ) = det
(

ρ1/2
(

γI − pkρ
−1/2ρkρ

−1/2
)

ρ1/2
)

= (det ρ)
∏n

j=1 (γ − pkωkj)

with ωkj, j = 1, . . . , n the eigenvalues ofρ−1/2ρkρ
−1/2. Becauseρ > 0, ρk ≥ 0, they are all non-

negative andmaxj ωkj > 0. Let γ = pk maxj ωkj, or equivalently,

γ = pk σmax(ρ
−1/2ρkρ

−1/2) (135)

whereσmax(·) is the maximum singular value of the matrix argument. With this choicedetAk(γ) = 0
and henceAk(γ) = 0 has the decomposition:

Ak(γ) = [Uk+ Uk0]

[

Ωk+ 0n−1

0T
n−1 0

] [

U∗
k+

U∗
k0

]

Ωk+ = diag(ω1, . . . , ωn−1), ω1 ≥ ω2 ≥ · · · ≥ ωn−1 ≥ 0, ω1 > 0

(136)

for unitary [Uk+ Uk0] with Uk+ ∈ Cn×n−1 andUk0 ∈ Cn×1. Setting,

Ok = Uk0U
∗
k0, I −Ok = Uk+U

∗
k+ (137)
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givesAk(γ)Ok = Uk+Ωk+U
∗
k+ ≥ 0, Ak(γ)(I − Ok) = 0, Ok(I − Ok) = 0, thus satisfying the

optimality conditions. Observe also thatOk is a rank1 projector, andI − Ok is a rankn − 1 projector.
Also, I−Ok =

∑

i6=k Oi, and hence is the sum of the remainingm− 1 POVM elements. These are thus
arbitrary except for satisfying (137) with eachOi ≥ 0, i 6= k.

Since the single active constraintk can occur for anyi = 1, . . . ,m, then,

γ = min
i=1,...,m

piσmax(ρ
−1/2ρiρ

−1/2) (138)

which establishes (47) as the optimal objective value for equal weights with one active linear constraint.
More specifically, this means that there is a single indexk ∈ 1 . . . ,m such thatγ = pkσmax(ρ

−1/2ρkρ
−1/2) <

piσmax(ρ
−1/2ρiρ

−1/2), ∀i 6= k.
The same procedure involving the decomposition (136) is used to arrive at the results for single pure

state detection with weightsw1 = 1, w2 = 0 given by (54)-(56).

A.3 Optimality conditions for worst-case a posteriori performance with noisy measure-
ments

To apply the Bisection-Feasibility Method as described in the previous section, replaceOi with Onoisy
i

everywhere in (122). Thus the primal (feasibility) problembecomes,

minimize s

subject to Tr Onoisy
i Ai(δ) ≤ s

Onoisy
i =

∑m
j=1 νijOj , i = 1, . . . ,m

∑m
i=1 Oi = In, Oi ≥ 0, i = 1, . . . ,m

(139)

The Lagrange function is then,

L(s,O, λ, Z, Y ) = s+
m
∑

j=1

λj(Tr Onoisy
j Aj(δ) − s) −

m
∑

i=1

Tr ZiOi + Tr Y
(

In −
m
∑

i=1

Oi

)

(140)

with Lagrange multipliersλi ∈ R, λi ≥ 0 for the inequality constraintTr Onoisy
i Ai(δ) ≤ s, Zi ∈

Cn×n, Zi ≥ 0 for the inequality constraintOi ≥ 0, andY ∈ Rn×n, Y = Y T for the equality constraint
∑m

i=1 Oi = In. Eliminating the noisy POVM terms gives,

L(s,O, λ, Z, Y ) = Tr Y + s

(

1 −
m
∑

i=1

λi

)

+

m
∑

i=1

Tr Oi (Ai(δ, ν) − Zi − Y ) (141)

with theAi(δ, ν) given by (65). Although not shown, the optimality conditions (64) can be established
by repeating,mutadis mutandis, all the steps in the previous section,i.e., formulate the dual problem,
show that strong duality holds, and so on.
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